1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "SpillPlacement.h" 19 #include "SplitKit.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/IndexedMap.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/CodeGen/CalcSpillWeights.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervalUnion.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveRegMatrix.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RegAllocRegistry.h" 53 #include "llvm/CodeGen/RegisterClassInfo.h" 54 #include "llvm/CodeGen/SlotIndexes.h" 55 #include "llvm/CodeGen/Spiller.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/BlockFrequency.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/Timer.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include "llvm/IR/DebugInfoMetadata.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <memory> 77 #include <queue> 78 #include <tuple> 79 #include <utility> 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "regalloc" 84 85 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 86 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 87 STATISTIC(NumEvicted, "Number of interferences evicted"); 88 89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 90 "split-spill-mode", cl::Hidden, 91 cl::desc("Spill mode for splitting live ranges"), 92 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 93 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 94 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 95 cl::init(SplitEditor::SM_Speed)); 96 97 static cl::opt<unsigned> 98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 99 cl::desc("Last chance recoloring max depth"), 100 cl::init(5)); 101 102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 103 "lcr-max-interf", cl::Hidden, 104 cl::desc("Last chance recoloring maximum number of considered" 105 " interference at a time"), 106 cl::init(8)); 107 108 static cl::opt<bool> ExhaustiveSearch( 109 "exhaustive-register-search", cl::NotHidden, 110 cl::desc("Exhaustive Search for registers bypassing the depth " 111 "and interference cutoffs of last chance recoloring"), 112 cl::Hidden); 113 114 static cl::opt<bool> EnableLocalReassignment( 115 "enable-local-reassign", cl::Hidden, 116 cl::desc("Local reassignment can yield better allocation decisions, but " 117 "may be compile time intensive"), 118 cl::init(false)); 119 120 static cl::opt<bool> EnableDeferredSpilling( 121 "enable-deferred-spilling", cl::Hidden, 122 cl::desc("Instead of spilling a variable right away, defer the actual " 123 "code insertion to the end of the allocation. That way the " 124 "allocator might still find a suitable coloring for this " 125 "variable because of other evicted variables."), 126 cl::init(false)); 127 128 // FIXME: Find a good default for this flag and remove the flag. 129 static cl::opt<unsigned> 130 CSRFirstTimeCost("regalloc-csr-first-time-cost", 131 cl::desc("Cost for first time use of callee-saved register."), 132 cl::init(0), cl::Hidden); 133 134 static cl::opt<bool> ConsiderLocalIntervalCost( 135 "consider-local-interval-cost", cl::Hidden, 136 cl::desc("Consider the cost of local intervals created by a split " 137 "candidate when choosing the best split candidate."), 138 cl::init(false)); 139 140 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 141 createGreedyRegisterAllocator); 142 143 namespace { 144 145 class RAGreedy : public MachineFunctionPass, 146 public RegAllocBase, 147 private LiveRangeEdit::Delegate { 148 // Convenient shortcuts. 149 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 150 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 151 using SmallVirtRegSet = SmallSet<Register, 16>; 152 153 // context 154 MachineFunction *MF; 155 156 // Shortcuts to some useful interface. 157 const TargetInstrInfo *TII; 158 const TargetRegisterInfo *TRI; 159 RegisterClassInfo RCI; 160 161 // analyses 162 SlotIndexes *Indexes; 163 MachineBlockFrequencyInfo *MBFI; 164 MachineDominatorTree *DomTree; 165 MachineLoopInfo *Loops; 166 MachineOptimizationRemarkEmitter *ORE; 167 EdgeBundles *Bundles; 168 SpillPlacement *SpillPlacer; 169 LiveDebugVariables *DebugVars; 170 AliasAnalysis *AA; 171 172 // state 173 std::unique_ptr<Spiller> SpillerInstance; 174 PQueue Queue; 175 unsigned NextCascade; 176 std::unique_ptr<VirtRegAuxInfo> VRAI; 177 178 // Live ranges pass through a number of stages as we try to allocate them. 179 // Some of the stages may also create new live ranges: 180 // 181 // - Region splitting. 182 // - Per-block splitting. 183 // - Local splitting. 184 // - Spilling. 185 // 186 // Ranges produced by one of the stages skip the previous stages when they are 187 // dequeued. This improves performance because we can skip interference checks 188 // that are unlikely to give any results. It also guarantees that the live 189 // range splitting algorithm terminates, something that is otherwise hard to 190 // ensure. 191 enum LiveRangeStage { 192 /// Newly created live range that has never been queued. 193 RS_New, 194 195 /// Only attempt assignment and eviction. Then requeue as RS_Split. 196 RS_Assign, 197 198 /// Attempt live range splitting if assignment is impossible. 199 RS_Split, 200 201 /// Attempt more aggressive live range splitting that is guaranteed to make 202 /// progress. This is used for split products that may not be making 203 /// progress. 204 RS_Split2, 205 206 /// Live range will be spilled. No more splitting will be attempted. 207 RS_Spill, 208 209 210 /// Live range is in memory. Because of other evictions, it might get moved 211 /// in a register in the end. 212 RS_Memory, 213 214 /// There is nothing more we can do to this live range. Abort compilation 215 /// if it can't be assigned. 216 RS_Done 217 }; 218 219 // Enum CutOffStage to keep a track whether the register allocation failed 220 // because of the cutoffs encountered in last chance recoloring. 221 // Note: This is used as bitmask. New value should be next power of 2. 222 enum CutOffStage { 223 // No cutoffs encountered 224 CO_None = 0, 225 226 // lcr-max-depth cutoff encountered 227 CO_Depth = 1, 228 229 // lcr-max-interf cutoff encountered 230 CO_Interf = 2 231 }; 232 233 uint8_t CutOffInfo; 234 235 #ifndef NDEBUG 236 static const char *const StageName[]; 237 #endif 238 239 // RegInfo - Keep additional information about each live range. 240 struct RegInfo { 241 LiveRangeStage Stage = RS_New; 242 243 // Cascade - Eviction loop prevention. See canEvictInterference(). 244 unsigned Cascade = 0; 245 246 RegInfo() = default; 247 }; 248 249 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 250 251 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 252 return ExtraRegInfo[VirtReg.reg()].Stage; 253 } 254 255 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 256 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 257 ExtraRegInfo[VirtReg.reg()].Stage = Stage; 258 } 259 260 template<typename Iterator> 261 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 262 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 263 for (;Begin != End; ++Begin) { 264 Register Reg = *Begin; 265 if (ExtraRegInfo[Reg].Stage == RS_New) 266 ExtraRegInfo[Reg].Stage = NewStage; 267 } 268 } 269 270 /// Cost of evicting interference. 271 struct EvictionCost { 272 unsigned BrokenHints = 0; ///< Total number of broken hints. 273 float MaxWeight = 0; ///< Maximum spill weight evicted. 274 275 EvictionCost() = default; 276 277 bool isMax() const { return BrokenHints == ~0u; } 278 279 void setMax() { BrokenHints = ~0u; } 280 281 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 282 283 bool operator<(const EvictionCost &O) const { 284 return std::tie(BrokenHints, MaxWeight) < 285 std::tie(O.BrokenHints, O.MaxWeight); 286 } 287 }; 288 289 /// EvictionTrack - Keeps track of past evictions in order to optimize region 290 /// split decision. 291 class EvictionTrack { 292 293 public: 294 using EvictorInfo = 295 std::pair<Register /* evictor */, MCRegister /* physreg */>; 296 using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>; 297 298 private: 299 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 300 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 301 EvicteeInfo Evictees; 302 303 public: 304 /// Clear all eviction information. 305 void clear() { Evictees.clear(); } 306 307 /// Clear eviction information for the given evictee Vreg. 308 /// E.g. when Vreg get's a new allocation, the old eviction info is no 309 /// longer relevant. 310 /// \param Evictee The evictee Vreg for whom we want to clear collected 311 /// eviction info. 312 void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); } 313 314 /// Track new eviction. 315 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 316 /// \param PhysReg The physical register Evictee was evicted from. 317 /// \param Evictor The evictor Vreg that evicted Evictee. 318 /// \param Evictee The evictee Vreg. 319 void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) { 320 Evictees[Evictee].first = Evictor; 321 Evictees[Evictee].second = PhysReg; 322 } 323 324 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 325 /// \param Evictee The evictee vreg. 326 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 327 /// nobody has evicted Evictee from PhysReg. 328 EvictorInfo getEvictor(Register Evictee) { 329 if (Evictees.count(Evictee)) { 330 return Evictees[Evictee]; 331 } 332 333 return EvictorInfo(0, 0); 334 } 335 }; 336 337 // Keeps track of past evictions in order to optimize region split decision. 338 EvictionTrack LastEvicted; 339 340 // splitting state. 341 std::unique_ptr<SplitAnalysis> SA; 342 std::unique_ptr<SplitEditor> SE; 343 344 /// Cached per-block interference maps 345 InterferenceCache IntfCache; 346 347 /// All basic blocks where the current register has uses. 348 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 349 350 /// Global live range splitting candidate info. 351 struct GlobalSplitCandidate { 352 // Register intended for assignment, or 0. 353 MCRegister PhysReg; 354 355 // SplitKit interval index for this candidate. 356 unsigned IntvIdx; 357 358 // Interference for PhysReg. 359 InterferenceCache::Cursor Intf; 360 361 // Bundles where this candidate should be live. 362 BitVector LiveBundles; 363 SmallVector<unsigned, 8> ActiveBlocks; 364 365 void reset(InterferenceCache &Cache, MCRegister Reg) { 366 PhysReg = Reg; 367 IntvIdx = 0; 368 Intf.setPhysReg(Cache, Reg); 369 LiveBundles.clear(); 370 ActiveBlocks.clear(); 371 } 372 373 // Set B[I] = C for every live bundle where B[I] was NoCand. 374 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 375 unsigned Count = 0; 376 for (unsigned I : LiveBundles.set_bits()) 377 if (B[I] == NoCand) { 378 B[I] = C; 379 Count++; 380 } 381 return Count; 382 } 383 }; 384 385 /// Candidate info for each PhysReg in AllocationOrder. 386 /// This vector never shrinks, but grows to the size of the largest register 387 /// class. 388 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 389 390 enum : unsigned { NoCand = ~0u }; 391 392 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 393 /// NoCand which indicates the stack interval. 394 SmallVector<unsigned, 32> BundleCand; 395 396 /// Callee-save register cost, calculated once per machine function. 397 BlockFrequency CSRCost; 398 399 /// Run or not the local reassignment heuristic. This information is 400 /// obtained from the TargetSubtargetInfo. 401 bool EnableLocalReassign; 402 403 /// Enable or not the consideration of the cost of local intervals created 404 /// by a split candidate when choosing the best split candidate. 405 bool EnableAdvancedRASplitCost; 406 407 /// Set of broken hints that may be reconciled later because of eviction. 408 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 409 410 /// The register cost values. This list will be recreated for each Machine 411 /// Function 412 ArrayRef<uint8_t> RegCosts; 413 414 public: 415 RAGreedy(); 416 417 /// Return the pass name. 418 StringRef getPassName() const override { return "Greedy Register Allocator"; } 419 420 /// RAGreedy analysis usage. 421 void getAnalysisUsage(AnalysisUsage &AU) const override; 422 void releaseMemory() override; 423 Spiller &spiller() override { return *SpillerInstance; } 424 void enqueue(LiveInterval *LI) override; 425 LiveInterval *dequeue() override; 426 MCRegister selectOrSplit(LiveInterval &, 427 SmallVectorImpl<Register> &) override; 428 void aboutToRemoveInterval(LiveInterval &) override; 429 430 /// Perform register allocation. 431 bool runOnMachineFunction(MachineFunction &mf) override; 432 433 MachineFunctionProperties getRequiredProperties() const override { 434 return MachineFunctionProperties().set( 435 MachineFunctionProperties::Property::NoPHIs); 436 } 437 438 MachineFunctionProperties getClearedProperties() const override { 439 return MachineFunctionProperties().set( 440 MachineFunctionProperties::Property::IsSSA); 441 } 442 443 static char ID; 444 445 private: 446 MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &, 447 SmallVirtRegSet &, unsigned = 0); 448 449 bool LRE_CanEraseVirtReg(Register) override; 450 void LRE_WillShrinkVirtReg(Register) override; 451 void LRE_DidCloneVirtReg(Register, Register) override; 452 void enqueue(PQueue &CurQueue, LiveInterval *LI); 453 LiveInterval *dequeue(PQueue &CurQueue); 454 455 BlockFrequency calcSpillCost(); 456 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 457 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 458 bool growRegion(GlobalSplitCandidate &Cand); 459 bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand, 460 unsigned BBNumber, 461 const AllocationOrder &Order); 462 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 463 GlobalSplitCandidate &Cand, unsigned BBNumber, 464 const AllocationOrder &Order); 465 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 466 const AllocationOrder &Order, 467 bool *CanCauseEvictionChain); 468 bool calcCompactRegion(GlobalSplitCandidate&); 469 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 470 void calcGapWeights(MCRegister, SmallVectorImpl<float> &); 471 Register canReassign(LiveInterval &VirtReg, Register PrevReg) const; 472 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const; 473 bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &, 474 const SmallVirtRegSet &) const; 475 bool canEvictInterferenceInRange(const LiveInterval &VirtReg, 476 MCRegister PhysReg, SlotIndex Start, 477 SlotIndex End, EvictionCost &MaxCost) const; 478 MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order, 479 const LiveInterval &VirtReg, 480 SlotIndex Start, SlotIndex End, 481 float *BestEvictWeight) const; 482 void evictInterference(LiveInterval &, MCRegister, 483 SmallVectorImpl<Register> &); 484 bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg, 485 SmallLISet &RecoloringCandidates, 486 const SmallVirtRegSet &FixedRegisters); 487 488 MCRegister tryAssign(LiveInterval&, AllocationOrder&, 489 SmallVectorImpl<Register>&, 490 const SmallVirtRegSet&); 491 MCRegister tryEvict(LiveInterval &, AllocationOrder &, 492 SmallVectorImpl<Register> &, uint8_t, 493 const SmallVirtRegSet &); 494 MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &, 495 SmallVectorImpl<Register> &); 496 /// Calculate cost of region splitting. 497 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 498 AllocationOrder &Order, 499 BlockFrequency &BestCost, 500 unsigned &NumCands, bool IgnoreCSR, 501 bool *CanCauseEvictionChain = nullptr); 502 /// Perform region splitting. 503 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 504 bool HasCompact, 505 SmallVectorImpl<Register> &NewVRegs); 506 /// Check other options before using a callee-saved register for the first 507 /// time. 508 MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg, 509 AllocationOrder &Order, MCRegister PhysReg, 510 uint8_t &CostPerUseLimit, 511 SmallVectorImpl<Register> &NewVRegs); 512 void initializeCSRCost(); 513 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 514 SmallVectorImpl<Register>&); 515 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 516 SmallVectorImpl<Register>&); 517 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 518 SmallVectorImpl<Register>&); 519 unsigned trySplit(LiveInterval&, AllocationOrder&, 520 SmallVectorImpl<Register>&, 521 const SmallVirtRegSet&); 522 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 523 SmallVectorImpl<Register> &, 524 SmallVirtRegSet &, unsigned); 525 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &, 526 SmallVirtRegSet &, unsigned); 527 void tryHintRecoloring(LiveInterval &); 528 void tryHintsRecoloring(); 529 530 /// Model the information carried by one end of a copy. 531 struct HintInfo { 532 /// The frequency of the copy. 533 BlockFrequency Freq; 534 /// The virtual register or physical register. 535 Register Reg; 536 /// Its currently assigned register. 537 /// In case of a physical register Reg == PhysReg. 538 MCRegister PhysReg; 539 540 HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg) 541 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 542 }; 543 using HintsInfo = SmallVector<HintInfo, 4>; 544 545 BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister); 546 void collectHintInfo(Register, HintsInfo &); 547 548 bool isUnusedCalleeSavedReg(MCRegister PhysReg) const; 549 550 /// Greedy RA statistic to remark. 551 struct RAGreedyStats { 552 unsigned Reloads = 0; 553 unsigned FoldedReloads = 0; 554 unsigned Spills = 0; 555 unsigned FoldedSpills = 0; 556 557 bool isEmpty() { 558 return !(Reloads || FoldedReloads || Spills || FoldedSpills); 559 } 560 561 void add(RAGreedyStats other) { 562 Reloads += other.Reloads; 563 FoldedReloads += other.FoldedReloads; 564 Spills += other.Spills; 565 FoldedSpills += other.FoldedSpills; 566 } 567 568 void report(MachineOptimizationRemarkMissed &R); 569 }; 570 571 /// Compute the number of spills and reloads for a basic block. 572 RAGreedyStats computeNumberOfSplillsReloads(MachineBasicBlock &MBB); 573 574 /// Compute and report the number of spills through a remark. 575 RAGreedyStats reportNumberOfSplillsReloads(MachineLoop *L); 576 577 /// Report the number of spills and reloads for each loop. 578 void reportNumberOfSplillsReloads(); 579 }; 580 581 } // end anonymous namespace 582 583 char RAGreedy::ID = 0; 584 char &llvm::RAGreedyID = RAGreedy::ID; 585 586 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 587 "Greedy Register Allocator", false, false) 588 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 589 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 590 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 591 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 592 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 593 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 594 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 595 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 596 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 597 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 598 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 599 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 600 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 601 INITIALIZE_PASS_END(RAGreedy, "greedy", 602 "Greedy Register Allocator", false, false) 603 604 #ifndef NDEBUG 605 const char *const RAGreedy::StageName[] = { 606 "RS_New", 607 "RS_Assign", 608 "RS_Split", 609 "RS_Split2", 610 "RS_Spill", 611 "RS_Memory", 612 "RS_Done" 613 }; 614 #endif 615 616 // Hysteresis to use when comparing floats. 617 // This helps stabilize decisions based on float comparisons. 618 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 619 620 FunctionPass* llvm::createGreedyRegisterAllocator() { 621 return new RAGreedy(); 622 } 623 624 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 625 } 626 627 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 628 AU.setPreservesCFG(); 629 AU.addRequired<MachineBlockFrequencyInfo>(); 630 AU.addPreserved<MachineBlockFrequencyInfo>(); 631 AU.addRequired<AAResultsWrapperPass>(); 632 AU.addPreserved<AAResultsWrapperPass>(); 633 AU.addRequired<LiveIntervals>(); 634 AU.addPreserved<LiveIntervals>(); 635 AU.addRequired<SlotIndexes>(); 636 AU.addPreserved<SlotIndexes>(); 637 AU.addRequired<LiveDebugVariables>(); 638 AU.addPreserved<LiveDebugVariables>(); 639 AU.addRequired<LiveStacks>(); 640 AU.addPreserved<LiveStacks>(); 641 AU.addRequired<MachineDominatorTree>(); 642 AU.addPreserved<MachineDominatorTree>(); 643 AU.addRequired<MachineLoopInfo>(); 644 AU.addPreserved<MachineLoopInfo>(); 645 AU.addRequired<VirtRegMap>(); 646 AU.addPreserved<VirtRegMap>(); 647 AU.addRequired<LiveRegMatrix>(); 648 AU.addPreserved<LiveRegMatrix>(); 649 AU.addRequired<EdgeBundles>(); 650 AU.addRequired<SpillPlacement>(); 651 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 652 MachineFunctionPass::getAnalysisUsage(AU); 653 } 654 655 //===----------------------------------------------------------------------===// 656 // LiveRangeEdit delegate methods 657 //===----------------------------------------------------------------------===// 658 659 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 660 LiveInterval &LI = LIS->getInterval(VirtReg); 661 if (VRM->hasPhys(VirtReg)) { 662 Matrix->unassign(LI); 663 aboutToRemoveInterval(LI); 664 return true; 665 } 666 // Unassigned virtreg is probably in the priority queue. 667 // RegAllocBase will erase it after dequeueing. 668 // Nonetheless, clear the live-range so that the debug 669 // dump will show the right state for that VirtReg. 670 LI.clear(); 671 return false; 672 } 673 674 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 675 if (!VRM->hasPhys(VirtReg)) 676 return; 677 678 // Register is assigned, put it back on the queue for reassignment. 679 LiveInterval &LI = LIS->getInterval(VirtReg); 680 Matrix->unassign(LI); 681 enqueue(&LI); 682 } 683 684 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 685 // Cloning a register we haven't even heard about yet? Just ignore it. 686 if (!ExtraRegInfo.inBounds(Old)) 687 return; 688 689 // LRE may clone a virtual register because dead code elimination causes it to 690 // be split into connected components. The new components are much smaller 691 // than the original, so they should get a new chance at being assigned. 692 // same stage as the parent. 693 ExtraRegInfo[Old].Stage = RS_Assign; 694 ExtraRegInfo.grow(New); 695 ExtraRegInfo[New] = ExtraRegInfo[Old]; 696 } 697 698 void RAGreedy::releaseMemory() { 699 SpillerInstance.reset(); 700 ExtraRegInfo.clear(); 701 GlobalCand.clear(); 702 } 703 704 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 705 706 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 707 // Prioritize live ranges by size, assigning larger ranges first. 708 // The queue holds (size, reg) pairs. 709 const unsigned Size = LI->getSize(); 710 const Register Reg = LI->reg(); 711 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 712 unsigned Prio; 713 714 ExtraRegInfo.grow(Reg); 715 if (ExtraRegInfo[Reg].Stage == RS_New) 716 ExtraRegInfo[Reg].Stage = RS_Assign; 717 718 if (ExtraRegInfo[Reg].Stage == RS_Split) { 719 // Unsplit ranges that couldn't be allocated immediately are deferred until 720 // everything else has been allocated. 721 Prio = Size; 722 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 723 // Memory operand should be considered last. 724 // Change the priority such that Memory operand are assigned in 725 // the reverse order that they came in. 726 // TODO: Make this a member variable and probably do something about hints. 727 static unsigned MemOp = 0; 728 Prio = MemOp++; 729 } else { 730 // Giant live ranges fall back to the global assignment heuristic, which 731 // prevents excessive spilling in pathological cases. 732 bool ReverseLocal = TRI->reverseLocalAssignment(); 733 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 734 bool ForceGlobal = !ReverseLocal && 735 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 736 737 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 738 LIS->intervalIsInOneMBB(*LI)) { 739 // Allocate original local ranges in linear instruction order. Since they 740 // are singly defined, this produces optimal coloring in the absence of 741 // global interference and other constraints. 742 if (!ReverseLocal) 743 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 744 else { 745 // Allocating bottom up may allow many short LRGs to be assigned first 746 // to one of the cheap registers. This could be much faster for very 747 // large blocks on targets with many physical registers. 748 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 749 } 750 Prio |= RC.AllocationPriority << 24; 751 } else { 752 // Allocate global and split ranges in long->short order. Long ranges that 753 // don't fit should be spilled (or split) ASAP so they don't create 754 // interference. Mark a bit to prioritize global above local ranges. 755 Prio = (1u << 29) + Size; 756 } 757 // Mark a higher bit to prioritize global and local above RS_Split. 758 Prio |= (1u << 31); 759 760 // Boost ranges that have a physical register hint. 761 if (VRM->hasKnownPreference(Reg)) 762 Prio |= (1u << 30); 763 } 764 // The virtual register number is a tie breaker for same-sized ranges. 765 // Give lower vreg numbers higher priority to assign them first. 766 CurQueue.push(std::make_pair(Prio, ~Reg)); 767 } 768 769 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 770 771 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 772 if (CurQueue.empty()) 773 return nullptr; 774 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 775 CurQueue.pop(); 776 return LI; 777 } 778 779 //===----------------------------------------------------------------------===// 780 // Direct Assignment 781 //===----------------------------------------------------------------------===// 782 783 /// tryAssign - Try to assign VirtReg to an available register. 784 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg, 785 AllocationOrder &Order, 786 SmallVectorImpl<Register> &NewVRegs, 787 const SmallVirtRegSet &FixedRegisters) { 788 MCRegister PhysReg; 789 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 790 assert(*I); 791 if (!Matrix->checkInterference(VirtReg, *I)) { 792 if (I.isHint()) 793 return *I; 794 else 795 PhysReg = *I; 796 } 797 } 798 if (!PhysReg.isValid()) 799 return PhysReg; 800 801 // PhysReg is available, but there may be a better choice. 802 803 // If we missed a simple hint, try to cheaply evict interference from the 804 // preferred register. 805 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 806 if (Order.isHint(Hint)) { 807 MCRegister PhysHint = Hint.asMCReg(); 808 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 809 EvictionCost MaxCost; 810 MaxCost.setBrokenHints(1); 811 if (canEvictInterference(VirtReg, PhysHint, true, MaxCost, 812 FixedRegisters)) { 813 evictInterference(VirtReg, PhysHint, NewVRegs); 814 return PhysHint; 815 } 816 // Record the missed hint, we may be able to recover 817 // at the end if the surrounding allocation changed. 818 SetOfBrokenHints.insert(&VirtReg); 819 } 820 821 // Try to evict interference from a cheaper alternative. 822 uint8_t Cost = RegCosts[PhysReg]; 823 824 // Most registers have 0 additional cost. 825 if (!Cost) 826 return PhysReg; 827 828 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 829 << Cost << '\n'); 830 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 831 return CheapReg ? CheapReg : PhysReg; 832 } 833 834 //===----------------------------------------------------------------------===// 835 // Interference eviction 836 //===----------------------------------------------------------------------===// 837 838 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const { 839 auto Order = 840 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 841 MCRegister PhysReg; 842 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 843 if ((*I).id() == PrevReg.id()) 844 continue; 845 846 MCRegUnitIterator Units(*I, TRI); 847 for (; Units.isValid(); ++Units) { 848 // Instantiate a "subquery", not to be confused with the Queries array. 849 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 850 if (subQ.checkInterference()) 851 break; 852 } 853 // If no units have interference, break out with the current PhysReg. 854 if (!Units.isValid()) 855 PhysReg = *I; 856 } 857 if (PhysReg) 858 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 859 << printReg(PrevReg, TRI) << " to " 860 << printReg(PhysReg, TRI) << '\n'); 861 return PhysReg; 862 } 863 864 /// shouldEvict - determine if A should evict the assigned live range B. The 865 /// eviction policy defined by this function together with the allocation order 866 /// defined by enqueue() decides which registers ultimately end up being split 867 /// and spilled. 868 /// 869 /// Cascade numbers are used to prevent infinite loops if this function is a 870 /// cyclic relation. 871 /// 872 /// @param A The live range to be assigned. 873 /// @param IsHint True when A is about to be assigned to its preferred 874 /// register. 875 /// @param B The live range to be evicted. 876 /// @param BreaksHint True when B is already assigned to its preferred register. 877 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 878 LiveInterval &B, bool BreaksHint) const { 879 bool CanSplit = getStage(B) < RS_Spill; 880 881 // Be fairly aggressive about following hints as long as the evictee can be 882 // split. 883 if (CanSplit && IsHint && !BreaksHint) 884 return true; 885 886 if (A.weight() > B.weight()) { 887 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n'); 888 return true; 889 } 890 return false; 891 } 892 893 /// canEvictInterference - Return true if all interferences between VirtReg and 894 /// PhysReg can be evicted. 895 /// 896 /// @param VirtReg Live range that is about to be assigned. 897 /// @param PhysReg Desired register for assignment. 898 /// @param IsHint True when PhysReg is VirtReg's preferred register. 899 /// @param MaxCost Only look for cheaper candidates and update with new cost 900 /// when returning true. 901 /// @returns True when interference can be evicted cheaper than MaxCost. 902 bool RAGreedy::canEvictInterference( 903 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 904 EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const { 905 // It is only possible to evict virtual register interference. 906 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 907 return false; 908 909 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 910 911 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 912 // involved in an eviction before. If a cascade number was assigned, deny 913 // evicting anything with the same or a newer cascade number. This prevents 914 // infinite eviction loops. 915 // 916 // This works out so a register without a cascade number is allowed to evict 917 // anything, and it can be evicted by anything. 918 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 919 if (!Cascade) 920 Cascade = NextCascade; 921 922 EvictionCost Cost; 923 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 924 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 925 // If there is 10 or more interferences, chances are one is heavier. 926 if (Q.collectInterferingVRegs(10) >= 10) 927 return false; 928 929 // Check if any interfering live range is heavier than MaxWeight. 930 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 931 assert(Register::isVirtualRegister(Intf->reg()) && 932 "Only expecting virtual register interference from query"); 933 934 // Do not allow eviction of a virtual register if we are in the middle 935 // of last-chance recoloring and this virtual register is one that we 936 // have scavenged a physical register for. 937 if (FixedRegisters.count(Intf->reg())) 938 return false; 939 940 // Never evict spill products. They cannot split or spill. 941 if (getStage(*Intf) == RS_Done) 942 return false; 943 // Once a live range becomes small enough, it is urgent that we find a 944 // register for it. This is indicated by an infinite spill weight. These 945 // urgent live ranges get to evict almost anything. 946 // 947 // Also allow urgent evictions of unspillable ranges from a strictly 948 // larger allocation order. 949 bool Urgent = 950 !VirtReg.isSpillable() && 951 (Intf->isSpillable() || 952 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 953 RegClassInfo.getNumAllocatableRegs( 954 MRI->getRegClass(Intf->reg()))); 955 // Only evict older cascades or live ranges without a cascade. 956 unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade; 957 if (Cascade <= IntfCascade) { 958 if (!Urgent) 959 return false; 960 // We permit breaking cascades for urgent evictions. It should be the 961 // last resort, though, so make it really expensive. 962 Cost.BrokenHints += 10; 963 } 964 // Would this break a satisfied hint? 965 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 966 // Update eviction cost. 967 Cost.BrokenHints += BreaksHint; 968 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 969 // Abort if this would be too expensive. 970 if (!(Cost < MaxCost)) 971 return false; 972 if (Urgent) 973 continue; 974 // Apply the eviction policy for non-urgent evictions. 975 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 976 return false; 977 // If !MaxCost.isMax(), then we're just looking for a cheap register. 978 // Evicting another local live range in this case could lead to suboptimal 979 // coloring. 980 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 981 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 982 return false; 983 } 984 } 985 } 986 MaxCost = Cost; 987 return true; 988 } 989 990 /// Return true if all interferences between VirtReg and PhysReg between 991 /// Start and End can be evicted. 992 /// 993 /// \param VirtReg Live range that is about to be assigned. 994 /// \param PhysReg Desired register for assignment. 995 /// \param Start Start of range to look for interferences. 996 /// \param End End of range to look for interferences. 997 /// \param MaxCost Only look for cheaper candidates and update with new cost 998 /// when returning true. 999 /// \return True when interference can be evicted cheaper than MaxCost. 1000 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg, 1001 MCRegister PhysReg, SlotIndex Start, 1002 SlotIndex End, 1003 EvictionCost &MaxCost) const { 1004 EvictionCost Cost; 1005 1006 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1007 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1008 Q.collectInterferingVRegs(); 1009 1010 // Check if any interfering live range is heavier than MaxWeight. 1011 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 1012 // Check if interference overlast the segment in interest. 1013 if (!Intf->overlaps(Start, End)) 1014 continue; 1015 1016 // Cannot evict non virtual reg interference. 1017 if (!Register::isVirtualRegister(Intf->reg())) 1018 return false; 1019 // Never evict spill products. They cannot split or spill. 1020 if (getStage(*Intf) == RS_Done) 1021 return false; 1022 1023 // Would this break a satisfied hint? 1024 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 1025 // Update eviction cost. 1026 Cost.BrokenHints += BreaksHint; 1027 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 1028 // Abort if this would be too expensive. 1029 if (!(Cost < MaxCost)) 1030 return false; 1031 } 1032 } 1033 1034 if (Cost.MaxWeight == 0) 1035 return false; 1036 1037 MaxCost = Cost; 1038 return true; 1039 } 1040 1041 /// Return the physical register that will be best 1042 /// candidate for eviction by a local split interval that will be created 1043 /// between Start and End. 1044 /// 1045 /// \param Order The allocation order 1046 /// \param VirtReg Live range that is about to be assigned. 1047 /// \param Start Start of range to look for interferences 1048 /// \param End End of range to look for interferences 1049 /// \param BestEvictweight The eviction cost of that eviction 1050 /// \return The PhysReg which is the best candidate for eviction and the 1051 /// eviction cost in BestEvictweight 1052 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1053 const LiveInterval &VirtReg, 1054 SlotIndex Start, SlotIndex End, 1055 float *BestEvictweight) const { 1056 EvictionCost BestEvictCost; 1057 BestEvictCost.setMax(); 1058 BestEvictCost.MaxWeight = VirtReg.weight(); 1059 MCRegister BestEvicteePhys; 1060 1061 // Go over all physical registers and find the best candidate for eviction 1062 for (MCRegister PhysReg : Order.getOrder()) { 1063 1064 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1065 BestEvictCost)) 1066 continue; 1067 1068 // Best so far. 1069 BestEvicteePhys = PhysReg; 1070 } 1071 *BestEvictweight = BestEvictCost.MaxWeight; 1072 return BestEvicteePhys; 1073 } 1074 1075 /// evictInterference - Evict any interferring registers that prevent VirtReg 1076 /// from being assigned to Physreg. This assumes that canEvictInterference 1077 /// returned true. 1078 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg, 1079 SmallVectorImpl<Register> &NewVRegs) { 1080 // Make sure that VirtReg has a cascade number, and assign that cascade 1081 // number to every evicted register. These live ranges than then only be 1082 // evicted by a newer cascade, preventing infinite loops. 1083 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 1084 if (!Cascade) 1085 Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++; 1086 1087 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1088 << " interference: Cascade " << Cascade << '\n'); 1089 1090 // Collect all interfering virtregs first. 1091 SmallVector<LiveInterval*, 8> Intfs; 1092 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1093 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1094 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1095 // should be fast, we may need to recalculate if when different physregs 1096 // overlap the same register unit so we had different SubRanges queried 1097 // against it. 1098 Q.collectInterferingVRegs(); 1099 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1100 Intfs.append(IVR.begin(), IVR.end()); 1101 } 1102 1103 // Evict them second. This will invalidate the queries. 1104 for (LiveInterval *Intf : Intfs) { 1105 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1106 if (!VRM->hasPhys(Intf->reg())) 1107 continue; 1108 1109 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 1110 1111 Matrix->unassign(*Intf); 1112 assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade || 1113 VirtReg.isSpillable() < Intf->isSpillable()) && 1114 "Cannot decrease cascade number, illegal eviction"); 1115 ExtraRegInfo[Intf->reg()].Cascade = Cascade; 1116 ++NumEvicted; 1117 NewVRegs.push_back(Intf->reg()); 1118 } 1119 } 1120 1121 /// Returns true if the given \p PhysReg is a callee saved register and has not 1122 /// been used for allocation yet. 1123 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 1124 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1125 if (!CSR) 1126 return false; 1127 1128 return !Matrix->isPhysRegUsed(PhysReg); 1129 } 1130 1131 /// tryEvict - Try to evict all interferences for a physreg. 1132 /// @param VirtReg Currently unassigned virtual register. 1133 /// @param Order Physregs to try. 1134 /// @return Physreg to assign VirtReg, or 0. 1135 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order, 1136 SmallVectorImpl<Register> &NewVRegs, 1137 uint8_t CostPerUseLimit, 1138 const SmallVirtRegSet &FixedRegisters) { 1139 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1140 TimePassesIsEnabled); 1141 1142 // Keep track of the cheapest interference seen so far. 1143 EvictionCost BestCost; 1144 BestCost.setMax(); 1145 MCRegister BestPhys; 1146 unsigned OrderLimit = Order.getOrder().size(); 1147 1148 // When we are just looking for a reduced cost per use, don't break any 1149 // hints, and only evict smaller spill weights. 1150 if (CostPerUseLimit < uint8_t(~0u)) { 1151 BestCost.BrokenHints = 0; 1152 BestCost.MaxWeight = VirtReg.weight(); 1153 1154 // Check of any registers in RC are below CostPerUseLimit. 1155 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 1156 uint8_t MinCost = RegClassInfo.getMinCost(RC); 1157 if (MinCost >= CostPerUseLimit) { 1158 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1159 << MinCost << ", no cheaper registers to be found.\n"); 1160 return 0; 1161 } 1162 1163 // It is normal for register classes to have a long tail of registers with 1164 // the same cost. We don't need to look at them if they're too expensive. 1165 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 1166 OrderLimit = RegClassInfo.getLastCostChange(RC); 1167 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1168 << " regs.\n"); 1169 } 1170 } 1171 1172 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 1173 ++I) { 1174 MCRegister PhysReg = *I; 1175 assert(PhysReg); 1176 if (RegCosts[PhysReg] >= CostPerUseLimit) 1177 continue; 1178 // The first use of a callee-saved register in a function has cost 1. 1179 // Don't start using a CSR when the CostPerUseLimit is low. 1180 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1181 LLVM_DEBUG( 1182 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1183 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1184 << '\n'); 1185 continue; 1186 } 1187 1188 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost, 1189 FixedRegisters)) 1190 continue; 1191 1192 // Best so far. 1193 BestPhys = PhysReg; 1194 1195 // Stop if the hint can be used. 1196 if (I.isHint()) 1197 break; 1198 } 1199 1200 if (BestPhys.isValid()) 1201 evictInterference(VirtReg, BestPhys, NewVRegs); 1202 return BestPhys; 1203 } 1204 1205 //===----------------------------------------------------------------------===// 1206 // Region Splitting 1207 //===----------------------------------------------------------------------===// 1208 1209 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1210 /// interference pattern in Physreg and its aliases. Add the constraints to 1211 /// SpillPlacement and return the static cost of this split in Cost, assuming 1212 /// that all preferences in SplitConstraints are met. 1213 /// Return false if there are no bundles with positive bias. 1214 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1215 BlockFrequency &Cost) { 1216 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1217 1218 // Reset interference dependent info. 1219 SplitConstraints.resize(UseBlocks.size()); 1220 BlockFrequency StaticCost = 0; 1221 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1222 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1223 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1224 1225 BC.Number = BI.MBB->getNumber(); 1226 Intf.moveToBlock(BC.Number); 1227 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1228 BC.Exit = (BI.LiveOut && 1229 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1230 ? SpillPlacement::PrefReg 1231 : SpillPlacement::DontCare; 1232 BC.ChangesValue = BI.FirstDef.isValid(); 1233 1234 if (!Intf.hasInterference()) 1235 continue; 1236 1237 // Number of spill code instructions to insert. 1238 unsigned Ins = 0; 1239 1240 // Interference for the live-in value. 1241 if (BI.LiveIn) { 1242 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1243 BC.Entry = SpillPlacement::MustSpill; 1244 ++Ins; 1245 } else if (Intf.first() < BI.FirstInstr) { 1246 BC.Entry = SpillPlacement::PrefSpill; 1247 ++Ins; 1248 } else if (Intf.first() < BI.LastInstr) { 1249 ++Ins; 1250 } 1251 1252 // Abort if the spill cannot be inserted at the MBB' start 1253 if (((BC.Entry == SpillPlacement::MustSpill) || 1254 (BC.Entry == SpillPlacement::PrefSpill)) && 1255 SlotIndex::isEarlierInstr(BI.FirstInstr, 1256 SA->getFirstSplitPoint(BC.Number))) 1257 return false; 1258 } 1259 1260 // Interference for the live-out value. 1261 if (BI.LiveOut) { 1262 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1263 BC.Exit = SpillPlacement::MustSpill; 1264 ++Ins; 1265 } else if (Intf.last() > BI.LastInstr) { 1266 BC.Exit = SpillPlacement::PrefSpill; 1267 ++Ins; 1268 } else if (Intf.last() > BI.FirstInstr) { 1269 ++Ins; 1270 } 1271 } 1272 1273 // Accumulate the total frequency of inserted spill code. 1274 while (Ins--) 1275 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1276 } 1277 Cost = StaticCost; 1278 1279 // Add constraints for use-blocks. Note that these are the only constraints 1280 // that may add a positive bias, it is downhill from here. 1281 SpillPlacer->addConstraints(SplitConstraints); 1282 return SpillPlacer->scanActiveBundles(); 1283 } 1284 1285 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1286 /// live-through blocks in Blocks. 1287 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1288 ArrayRef<unsigned> Blocks) { 1289 const unsigned GroupSize = 8; 1290 SpillPlacement::BlockConstraint BCS[GroupSize]; 1291 unsigned TBS[GroupSize]; 1292 unsigned B = 0, T = 0; 1293 1294 for (unsigned Number : Blocks) { 1295 Intf.moveToBlock(Number); 1296 1297 if (!Intf.hasInterference()) { 1298 assert(T < GroupSize && "Array overflow"); 1299 TBS[T] = Number; 1300 if (++T == GroupSize) { 1301 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1302 T = 0; 1303 } 1304 continue; 1305 } 1306 1307 assert(B < GroupSize && "Array overflow"); 1308 BCS[B].Number = Number; 1309 1310 // Abort if the spill cannot be inserted at the MBB' start 1311 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1312 if (!MBB->empty() && 1313 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()), 1314 SA->getFirstSplitPoint(Number))) 1315 return false; 1316 // Interference for the live-in value. 1317 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1318 BCS[B].Entry = SpillPlacement::MustSpill; 1319 else 1320 BCS[B].Entry = SpillPlacement::PrefSpill; 1321 1322 // Interference for the live-out value. 1323 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1324 BCS[B].Exit = SpillPlacement::MustSpill; 1325 else 1326 BCS[B].Exit = SpillPlacement::PrefSpill; 1327 1328 if (++B == GroupSize) { 1329 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1330 B = 0; 1331 } 1332 } 1333 1334 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1335 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1336 return true; 1337 } 1338 1339 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1340 // Keep track of through blocks that have not been added to SpillPlacer. 1341 BitVector Todo = SA->getThroughBlocks(); 1342 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1343 unsigned AddedTo = 0; 1344 #ifndef NDEBUG 1345 unsigned Visited = 0; 1346 #endif 1347 1348 while (true) { 1349 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1350 // Find new through blocks in the periphery of PrefRegBundles. 1351 for (unsigned Bundle : NewBundles) { 1352 // Look at all blocks connected to Bundle in the full graph. 1353 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1354 for (unsigned Block : Blocks) { 1355 if (!Todo.test(Block)) 1356 continue; 1357 Todo.reset(Block); 1358 // This is a new through block. Add it to SpillPlacer later. 1359 ActiveBlocks.push_back(Block); 1360 #ifndef NDEBUG 1361 ++Visited; 1362 #endif 1363 } 1364 } 1365 // Any new blocks to add? 1366 if (ActiveBlocks.size() == AddedTo) 1367 break; 1368 1369 // Compute through constraints from the interference, or assume that all 1370 // through blocks prefer spilling when forming compact regions. 1371 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1372 if (Cand.PhysReg) { 1373 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1374 return false; 1375 } else 1376 // Provide a strong negative bias on through blocks to prevent unwanted 1377 // liveness on loop backedges. 1378 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1379 AddedTo = ActiveBlocks.size(); 1380 1381 // Perhaps iterating can enable more bundles? 1382 SpillPlacer->iterate(); 1383 } 1384 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1385 return true; 1386 } 1387 1388 /// calcCompactRegion - Compute the set of edge bundles that should be live 1389 /// when splitting the current live range into compact regions. Compact 1390 /// regions can be computed without looking at interference. They are the 1391 /// regions formed by removing all the live-through blocks from the live range. 1392 /// 1393 /// Returns false if the current live range is already compact, or if the 1394 /// compact regions would form single block regions anyway. 1395 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1396 // Without any through blocks, the live range is already compact. 1397 if (!SA->getNumThroughBlocks()) 1398 return false; 1399 1400 // Compact regions don't correspond to any physreg. 1401 Cand.reset(IntfCache, MCRegister::NoRegister); 1402 1403 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1404 1405 // Use the spill placer to determine the live bundles. GrowRegion pretends 1406 // that all the through blocks have interference when PhysReg is unset. 1407 SpillPlacer->prepare(Cand.LiveBundles); 1408 1409 // The static split cost will be zero since Cand.Intf reports no interference. 1410 BlockFrequency Cost; 1411 if (!addSplitConstraints(Cand.Intf, Cost)) { 1412 LLVM_DEBUG(dbgs() << ", none.\n"); 1413 return false; 1414 } 1415 1416 if (!growRegion(Cand)) { 1417 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1418 return false; 1419 } 1420 1421 SpillPlacer->finish(); 1422 1423 if (!Cand.LiveBundles.any()) { 1424 LLVM_DEBUG(dbgs() << ", none.\n"); 1425 return false; 1426 } 1427 1428 LLVM_DEBUG({ 1429 for (int I : Cand.LiveBundles.set_bits()) 1430 dbgs() << " EB#" << I; 1431 dbgs() << ".\n"; 1432 }); 1433 return true; 1434 } 1435 1436 /// calcSpillCost - Compute how expensive it would be to split the live range in 1437 /// SA around all use blocks instead of forming bundle regions. 1438 BlockFrequency RAGreedy::calcSpillCost() { 1439 BlockFrequency Cost = 0; 1440 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1441 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1442 unsigned Number = BI.MBB->getNumber(); 1443 // We normally only need one spill instruction - a load or a store. 1444 Cost += SpillPlacer->getBlockFrequency(Number); 1445 1446 // Unless the value is redefined in the block. 1447 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1448 Cost += SpillPlacer->getBlockFrequency(Number); 1449 } 1450 return Cost; 1451 } 1452 1453 /// Check if splitting Evictee will create a local split interval in 1454 /// basic block number BBNumber that may cause a bad eviction chain. This is 1455 /// intended to prevent bad eviction sequences like: 1456 /// movl %ebp, 8(%esp) # 4-byte Spill 1457 /// movl %ecx, %ebp 1458 /// movl %ebx, %ecx 1459 /// movl %edi, %ebx 1460 /// movl %edx, %edi 1461 /// cltd 1462 /// idivl %esi 1463 /// movl %edi, %edx 1464 /// movl %ebx, %edi 1465 /// movl %ecx, %ebx 1466 /// movl %ebp, %ecx 1467 /// movl 16(%esp), %ebp # 4 - byte Reload 1468 /// 1469 /// Such sequences are created in 2 scenarios: 1470 /// 1471 /// Scenario #1: 1472 /// %0 is evicted from physreg0 by %1. 1473 /// Evictee %0 is intended for region splitting with split candidate 1474 /// physreg0 (the reg %0 was evicted from). 1475 /// Region splitting creates a local interval because of interference with the 1476 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1477 /// and "by stack" intervals and local interval created when interference 1478 /// occurs). 1479 /// One of the split intervals ends up evicting %2 from physreg1. 1480 /// Evictee %2 is intended for region splitting with split candidate 1481 /// physreg1. 1482 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1483 /// 1484 /// Scenario #2 1485 /// %0 is evicted from physreg0 by %1. 1486 /// %2 is evicted from physreg2 by %3 etc. 1487 /// Evictee %0 is intended for region splitting with split candidate 1488 /// physreg1. 1489 /// Region splitting creates a local interval because of interference with the 1490 /// evictor %1. 1491 /// One of the split intervals ends up evicting back original evictor %1 1492 /// from physreg0 (the reg %0 was evicted from). 1493 /// Another evictee %2 is intended for region splitting with split candidate 1494 /// physreg1. 1495 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1496 /// 1497 /// \param Evictee The register considered to be split. 1498 /// \param Cand The split candidate that determines the physical register 1499 /// we are splitting for and the interferences. 1500 /// \param BBNumber The number of a BB for which the region split process will 1501 /// create a local split interval. 1502 /// \param Order The physical registers that may get evicted by a split 1503 /// artifact of Evictee. 1504 /// \return True if splitting Evictee may cause a bad eviction chain, false 1505 /// otherwise. 1506 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 1507 GlobalSplitCandidate &Cand, 1508 unsigned BBNumber, 1509 const AllocationOrder &Order) { 1510 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1511 unsigned Evictor = VregEvictorInfo.first; 1512 MCRegister PhysReg = VregEvictorInfo.second; 1513 1514 // No actual evictor. 1515 if (!Evictor || !PhysReg) 1516 return false; 1517 1518 float MaxWeight = 0; 1519 MCRegister FutureEvictedPhysReg = 1520 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1521 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1522 1523 // The bad eviction chain occurs when either the split candidate is the 1524 // evicting reg or one of the split artifact will evict the evicting reg. 1525 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1526 return false; 1527 1528 Cand.Intf.moveToBlock(BBNumber); 1529 1530 // Check to see if the Evictor contains interference (with Evictee) in the 1531 // given BB. If so, this interference caused the eviction of Evictee from 1532 // PhysReg. This suggest that we will create a local interval during the 1533 // region split to avoid this interference This local interval may cause a bad 1534 // eviction chain. 1535 if (!LIS->hasInterval(Evictor)) 1536 return false; 1537 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1538 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1539 return false; 1540 1541 // Now, check to see if the local interval we will create is going to be 1542 // expensive enough to evict somebody If so, this may cause a bad eviction 1543 // chain. 1544 float splitArtifactWeight = 1545 VRAI->futureWeight(LIS->getInterval(Evictee), 1546 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1547 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1548 return false; 1549 1550 return true; 1551 } 1552 1553 /// Check if splitting VirtRegToSplit will create a local split interval 1554 /// in basic block number BBNumber that may cause a spill. 1555 /// 1556 /// \param VirtRegToSplit The register considered to be split. 1557 /// \param Cand The split candidate that determines the physical 1558 /// register we are splitting for and the interferences. 1559 /// \param BBNumber The number of a BB for which the region split process 1560 /// will create a local split interval. 1561 /// \param Order The physical registers that may get evicted by a 1562 /// split artifact of VirtRegToSplit. 1563 /// \return True if splitting VirtRegToSplit may cause a spill, false 1564 /// otherwise. 1565 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1566 GlobalSplitCandidate &Cand, 1567 unsigned BBNumber, 1568 const AllocationOrder &Order) { 1569 Cand.Intf.moveToBlock(BBNumber); 1570 1571 // Check if the local interval will find a non interfereing assignment. 1572 for (auto PhysReg : Order.getOrder()) { 1573 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1574 Cand.Intf.last(), PhysReg)) 1575 return false; 1576 } 1577 1578 // The local interval is not able to find non interferencing assignment 1579 // and not able to evict a less worthy interval, therfore, it can cause a 1580 // spill. 1581 return true; 1582 } 1583 1584 /// calcGlobalSplitCost - Return the global split cost of following the split 1585 /// pattern in LiveBundles. This cost should be added to the local cost of the 1586 /// interference pattern in SplitConstraints. 1587 /// 1588 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1589 const AllocationOrder &Order, 1590 bool *CanCauseEvictionChain) { 1591 BlockFrequency GlobalCost = 0; 1592 const BitVector &LiveBundles = Cand.LiveBundles; 1593 Register VirtRegToSplit = SA->getParent().reg(); 1594 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1595 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1596 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1597 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1598 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1599 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1600 unsigned Ins = 0; 1601 1602 Cand.Intf.moveToBlock(BC.Number); 1603 // Check wheather a local interval is going to be created during the region 1604 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1605 // is enabled. 1606 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1607 BI.LiveOut && RegIn && RegOut) { 1608 1609 if (CanCauseEvictionChain && 1610 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1611 // This interference causes our eviction from this assignment, we might 1612 // evict somebody else and eventually someone will spill, add that cost. 1613 // See splitCanCauseEvictionChain for detailed description of scenarios. 1614 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1615 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1616 1617 *CanCauseEvictionChain = true; 1618 1619 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1620 Order)) { 1621 // This interference causes local interval to spill, add that cost. 1622 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1623 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1624 } 1625 } 1626 1627 if (BI.LiveIn) 1628 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1629 if (BI.LiveOut) 1630 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1631 while (Ins--) 1632 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1633 } 1634 1635 for (unsigned Number : Cand.ActiveBlocks) { 1636 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1637 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1638 if (!RegIn && !RegOut) 1639 continue; 1640 if (RegIn && RegOut) { 1641 // We need double spill code if this block has interference. 1642 Cand.Intf.moveToBlock(Number); 1643 if (Cand.Intf.hasInterference()) { 1644 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1645 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1646 1647 // Check wheather a local interval is going to be created during the 1648 // region split. 1649 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1650 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1651 // This interference cause our eviction from this assignment, we might 1652 // evict somebody else, add that cost. 1653 // See splitCanCauseEvictionChain for detailed description of 1654 // scenarios. 1655 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1656 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1657 1658 *CanCauseEvictionChain = true; 1659 } 1660 } 1661 continue; 1662 } 1663 // live-in / stack-out or stack-in live-out. 1664 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1665 } 1666 return GlobalCost; 1667 } 1668 1669 /// splitAroundRegion - Split the current live range around the regions 1670 /// determined by BundleCand and GlobalCand. 1671 /// 1672 /// Before calling this function, GlobalCand and BundleCand must be initialized 1673 /// so each bundle is assigned to a valid candidate, or NoCand for the 1674 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1675 /// objects must be initialized for the current live range, and intervals 1676 /// created for the used candidates. 1677 /// 1678 /// @param LREdit The LiveRangeEdit object handling the current split. 1679 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1680 /// must appear in this list. 1681 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1682 ArrayRef<unsigned> UsedCands) { 1683 // These are the intervals created for new global ranges. We may create more 1684 // intervals for local ranges. 1685 const unsigned NumGlobalIntvs = LREdit.size(); 1686 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1687 << " globals.\n"); 1688 assert(NumGlobalIntvs && "No global intervals configured"); 1689 1690 // Isolate even single instructions when dealing with a proper sub-class. 1691 // That guarantees register class inflation for the stack interval because it 1692 // is all copies. 1693 Register Reg = SA->getParent().reg(); 1694 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1695 1696 // First handle all the blocks with uses. 1697 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1698 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1699 unsigned Number = BI.MBB->getNumber(); 1700 unsigned IntvIn = 0, IntvOut = 0; 1701 SlotIndex IntfIn, IntfOut; 1702 if (BI.LiveIn) { 1703 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1704 if (CandIn != NoCand) { 1705 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1706 IntvIn = Cand.IntvIdx; 1707 Cand.Intf.moveToBlock(Number); 1708 IntfIn = Cand.Intf.first(); 1709 } 1710 } 1711 if (BI.LiveOut) { 1712 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1713 if (CandOut != NoCand) { 1714 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1715 IntvOut = Cand.IntvIdx; 1716 Cand.Intf.moveToBlock(Number); 1717 IntfOut = Cand.Intf.last(); 1718 } 1719 } 1720 1721 // Create separate intervals for isolated blocks with multiple uses. 1722 if (!IntvIn && !IntvOut) { 1723 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1724 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1725 SE->splitSingleBlock(BI); 1726 continue; 1727 } 1728 1729 if (IntvIn && IntvOut) 1730 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1731 else if (IntvIn) 1732 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1733 else 1734 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1735 } 1736 1737 // Handle live-through blocks. The relevant live-through blocks are stored in 1738 // the ActiveBlocks list with each candidate. We need to filter out 1739 // duplicates. 1740 BitVector Todo = SA->getThroughBlocks(); 1741 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1742 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1743 for (unsigned Number : Blocks) { 1744 if (!Todo.test(Number)) 1745 continue; 1746 Todo.reset(Number); 1747 1748 unsigned IntvIn = 0, IntvOut = 0; 1749 SlotIndex IntfIn, IntfOut; 1750 1751 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1752 if (CandIn != NoCand) { 1753 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1754 IntvIn = Cand.IntvIdx; 1755 Cand.Intf.moveToBlock(Number); 1756 IntfIn = Cand.Intf.first(); 1757 } 1758 1759 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1760 if (CandOut != NoCand) { 1761 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1762 IntvOut = Cand.IntvIdx; 1763 Cand.Intf.moveToBlock(Number); 1764 IntfOut = Cand.Intf.last(); 1765 } 1766 if (!IntvIn && !IntvOut) 1767 continue; 1768 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1769 } 1770 } 1771 1772 ++NumGlobalSplits; 1773 1774 SmallVector<unsigned, 8> IntvMap; 1775 SE->finish(&IntvMap); 1776 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1777 1778 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1779 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1780 1781 // Sort out the new intervals created by splitting. We get four kinds: 1782 // - Remainder intervals should not be split again. 1783 // - Candidate intervals can be assigned to Cand.PhysReg. 1784 // - Block-local splits are candidates for local splitting. 1785 // - DCE leftovers should go back on the queue. 1786 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1787 LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1788 1789 // Ignore old intervals from DCE. 1790 if (getStage(Reg) != RS_New) 1791 continue; 1792 1793 // Remainder interval. Don't try splitting again, spill if it doesn't 1794 // allocate. 1795 if (IntvMap[I] == 0) { 1796 setStage(Reg, RS_Spill); 1797 continue; 1798 } 1799 1800 // Global intervals. Allow repeated splitting as long as the number of live 1801 // blocks is strictly decreasing. 1802 if (IntvMap[I] < NumGlobalIntvs) { 1803 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1804 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1805 << " blocks as original.\n"); 1806 // Don't allow repeated splitting as a safe guard against looping. 1807 setStage(Reg, RS_Split2); 1808 } 1809 continue; 1810 } 1811 1812 // Other intervals are treated as new. This includes local intervals created 1813 // for blocks with multiple uses, and anything created by DCE. 1814 } 1815 1816 if (VerifyEnabled) 1817 MF->verify(this, "After splitting live range around region"); 1818 } 1819 1820 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg, 1821 AllocationOrder &Order, 1822 SmallVectorImpl<Register> &NewVRegs) { 1823 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1824 return MCRegister::NoRegister; 1825 unsigned NumCands = 0; 1826 BlockFrequency SpillCost = calcSpillCost(); 1827 BlockFrequency BestCost; 1828 1829 // Check if we can split this live range around a compact region. 1830 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1831 if (HasCompact) { 1832 // Yes, keep GlobalCand[0] as the compact region candidate. 1833 NumCands = 1; 1834 BestCost = BlockFrequency::getMaxFrequency(); 1835 } else { 1836 // No benefit from the compact region, our fallback will be per-block 1837 // splitting. Make sure we find a solution that is cheaper than spilling. 1838 BestCost = SpillCost; 1839 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1840 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1841 } 1842 1843 bool CanCauseEvictionChain = false; 1844 unsigned BestCand = 1845 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1846 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1847 1848 // Split candidates with compact regions can cause a bad eviction sequence. 1849 // See splitCanCauseEvictionChain for detailed description of scenarios. 1850 // To avoid it, we need to comapre the cost with the spill cost and not the 1851 // current max frequency. 1852 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1853 CanCauseEvictionChain) { 1854 return MCRegister::NoRegister; 1855 } 1856 1857 // No solutions found, fall back to single block splitting. 1858 if (!HasCompact && BestCand == NoCand) 1859 return MCRegister::NoRegister; 1860 1861 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1862 } 1863 1864 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1865 AllocationOrder &Order, 1866 BlockFrequency &BestCost, 1867 unsigned &NumCands, bool IgnoreCSR, 1868 bool *CanCauseEvictionChain) { 1869 unsigned BestCand = NoCand; 1870 for (MCPhysReg PhysReg : Order) { 1871 assert(PhysReg); 1872 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1873 continue; 1874 1875 // Discard bad candidates before we run out of interference cache cursors. 1876 // This will only affect register classes with a lot of registers (>32). 1877 if (NumCands == IntfCache.getMaxCursors()) { 1878 unsigned WorstCount = ~0u; 1879 unsigned Worst = 0; 1880 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1881 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1882 continue; 1883 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1884 if (Count < WorstCount) { 1885 Worst = CandIndex; 1886 WorstCount = Count; 1887 } 1888 } 1889 --NumCands; 1890 GlobalCand[Worst] = GlobalCand[NumCands]; 1891 if (BestCand == NumCands) 1892 BestCand = Worst; 1893 } 1894 1895 if (GlobalCand.size() <= NumCands) 1896 GlobalCand.resize(NumCands+1); 1897 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1898 Cand.reset(IntfCache, PhysReg); 1899 1900 SpillPlacer->prepare(Cand.LiveBundles); 1901 BlockFrequency Cost; 1902 if (!addSplitConstraints(Cand.Intf, Cost)) { 1903 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1904 continue; 1905 } 1906 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1907 MBFI->printBlockFreq(dbgs(), Cost)); 1908 if (Cost >= BestCost) { 1909 LLVM_DEBUG({ 1910 if (BestCand == NoCand) 1911 dbgs() << " worse than no bundles\n"; 1912 else 1913 dbgs() << " worse than " 1914 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1915 }); 1916 continue; 1917 } 1918 if (!growRegion(Cand)) { 1919 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1920 continue; 1921 } 1922 1923 SpillPlacer->finish(); 1924 1925 // No live bundles, defer to splitSingleBlocks(). 1926 if (!Cand.LiveBundles.any()) { 1927 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1928 continue; 1929 } 1930 1931 bool HasEvictionChain = false; 1932 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1933 LLVM_DEBUG({ 1934 dbgs() << ", total = "; 1935 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1936 for (int I : Cand.LiveBundles.set_bits()) 1937 dbgs() << " EB#" << I; 1938 dbgs() << ".\n"; 1939 }); 1940 if (Cost < BestCost) { 1941 BestCand = NumCands; 1942 BestCost = Cost; 1943 // See splitCanCauseEvictionChain for detailed description of bad 1944 // eviction chain scenarios. 1945 if (CanCauseEvictionChain) 1946 *CanCauseEvictionChain = HasEvictionChain; 1947 } 1948 ++NumCands; 1949 } 1950 1951 if (CanCauseEvictionChain && BestCand != NoCand) { 1952 // See splitCanCauseEvictionChain for detailed description of bad 1953 // eviction chain scenarios. 1954 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1955 << printReg(VirtReg.reg(), TRI) << " may "); 1956 if (!(*CanCauseEvictionChain)) 1957 LLVM_DEBUG(dbgs() << "not "); 1958 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1959 } 1960 1961 return BestCand; 1962 } 1963 1964 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1965 bool HasCompact, 1966 SmallVectorImpl<Register> &NewVRegs) { 1967 SmallVector<unsigned, 8> UsedCands; 1968 // Prepare split editor. 1969 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1970 SE->reset(LREdit, SplitSpillMode); 1971 1972 // Assign all edge bundles to the preferred candidate, or NoCand. 1973 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1974 1975 // Assign bundles for the best candidate region. 1976 if (BestCand != NoCand) { 1977 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1978 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1979 UsedCands.push_back(BestCand); 1980 Cand.IntvIdx = SE->openIntv(); 1981 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1982 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1983 (void)B; 1984 } 1985 } 1986 1987 // Assign bundles for the compact region. 1988 if (HasCompact) { 1989 GlobalSplitCandidate &Cand = GlobalCand.front(); 1990 assert(!Cand.PhysReg && "Compact region has no physreg"); 1991 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1992 UsedCands.push_back(0); 1993 Cand.IntvIdx = SE->openIntv(); 1994 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1995 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1996 (void)B; 1997 } 1998 } 1999 2000 splitAroundRegion(LREdit, UsedCands); 2001 return 0; 2002 } 2003 2004 //===----------------------------------------------------------------------===// 2005 // Per-Block Splitting 2006 //===----------------------------------------------------------------------===// 2007 2008 /// tryBlockSplit - Split a global live range around every block with uses. This 2009 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 2010 /// they don't allocate. 2011 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2012 SmallVectorImpl<Register> &NewVRegs) { 2013 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 2014 Register Reg = VirtReg.reg(); 2015 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 2016 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2017 SE->reset(LREdit, SplitSpillMode); 2018 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 2019 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 2020 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 2021 SE->splitSingleBlock(BI); 2022 } 2023 // No blocks were split. 2024 if (LREdit.empty()) 2025 return 0; 2026 2027 // We did split for some blocks. 2028 SmallVector<unsigned, 8> IntvMap; 2029 SE->finish(&IntvMap); 2030 2031 // Tell LiveDebugVariables about the new ranges. 2032 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2033 2034 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2035 2036 // Sort out the new intervals created by splitting. The remainder interval 2037 // goes straight to spilling, the new local ranges get to stay RS_New. 2038 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 2039 LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 2040 if (getStage(LI) == RS_New && IntvMap[I] == 0) 2041 setStage(LI, RS_Spill); 2042 } 2043 2044 if (VerifyEnabled) 2045 MF->verify(this, "After splitting live range around basic blocks"); 2046 return 0; 2047 } 2048 2049 //===----------------------------------------------------------------------===// 2050 // Per-Instruction Splitting 2051 //===----------------------------------------------------------------------===// 2052 2053 /// Get the number of allocatable registers that match the constraints of \p Reg 2054 /// on \p MI and that are also in \p SuperRC. 2055 static unsigned getNumAllocatableRegsForConstraints( 2056 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 2057 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2058 const RegisterClassInfo &RCI) { 2059 assert(SuperRC && "Invalid register class"); 2060 2061 const TargetRegisterClass *ConstrainedRC = 2062 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2063 /* ExploreBundle */ true); 2064 if (!ConstrainedRC) 2065 return 0; 2066 return RCI.getNumAllocatableRegs(ConstrainedRC); 2067 } 2068 2069 /// tryInstructionSplit - Split a live range around individual instructions. 2070 /// This is normally not worthwhile since the spiller is doing essentially the 2071 /// same thing. However, when the live range is in a constrained register 2072 /// class, it may help to insert copies such that parts of the live range can 2073 /// be moved to a larger register class. 2074 /// 2075 /// This is similar to spilling to a larger register class. 2076 unsigned 2077 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2078 SmallVectorImpl<Register> &NewVRegs) { 2079 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2080 // There is no point to this if there are no larger sub-classes. 2081 if (!RegClassInfo.isProperSubClass(CurRC)) 2082 return 0; 2083 2084 // Always enable split spill mode, since we're effectively spilling to a 2085 // register. 2086 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2087 SE->reset(LREdit, SplitEditor::SM_Size); 2088 2089 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2090 if (Uses.size() <= 1) 2091 return 0; 2092 2093 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2094 << " individual instrs.\n"); 2095 2096 const TargetRegisterClass *SuperRC = 2097 TRI->getLargestLegalSuperClass(CurRC, *MF); 2098 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2099 // Split around every non-copy instruction if this split will relax 2100 // the constraints on the virtual register. 2101 // Otherwise, splitting just inserts uncoalescable copies that do not help 2102 // the allocation. 2103 for (const auto &Use : Uses) { 2104 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 2105 if (MI->isFullCopy() || 2106 SuperRCNumAllocatableRegs == 2107 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 2108 TII, TRI, RCI)) { 2109 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 2110 continue; 2111 } 2112 SE->openIntv(); 2113 SlotIndex SegStart = SE->enterIntvBefore(Use); 2114 SlotIndex SegStop = SE->leaveIntvAfter(Use); 2115 SE->useIntv(SegStart, SegStop); 2116 } 2117 2118 if (LREdit.empty()) { 2119 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2120 return 0; 2121 } 2122 2123 SmallVector<unsigned, 8> IntvMap; 2124 SE->finish(&IntvMap); 2125 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2126 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2127 2128 // Assign all new registers to RS_Spill. This was the last chance. 2129 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2130 return 0; 2131 } 2132 2133 //===----------------------------------------------------------------------===// 2134 // Local Splitting 2135 //===----------------------------------------------------------------------===// 2136 2137 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2138 /// in order to use PhysReg between two entries in SA->UseSlots. 2139 /// 2140 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 2141 /// 2142 void RAGreedy::calcGapWeights(MCRegister PhysReg, 2143 SmallVectorImpl<float> &GapWeight) { 2144 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2145 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2146 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2147 const unsigned NumGaps = Uses.size()-1; 2148 2149 // Start and end points for the interference check. 2150 SlotIndex StartIdx = 2151 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2152 SlotIndex StopIdx = 2153 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2154 2155 GapWeight.assign(NumGaps, 0.0f); 2156 2157 // Add interference from each overlapping register. 2158 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2159 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2160 .checkInterference()) 2161 continue; 2162 2163 // We know that VirtReg is a continuous interval from FirstInstr to 2164 // LastInstr, so we don't need InterferenceQuery. 2165 // 2166 // Interference that overlaps an instruction is counted in both gaps 2167 // surrounding the instruction. The exception is interference before 2168 // StartIdx and after StopIdx. 2169 // 2170 LiveIntervalUnion::SegmentIter IntI = 2171 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2172 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2173 // Skip the gaps before IntI. 2174 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2175 if (++Gap == NumGaps) 2176 break; 2177 if (Gap == NumGaps) 2178 break; 2179 2180 // Update the gaps covered by IntI. 2181 const float weight = IntI.value()->weight(); 2182 for (; Gap != NumGaps; ++Gap) { 2183 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2184 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2185 break; 2186 } 2187 if (Gap == NumGaps) 2188 break; 2189 } 2190 } 2191 2192 // Add fixed interference. 2193 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2194 const LiveRange &LR = LIS->getRegUnit(*Units); 2195 LiveRange::const_iterator I = LR.find(StartIdx); 2196 LiveRange::const_iterator E = LR.end(); 2197 2198 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2199 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2200 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2201 if (++Gap == NumGaps) 2202 break; 2203 if (Gap == NumGaps) 2204 break; 2205 2206 for (; Gap != NumGaps; ++Gap) { 2207 GapWeight[Gap] = huge_valf; 2208 if (Uses[Gap+1].getBaseIndex() >= I->end) 2209 break; 2210 } 2211 if (Gap == NumGaps) 2212 break; 2213 } 2214 } 2215 } 2216 2217 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2218 /// basic block. 2219 /// 2220 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2221 SmallVectorImpl<Register> &NewVRegs) { 2222 // TODO: the function currently only handles a single UseBlock; it should be 2223 // possible to generalize. 2224 if (SA->getUseBlocks().size() != 1) 2225 return 0; 2226 2227 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2228 2229 // Note that it is possible to have an interval that is live-in or live-out 2230 // while only covering a single block - A phi-def can use undef values from 2231 // predecessors, and the block could be a single-block loop. 2232 // We don't bother doing anything clever about such a case, we simply assume 2233 // that the interval is continuous from FirstInstr to LastInstr. We should 2234 // make sure that we don't do anything illegal to such an interval, though. 2235 2236 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2237 if (Uses.size() <= 2) 2238 return 0; 2239 const unsigned NumGaps = Uses.size()-1; 2240 2241 LLVM_DEBUG({ 2242 dbgs() << "tryLocalSplit: "; 2243 for (const auto &Use : Uses) 2244 dbgs() << ' ' << Use; 2245 dbgs() << '\n'; 2246 }); 2247 2248 // If VirtReg is live across any register mask operands, compute a list of 2249 // gaps with register masks. 2250 SmallVector<unsigned, 8> RegMaskGaps; 2251 if (Matrix->checkRegMaskInterference(VirtReg)) { 2252 // Get regmask slots for the whole block. 2253 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2254 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2255 // Constrain to VirtReg's live range. 2256 unsigned RI = 2257 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 2258 unsigned RE = RMS.size(); 2259 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 2260 // Look for Uses[I] <= RMS <= Uses[I + 1]. 2261 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 2262 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 2263 continue; 2264 // Skip a regmask on the same instruction as the last use. It doesn't 2265 // overlap the live range. 2266 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 2267 break; 2268 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 2269 << Uses[I + 1]); 2270 RegMaskGaps.push_back(I); 2271 // Advance ri to the next gap. A regmask on one of the uses counts in 2272 // both gaps. 2273 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 2274 ++RI; 2275 } 2276 LLVM_DEBUG(dbgs() << '\n'); 2277 } 2278 2279 // Since we allow local split results to be split again, there is a risk of 2280 // creating infinite loops. It is tempting to require that the new live 2281 // ranges have less instructions than the original. That would guarantee 2282 // convergence, but it is too strict. A live range with 3 instructions can be 2283 // split 2+3 (including the COPY), and we want to allow that. 2284 // 2285 // Instead we use these rules: 2286 // 2287 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2288 // noop split, of course). 2289 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2290 // the new ranges must have fewer instructions than before the split. 2291 // 3. New ranges with the same number of instructions are marked RS_Split2, 2292 // smaller ranges are marked RS_New. 2293 // 2294 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2295 // excessive splitting and infinite loops. 2296 // 2297 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2298 2299 // Best split candidate. 2300 unsigned BestBefore = NumGaps; 2301 unsigned BestAfter = 0; 2302 float BestDiff = 0; 2303 2304 const float blockFreq = 2305 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2306 (1.0f / MBFI->getEntryFreq()); 2307 SmallVector<float, 8> GapWeight; 2308 2309 for (MCPhysReg PhysReg : Order) { 2310 assert(PhysReg); 2311 // Keep track of the largest spill weight that would need to be evicted in 2312 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 2313 calcGapWeights(PhysReg, GapWeight); 2314 2315 // Remove any gaps with regmask clobbers. 2316 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2317 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 2318 GapWeight[RegMaskGaps[I]] = huge_valf; 2319 2320 // Try to find the best sequence of gaps to close. 2321 // The new spill weight must be larger than any gap interference. 2322 2323 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2324 unsigned SplitBefore = 0, SplitAfter = 1; 2325 2326 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2327 // It is the spill weight that needs to be evicted. 2328 float MaxGap = GapWeight[0]; 2329 2330 while (true) { 2331 // Live before/after split? 2332 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2333 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2334 2335 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2336 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 2337 2338 // Stop before the interval gets so big we wouldn't be making progress. 2339 if (!LiveBefore && !LiveAfter) { 2340 LLVM_DEBUG(dbgs() << " all\n"); 2341 break; 2342 } 2343 // Should the interval be extended or shrunk? 2344 bool Shrink = true; 2345 2346 // How many gaps would the new range have? 2347 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2348 2349 // Legally, without causing looping? 2350 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2351 2352 if (Legal && MaxGap < huge_valf) { 2353 // Estimate the new spill weight. Each instruction reads or writes the 2354 // register. Conservatively assume there are no read-modify-write 2355 // instructions. 2356 // 2357 // Try to guess the size of the new interval. 2358 const float EstWeight = normalizeSpillWeight( 2359 blockFreq * (NewGaps + 1), 2360 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2361 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2362 1); 2363 // Would this split be possible to allocate? 2364 // Never allocate all gaps, we wouldn't be making progress. 2365 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2366 if (EstWeight * Hysteresis >= MaxGap) { 2367 Shrink = false; 2368 float Diff = EstWeight - MaxGap; 2369 if (Diff > BestDiff) { 2370 LLVM_DEBUG(dbgs() << " (best)"); 2371 BestDiff = Hysteresis * Diff; 2372 BestBefore = SplitBefore; 2373 BestAfter = SplitAfter; 2374 } 2375 } 2376 } 2377 2378 // Try to shrink. 2379 if (Shrink) { 2380 if (++SplitBefore < SplitAfter) { 2381 LLVM_DEBUG(dbgs() << " shrink\n"); 2382 // Recompute the max when necessary. 2383 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2384 MaxGap = GapWeight[SplitBefore]; 2385 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 2386 MaxGap = std::max(MaxGap, GapWeight[I]); 2387 } 2388 continue; 2389 } 2390 MaxGap = 0; 2391 } 2392 2393 // Try to extend the interval. 2394 if (SplitAfter >= NumGaps) { 2395 LLVM_DEBUG(dbgs() << " end\n"); 2396 break; 2397 } 2398 2399 LLVM_DEBUG(dbgs() << " extend\n"); 2400 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2401 } 2402 } 2403 2404 // Didn't find any candidates? 2405 if (BestBefore == NumGaps) 2406 return 0; 2407 2408 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2409 << Uses[BestAfter] << ", " << BestDiff << ", " 2410 << (BestAfter - BestBefore + 1) << " instrs\n"); 2411 2412 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2413 SE->reset(LREdit); 2414 2415 SE->openIntv(); 2416 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2417 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2418 SE->useIntv(SegStart, SegStop); 2419 SmallVector<unsigned, 8> IntvMap; 2420 SE->finish(&IntvMap); 2421 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2422 2423 // If the new range has the same number of instructions as before, mark it as 2424 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2425 // leave the new intervals as RS_New so they can compete. 2426 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2427 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2428 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2429 if (NewGaps >= NumGaps) { 2430 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: "); 2431 assert(!ProgressRequired && "Didn't make progress when it was required."); 2432 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 2433 if (IntvMap[I] == 1) { 2434 setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 2435 LLVM_DEBUG(dbgs() << printReg(LREdit.get(I))); 2436 } 2437 LLVM_DEBUG(dbgs() << '\n'); 2438 } 2439 ++NumLocalSplits; 2440 2441 return 0; 2442 } 2443 2444 //===----------------------------------------------------------------------===// 2445 // Live Range Splitting 2446 //===----------------------------------------------------------------------===// 2447 2448 /// trySplit - Try to split VirtReg or one of its interferences, making it 2449 /// assignable. 2450 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2451 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2452 SmallVectorImpl<Register> &NewVRegs, 2453 const SmallVirtRegSet &FixedRegisters) { 2454 // Ranges must be Split2 or less. 2455 if (getStage(VirtReg) >= RS_Spill) 2456 return 0; 2457 2458 // Local intervals are handled separately. 2459 if (LIS->intervalIsInOneMBB(VirtReg)) { 2460 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2461 TimerGroupDescription, TimePassesIsEnabled); 2462 SA->analyze(&VirtReg); 2463 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2464 if (PhysReg || !NewVRegs.empty()) 2465 return PhysReg; 2466 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2467 } 2468 2469 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2470 TimerGroupDescription, TimePassesIsEnabled); 2471 2472 SA->analyze(&VirtReg); 2473 2474 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2475 // coalescer. That may cause the range to become allocatable which means that 2476 // tryRegionSplit won't be making progress. This check should be replaced with 2477 // an assertion when the coalescer is fixed. 2478 if (SA->didRepairRange()) { 2479 // VirtReg has changed, so all cached queries are invalid. 2480 Matrix->invalidateVirtRegs(); 2481 if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) 2482 return PhysReg; 2483 } 2484 2485 // First try to split around a region spanning multiple blocks. RS_Split2 2486 // ranges already made dubious progress with region splitting, so they go 2487 // straight to single block splitting. 2488 if (getStage(VirtReg) < RS_Split2) { 2489 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2490 if (PhysReg || !NewVRegs.empty()) 2491 return PhysReg; 2492 } 2493 2494 // Then isolate blocks. 2495 return tryBlockSplit(VirtReg, Order, NewVRegs); 2496 } 2497 2498 //===----------------------------------------------------------------------===// 2499 // Last Chance Recoloring 2500 //===----------------------------------------------------------------------===// 2501 2502 /// Return true if \p reg has any tied def operand. 2503 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2504 for (const MachineOperand &MO : MRI->def_operands(reg)) 2505 if (MO.isTied()) 2506 return true; 2507 2508 return false; 2509 } 2510 2511 /// mayRecolorAllInterferences - Check if the virtual registers that 2512 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2513 /// recolored to free \p PhysReg. 2514 /// When true is returned, \p RecoloringCandidates has been augmented with all 2515 /// the live intervals that need to be recolored in order to free \p PhysReg 2516 /// for \p VirtReg. 2517 /// \p FixedRegisters contains all the virtual registers that cannot be 2518 /// recolored. 2519 bool RAGreedy::mayRecolorAllInterferences( 2520 MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates, 2521 const SmallVirtRegSet &FixedRegisters) { 2522 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2523 2524 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2525 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2526 // If there is LastChanceRecoloringMaxInterference or more interferences, 2527 // chances are one would not be recolorable. 2528 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2529 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2530 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2531 CutOffInfo |= CO_Interf; 2532 return false; 2533 } 2534 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 2535 // If Intf is done and sit on the same register class as VirtReg, 2536 // it would not be recolorable as it is in the same state as VirtReg. 2537 // However, if VirtReg has tied defs and Intf doesn't, then 2538 // there is still a point in examining if it can be recolorable. 2539 if (((getStage(*Intf) == RS_Done && 2540 MRI->getRegClass(Intf->reg()) == CurRC) && 2541 !(hasTiedDef(MRI, VirtReg.reg()) && 2542 !hasTiedDef(MRI, Intf->reg()))) || 2543 FixedRegisters.count(Intf->reg())) { 2544 LLVM_DEBUG( 2545 dbgs() << "Early abort: the interference is not recolorable.\n"); 2546 return false; 2547 } 2548 RecoloringCandidates.insert(Intf); 2549 } 2550 } 2551 return true; 2552 } 2553 2554 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2555 /// its interferences. 2556 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2557 /// virtual register that was using it. The recoloring process may recursively 2558 /// use the last chance recoloring. Therefore, when a virtual register has been 2559 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2560 /// be last-chance-recolored again during this recoloring "session". 2561 /// E.g., 2562 /// Let 2563 /// vA can use {R1, R2 } 2564 /// vB can use { R2, R3} 2565 /// vC can use {R1 } 2566 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2567 /// instance) and they all interfere. 2568 /// 2569 /// vA is assigned R1 2570 /// vB is assigned R2 2571 /// vC tries to evict vA but vA is already done. 2572 /// Regular register allocation fails. 2573 /// 2574 /// Last chance recoloring kicks in: 2575 /// vC does as if vA was evicted => vC uses R1. 2576 /// vC is marked as fixed. 2577 /// vA needs to find a color. 2578 /// None are available. 2579 /// vA cannot evict vC: vC is a fixed virtual register now. 2580 /// vA does as if vB was evicted => vA uses R2. 2581 /// vB needs to find a color. 2582 /// R3 is available. 2583 /// Recoloring => vC = R1, vA = R2, vB = R3 2584 /// 2585 /// \p Order defines the preferred allocation order for \p VirtReg. 2586 /// \p NewRegs will contain any new virtual register that have been created 2587 /// (split, spill) during the process and that must be assigned. 2588 /// \p FixedRegisters contains all the virtual registers that cannot be 2589 /// recolored. 2590 /// \p Depth gives the current depth of the last chance recoloring. 2591 /// \return a physical register that can be used for VirtReg or ~0u if none 2592 /// exists. 2593 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2594 AllocationOrder &Order, 2595 SmallVectorImpl<Register> &NewVRegs, 2596 SmallVirtRegSet &FixedRegisters, 2597 unsigned Depth) { 2598 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 2599 return ~0u; 2600 2601 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2602 // Ranges must be Done. 2603 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2604 "Last chance recoloring should really be last chance"); 2605 // Set the max depth to LastChanceRecoloringMaxDepth. 2606 // We may want to reconsider that if we end up with a too large search space 2607 // for target with hundreds of registers. 2608 // Indeed, in that case we may want to cut the search space earlier. 2609 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2610 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2611 CutOffInfo |= CO_Depth; 2612 return ~0u; 2613 } 2614 2615 // Set of Live intervals that will need to be recolored. 2616 SmallLISet RecoloringCandidates; 2617 // Record the original mapping virtual register to physical register in case 2618 // the recoloring fails. 2619 DenseMap<Register, MCRegister> VirtRegToPhysReg; 2620 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2621 // this recoloring "session". 2622 assert(!FixedRegisters.count(VirtReg.reg())); 2623 FixedRegisters.insert(VirtReg.reg()); 2624 SmallVector<Register, 4> CurrentNewVRegs; 2625 2626 for (MCRegister PhysReg : Order) { 2627 assert(PhysReg.isValid()); 2628 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2629 << printReg(PhysReg, TRI) << '\n'); 2630 RecoloringCandidates.clear(); 2631 VirtRegToPhysReg.clear(); 2632 CurrentNewVRegs.clear(); 2633 2634 // It is only possible to recolor virtual register interference. 2635 if (Matrix->checkInterference(VirtReg, PhysReg) > 2636 LiveRegMatrix::IK_VirtReg) { 2637 LLVM_DEBUG( 2638 dbgs() << "Some interferences are not with virtual registers.\n"); 2639 2640 continue; 2641 } 2642 2643 // Early give up on this PhysReg if it is obvious we cannot recolor all 2644 // the interferences. 2645 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2646 FixedRegisters)) { 2647 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2648 continue; 2649 } 2650 2651 // RecoloringCandidates contains all the virtual registers that interfer 2652 // with VirtReg on PhysReg (or one of its aliases). 2653 // Enqueue them for recoloring and perform the actual recoloring. 2654 PQueue RecoloringQueue; 2655 for (LiveInterval *RC : RecoloringCandidates) { 2656 Register ItVirtReg = RC->reg(); 2657 enqueue(RecoloringQueue, RC); 2658 assert(VRM->hasPhys(ItVirtReg) && 2659 "Interferences are supposed to be with allocated variables"); 2660 2661 // Record the current allocation. 2662 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2663 // unset the related struct. 2664 Matrix->unassign(*RC); 2665 } 2666 2667 // Do as if VirtReg was assigned to PhysReg so that the underlying 2668 // recoloring has the right information about the interferes and 2669 // available colors. 2670 Matrix->assign(VirtReg, PhysReg); 2671 2672 // Save the current recoloring state. 2673 // If we cannot recolor all the interferences, we will have to start again 2674 // at this point for the next physical register. 2675 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2676 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2677 FixedRegisters, Depth)) { 2678 // Push the queued vregs into the main queue. 2679 for (Register NewVReg : CurrentNewVRegs) 2680 NewVRegs.push_back(NewVReg); 2681 // Do not mess up with the global assignment process. 2682 // I.e., VirtReg must be unassigned. 2683 Matrix->unassign(VirtReg); 2684 return PhysReg; 2685 } 2686 2687 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2688 << printReg(PhysReg, TRI) << '\n'); 2689 2690 // The recoloring attempt failed, undo the changes. 2691 FixedRegisters = SaveFixedRegisters; 2692 Matrix->unassign(VirtReg); 2693 2694 // For a newly created vreg which is also in RecoloringCandidates, 2695 // don't add it to NewVRegs because its physical register will be restored 2696 // below. Other vregs in CurrentNewVRegs are created by calling 2697 // selectOrSplit and should be added into NewVRegs. 2698 for (Register &R : CurrentNewVRegs) { 2699 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2700 continue; 2701 NewVRegs.push_back(R); 2702 } 2703 2704 for (LiveInterval *RC : RecoloringCandidates) { 2705 Register ItVirtReg = RC->reg(); 2706 if (VRM->hasPhys(ItVirtReg)) 2707 Matrix->unassign(*RC); 2708 MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2709 Matrix->assign(*RC, ItPhysReg); 2710 } 2711 } 2712 2713 // Last chance recoloring did not worked either, give up. 2714 return ~0u; 2715 } 2716 2717 /// tryRecoloringCandidates - Try to assign a new color to every register 2718 /// in \RecoloringQueue. 2719 /// \p NewRegs will contain any new virtual register created during the 2720 /// recoloring process. 2721 /// \p FixedRegisters[in/out] contains all the registers that have been 2722 /// recolored. 2723 /// \return true if all virtual registers in RecoloringQueue were successfully 2724 /// recolored, false otherwise. 2725 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2726 SmallVectorImpl<Register> &NewVRegs, 2727 SmallVirtRegSet &FixedRegisters, 2728 unsigned Depth) { 2729 while (!RecoloringQueue.empty()) { 2730 LiveInterval *LI = dequeue(RecoloringQueue); 2731 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2732 MCRegister PhysReg = 2733 selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2734 // When splitting happens, the live-range may actually be empty. 2735 // In that case, this is okay to continue the recoloring even 2736 // if we did not find an alternative color for it. Indeed, 2737 // there will not be anything to color for LI in the end. 2738 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2739 return false; 2740 2741 if (!PhysReg) { 2742 assert(LI->empty() && "Only empty live-range do not require a register"); 2743 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2744 << " succeeded. Empty LI.\n"); 2745 continue; 2746 } 2747 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2748 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2749 2750 Matrix->assign(*LI, PhysReg); 2751 FixedRegisters.insert(LI->reg()); 2752 } 2753 return true; 2754 } 2755 2756 //===----------------------------------------------------------------------===// 2757 // Main Entry Point 2758 //===----------------------------------------------------------------------===// 2759 2760 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2761 SmallVectorImpl<Register> &NewVRegs) { 2762 CutOffInfo = CO_None; 2763 LLVMContext &Ctx = MF->getFunction().getContext(); 2764 SmallVirtRegSet FixedRegisters; 2765 MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2766 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2767 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2768 if (CutOffEncountered == CO_Depth) 2769 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2770 "reached. Use -fexhaustive-register-search to skip " 2771 "cutoffs"); 2772 else if (CutOffEncountered == CO_Interf) 2773 Ctx.emitError("register allocation failed: maximum interference for " 2774 "recoloring reached. Use -fexhaustive-register-search " 2775 "to skip cutoffs"); 2776 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2777 Ctx.emitError("register allocation failed: maximum interference and " 2778 "depth for recoloring reached. Use " 2779 "-fexhaustive-register-search to skip cutoffs"); 2780 } 2781 return Reg; 2782 } 2783 2784 /// Using a CSR for the first time has a cost because it causes push|pop 2785 /// to be added to prologue|epilogue. Splitting a cold section of the live 2786 /// range can have lower cost than using the CSR for the first time; 2787 /// Spilling a live range in the cold path can have lower cost than using 2788 /// the CSR for the first time. Returns the physical register if we decide 2789 /// to use the CSR; otherwise return 0. 2790 MCRegister 2791 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 2792 MCRegister PhysReg, uint8_t &CostPerUseLimit, 2793 SmallVectorImpl<Register> &NewVRegs) { 2794 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2795 // We choose spill over using the CSR for the first time if the spill cost 2796 // is lower than CSRCost. 2797 SA->analyze(&VirtReg); 2798 if (calcSpillCost() >= CSRCost) 2799 return PhysReg; 2800 2801 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2802 // we will not use a callee-saved register in tryEvict. 2803 CostPerUseLimit = 1; 2804 return 0; 2805 } 2806 if (getStage(VirtReg) < RS_Split) { 2807 // We choose pre-splitting over using the CSR for the first time if 2808 // the cost of splitting is lower than CSRCost. 2809 SA->analyze(&VirtReg); 2810 unsigned NumCands = 0; 2811 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2812 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2813 NumCands, true /*IgnoreCSR*/); 2814 if (BestCand == NoCand) 2815 // Use the CSR if we can't find a region split below CSRCost. 2816 return PhysReg; 2817 2818 // Perform the actual pre-splitting. 2819 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2820 return 0; 2821 } 2822 return PhysReg; 2823 } 2824 2825 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2826 // Do not keep invalid information around. 2827 SetOfBrokenHints.remove(&LI); 2828 } 2829 2830 void RAGreedy::initializeCSRCost() { 2831 // We use the larger one out of the command-line option and the value report 2832 // by TRI. 2833 CSRCost = BlockFrequency( 2834 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2835 if (!CSRCost.getFrequency()) 2836 return; 2837 2838 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2839 uint64_t ActualEntry = MBFI->getEntryFreq(); 2840 if (!ActualEntry) { 2841 CSRCost = 0; 2842 return; 2843 } 2844 uint64_t FixedEntry = 1 << 14; 2845 if (ActualEntry < FixedEntry) 2846 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2847 else if (ActualEntry <= UINT32_MAX) 2848 // Invert the fraction and divide. 2849 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2850 else 2851 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2852 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2853 } 2854 2855 /// Collect the hint info for \p Reg. 2856 /// The results are stored into \p Out. 2857 /// \p Out is not cleared before being populated. 2858 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2859 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2860 if (!Instr.isFullCopy()) 2861 continue; 2862 // Look for the other end of the copy. 2863 Register OtherReg = Instr.getOperand(0).getReg(); 2864 if (OtherReg == Reg) { 2865 OtherReg = Instr.getOperand(1).getReg(); 2866 if (OtherReg == Reg) 2867 continue; 2868 } 2869 // Get the current assignment. 2870 MCRegister OtherPhysReg = 2871 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2872 // Push the collected information. 2873 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2874 OtherPhysReg)); 2875 } 2876 } 2877 2878 /// Using the given \p List, compute the cost of the broken hints if 2879 /// \p PhysReg was used. 2880 /// \return The cost of \p List for \p PhysReg. 2881 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2882 MCRegister PhysReg) { 2883 BlockFrequency Cost = 0; 2884 for (const HintInfo &Info : List) { 2885 if (Info.PhysReg != PhysReg) 2886 Cost += Info.Freq; 2887 } 2888 return Cost; 2889 } 2890 2891 /// Using the register assigned to \p VirtReg, try to recolor 2892 /// all the live ranges that are copy-related with \p VirtReg. 2893 /// The recoloring is then propagated to all the live-ranges that have 2894 /// been recolored and so on, until no more copies can be coalesced or 2895 /// it is not profitable. 2896 /// For a given live range, profitability is determined by the sum of the 2897 /// frequencies of the non-identity copies it would introduce with the old 2898 /// and new register. 2899 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2900 // We have a broken hint, check if it is possible to fix it by 2901 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2902 // some register and PhysReg may be available for the other live-ranges. 2903 SmallSet<Register, 4> Visited; 2904 SmallVector<unsigned, 2> RecoloringCandidates; 2905 HintsInfo Info; 2906 Register Reg = VirtReg.reg(); 2907 MCRegister PhysReg = VRM->getPhys(Reg); 2908 // Start the recoloring algorithm from the input live-interval, then 2909 // it will propagate to the ones that are copy-related with it. 2910 Visited.insert(Reg); 2911 RecoloringCandidates.push_back(Reg); 2912 2913 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2914 << '(' << printReg(PhysReg, TRI) << ")\n"); 2915 2916 do { 2917 Reg = RecoloringCandidates.pop_back_val(); 2918 2919 // We cannot recolor physical register. 2920 if (Register::isPhysicalRegister(Reg)) 2921 continue; 2922 2923 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2924 2925 // Get the live interval mapped with this virtual register to be able 2926 // to check for the interference with the new color. 2927 LiveInterval &LI = LIS->getInterval(Reg); 2928 MCRegister CurrPhys = VRM->getPhys(Reg); 2929 // Check that the new color matches the register class constraints and 2930 // that it is free for this live range. 2931 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2932 Matrix->checkInterference(LI, PhysReg))) 2933 continue; 2934 2935 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2936 << ") is recolorable.\n"); 2937 2938 // Gather the hint info. 2939 Info.clear(); 2940 collectHintInfo(Reg, Info); 2941 // Check if recoloring the live-range will increase the cost of the 2942 // non-identity copies. 2943 if (CurrPhys != PhysReg) { 2944 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2945 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2946 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2947 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2948 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2949 << '\n'); 2950 if (OldCopiesCost < NewCopiesCost) { 2951 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2952 continue; 2953 } 2954 // At this point, the cost is either cheaper or equal. If it is 2955 // equal, we consider this is profitable because it may expose 2956 // more recoloring opportunities. 2957 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2958 // Recolor the live-range. 2959 Matrix->unassign(LI); 2960 Matrix->assign(LI, PhysReg); 2961 } 2962 // Push all copy-related live-ranges to keep reconciling the broken 2963 // hints. 2964 for (const HintInfo &HI : Info) { 2965 if (Visited.insert(HI.Reg).second) 2966 RecoloringCandidates.push_back(HI.Reg); 2967 } 2968 } while (!RecoloringCandidates.empty()); 2969 } 2970 2971 /// Try to recolor broken hints. 2972 /// Broken hints may be repaired by recoloring when an evicted variable 2973 /// freed up a register for a larger live-range. 2974 /// Consider the following example: 2975 /// BB1: 2976 /// a = 2977 /// b = 2978 /// BB2: 2979 /// ... 2980 /// = b 2981 /// = a 2982 /// Let us assume b gets split: 2983 /// BB1: 2984 /// a = 2985 /// b = 2986 /// BB2: 2987 /// c = b 2988 /// ... 2989 /// d = c 2990 /// = d 2991 /// = a 2992 /// Because of how the allocation work, b, c, and d may be assigned different 2993 /// colors. Now, if a gets evicted later: 2994 /// BB1: 2995 /// a = 2996 /// st a, SpillSlot 2997 /// b = 2998 /// BB2: 2999 /// c = b 3000 /// ... 3001 /// d = c 3002 /// = d 3003 /// e = ld SpillSlot 3004 /// = e 3005 /// This is likely that we can assign the same register for b, c, and d, 3006 /// getting rid of 2 copies. 3007 void RAGreedy::tryHintsRecoloring() { 3008 for (LiveInterval *LI : SetOfBrokenHints) { 3009 assert(Register::isVirtualRegister(LI->reg()) && 3010 "Recoloring is possible only for virtual registers"); 3011 // Some dead defs may be around (e.g., because of debug uses). 3012 // Ignore those. 3013 if (!VRM->hasPhys(LI->reg())) 3014 continue; 3015 tryHintRecoloring(*LI); 3016 } 3017 } 3018 3019 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 3020 SmallVectorImpl<Register> &NewVRegs, 3021 SmallVirtRegSet &FixedRegisters, 3022 unsigned Depth) { 3023 uint8_t CostPerUseLimit = uint8_t(~0u); 3024 // First try assigning a free register. 3025 auto Order = 3026 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 3027 if (MCRegister PhysReg = 3028 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 3029 // If VirtReg got an assignment, the eviction info is no longer relevant. 3030 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3031 // When NewVRegs is not empty, we may have made decisions such as evicting 3032 // a virtual register, go with the earlier decisions and use the physical 3033 // register. 3034 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3035 NewVRegs.empty()) { 3036 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3037 CostPerUseLimit, NewVRegs); 3038 if (CSRReg || !NewVRegs.empty()) 3039 // Return now if we decide to use a CSR or create new vregs due to 3040 // pre-splitting. 3041 return CSRReg; 3042 } else 3043 return PhysReg; 3044 } 3045 3046 LiveRangeStage Stage = getStage(VirtReg); 3047 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3048 << ExtraRegInfo[VirtReg.reg()].Cascade << '\n'); 3049 3050 // Try to evict a less worthy live range, but only for ranges from the primary 3051 // queue. The RS_Split ranges already failed to do this, and they should not 3052 // get a second chance until they have been split. 3053 if (Stage != RS_Split) 3054 if (Register PhysReg = 3055 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 3056 FixedRegisters)) { 3057 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 3058 // If VirtReg has a hint and that hint is broken record this 3059 // virtual register as a recoloring candidate for broken hint. 3060 // Indeed, since we evicted a variable in its neighborhood it is 3061 // likely we can at least partially recolor some of the 3062 // copy-related live-ranges. 3063 if (Hint && Hint != PhysReg) 3064 SetOfBrokenHints.insert(&VirtReg); 3065 // If VirtReg eviction someone, the eviction info for it as an evictee is 3066 // no longer relevant. 3067 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3068 return PhysReg; 3069 } 3070 3071 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3072 3073 // The first time we see a live range, don't try to split or spill. 3074 // Wait until the second time, when all smaller ranges have been allocated. 3075 // This gives a better picture of the interference to split around. 3076 if (Stage < RS_Split) { 3077 setStage(VirtReg, RS_Split); 3078 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3079 NewVRegs.push_back(VirtReg.reg()); 3080 return 0; 3081 } 3082 3083 if (Stage < RS_Spill) { 3084 // Try splitting VirtReg or interferences. 3085 unsigned NewVRegSizeBefore = NewVRegs.size(); 3086 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 3087 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3088 // If VirtReg got split, the eviction info is no longer relevant. 3089 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3090 return PhysReg; 3091 } 3092 } 3093 3094 // If we couldn't allocate a register from spilling, there is probably some 3095 // invalid inline assembly. The base class will report it. 3096 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3097 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3098 Depth); 3099 3100 // Finally spill VirtReg itself. 3101 if ((EnableDeferredSpilling || 3102 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 3103 getStage(VirtReg) < RS_Memory) { 3104 // TODO: This is experimental and in particular, we do not model 3105 // the live range splitting done by spilling correctly. 3106 // We would need a deep integration with the spiller to do the 3107 // right thing here. Anyway, that is still good for early testing. 3108 setStage(VirtReg, RS_Memory); 3109 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3110 NewVRegs.push_back(VirtReg.reg()); 3111 } else { 3112 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3113 TimerGroupDescription, TimePassesIsEnabled); 3114 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3115 spiller().spill(LRE); 3116 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3117 3118 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 3119 // the new regs are kept in LDV (still mapping to the old register), until 3120 // we rewrite spilled locations in LDV at a later stage. 3121 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 3122 3123 if (VerifyEnabled) 3124 MF->verify(this, "After spilling"); 3125 } 3126 3127 // The live virtual register requesting allocation was spilled, so tell 3128 // the caller not to allocate anything during this round. 3129 return 0; 3130 } 3131 3132 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 3133 using namespace ore; 3134 if (Spills) 3135 R << NV("NumSpills", Spills) << " spills "; 3136 if (FoldedSpills) 3137 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3138 if (Reloads) 3139 R << NV("NumReloads", Reloads) << " reloads "; 3140 if (FoldedReloads) 3141 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3142 } 3143 3144 RAGreedy::RAGreedyStats 3145 RAGreedy::computeNumberOfSplillsReloads(MachineBasicBlock &MBB) { 3146 RAGreedyStats Stats; 3147 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3148 int FI; 3149 3150 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3151 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 3152 A->getPseudoValue())->getFrameIndex()); 3153 }; 3154 for (MachineInstr &MI : MBB) { 3155 SmallVector<const MachineMemOperand *, 2> Accesses; 3156 3157 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3158 ++Stats.Reloads; 3159 continue; 3160 } 3161 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3162 ++Stats.Spills; 3163 continue; 3164 } 3165 if (TII->hasLoadFromStackSlot(MI, Accesses) && 3166 llvm::any_of(Accesses, isSpillSlotAccess)) { 3167 ++Stats.FoldedReloads; 3168 continue; 3169 } 3170 Accesses.clear(); 3171 if (TII->hasStoreToStackSlot(MI, Accesses) && 3172 llvm::any_of(Accesses, isSpillSlotAccess)) { 3173 ++Stats.FoldedSpills; 3174 } 3175 } 3176 return Stats; 3177 } 3178 3179 RAGreedy::RAGreedyStats RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L) { 3180 RAGreedyStats Stats; 3181 3182 // Sum up the spill and reloads in subloops. 3183 for (MachineLoop *SubLoop : *L) 3184 Stats.add(reportNumberOfSplillsReloads(SubLoop)); 3185 3186 for (MachineBasicBlock *MBB : L->getBlocks()) 3187 // Handle blocks that were not included in subloops. 3188 if (Loops->getLoopFor(MBB) == L) 3189 Stats.add(computeNumberOfSplillsReloads(*MBB)); 3190 3191 if (!Stats.isEmpty()) { 3192 using namespace ore; 3193 3194 ORE->emit([&]() { 3195 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", 3196 L->getStartLoc(), L->getHeader()); 3197 Stats.report(R); 3198 R << "generated in loop"; 3199 return R; 3200 }); 3201 } 3202 return Stats; 3203 } 3204 3205 void RAGreedy::reportNumberOfSplillsReloads() { 3206 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 3207 return; 3208 RAGreedyStats Stats; 3209 for (MachineLoop *L : *Loops) 3210 Stats.add(reportNumberOfSplillsReloads(L)); 3211 // Process non-loop blocks. 3212 for (MachineBasicBlock &MBB : *MF) 3213 if (!Loops->getLoopFor(&MBB)) 3214 Stats.add(computeNumberOfSplillsReloads(MBB)); 3215 if (!Stats.isEmpty()) { 3216 using namespace ore; 3217 3218 ORE->emit([&]() { 3219 DebugLoc Loc; 3220 if (auto *SP = MF->getFunction().getSubprogram()) 3221 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 3222 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReload", Loc, 3223 &MF->front()); 3224 Stats.report(R); 3225 R << "generated in function"; 3226 return R; 3227 }); 3228 } 3229 } 3230 3231 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3232 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3233 << "********** Function: " << mf.getName() << '\n'); 3234 3235 MF = &mf; 3236 TRI = MF->getSubtarget().getRegisterInfo(); 3237 TII = MF->getSubtarget().getInstrInfo(); 3238 RCI.runOnMachineFunction(mf); 3239 3240 EnableLocalReassign = EnableLocalReassignment || 3241 MF->getSubtarget().enableRALocalReassignment( 3242 MF->getTarget().getOptLevel()); 3243 3244 EnableAdvancedRASplitCost = 3245 ConsiderLocalIntervalCost.getNumOccurrences() 3246 ? ConsiderLocalIntervalCost 3247 : MF->getSubtarget().enableAdvancedRASplitCost(); 3248 3249 if (VerifyEnabled) 3250 MF->verify(this, "Before greedy register allocator"); 3251 3252 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3253 getAnalysis<LiveIntervals>(), 3254 getAnalysis<LiveRegMatrix>()); 3255 Indexes = &getAnalysis<SlotIndexes>(); 3256 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3257 DomTree = &getAnalysis<MachineDominatorTree>(); 3258 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3259 Loops = &getAnalysis<MachineLoopInfo>(); 3260 Bundles = &getAnalysis<EdgeBundles>(); 3261 SpillPlacer = &getAnalysis<SpillPlacement>(); 3262 DebugVars = &getAnalysis<LiveDebugVariables>(); 3263 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3264 3265 initializeCSRCost(); 3266 3267 RegCosts = TRI->getRegisterCosts(*MF); 3268 3269 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 3270 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 3271 3272 VRAI->calculateSpillWeightsAndHints(); 3273 3274 LLVM_DEBUG(LIS->dump()); 3275 3276 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3277 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 3278 ExtraRegInfo.clear(); 3279 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3280 NextCascade = 1; 3281 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3282 GlobalCand.resize(32); // This will grow as needed. 3283 SetOfBrokenHints.clear(); 3284 LastEvicted.clear(); 3285 3286 allocatePhysRegs(); 3287 tryHintsRecoloring(); 3288 3289 if (VerifyEnabled) 3290 MF->verify(this, "Before post optimization"); 3291 postOptimization(); 3292 reportNumberOfSplillsReloads(); 3293 3294 releaseMemory(); 3295 return true; 3296 } 3297