1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "SplitKit.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <queue>
77 #include <tuple>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "regalloc"
83 
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
86 STATISTIC(NumEvicted,      "Number of interferences evicted");
87 
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89     "split-spill-mode", cl::Hidden,
90     cl::desc("Spill mode for splitting live ranges"),
91     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94     cl::init(SplitEditor::SM_Speed));
95 
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98                              cl::desc("Last chance recoloring max depth"),
99                              cl::init(5));
100 
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102     "lcr-max-interf", cl::Hidden,
103     cl::desc("Last chance recoloring maximum number of considered"
104              " interference at a time"),
105     cl::init(8));
106 
107 static cl::opt<bool> ExhaustiveSearch(
108     "exhaustive-register-search", cl::NotHidden,
109     cl::desc("Exhaustive Search for registers bypassing the depth "
110              "and interference cutoffs of last chance recoloring"),
111     cl::Hidden);
112 
113 static cl::opt<bool> EnableLocalReassignment(
114     "enable-local-reassign", cl::Hidden,
115     cl::desc("Local reassignment can yield better allocation decisions, but "
116              "may be compile time intensive"),
117     cl::init(false));
118 
119 static cl::opt<bool> EnableDeferredSpilling(
120     "enable-deferred-spilling", cl::Hidden,
121     cl::desc("Instead of spilling a variable right away, defer the actual "
122              "code insertion to the end of the allocation. That way the "
123              "allocator might still find a suitable coloring for this "
124              "variable because of other evicted variables."),
125     cl::init(false));
126 
127 // FIXME: Find a good default for this flag and remove the flag.
128 static cl::opt<unsigned>
129 CSRFirstTimeCost("regalloc-csr-first-time-cost",
130               cl::desc("Cost for first time use of callee-saved register."),
131               cl::init(0), cl::Hidden);
132 
133 static cl::opt<bool> ConsiderLocalIntervalCost(
134     "consider-local-interval-cost", cl::Hidden,
135     cl::desc("Consider the cost of local intervals created by a split "
136              "candidate when choosing the best split candidate."),
137     cl::init(false));
138 
139 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
140                                        createGreedyRegisterAllocator);
141 
142 namespace {
143 
144 class RAGreedy : public MachineFunctionPass,
145                  public RegAllocBase,
146                  private LiveRangeEdit::Delegate {
147   // Convenient shortcuts.
148   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
149   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
150   using SmallVirtRegSet = SmallSet<Register, 16>;
151 
152   // context
153   MachineFunction *MF;
154 
155   // Shortcuts to some useful interface.
156   const TargetInstrInfo *TII;
157   const TargetRegisterInfo *TRI;
158   RegisterClassInfo RCI;
159 
160   // analyses
161   SlotIndexes *Indexes;
162   MachineBlockFrequencyInfo *MBFI;
163   MachineDominatorTree *DomTree;
164   MachineLoopInfo *Loops;
165   MachineOptimizationRemarkEmitter *ORE;
166   EdgeBundles *Bundles;
167   SpillPlacement *SpillPlacer;
168   LiveDebugVariables *DebugVars;
169   AliasAnalysis *AA;
170 
171   // state
172   std::unique_ptr<Spiller> SpillerInstance;
173   PQueue Queue;
174   unsigned NextCascade;
175   std::unique_ptr<VirtRegAuxInfo> VRAI;
176 
177   // Live ranges pass through a number of stages as we try to allocate them.
178   // Some of the stages may also create new live ranges:
179   //
180   // - Region splitting.
181   // - Per-block splitting.
182   // - Local splitting.
183   // - Spilling.
184   //
185   // Ranges produced by one of the stages skip the previous stages when they are
186   // dequeued. This improves performance because we can skip interference checks
187   // that are unlikely to give any results. It also guarantees that the live
188   // range splitting algorithm terminates, something that is otherwise hard to
189   // ensure.
190   enum LiveRangeStage {
191     /// Newly created live range that has never been queued.
192     RS_New,
193 
194     /// Only attempt assignment and eviction. Then requeue as RS_Split.
195     RS_Assign,
196 
197     /// Attempt live range splitting if assignment is impossible.
198     RS_Split,
199 
200     /// Attempt more aggressive live range splitting that is guaranteed to make
201     /// progress.  This is used for split products that may not be making
202     /// progress.
203     RS_Split2,
204 
205     /// Live range will be spilled.  No more splitting will be attempted.
206     RS_Spill,
207 
208 
209     /// Live range is in memory. Because of other evictions, it might get moved
210     /// in a register in the end.
211     RS_Memory,
212 
213     /// There is nothing more we can do to this live range.  Abort compilation
214     /// if it can't be assigned.
215     RS_Done
216   };
217 
218   // Enum CutOffStage to keep a track whether the register allocation failed
219   // because of the cutoffs encountered in last chance recoloring.
220   // Note: This is used as bitmask. New value should be next power of 2.
221   enum CutOffStage {
222     // No cutoffs encountered
223     CO_None = 0,
224 
225     // lcr-max-depth cutoff encountered
226     CO_Depth = 1,
227 
228     // lcr-max-interf cutoff encountered
229     CO_Interf = 2
230   };
231 
232   uint8_t CutOffInfo;
233 
234 #ifndef NDEBUG
235   static const char *const StageName[];
236 #endif
237 
238   // RegInfo - Keep additional information about each live range.
239   struct RegInfo {
240     LiveRangeStage Stage = RS_New;
241 
242     // Cascade - Eviction loop prevention. See canEvictInterference().
243     unsigned Cascade = 0;
244 
245     RegInfo() = default;
246   };
247 
248   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
249 
250   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
251     return ExtraRegInfo[VirtReg.reg()].Stage;
252   }
253 
254   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
255     ExtraRegInfo.resize(MRI->getNumVirtRegs());
256     ExtraRegInfo[VirtReg.reg()].Stage = Stage;
257   }
258 
259   template<typename Iterator>
260   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
261     ExtraRegInfo.resize(MRI->getNumVirtRegs());
262     for (;Begin != End; ++Begin) {
263       Register Reg = *Begin;
264       if (ExtraRegInfo[Reg].Stage == RS_New)
265         ExtraRegInfo[Reg].Stage = NewStage;
266     }
267   }
268 
269   /// Cost of evicting interference.
270   struct EvictionCost {
271     unsigned BrokenHints = 0; ///< Total number of broken hints.
272     float MaxWeight = 0;      ///< Maximum spill weight evicted.
273 
274     EvictionCost() = default;
275 
276     bool isMax() const { return BrokenHints == ~0u; }
277 
278     void setMax() { BrokenHints = ~0u; }
279 
280     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
281 
282     bool operator<(const EvictionCost &O) const {
283       return std::tie(BrokenHints, MaxWeight) <
284              std::tie(O.BrokenHints, O.MaxWeight);
285     }
286   };
287 
288   /// EvictionTrack - Keeps track of past evictions in order to optimize region
289   /// split decision.
290   class EvictionTrack {
291 
292   public:
293     using EvictorInfo =
294         std::pair<Register /* evictor */, MCRegister /* physreg */>;
295     using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>;
296 
297   private:
298     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
299     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
300     EvicteeInfo Evictees;
301 
302   public:
303     /// Clear all eviction information.
304     void clear() { Evictees.clear(); }
305 
306     ///  Clear eviction information for the given evictee Vreg.
307     /// E.g. when Vreg get's a new allocation, the old eviction info is no
308     /// longer relevant.
309     /// \param Evictee The evictee Vreg for whom we want to clear collected
310     /// eviction info.
311     void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); }
312 
313     /// Track new eviction.
314     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
315     /// \param PhysReg The physical register Evictee was evicted from.
316     /// \param Evictor The evictor Vreg that evicted Evictee.
317     /// \param Evictee The evictee Vreg.
318     void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) {
319       Evictees[Evictee].first = Evictor;
320       Evictees[Evictee].second = PhysReg;
321     }
322 
323     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
324     /// \param Evictee The evictee vreg.
325     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
326     /// nobody has evicted Evictee from PhysReg.
327     EvictorInfo getEvictor(Register Evictee) {
328       if (Evictees.count(Evictee)) {
329         return Evictees[Evictee];
330       }
331 
332       return EvictorInfo(0, 0);
333     }
334   };
335 
336   // Keeps track of past evictions in order to optimize region split decision.
337   EvictionTrack LastEvicted;
338 
339   // splitting state.
340   std::unique_ptr<SplitAnalysis> SA;
341   std::unique_ptr<SplitEditor> SE;
342 
343   /// Cached per-block interference maps
344   InterferenceCache IntfCache;
345 
346   /// All basic blocks where the current register has uses.
347   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
348 
349   /// Global live range splitting candidate info.
350   struct GlobalSplitCandidate {
351     // Register intended for assignment, or 0.
352     MCRegister PhysReg;
353 
354     // SplitKit interval index for this candidate.
355     unsigned IntvIdx;
356 
357     // Interference for PhysReg.
358     InterferenceCache::Cursor Intf;
359 
360     // Bundles where this candidate should be live.
361     BitVector LiveBundles;
362     SmallVector<unsigned, 8> ActiveBlocks;
363 
364     void reset(InterferenceCache &Cache, MCRegister Reg) {
365       PhysReg = Reg;
366       IntvIdx = 0;
367       Intf.setPhysReg(Cache, Reg);
368       LiveBundles.clear();
369       ActiveBlocks.clear();
370     }
371 
372     // Set B[I] = C for every live bundle where B[I] was NoCand.
373     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
374       unsigned Count = 0;
375       for (unsigned I : LiveBundles.set_bits())
376         if (B[I] == NoCand) {
377           B[I] = C;
378           Count++;
379         }
380       return Count;
381     }
382   };
383 
384   /// Candidate info for each PhysReg in AllocationOrder.
385   /// This vector never shrinks, but grows to the size of the largest register
386   /// class.
387   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
388 
389   enum : unsigned { NoCand = ~0u };
390 
391   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
392   /// NoCand which indicates the stack interval.
393   SmallVector<unsigned, 32> BundleCand;
394 
395   /// Callee-save register cost, calculated once per machine function.
396   BlockFrequency CSRCost;
397 
398   /// Run or not the local reassignment heuristic. This information is
399   /// obtained from the TargetSubtargetInfo.
400   bool EnableLocalReassign;
401 
402   /// Enable or not the consideration of the cost of local intervals created
403   /// by a split candidate when choosing the best split candidate.
404   bool EnableAdvancedRASplitCost;
405 
406   /// Set of broken hints that may be reconciled later because of eviction.
407   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
408 
409   /// The register cost values. This list will be recreated for each Machine
410   /// Function
411   ArrayRef<uint8_t> RegCosts;
412 
413 public:
414   RAGreedy();
415 
416   /// Return the pass name.
417   StringRef getPassName() const override { return "Greedy Register Allocator"; }
418 
419   /// RAGreedy analysis usage.
420   void getAnalysisUsage(AnalysisUsage &AU) const override;
421   void releaseMemory() override;
422   Spiller &spiller() override { return *SpillerInstance; }
423   void enqueue(LiveInterval *LI) override;
424   LiveInterval *dequeue() override;
425   MCRegister selectOrSplit(LiveInterval &,
426                            SmallVectorImpl<Register> &) override;
427   void aboutToRemoveInterval(LiveInterval &) override;
428 
429   /// Perform register allocation.
430   bool runOnMachineFunction(MachineFunction &mf) override;
431 
432   MachineFunctionProperties getRequiredProperties() const override {
433     return MachineFunctionProperties().set(
434         MachineFunctionProperties::Property::NoPHIs);
435   }
436 
437   MachineFunctionProperties getClearedProperties() const override {
438     return MachineFunctionProperties().set(
439       MachineFunctionProperties::Property::IsSSA);
440   }
441 
442   static char ID;
443 
444 private:
445   MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &,
446                                SmallVirtRegSet &, unsigned = 0);
447 
448   bool LRE_CanEraseVirtReg(Register) override;
449   void LRE_WillShrinkVirtReg(Register) override;
450   void LRE_DidCloneVirtReg(Register, Register) override;
451   void enqueue(PQueue &CurQueue, LiveInterval *LI);
452   LiveInterval *dequeue(PQueue &CurQueue);
453 
454   BlockFrequency calcSpillCost();
455   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
456   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
457   bool growRegion(GlobalSplitCandidate &Cand);
458   bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand,
459                                   unsigned BBNumber,
460                                   const AllocationOrder &Order);
461   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
462                                GlobalSplitCandidate &Cand, unsigned BBNumber,
463                                const AllocationOrder &Order);
464   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
465                                      const AllocationOrder &Order,
466                                      bool *CanCauseEvictionChain);
467   bool calcCompactRegion(GlobalSplitCandidate&);
468   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
469   void calcGapWeights(MCRegister, SmallVectorImpl<float> &);
470   Register canReassign(LiveInterval &VirtReg, Register PrevReg) const;
471   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const;
472   bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &,
473                             const SmallVirtRegSet &) const;
474   bool canEvictInterferenceInRange(const LiveInterval &VirtReg,
475                                    MCRegister PhysReg, SlotIndex Start,
476                                    SlotIndex End, EvictionCost &MaxCost) const;
477   MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order,
478                                       const LiveInterval &VirtReg,
479                                       SlotIndex Start, SlotIndex End,
480                                       float *BestEvictWeight) const;
481   void evictInterference(LiveInterval &, MCRegister,
482                          SmallVectorImpl<Register> &);
483   bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg,
484                                   SmallLISet &RecoloringCandidates,
485                                   const SmallVirtRegSet &FixedRegisters);
486 
487   MCRegister tryAssign(LiveInterval&, AllocationOrder&,
488                      SmallVectorImpl<Register>&,
489                      const SmallVirtRegSet&);
490   MCRegister tryEvict(LiveInterval &, AllocationOrder &,
491                     SmallVectorImpl<Register> &, uint8_t,
492                     const SmallVirtRegSet &);
493   MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &,
494                             SmallVectorImpl<Register> &);
495   /// Calculate cost of region splitting.
496   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
497                                     AllocationOrder &Order,
498                                     BlockFrequency &BestCost,
499                                     unsigned &NumCands, bool IgnoreCSR,
500                                     bool *CanCauseEvictionChain = nullptr);
501   /// Perform region splitting.
502   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
503                          bool HasCompact,
504                          SmallVectorImpl<Register> &NewVRegs);
505   /// Check other options before using a callee-saved register for the first
506   /// time.
507   MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg,
508                                    AllocationOrder &Order, MCRegister PhysReg,
509                                    uint8_t &CostPerUseLimit,
510                                    SmallVectorImpl<Register> &NewVRegs);
511   void initializeCSRCost();
512   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
513                          SmallVectorImpl<Register>&);
514   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
515                                SmallVectorImpl<Register>&);
516   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
517     SmallVectorImpl<Register>&);
518   unsigned trySplit(LiveInterval&, AllocationOrder&,
519                     SmallVectorImpl<Register>&,
520                     const SmallVirtRegSet&);
521   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
522                                    SmallVectorImpl<Register> &,
523                                    SmallVirtRegSet &, unsigned);
524   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &,
525                                SmallVirtRegSet &, unsigned);
526   void tryHintRecoloring(LiveInterval &);
527   void tryHintsRecoloring();
528 
529   /// Model the information carried by one end of a copy.
530   struct HintInfo {
531     /// The frequency of the copy.
532     BlockFrequency Freq;
533     /// The virtual register or physical register.
534     Register Reg;
535     /// Its currently assigned register.
536     /// In case of a physical register Reg == PhysReg.
537     MCRegister PhysReg;
538 
539     HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg)
540         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
541   };
542   using HintsInfo = SmallVector<HintInfo, 4>;
543 
544   BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister);
545   void collectHintInfo(Register, HintsInfo &);
546 
547   bool isUnusedCalleeSavedReg(MCRegister PhysReg) const;
548 
549   /// Compute and report the number of spills and reloads for a loop.
550   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
551                                     unsigned &FoldedReloads, unsigned &Spills,
552                                     unsigned &FoldedSpills);
553 
554   /// Report the number of spills and reloads for each loop.
555   void reportNumberOfSplillsReloads() {
556     for (MachineLoop *L : *Loops) {
557       unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
558       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
559                                    FoldedSpills);
560     }
561   }
562 };
563 
564 } // end anonymous namespace
565 
566 char RAGreedy::ID = 0;
567 char &llvm::RAGreedyID = RAGreedy::ID;
568 
569 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
570                 "Greedy Register Allocator", false, false)
571 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
572 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
573 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
574 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
575 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
576 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
577 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
578 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
579 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
580 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
581 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
582 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
583 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
584 INITIALIZE_PASS_END(RAGreedy, "greedy",
585                 "Greedy Register Allocator", false, false)
586 
587 #ifndef NDEBUG
588 const char *const RAGreedy::StageName[] = {
589     "RS_New",
590     "RS_Assign",
591     "RS_Split",
592     "RS_Split2",
593     "RS_Spill",
594     "RS_Memory",
595     "RS_Done"
596 };
597 #endif
598 
599 // Hysteresis to use when comparing floats.
600 // This helps stabilize decisions based on float comparisons.
601 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
602 
603 FunctionPass* llvm::createGreedyRegisterAllocator() {
604   return new RAGreedy();
605 }
606 
607 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
608 }
609 
610 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
611   AU.setPreservesCFG();
612   AU.addRequired<MachineBlockFrequencyInfo>();
613   AU.addPreserved<MachineBlockFrequencyInfo>();
614   AU.addRequired<AAResultsWrapperPass>();
615   AU.addPreserved<AAResultsWrapperPass>();
616   AU.addRequired<LiveIntervals>();
617   AU.addPreserved<LiveIntervals>();
618   AU.addRequired<SlotIndexes>();
619   AU.addPreserved<SlotIndexes>();
620   AU.addRequired<LiveDebugVariables>();
621   AU.addPreserved<LiveDebugVariables>();
622   AU.addRequired<LiveStacks>();
623   AU.addPreserved<LiveStacks>();
624   AU.addRequired<MachineDominatorTree>();
625   AU.addPreserved<MachineDominatorTree>();
626   AU.addRequired<MachineLoopInfo>();
627   AU.addPreserved<MachineLoopInfo>();
628   AU.addRequired<VirtRegMap>();
629   AU.addPreserved<VirtRegMap>();
630   AU.addRequired<LiveRegMatrix>();
631   AU.addPreserved<LiveRegMatrix>();
632   AU.addRequired<EdgeBundles>();
633   AU.addRequired<SpillPlacement>();
634   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
635   MachineFunctionPass::getAnalysisUsage(AU);
636 }
637 
638 //===----------------------------------------------------------------------===//
639 //                     LiveRangeEdit delegate methods
640 //===----------------------------------------------------------------------===//
641 
642 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
643   LiveInterval &LI = LIS->getInterval(VirtReg);
644   if (VRM->hasPhys(VirtReg)) {
645     Matrix->unassign(LI);
646     aboutToRemoveInterval(LI);
647     return true;
648   }
649   // Unassigned virtreg is probably in the priority queue.
650   // RegAllocBase will erase it after dequeueing.
651   // Nonetheless, clear the live-range so that the debug
652   // dump will show the right state for that VirtReg.
653   LI.clear();
654   return false;
655 }
656 
657 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
658   if (!VRM->hasPhys(VirtReg))
659     return;
660 
661   // Register is assigned, put it back on the queue for reassignment.
662   LiveInterval &LI = LIS->getInterval(VirtReg);
663   Matrix->unassign(LI);
664   enqueue(&LI);
665 }
666 
667 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
668   // Cloning a register we haven't even heard about yet?  Just ignore it.
669   if (!ExtraRegInfo.inBounds(Old))
670     return;
671 
672   // LRE may clone a virtual register because dead code elimination causes it to
673   // be split into connected components. The new components are much smaller
674   // than the original, so they should get a new chance at being assigned.
675   // same stage as the parent.
676   ExtraRegInfo[Old].Stage = RS_Assign;
677   ExtraRegInfo.grow(New);
678   ExtraRegInfo[New] = ExtraRegInfo[Old];
679 }
680 
681 void RAGreedy::releaseMemory() {
682   SpillerInstance.reset();
683   ExtraRegInfo.clear();
684   GlobalCand.clear();
685 }
686 
687 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
688 
689 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
690   // Prioritize live ranges by size, assigning larger ranges first.
691   // The queue holds (size, reg) pairs.
692   const unsigned Size = LI->getSize();
693   const Register Reg = LI->reg();
694   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
695   unsigned Prio;
696 
697   ExtraRegInfo.grow(Reg);
698   if (ExtraRegInfo[Reg].Stage == RS_New)
699     ExtraRegInfo[Reg].Stage = RS_Assign;
700 
701   if (ExtraRegInfo[Reg].Stage == RS_Split) {
702     // Unsplit ranges that couldn't be allocated immediately are deferred until
703     // everything else has been allocated.
704     Prio = Size;
705   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
706     // Memory operand should be considered last.
707     // Change the priority such that Memory operand are assigned in
708     // the reverse order that they came in.
709     // TODO: Make this a member variable and probably do something about hints.
710     static unsigned MemOp = 0;
711     Prio = MemOp++;
712   } else {
713     // Giant live ranges fall back to the global assignment heuristic, which
714     // prevents excessive spilling in pathological cases.
715     bool ReverseLocal = TRI->reverseLocalAssignment();
716     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
717     bool ForceGlobal = !ReverseLocal &&
718       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
719 
720     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
721         LIS->intervalIsInOneMBB(*LI)) {
722       // Allocate original local ranges in linear instruction order. Since they
723       // are singly defined, this produces optimal coloring in the absence of
724       // global interference and other constraints.
725       if (!ReverseLocal)
726         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
727       else {
728         // Allocating bottom up may allow many short LRGs to be assigned first
729         // to one of the cheap registers. This could be much faster for very
730         // large blocks on targets with many physical registers.
731         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
732       }
733       Prio |= RC.AllocationPriority << 24;
734     } else {
735       // Allocate global and split ranges in long->short order. Long ranges that
736       // don't fit should be spilled (or split) ASAP so they don't create
737       // interference.  Mark a bit to prioritize global above local ranges.
738       Prio = (1u << 29) + Size;
739     }
740     // Mark a higher bit to prioritize global and local above RS_Split.
741     Prio |= (1u << 31);
742 
743     // Boost ranges that have a physical register hint.
744     if (VRM->hasKnownPreference(Reg))
745       Prio |= (1u << 30);
746   }
747   // The virtual register number is a tie breaker for same-sized ranges.
748   // Give lower vreg numbers higher priority to assign them first.
749   CurQueue.push(std::make_pair(Prio, ~Reg));
750 }
751 
752 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
753 
754 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
755   if (CurQueue.empty())
756     return nullptr;
757   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
758   CurQueue.pop();
759   return LI;
760 }
761 
762 //===----------------------------------------------------------------------===//
763 //                            Direct Assignment
764 //===----------------------------------------------------------------------===//
765 
766 /// tryAssign - Try to assign VirtReg to an available register.
767 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg,
768                              AllocationOrder &Order,
769                              SmallVectorImpl<Register> &NewVRegs,
770                              const SmallVirtRegSet &FixedRegisters) {
771   MCRegister PhysReg;
772   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
773     assert(*I);
774     if (!Matrix->checkInterference(VirtReg, *I)) {
775       if (I.isHint())
776         return *I;
777       else
778         PhysReg = *I;
779     }
780   }
781   if (!PhysReg.isValid())
782     return PhysReg;
783 
784   // PhysReg is available, but there may be a better choice.
785 
786   // If we missed a simple hint, try to cheaply evict interference from the
787   // preferred register.
788   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
789     if (Order.isHint(Hint)) {
790       MCRegister PhysHint = Hint.asMCReg();
791       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
792       EvictionCost MaxCost;
793       MaxCost.setBrokenHints(1);
794       if (canEvictInterference(VirtReg, PhysHint, true, MaxCost,
795                                FixedRegisters)) {
796         evictInterference(VirtReg, PhysHint, NewVRegs);
797         return PhysHint;
798       }
799       // Record the missed hint, we may be able to recover
800       // at the end if the surrounding allocation changed.
801       SetOfBrokenHints.insert(&VirtReg);
802     }
803 
804   // Try to evict interference from a cheaper alternative.
805   uint8_t Cost = RegCosts[PhysReg];
806 
807   // Most registers have 0 additional cost.
808   if (!Cost)
809     return PhysReg;
810 
811   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
812                     << Cost << '\n');
813   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
814   return CheapReg ? CheapReg : PhysReg;
815 }
816 
817 //===----------------------------------------------------------------------===//
818 //                         Interference eviction
819 //===----------------------------------------------------------------------===//
820 
821 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const {
822   auto Order =
823       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
824   MCRegister PhysReg;
825   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
826     if ((*I).id() == PrevReg.id())
827       continue;
828 
829     MCRegUnitIterator Units(*I, TRI);
830     for (; Units.isValid(); ++Units) {
831       // Instantiate a "subquery", not to be confused with the Queries array.
832       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
833       if (subQ.checkInterference())
834         break;
835     }
836     // If no units have interference, break out with the current PhysReg.
837     if (!Units.isValid())
838       PhysReg = *I;
839   }
840   if (PhysReg)
841     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
842                       << printReg(PrevReg, TRI) << " to "
843                       << printReg(PhysReg, TRI) << '\n');
844   return PhysReg;
845 }
846 
847 /// shouldEvict - determine if A should evict the assigned live range B. The
848 /// eviction policy defined by this function together with the allocation order
849 /// defined by enqueue() decides which registers ultimately end up being split
850 /// and spilled.
851 ///
852 /// Cascade numbers are used to prevent infinite loops if this function is a
853 /// cyclic relation.
854 ///
855 /// @param A          The live range to be assigned.
856 /// @param IsHint     True when A is about to be assigned to its preferred
857 ///                   register.
858 /// @param B          The live range to be evicted.
859 /// @param BreaksHint True when B is already assigned to its preferred register.
860 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
861                            LiveInterval &B, bool BreaksHint) const {
862   bool CanSplit = getStage(B) < RS_Spill;
863 
864   // Be fairly aggressive about following hints as long as the evictee can be
865   // split.
866   if (CanSplit && IsHint && !BreaksHint)
867     return true;
868 
869   if (A.weight() > B.weight()) {
870     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n');
871     return true;
872   }
873   return false;
874 }
875 
876 /// canEvictInterference - Return true if all interferences between VirtReg and
877 /// PhysReg can be evicted.
878 ///
879 /// @param VirtReg Live range that is about to be assigned.
880 /// @param PhysReg Desired register for assignment.
881 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
882 /// @param MaxCost Only look for cheaper candidates and update with new cost
883 ///                when returning true.
884 /// @returns True when interference can be evicted cheaper than MaxCost.
885 bool RAGreedy::canEvictInterference(
886     LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint,
887     EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const {
888   // It is only possible to evict virtual register interference.
889   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
890     return false;
891 
892   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
893 
894   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
895   // involved in an eviction before. If a cascade number was assigned, deny
896   // evicting anything with the same or a newer cascade number. This prevents
897   // infinite eviction loops.
898   //
899   // This works out so a register without a cascade number is allowed to evict
900   // anything, and it can be evicted by anything.
901   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
902   if (!Cascade)
903     Cascade = NextCascade;
904 
905   EvictionCost Cost;
906   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
907     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
908     // If there is 10 or more interferences, chances are one is heavier.
909     if (Q.collectInterferingVRegs(10) >= 10)
910       return false;
911 
912     // Check if any interfering live range is heavier than MaxWeight.
913     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
914       assert(Register::isVirtualRegister(Intf->reg()) &&
915              "Only expecting virtual register interference from query");
916 
917       // Do not allow eviction of a virtual register if we are in the middle
918       // of last-chance recoloring and this virtual register is one that we
919       // have scavenged a physical register for.
920       if (FixedRegisters.count(Intf->reg()))
921         return false;
922 
923       // Never evict spill products. They cannot split or spill.
924       if (getStage(*Intf) == RS_Done)
925         return false;
926       // Once a live range becomes small enough, it is urgent that we find a
927       // register for it. This is indicated by an infinite spill weight. These
928       // urgent live ranges get to evict almost anything.
929       //
930       // Also allow urgent evictions of unspillable ranges from a strictly
931       // larger allocation order.
932       bool Urgent =
933           !VirtReg.isSpillable() &&
934           (Intf->isSpillable() ||
935            RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
936                RegClassInfo.getNumAllocatableRegs(
937                    MRI->getRegClass(Intf->reg())));
938       // Only evict older cascades or live ranges without a cascade.
939       unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade;
940       if (Cascade <= IntfCascade) {
941         if (!Urgent)
942           return false;
943         // We permit breaking cascades for urgent evictions. It should be the
944         // last resort, though, so make it really expensive.
945         Cost.BrokenHints += 10;
946       }
947       // Would this break a satisfied hint?
948       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
949       // Update eviction cost.
950       Cost.BrokenHints += BreaksHint;
951       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
952       // Abort if this would be too expensive.
953       if (!(Cost < MaxCost))
954         return false;
955       if (Urgent)
956         continue;
957       // Apply the eviction policy for non-urgent evictions.
958       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
959         return false;
960       // If !MaxCost.isMax(), then we're just looking for a cheap register.
961       // Evicting another local live range in this case could lead to suboptimal
962       // coloring.
963       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
964           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
965         return false;
966       }
967     }
968   }
969   MaxCost = Cost;
970   return true;
971 }
972 
973 /// Return true if all interferences between VirtReg and PhysReg between
974 /// Start and End can be evicted.
975 ///
976 /// \param VirtReg Live range that is about to be assigned.
977 /// \param PhysReg Desired register for assignment.
978 /// \param Start   Start of range to look for interferences.
979 /// \param End     End of range to look for interferences.
980 /// \param MaxCost Only look for cheaper candidates and update with new cost
981 ///                when returning true.
982 /// \return True when interference can be evicted cheaper than MaxCost.
983 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg,
984                                            MCRegister PhysReg, SlotIndex Start,
985                                            SlotIndex End,
986                                            EvictionCost &MaxCost) const {
987   EvictionCost Cost;
988 
989   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
990     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
991     Q.collectInterferingVRegs();
992 
993     // Check if any interfering live range is heavier than MaxWeight.
994     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
995       // Check if interference overlast the segment in interest.
996       if (!Intf->overlaps(Start, End))
997         continue;
998 
999       // Cannot evict non virtual reg interference.
1000       if (!Register::isVirtualRegister(Intf->reg()))
1001         return false;
1002       // Never evict spill products. They cannot split or spill.
1003       if (getStage(*Intf) == RS_Done)
1004         return false;
1005 
1006       // Would this break a satisfied hint?
1007       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
1008       // Update eviction cost.
1009       Cost.BrokenHints += BreaksHint;
1010       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
1011       // Abort if this would be too expensive.
1012       if (!(Cost < MaxCost))
1013         return false;
1014     }
1015   }
1016 
1017   if (Cost.MaxWeight == 0)
1018     return false;
1019 
1020   MaxCost = Cost;
1021   return true;
1022 }
1023 
1024 /// Return the physical register that will be best
1025 /// candidate for eviction by a local split interval that will be created
1026 /// between Start and End.
1027 ///
1028 /// \param Order            The allocation order
1029 /// \param VirtReg          Live range that is about to be assigned.
1030 /// \param Start            Start of range to look for interferences
1031 /// \param End              End of range to look for interferences
1032 /// \param BestEvictweight  The eviction cost of that eviction
1033 /// \return The PhysReg which is the best candidate for eviction and the
1034 /// eviction cost in BestEvictweight
1035 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1036                                               const LiveInterval &VirtReg,
1037                                               SlotIndex Start, SlotIndex End,
1038                                               float *BestEvictweight) const {
1039   EvictionCost BestEvictCost;
1040   BestEvictCost.setMax();
1041   BestEvictCost.MaxWeight = VirtReg.weight();
1042   MCRegister BestEvicteePhys;
1043 
1044   // Go over all physical registers and find the best candidate for eviction
1045   for (MCRegister PhysReg : Order.getOrder()) {
1046 
1047     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1048                                      BestEvictCost))
1049       continue;
1050 
1051     // Best so far.
1052     BestEvicteePhys = PhysReg;
1053   }
1054   *BestEvictweight = BestEvictCost.MaxWeight;
1055   return BestEvicteePhys;
1056 }
1057 
1058 /// evictInterference - Evict any interferring registers that prevent VirtReg
1059 /// from being assigned to Physreg. This assumes that canEvictInterference
1060 /// returned true.
1061 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg,
1062                                  SmallVectorImpl<Register> &NewVRegs) {
1063   // Make sure that VirtReg has a cascade number, and assign that cascade
1064   // number to every evicted register. These live ranges than then only be
1065   // evicted by a newer cascade, preventing infinite loops.
1066   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
1067   if (!Cascade)
1068     Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++;
1069 
1070   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1071                     << " interference: Cascade " << Cascade << '\n');
1072 
1073   // Collect all interfering virtregs first.
1074   SmallVector<LiveInterval*, 8> Intfs;
1075   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1076     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1077     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1078     // should be fast, we may need to recalculate if when different physregs
1079     // overlap the same register unit so we had different SubRanges queried
1080     // against it.
1081     Q.collectInterferingVRegs();
1082     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1083     Intfs.append(IVR.begin(), IVR.end());
1084   }
1085 
1086   // Evict them second. This will invalidate the queries.
1087   for (LiveInterval *Intf : Intfs) {
1088     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1089     if (!VRM->hasPhys(Intf->reg()))
1090       continue;
1091 
1092     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
1093 
1094     Matrix->unassign(*Intf);
1095     assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade ||
1096             VirtReg.isSpillable() < Intf->isSpillable()) &&
1097            "Cannot decrease cascade number, illegal eviction");
1098     ExtraRegInfo[Intf->reg()].Cascade = Cascade;
1099     ++NumEvicted;
1100     NewVRegs.push_back(Intf->reg());
1101   }
1102 }
1103 
1104 /// Returns true if the given \p PhysReg is a callee saved register and has not
1105 /// been used for allocation yet.
1106 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
1107   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1108   if (!CSR)
1109     return false;
1110 
1111   return !Matrix->isPhysRegUsed(PhysReg);
1112 }
1113 
1114 /// tryEvict - Try to evict all interferences for a physreg.
1115 /// @param  VirtReg Currently unassigned virtual register.
1116 /// @param  Order   Physregs to try.
1117 /// @return         Physreg to assign VirtReg, or 0.
1118 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order,
1119                             SmallVectorImpl<Register> &NewVRegs,
1120                             uint8_t CostPerUseLimit,
1121                             const SmallVirtRegSet &FixedRegisters) {
1122   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1123                      TimePassesIsEnabled);
1124 
1125   // Keep track of the cheapest interference seen so far.
1126   EvictionCost BestCost;
1127   BestCost.setMax();
1128   MCRegister BestPhys;
1129   unsigned OrderLimit = Order.getOrder().size();
1130 
1131   // When we are just looking for a reduced cost per use, don't break any
1132   // hints, and only evict smaller spill weights.
1133   if (CostPerUseLimit < uint8_t(~0u)) {
1134     BestCost.BrokenHints = 0;
1135     BestCost.MaxWeight = VirtReg.weight();
1136 
1137     // Check of any registers in RC are below CostPerUseLimit.
1138     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
1139     uint8_t MinCost = RegClassInfo.getMinCost(RC);
1140     if (MinCost >= CostPerUseLimit) {
1141       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1142                         << MinCost << ", no cheaper registers to be found.\n");
1143       return 0;
1144     }
1145 
1146     // It is normal for register classes to have a long tail of registers with
1147     // the same cost. We don't need to look at them if they're too expensive.
1148     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
1149       OrderLimit = RegClassInfo.getLastCostChange(RC);
1150       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1151                         << " regs.\n");
1152     }
1153   }
1154 
1155   for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
1156        ++I) {
1157     MCRegister PhysReg = *I;
1158     assert(PhysReg);
1159     if (RegCosts[PhysReg] >= CostPerUseLimit)
1160       continue;
1161     // The first use of a callee-saved register in a function has cost 1.
1162     // Don't start using a CSR when the CostPerUseLimit is low.
1163     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1164       LLVM_DEBUG(
1165           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1166                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1167                  << '\n');
1168       continue;
1169     }
1170 
1171     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1172                               FixedRegisters))
1173       continue;
1174 
1175     // Best so far.
1176     BestPhys = PhysReg;
1177 
1178     // Stop if the hint can be used.
1179     if (I.isHint())
1180       break;
1181   }
1182 
1183   if (BestPhys.isValid())
1184     evictInterference(VirtReg, BestPhys, NewVRegs);
1185   return BestPhys;
1186 }
1187 
1188 //===----------------------------------------------------------------------===//
1189 //                              Region Splitting
1190 //===----------------------------------------------------------------------===//
1191 
1192 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1193 /// interference pattern in Physreg and its aliases. Add the constraints to
1194 /// SpillPlacement and return the static cost of this split in Cost, assuming
1195 /// that all preferences in SplitConstraints are met.
1196 /// Return false if there are no bundles with positive bias.
1197 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1198                                    BlockFrequency &Cost) {
1199   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1200 
1201   // Reset interference dependent info.
1202   SplitConstraints.resize(UseBlocks.size());
1203   BlockFrequency StaticCost = 0;
1204   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1205     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1206     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1207 
1208     BC.Number = BI.MBB->getNumber();
1209     Intf.moveToBlock(BC.Number);
1210     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1211     BC.Exit = (BI.LiveOut &&
1212                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1213                   ? SpillPlacement::PrefReg
1214                   : SpillPlacement::DontCare;
1215     BC.ChangesValue = BI.FirstDef.isValid();
1216 
1217     if (!Intf.hasInterference())
1218       continue;
1219 
1220     // Number of spill code instructions to insert.
1221     unsigned Ins = 0;
1222 
1223     // Interference for the live-in value.
1224     if (BI.LiveIn) {
1225       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1226         BC.Entry = SpillPlacement::MustSpill;
1227         ++Ins;
1228       } else if (Intf.first() < BI.FirstInstr) {
1229         BC.Entry = SpillPlacement::PrefSpill;
1230         ++Ins;
1231       } else if (Intf.first() < BI.LastInstr) {
1232         ++Ins;
1233       }
1234 
1235       // Abort if the spill cannot be inserted at the MBB' start
1236       if (((BC.Entry == SpillPlacement::MustSpill) ||
1237            (BC.Entry == SpillPlacement::PrefSpill)) &&
1238           SlotIndex::isEarlierInstr(BI.FirstInstr,
1239                                     SA->getFirstSplitPoint(BC.Number)))
1240         return false;
1241     }
1242 
1243     // Interference for the live-out value.
1244     if (BI.LiveOut) {
1245       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1246         BC.Exit = SpillPlacement::MustSpill;
1247         ++Ins;
1248       } else if (Intf.last() > BI.LastInstr) {
1249         BC.Exit = SpillPlacement::PrefSpill;
1250         ++Ins;
1251       } else if (Intf.last() > BI.FirstInstr) {
1252         ++Ins;
1253       }
1254     }
1255 
1256     // Accumulate the total frequency of inserted spill code.
1257     while (Ins--)
1258       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1259   }
1260   Cost = StaticCost;
1261 
1262   // Add constraints for use-blocks. Note that these are the only constraints
1263   // that may add a positive bias, it is downhill from here.
1264   SpillPlacer->addConstraints(SplitConstraints);
1265   return SpillPlacer->scanActiveBundles();
1266 }
1267 
1268 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1269 /// live-through blocks in Blocks.
1270 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1271                                      ArrayRef<unsigned> Blocks) {
1272   const unsigned GroupSize = 8;
1273   SpillPlacement::BlockConstraint BCS[GroupSize];
1274   unsigned TBS[GroupSize];
1275   unsigned B = 0, T = 0;
1276 
1277   for (unsigned Number : Blocks) {
1278     Intf.moveToBlock(Number);
1279 
1280     if (!Intf.hasInterference()) {
1281       assert(T < GroupSize && "Array overflow");
1282       TBS[T] = Number;
1283       if (++T == GroupSize) {
1284         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1285         T = 0;
1286       }
1287       continue;
1288     }
1289 
1290     assert(B < GroupSize && "Array overflow");
1291     BCS[B].Number = Number;
1292 
1293     // Abort if the spill cannot be inserted at the MBB' start
1294     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1295     if (!MBB->empty() &&
1296         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
1297                                   SA->getFirstSplitPoint(Number)))
1298       return false;
1299     // Interference for the live-in value.
1300     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1301       BCS[B].Entry = SpillPlacement::MustSpill;
1302     else
1303       BCS[B].Entry = SpillPlacement::PrefSpill;
1304 
1305     // Interference for the live-out value.
1306     if (Intf.last() >= SA->getLastSplitPoint(Number))
1307       BCS[B].Exit = SpillPlacement::MustSpill;
1308     else
1309       BCS[B].Exit = SpillPlacement::PrefSpill;
1310 
1311     if (++B == GroupSize) {
1312       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1313       B = 0;
1314     }
1315   }
1316 
1317   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1318   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1319   return true;
1320 }
1321 
1322 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1323   // Keep track of through blocks that have not been added to SpillPlacer.
1324   BitVector Todo = SA->getThroughBlocks();
1325   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1326   unsigned AddedTo = 0;
1327 #ifndef NDEBUG
1328   unsigned Visited = 0;
1329 #endif
1330 
1331   while (true) {
1332     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1333     // Find new through blocks in the periphery of PrefRegBundles.
1334     for (unsigned Bundle : NewBundles) {
1335       // Look at all blocks connected to Bundle in the full graph.
1336       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1337       for (unsigned Block : Blocks) {
1338         if (!Todo.test(Block))
1339           continue;
1340         Todo.reset(Block);
1341         // This is a new through block. Add it to SpillPlacer later.
1342         ActiveBlocks.push_back(Block);
1343 #ifndef NDEBUG
1344         ++Visited;
1345 #endif
1346       }
1347     }
1348     // Any new blocks to add?
1349     if (ActiveBlocks.size() == AddedTo)
1350       break;
1351 
1352     // Compute through constraints from the interference, or assume that all
1353     // through blocks prefer spilling when forming compact regions.
1354     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1355     if (Cand.PhysReg) {
1356       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1357         return false;
1358     } else
1359       // Provide a strong negative bias on through blocks to prevent unwanted
1360       // liveness on loop backedges.
1361       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1362     AddedTo = ActiveBlocks.size();
1363 
1364     // Perhaps iterating can enable more bundles?
1365     SpillPlacer->iterate();
1366   }
1367   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1368   return true;
1369 }
1370 
1371 /// calcCompactRegion - Compute the set of edge bundles that should be live
1372 /// when splitting the current live range into compact regions.  Compact
1373 /// regions can be computed without looking at interference.  They are the
1374 /// regions formed by removing all the live-through blocks from the live range.
1375 ///
1376 /// Returns false if the current live range is already compact, or if the
1377 /// compact regions would form single block regions anyway.
1378 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1379   // Without any through blocks, the live range is already compact.
1380   if (!SA->getNumThroughBlocks())
1381     return false;
1382 
1383   // Compact regions don't correspond to any physreg.
1384   Cand.reset(IntfCache, MCRegister::NoRegister);
1385 
1386   LLVM_DEBUG(dbgs() << "Compact region bundles");
1387 
1388   // Use the spill placer to determine the live bundles. GrowRegion pretends
1389   // that all the through blocks have interference when PhysReg is unset.
1390   SpillPlacer->prepare(Cand.LiveBundles);
1391 
1392   // The static split cost will be zero since Cand.Intf reports no interference.
1393   BlockFrequency Cost;
1394   if (!addSplitConstraints(Cand.Intf, Cost)) {
1395     LLVM_DEBUG(dbgs() << ", none.\n");
1396     return false;
1397   }
1398 
1399   if (!growRegion(Cand)) {
1400     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1401     return false;
1402   }
1403 
1404   SpillPlacer->finish();
1405 
1406   if (!Cand.LiveBundles.any()) {
1407     LLVM_DEBUG(dbgs() << ", none.\n");
1408     return false;
1409   }
1410 
1411   LLVM_DEBUG({
1412     for (int I : Cand.LiveBundles.set_bits())
1413       dbgs() << " EB#" << I;
1414     dbgs() << ".\n";
1415   });
1416   return true;
1417 }
1418 
1419 /// calcSpillCost - Compute how expensive it would be to split the live range in
1420 /// SA around all use blocks instead of forming bundle regions.
1421 BlockFrequency RAGreedy::calcSpillCost() {
1422   BlockFrequency Cost = 0;
1423   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1424   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1425     unsigned Number = BI.MBB->getNumber();
1426     // We normally only need one spill instruction - a load or a store.
1427     Cost += SpillPlacer->getBlockFrequency(Number);
1428 
1429     // Unless the value is redefined in the block.
1430     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1431       Cost += SpillPlacer->getBlockFrequency(Number);
1432   }
1433   return Cost;
1434 }
1435 
1436 /// Check if splitting Evictee will create a local split interval in
1437 /// basic block number BBNumber that may cause a bad eviction chain. This is
1438 /// intended to prevent bad eviction sequences like:
1439 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1440 /// movl	%ecx, %ebp
1441 /// movl	%ebx, %ecx
1442 /// movl	%edi, %ebx
1443 /// movl	%edx, %edi
1444 /// cltd
1445 /// idivl	%esi
1446 /// movl	%edi, %edx
1447 /// movl	%ebx, %edi
1448 /// movl	%ecx, %ebx
1449 /// movl	%ebp, %ecx
1450 /// movl	16(%esp), %ebp          # 4 - byte Reload
1451 ///
1452 /// Such sequences are created in 2 scenarios:
1453 ///
1454 /// Scenario #1:
1455 /// %0 is evicted from physreg0 by %1.
1456 /// Evictee %0 is intended for region splitting with split candidate
1457 /// physreg0 (the reg %0 was evicted from).
1458 /// Region splitting creates a local interval because of interference with the
1459 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1460 /// and "by stack" intervals and local interval created when interference
1461 /// occurs).
1462 /// One of the split intervals ends up evicting %2 from physreg1.
1463 /// Evictee %2 is intended for region splitting with split candidate
1464 /// physreg1.
1465 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1466 ///
1467 /// Scenario #2
1468 /// %0 is evicted from physreg0 by %1.
1469 /// %2 is evicted from physreg2 by %3 etc.
1470 /// Evictee %0 is intended for region splitting with split candidate
1471 /// physreg1.
1472 /// Region splitting creates a local interval because of interference with the
1473 /// evictor %1.
1474 /// One of the split intervals ends up evicting back original evictor %1
1475 /// from physreg0 (the reg %0 was evicted from).
1476 /// Another evictee %2 is intended for region splitting with split candidate
1477 /// physreg1.
1478 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1479 ///
1480 /// \param Evictee  The register considered to be split.
1481 /// \param Cand     The split candidate that determines the physical register
1482 ///                 we are splitting for and the interferences.
1483 /// \param BBNumber The number of a BB for which the region split process will
1484 ///                 create a local split interval.
1485 /// \param Order    The physical registers that may get evicted by a split
1486 ///                 artifact of Evictee.
1487 /// \return True if splitting Evictee may cause a bad eviction chain, false
1488 /// otherwise.
1489 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
1490                                           GlobalSplitCandidate &Cand,
1491                                           unsigned BBNumber,
1492                                           const AllocationOrder &Order) {
1493   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1494   unsigned Evictor = VregEvictorInfo.first;
1495   MCRegister PhysReg = VregEvictorInfo.second;
1496 
1497   // No actual evictor.
1498   if (!Evictor || !PhysReg)
1499     return false;
1500 
1501   float MaxWeight = 0;
1502   MCRegister FutureEvictedPhysReg =
1503       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1504                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1505 
1506   // The bad eviction chain occurs when either the split candidate is the
1507   // evicting reg or one of the split artifact will evict the evicting reg.
1508   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1509     return false;
1510 
1511   Cand.Intf.moveToBlock(BBNumber);
1512 
1513   // Check to see if the Evictor contains interference (with Evictee) in the
1514   // given BB. If so, this interference caused the eviction of Evictee from
1515   // PhysReg. This suggest that we will create a local interval during the
1516   // region split to avoid this interference This local interval may cause a bad
1517   // eviction chain.
1518   if (!LIS->hasInterval(Evictor))
1519     return false;
1520   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1521   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1522     return false;
1523 
1524   // Now, check to see if the local interval we will create is going to be
1525   // expensive enough to evict somebody If so, this may cause a bad eviction
1526   // chain.
1527   float splitArtifactWeight =
1528       VRAI->futureWeight(LIS->getInterval(Evictee),
1529                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1530   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1531     return false;
1532 
1533   return true;
1534 }
1535 
1536 /// Check if splitting VirtRegToSplit will create a local split interval
1537 /// in basic block number BBNumber that may cause a spill.
1538 ///
1539 /// \param VirtRegToSplit The register considered to be split.
1540 /// \param Cand           The split candidate that determines the physical
1541 ///                       register we are splitting for and the interferences.
1542 /// \param BBNumber       The number of a BB for which the region split process
1543 ///                       will create a local split interval.
1544 /// \param Order          The physical registers that may get evicted by a
1545 ///                       split artifact of VirtRegToSplit.
1546 /// \return True if splitting VirtRegToSplit may cause a spill, false
1547 /// otherwise.
1548 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1549                                        GlobalSplitCandidate &Cand,
1550                                        unsigned BBNumber,
1551                                        const AllocationOrder &Order) {
1552   Cand.Intf.moveToBlock(BBNumber);
1553 
1554   // Check if the local interval will find a non interfereing assignment.
1555   for (auto PhysReg : Order.getOrder()) {
1556     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1557                                    Cand.Intf.last(), PhysReg))
1558       return false;
1559   }
1560 
1561   // The local interval is not able to find non interferencing assignment
1562   // and not able to evict a less worthy interval, therfore, it can cause a
1563   // spill.
1564   return true;
1565 }
1566 
1567 /// calcGlobalSplitCost - Return the global split cost of following the split
1568 /// pattern in LiveBundles. This cost should be added to the local cost of the
1569 /// interference pattern in SplitConstraints.
1570 ///
1571 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1572                                              const AllocationOrder &Order,
1573                                              bool *CanCauseEvictionChain) {
1574   BlockFrequency GlobalCost = 0;
1575   const BitVector &LiveBundles = Cand.LiveBundles;
1576   Register VirtRegToSplit = SA->getParent().reg();
1577   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1578   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1579     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1580     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1581     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1582     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1583     unsigned Ins = 0;
1584 
1585     Cand.Intf.moveToBlock(BC.Number);
1586     // Check wheather a local interval is going to be created during the region
1587     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1588     // is enabled.
1589     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1590         BI.LiveOut && RegIn && RegOut) {
1591 
1592       if (CanCauseEvictionChain &&
1593           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1594         // This interference causes our eviction from this assignment, we might
1595         // evict somebody else and eventually someone will spill, add that cost.
1596         // See splitCanCauseEvictionChain for detailed description of scenarios.
1597         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1598         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1599 
1600         *CanCauseEvictionChain = true;
1601 
1602       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1603                                          Order)) {
1604         // This interference causes local interval to spill, add that cost.
1605         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1606         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1607       }
1608     }
1609 
1610     if (BI.LiveIn)
1611       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1612     if (BI.LiveOut)
1613       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1614     while (Ins--)
1615       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1616   }
1617 
1618   for (unsigned Number : Cand.ActiveBlocks) {
1619     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1620     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1621     if (!RegIn && !RegOut)
1622       continue;
1623     if (RegIn && RegOut) {
1624       // We need double spill code if this block has interference.
1625       Cand.Intf.moveToBlock(Number);
1626       if (Cand.Intf.hasInterference()) {
1627         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1628         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1629 
1630         // Check wheather a local interval is going to be created during the
1631         // region split.
1632         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1633             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1634           // This interference cause our eviction from this assignment, we might
1635           // evict somebody else, add that cost.
1636           // See splitCanCauseEvictionChain for detailed description of
1637           // scenarios.
1638           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1639           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1640 
1641           *CanCauseEvictionChain = true;
1642         }
1643       }
1644       continue;
1645     }
1646     // live-in / stack-out or stack-in live-out.
1647     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1648   }
1649   return GlobalCost;
1650 }
1651 
1652 /// splitAroundRegion - Split the current live range around the regions
1653 /// determined by BundleCand and GlobalCand.
1654 ///
1655 /// Before calling this function, GlobalCand and BundleCand must be initialized
1656 /// so each bundle is assigned to a valid candidate, or NoCand for the
1657 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1658 /// objects must be initialized for the current live range, and intervals
1659 /// created for the used candidates.
1660 ///
1661 /// @param LREdit    The LiveRangeEdit object handling the current split.
1662 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1663 ///                  must appear in this list.
1664 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1665                                  ArrayRef<unsigned> UsedCands) {
1666   // These are the intervals created for new global ranges. We may create more
1667   // intervals for local ranges.
1668   const unsigned NumGlobalIntvs = LREdit.size();
1669   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1670                     << " globals.\n");
1671   assert(NumGlobalIntvs && "No global intervals configured");
1672 
1673   // Isolate even single instructions when dealing with a proper sub-class.
1674   // That guarantees register class inflation for the stack interval because it
1675   // is all copies.
1676   Register Reg = SA->getParent().reg();
1677   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1678 
1679   // First handle all the blocks with uses.
1680   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1681   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1682     unsigned Number = BI.MBB->getNumber();
1683     unsigned IntvIn = 0, IntvOut = 0;
1684     SlotIndex IntfIn, IntfOut;
1685     if (BI.LiveIn) {
1686       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1687       if (CandIn != NoCand) {
1688         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1689         IntvIn = Cand.IntvIdx;
1690         Cand.Intf.moveToBlock(Number);
1691         IntfIn = Cand.Intf.first();
1692       }
1693     }
1694     if (BI.LiveOut) {
1695       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1696       if (CandOut != NoCand) {
1697         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1698         IntvOut = Cand.IntvIdx;
1699         Cand.Intf.moveToBlock(Number);
1700         IntfOut = Cand.Intf.last();
1701       }
1702     }
1703 
1704     // Create separate intervals for isolated blocks with multiple uses.
1705     if (!IntvIn && !IntvOut) {
1706       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1707       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1708         SE->splitSingleBlock(BI);
1709       continue;
1710     }
1711 
1712     if (IntvIn && IntvOut)
1713       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1714     else if (IntvIn)
1715       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1716     else
1717       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1718   }
1719 
1720   // Handle live-through blocks. The relevant live-through blocks are stored in
1721   // the ActiveBlocks list with each candidate. We need to filter out
1722   // duplicates.
1723   BitVector Todo = SA->getThroughBlocks();
1724   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1725     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1726     for (unsigned Number : Blocks) {
1727       if (!Todo.test(Number))
1728         continue;
1729       Todo.reset(Number);
1730 
1731       unsigned IntvIn = 0, IntvOut = 0;
1732       SlotIndex IntfIn, IntfOut;
1733 
1734       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1735       if (CandIn != NoCand) {
1736         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1737         IntvIn = Cand.IntvIdx;
1738         Cand.Intf.moveToBlock(Number);
1739         IntfIn = Cand.Intf.first();
1740       }
1741 
1742       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1743       if (CandOut != NoCand) {
1744         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1745         IntvOut = Cand.IntvIdx;
1746         Cand.Intf.moveToBlock(Number);
1747         IntfOut = Cand.Intf.last();
1748       }
1749       if (!IntvIn && !IntvOut)
1750         continue;
1751       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1752     }
1753   }
1754 
1755   ++NumGlobalSplits;
1756 
1757   SmallVector<unsigned, 8> IntvMap;
1758   SE->finish(&IntvMap);
1759   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1760 
1761   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1762   unsigned OrigBlocks = SA->getNumLiveBlocks();
1763 
1764   // Sort out the new intervals created by splitting. We get four kinds:
1765   // - Remainder intervals should not be split again.
1766   // - Candidate intervals can be assigned to Cand.PhysReg.
1767   // - Block-local splits are candidates for local splitting.
1768   // - DCE leftovers should go back on the queue.
1769   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1770     LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1771 
1772     // Ignore old intervals from DCE.
1773     if (getStage(Reg) != RS_New)
1774       continue;
1775 
1776     // Remainder interval. Don't try splitting again, spill if it doesn't
1777     // allocate.
1778     if (IntvMap[I] == 0) {
1779       setStage(Reg, RS_Spill);
1780       continue;
1781     }
1782 
1783     // Global intervals. Allow repeated splitting as long as the number of live
1784     // blocks is strictly decreasing.
1785     if (IntvMap[I] < NumGlobalIntvs) {
1786       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1787         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1788                           << " blocks as original.\n");
1789         // Don't allow repeated splitting as a safe guard against looping.
1790         setStage(Reg, RS_Split2);
1791       }
1792       continue;
1793     }
1794 
1795     // Other intervals are treated as new. This includes local intervals created
1796     // for blocks with multiple uses, and anything created by DCE.
1797   }
1798 
1799   if (VerifyEnabled)
1800     MF->verify(this, "After splitting live range around region");
1801 }
1802 
1803 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg,
1804                                     AllocationOrder &Order,
1805                                     SmallVectorImpl<Register> &NewVRegs) {
1806   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1807     return MCRegister::NoRegister;
1808   unsigned NumCands = 0;
1809   BlockFrequency SpillCost = calcSpillCost();
1810   BlockFrequency BestCost;
1811 
1812   // Check if we can split this live range around a compact region.
1813   bool HasCompact = calcCompactRegion(GlobalCand.front());
1814   if (HasCompact) {
1815     // Yes, keep GlobalCand[0] as the compact region candidate.
1816     NumCands = 1;
1817     BestCost = BlockFrequency::getMaxFrequency();
1818   } else {
1819     // No benefit from the compact region, our fallback will be per-block
1820     // splitting. Make sure we find a solution that is cheaper than spilling.
1821     BestCost = SpillCost;
1822     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1823                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1824   }
1825 
1826   bool CanCauseEvictionChain = false;
1827   unsigned BestCand =
1828       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1829                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1830 
1831   // Split candidates with compact regions can cause a bad eviction sequence.
1832   // See splitCanCauseEvictionChain for detailed description of scenarios.
1833   // To avoid it, we need to comapre the cost with the spill cost and not the
1834   // current max frequency.
1835   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1836     CanCauseEvictionChain) {
1837     return MCRegister::NoRegister;
1838   }
1839 
1840   // No solutions found, fall back to single block splitting.
1841   if (!HasCompact && BestCand == NoCand)
1842     return MCRegister::NoRegister;
1843 
1844   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1845 }
1846 
1847 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1848                                             AllocationOrder &Order,
1849                                             BlockFrequency &BestCost,
1850                                             unsigned &NumCands, bool IgnoreCSR,
1851                                             bool *CanCauseEvictionChain) {
1852   unsigned BestCand = NoCand;
1853   for (MCPhysReg PhysReg : Order) {
1854     assert(PhysReg);
1855     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1856       continue;
1857 
1858     // Discard bad candidates before we run out of interference cache cursors.
1859     // This will only affect register classes with a lot of registers (>32).
1860     if (NumCands == IntfCache.getMaxCursors()) {
1861       unsigned WorstCount = ~0u;
1862       unsigned Worst = 0;
1863       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1864         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1865           continue;
1866         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1867         if (Count < WorstCount) {
1868           Worst = CandIndex;
1869           WorstCount = Count;
1870         }
1871       }
1872       --NumCands;
1873       GlobalCand[Worst] = GlobalCand[NumCands];
1874       if (BestCand == NumCands)
1875         BestCand = Worst;
1876     }
1877 
1878     if (GlobalCand.size() <= NumCands)
1879       GlobalCand.resize(NumCands+1);
1880     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1881     Cand.reset(IntfCache, PhysReg);
1882 
1883     SpillPlacer->prepare(Cand.LiveBundles);
1884     BlockFrequency Cost;
1885     if (!addSplitConstraints(Cand.Intf, Cost)) {
1886       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1887       continue;
1888     }
1889     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1890                MBFI->printBlockFreq(dbgs(), Cost));
1891     if (Cost >= BestCost) {
1892       LLVM_DEBUG({
1893         if (BestCand == NoCand)
1894           dbgs() << " worse than no bundles\n";
1895         else
1896           dbgs() << " worse than "
1897                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1898       });
1899       continue;
1900     }
1901     if (!growRegion(Cand)) {
1902       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1903       continue;
1904     }
1905 
1906     SpillPlacer->finish();
1907 
1908     // No live bundles, defer to splitSingleBlocks().
1909     if (!Cand.LiveBundles.any()) {
1910       LLVM_DEBUG(dbgs() << " no bundles.\n");
1911       continue;
1912     }
1913 
1914     bool HasEvictionChain = false;
1915     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1916     LLVM_DEBUG({
1917       dbgs() << ", total = ";
1918       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1919       for (int I : Cand.LiveBundles.set_bits())
1920         dbgs() << " EB#" << I;
1921       dbgs() << ".\n";
1922     });
1923     if (Cost < BestCost) {
1924       BestCand = NumCands;
1925       BestCost = Cost;
1926       // See splitCanCauseEvictionChain for detailed description of bad
1927       // eviction chain scenarios.
1928       if (CanCauseEvictionChain)
1929         *CanCauseEvictionChain = HasEvictionChain;
1930     }
1931     ++NumCands;
1932   }
1933 
1934   if (CanCauseEvictionChain && BestCand != NoCand) {
1935     // See splitCanCauseEvictionChain for detailed description of bad
1936     // eviction chain scenarios.
1937     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1938                       << printReg(VirtReg.reg(), TRI) << "  may ");
1939     if (!(*CanCauseEvictionChain))
1940       LLVM_DEBUG(dbgs() << "not ");
1941     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1942   }
1943 
1944   return BestCand;
1945 }
1946 
1947 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1948                                  bool HasCompact,
1949                                  SmallVectorImpl<Register> &NewVRegs) {
1950   SmallVector<unsigned, 8> UsedCands;
1951   // Prepare split editor.
1952   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1953   SE->reset(LREdit, SplitSpillMode);
1954 
1955   // Assign all edge bundles to the preferred candidate, or NoCand.
1956   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1957 
1958   // Assign bundles for the best candidate region.
1959   if (BestCand != NoCand) {
1960     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1961     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1962       UsedCands.push_back(BestCand);
1963       Cand.IntvIdx = SE->openIntv();
1964       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1965                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1966       (void)B;
1967     }
1968   }
1969 
1970   // Assign bundles for the compact region.
1971   if (HasCompact) {
1972     GlobalSplitCandidate &Cand = GlobalCand.front();
1973     assert(!Cand.PhysReg && "Compact region has no physreg");
1974     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1975       UsedCands.push_back(0);
1976       Cand.IntvIdx = SE->openIntv();
1977       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1978                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1979       (void)B;
1980     }
1981   }
1982 
1983   splitAroundRegion(LREdit, UsedCands);
1984   return 0;
1985 }
1986 
1987 //===----------------------------------------------------------------------===//
1988 //                            Per-Block Splitting
1989 //===----------------------------------------------------------------------===//
1990 
1991 /// tryBlockSplit - Split a global live range around every block with uses. This
1992 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1993 /// they don't allocate.
1994 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1995                                  SmallVectorImpl<Register> &NewVRegs) {
1996   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1997   Register Reg = VirtReg.reg();
1998   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1999   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2000   SE->reset(LREdit, SplitSpillMode);
2001   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2002   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
2003     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2004       SE->splitSingleBlock(BI);
2005   }
2006   // No blocks were split.
2007   if (LREdit.empty())
2008     return 0;
2009 
2010   // We did split for some blocks.
2011   SmallVector<unsigned, 8> IntvMap;
2012   SE->finish(&IntvMap);
2013 
2014   // Tell LiveDebugVariables about the new ranges.
2015   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2016 
2017   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2018 
2019   // Sort out the new intervals created by splitting. The remainder interval
2020   // goes straight to spilling, the new local ranges get to stay RS_New.
2021   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
2022     LiveInterval &LI = LIS->getInterval(LREdit.get(I));
2023     if (getStage(LI) == RS_New && IntvMap[I] == 0)
2024       setStage(LI, RS_Spill);
2025   }
2026 
2027   if (VerifyEnabled)
2028     MF->verify(this, "After splitting live range around basic blocks");
2029   return 0;
2030 }
2031 
2032 //===----------------------------------------------------------------------===//
2033 //                         Per-Instruction Splitting
2034 //===----------------------------------------------------------------------===//
2035 
2036 /// Get the number of allocatable registers that match the constraints of \p Reg
2037 /// on \p MI and that are also in \p SuperRC.
2038 static unsigned getNumAllocatableRegsForConstraints(
2039     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
2040     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2041     const RegisterClassInfo &RCI) {
2042   assert(SuperRC && "Invalid register class");
2043 
2044   const TargetRegisterClass *ConstrainedRC =
2045       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2046                                              /* ExploreBundle */ true);
2047   if (!ConstrainedRC)
2048     return 0;
2049   return RCI.getNumAllocatableRegs(ConstrainedRC);
2050 }
2051 
2052 /// tryInstructionSplit - Split a live range around individual instructions.
2053 /// This is normally not worthwhile since the spiller is doing essentially the
2054 /// same thing. However, when the live range is in a constrained register
2055 /// class, it may help to insert copies such that parts of the live range can
2056 /// be moved to a larger register class.
2057 ///
2058 /// This is similar to spilling to a larger register class.
2059 unsigned
2060 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2061                               SmallVectorImpl<Register> &NewVRegs) {
2062   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2063   // There is no point to this if there are no larger sub-classes.
2064   if (!RegClassInfo.isProperSubClass(CurRC))
2065     return 0;
2066 
2067   // Always enable split spill mode, since we're effectively spilling to a
2068   // register.
2069   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2070   SE->reset(LREdit, SplitEditor::SM_Size);
2071 
2072   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2073   if (Uses.size() <= 1)
2074     return 0;
2075 
2076   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2077                     << " individual instrs.\n");
2078 
2079   const TargetRegisterClass *SuperRC =
2080       TRI->getLargestLegalSuperClass(CurRC, *MF);
2081   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2082   // Split around every non-copy instruction if this split will relax
2083   // the constraints on the virtual register.
2084   // Otherwise, splitting just inserts uncoalescable copies that do not help
2085   // the allocation.
2086   for (const auto &Use : Uses) {
2087     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
2088       if (MI->isFullCopy() ||
2089           SuperRCNumAllocatableRegs ==
2090               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
2091                                                   TII, TRI, RCI)) {
2092         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
2093         continue;
2094       }
2095     SE->openIntv();
2096     SlotIndex SegStart = SE->enterIntvBefore(Use);
2097     SlotIndex SegStop = SE->leaveIntvAfter(Use);
2098     SE->useIntv(SegStart, SegStop);
2099   }
2100 
2101   if (LREdit.empty()) {
2102     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2103     return 0;
2104   }
2105 
2106   SmallVector<unsigned, 8> IntvMap;
2107   SE->finish(&IntvMap);
2108   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2109   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2110 
2111   // Assign all new registers to RS_Spill. This was the last chance.
2112   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2113   return 0;
2114 }
2115 
2116 //===----------------------------------------------------------------------===//
2117 //                             Local Splitting
2118 //===----------------------------------------------------------------------===//
2119 
2120 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2121 /// in order to use PhysReg between two entries in SA->UseSlots.
2122 ///
2123 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
2124 ///
2125 void RAGreedy::calcGapWeights(MCRegister PhysReg,
2126                               SmallVectorImpl<float> &GapWeight) {
2127   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2128   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2129   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2130   const unsigned NumGaps = Uses.size()-1;
2131 
2132   // Start and end points for the interference check.
2133   SlotIndex StartIdx =
2134     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2135   SlotIndex StopIdx =
2136     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2137 
2138   GapWeight.assign(NumGaps, 0.0f);
2139 
2140   // Add interference from each overlapping register.
2141   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2142     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2143           .checkInterference())
2144       continue;
2145 
2146     // We know that VirtReg is a continuous interval from FirstInstr to
2147     // LastInstr, so we don't need InterferenceQuery.
2148     //
2149     // Interference that overlaps an instruction is counted in both gaps
2150     // surrounding the instruction. The exception is interference before
2151     // StartIdx and after StopIdx.
2152     //
2153     LiveIntervalUnion::SegmentIter IntI =
2154       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2155     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2156       // Skip the gaps before IntI.
2157       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2158         if (++Gap == NumGaps)
2159           break;
2160       if (Gap == NumGaps)
2161         break;
2162 
2163       // Update the gaps covered by IntI.
2164       const float weight = IntI.value()->weight();
2165       for (; Gap != NumGaps; ++Gap) {
2166         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2167         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2168           break;
2169       }
2170       if (Gap == NumGaps)
2171         break;
2172     }
2173   }
2174 
2175   // Add fixed interference.
2176   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2177     const LiveRange &LR = LIS->getRegUnit(*Units);
2178     LiveRange::const_iterator I = LR.find(StartIdx);
2179     LiveRange::const_iterator E = LR.end();
2180 
2181     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2182     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2183       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2184         if (++Gap == NumGaps)
2185           break;
2186       if (Gap == NumGaps)
2187         break;
2188 
2189       for (; Gap != NumGaps; ++Gap) {
2190         GapWeight[Gap] = huge_valf;
2191         if (Uses[Gap+1].getBaseIndex() >= I->end)
2192           break;
2193       }
2194       if (Gap == NumGaps)
2195         break;
2196     }
2197   }
2198 }
2199 
2200 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2201 /// basic block.
2202 ///
2203 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2204                                  SmallVectorImpl<Register> &NewVRegs) {
2205   // TODO: the function currently only handles a single UseBlock; it should be
2206   // possible to generalize.
2207   if (SA->getUseBlocks().size() != 1)
2208     return 0;
2209 
2210   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2211 
2212   // Note that it is possible to have an interval that is live-in or live-out
2213   // while only covering a single block - A phi-def can use undef values from
2214   // predecessors, and the block could be a single-block loop.
2215   // We don't bother doing anything clever about such a case, we simply assume
2216   // that the interval is continuous from FirstInstr to LastInstr. We should
2217   // make sure that we don't do anything illegal to such an interval, though.
2218 
2219   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2220   if (Uses.size() <= 2)
2221     return 0;
2222   const unsigned NumGaps = Uses.size()-1;
2223 
2224   LLVM_DEBUG({
2225     dbgs() << "tryLocalSplit: ";
2226     for (const auto &Use : Uses)
2227       dbgs() << ' ' << Use;
2228     dbgs() << '\n';
2229   });
2230 
2231   // If VirtReg is live across any register mask operands, compute a list of
2232   // gaps with register masks.
2233   SmallVector<unsigned, 8> RegMaskGaps;
2234   if (Matrix->checkRegMaskInterference(VirtReg)) {
2235     // Get regmask slots for the whole block.
2236     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2237     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2238     // Constrain to VirtReg's live range.
2239     unsigned RI =
2240         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2241     unsigned RE = RMS.size();
2242     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
2243       // Look for Uses[I] <= RMS <= Uses[I + 1].
2244       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
2245       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
2246         continue;
2247       // Skip a regmask on the same instruction as the last use. It doesn't
2248       // overlap the live range.
2249       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
2250         break;
2251       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
2252                         << Uses[I + 1]);
2253       RegMaskGaps.push_back(I);
2254       // Advance ri to the next gap. A regmask on one of the uses counts in
2255       // both gaps.
2256       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
2257         ++RI;
2258     }
2259     LLVM_DEBUG(dbgs() << '\n');
2260   }
2261 
2262   // Since we allow local split results to be split again, there is a risk of
2263   // creating infinite loops. It is tempting to require that the new live
2264   // ranges have less instructions than the original. That would guarantee
2265   // convergence, but it is too strict. A live range with 3 instructions can be
2266   // split 2+3 (including the COPY), and we want to allow that.
2267   //
2268   // Instead we use these rules:
2269   //
2270   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2271   //    noop split, of course).
2272   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2273   //    the new ranges must have fewer instructions than before the split.
2274   // 3. New ranges with the same number of instructions are marked RS_Split2,
2275   //    smaller ranges are marked RS_New.
2276   //
2277   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2278   // excessive splitting and infinite loops.
2279   //
2280   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2281 
2282   // Best split candidate.
2283   unsigned BestBefore = NumGaps;
2284   unsigned BestAfter = 0;
2285   float BestDiff = 0;
2286 
2287   const float blockFreq =
2288     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2289     (1.0f / MBFI->getEntryFreq());
2290   SmallVector<float, 8> GapWeight;
2291 
2292   for (MCPhysReg PhysReg : Order) {
2293     assert(PhysReg);
2294     // Keep track of the largest spill weight that would need to be evicted in
2295     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
2296     calcGapWeights(PhysReg, GapWeight);
2297 
2298     // Remove any gaps with regmask clobbers.
2299     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2300       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
2301         GapWeight[RegMaskGaps[I]] = huge_valf;
2302 
2303     // Try to find the best sequence of gaps to close.
2304     // The new spill weight must be larger than any gap interference.
2305 
2306     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2307     unsigned SplitBefore = 0, SplitAfter = 1;
2308 
2309     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2310     // It is the spill weight that needs to be evicted.
2311     float MaxGap = GapWeight[0];
2312 
2313     while (true) {
2314       // Live before/after split?
2315       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2316       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2317 
2318       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2319                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
2320 
2321       // Stop before the interval gets so big we wouldn't be making progress.
2322       if (!LiveBefore && !LiveAfter) {
2323         LLVM_DEBUG(dbgs() << " all\n");
2324         break;
2325       }
2326       // Should the interval be extended or shrunk?
2327       bool Shrink = true;
2328 
2329       // How many gaps would the new range have?
2330       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2331 
2332       // Legally, without causing looping?
2333       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2334 
2335       if (Legal && MaxGap < huge_valf) {
2336         // Estimate the new spill weight. Each instruction reads or writes the
2337         // register. Conservatively assume there are no read-modify-write
2338         // instructions.
2339         //
2340         // Try to guess the size of the new interval.
2341         const float EstWeight = normalizeSpillWeight(
2342             blockFreq * (NewGaps + 1),
2343             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2344                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2345             1);
2346         // Would this split be possible to allocate?
2347         // Never allocate all gaps, we wouldn't be making progress.
2348         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2349         if (EstWeight * Hysteresis >= MaxGap) {
2350           Shrink = false;
2351           float Diff = EstWeight - MaxGap;
2352           if (Diff > BestDiff) {
2353             LLVM_DEBUG(dbgs() << " (best)");
2354             BestDiff = Hysteresis * Diff;
2355             BestBefore = SplitBefore;
2356             BestAfter = SplitAfter;
2357           }
2358         }
2359       }
2360 
2361       // Try to shrink.
2362       if (Shrink) {
2363         if (++SplitBefore < SplitAfter) {
2364           LLVM_DEBUG(dbgs() << " shrink\n");
2365           // Recompute the max when necessary.
2366           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2367             MaxGap = GapWeight[SplitBefore];
2368             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
2369               MaxGap = std::max(MaxGap, GapWeight[I]);
2370           }
2371           continue;
2372         }
2373         MaxGap = 0;
2374       }
2375 
2376       // Try to extend the interval.
2377       if (SplitAfter >= NumGaps) {
2378         LLVM_DEBUG(dbgs() << " end\n");
2379         break;
2380       }
2381 
2382       LLVM_DEBUG(dbgs() << " extend\n");
2383       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2384     }
2385   }
2386 
2387   // Didn't find any candidates?
2388   if (BestBefore == NumGaps)
2389     return 0;
2390 
2391   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2392                     << Uses[BestAfter] << ", " << BestDiff << ", "
2393                     << (BestAfter - BestBefore + 1) << " instrs\n");
2394 
2395   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2396   SE->reset(LREdit);
2397 
2398   SE->openIntv();
2399   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2400   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2401   SE->useIntv(SegStart, SegStop);
2402   SmallVector<unsigned, 8> IntvMap;
2403   SE->finish(&IntvMap);
2404   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2405 
2406   // If the new range has the same number of instructions as before, mark it as
2407   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2408   // leave the new intervals as RS_New so they can compete.
2409   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2410   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2411   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2412   if (NewGaps >= NumGaps) {
2413     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2414     assert(!ProgressRequired && "Didn't make progress when it was required.");
2415     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
2416       if (IntvMap[I] == 1) {
2417         setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
2418         LLVM_DEBUG(dbgs() << printReg(LREdit.get(I)));
2419       }
2420     LLVM_DEBUG(dbgs() << '\n');
2421   }
2422   ++NumLocalSplits;
2423 
2424   return 0;
2425 }
2426 
2427 //===----------------------------------------------------------------------===//
2428 //                          Live Range Splitting
2429 //===----------------------------------------------------------------------===//
2430 
2431 /// trySplit - Try to split VirtReg or one of its interferences, making it
2432 /// assignable.
2433 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2434 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2435                             SmallVectorImpl<Register> &NewVRegs,
2436                             const SmallVirtRegSet &FixedRegisters) {
2437   // Ranges must be Split2 or less.
2438   if (getStage(VirtReg) >= RS_Spill)
2439     return 0;
2440 
2441   // Local intervals are handled separately.
2442   if (LIS->intervalIsInOneMBB(VirtReg)) {
2443     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2444                        TimerGroupDescription, TimePassesIsEnabled);
2445     SA->analyze(&VirtReg);
2446     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2447     if (PhysReg || !NewVRegs.empty())
2448       return PhysReg;
2449     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2450   }
2451 
2452   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2453                      TimerGroupDescription, TimePassesIsEnabled);
2454 
2455   SA->analyze(&VirtReg);
2456 
2457   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2458   // coalescer. That may cause the range to become allocatable which means that
2459   // tryRegionSplit won't be making progress. This check should be replaced with
2460   // an assertion when the coalescer is fixed.
2461   if (SA->didRepairRange()) {
2462     // VirtReg has changed, so all cached queries are invalid.
2463     Matrix->invalidateVirtRegs();
2464     if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
2465       return PhysReg;
2466   }
2467 
2468   // First try to split around a region spanning multiple blocks. RS_Split2
2469   // ranges already made dubious progress with region splitting, so they go
2470   // straight to single block splitting.
2471   if (getStage(VirtReg) < RS_Split2) {
2472     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2473     if (PhysReg || !NewVRegs.empty())
2474       return PhysReg;
2475   }
2476 
2477   // Then isolate blocks.
2478   return tryBlockSplit(VirtReg, Order, NewVRegs);
2479 }
2480 
2481 //===----------------------------------------------------------------------===//
2482 //                          Last Chance Recoloring
2483 //===----------------------------------------------------------------------===//
2484 
2485 /// Return true if \p reg has any tied def operand.
2486 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2487   for (const MachineOperand &MO : MRI->def_operands(reg))
2488     if (MO.isTied())
2489       return true;
2490 
2491   return false;
2492 }
2493 
2494 /// mayRecolorAllInterferences - Check if the virtual registers that
2495 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2496 /// recolored to free \p PhysReg.
2497 /// When true is returned, \p RecoloringCandidates has been augmented with all
2498 /// the live intervals that need to be recolored in order to free \p PhysReg
2499 /// for \p VirtReg.
2500 /// \p FixedRegisters contains all the virtual registers that cannot be
2501 /// recolored.
2502 bool RAGreedy::mayRecolorAllInterferences(
2503     MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates,
2504     const SmallVirtRegSet &FixedRegisters) {
2505   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2506 
2507   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2508     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2509     // If there is LastChanceRecoloringMaxInterference or more interferences,
2510     // chances are one would not be recolorable.
2511     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2512         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2513       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2514       CutOffInfo |= CO_Interf;
2515       return false;
2516     }
2517     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
2518       // If Intf is done and sit on the same register class as VirtReg,
2519       // it would not be recolorable as it is in the same state as VirtReg.
2520       // However, if VirtReg has tied defs and Intf doesn't, then
2521       // there is still a point in examining if it can be recolorable.
2522       if (((getStage(*Intf) == RS_Done &&
2523             MRI->getRegClass(Intf->reg()) == CurRC) &&
2524            !(hasTiedDef(MRI, VirtReg.reg()) &&
2525              !hasTiedDef(MRI, Intf->reg()))) ||
2526           FixedRegisters.count(Intf->reg())) {
2527         LLVM_DEBUG(
2528             dbgs() << "Early abort: the interference is not recolorable.\n");
2529         return false;
2530       }
2531       RecoloringCandidates.insert(Intf);
2532     }
2533   }
2534   return true;
2535 }
2536 
2537 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2538 /// its interferences.
2539 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2540 /// virtual register that was using it. The recoloring process may recursively
2541 /// use the last chance recoloring. Therefore, when a virtual register has been
2542 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2543 /// be last-chance-recolored again during this recoloring "session".
2544 /// E.g.,
2545 /// Let
2546 /// vA can use {R1, R2    }
2547 /// vB can use {    R2, R3}
2548 /// vC can use {R1        }
2549 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2550 /// instance) and they all interfere.
2551 ///
2552 /// vA is assigned R1
2553 /// vB is assigned R2
2554 /// vC tries to evict vA but vA is already done.
2555 /// Regular register allocation fails.
2556 ///
2557 /// Last chance recoloring kicks in:
2558 /// vC does as if vA was evicted => vC uses R1.
2559 /// vC is marked as fixed.
2560 /// vA needs to find a color.
2561 /// None are available.
2562 /// vA cannot evict vC: vC is a fixed virtual register now.
2563 /// vA does as if vB was evicted => vA uses R2.
2564 /// vB needs to find a color.
2565 /// R3 is available.
2566 /// Recoloring => vC = R1, vA = R2, vB = R3
2567 ///
2568 /// \p Order defines the preferred allocation order for \p VirtReg.
2569 /// \p NewRegs will contain any new virtual register that have been created
2570 /// (split, spill) during the process and that must be assigned.
2571 /// \p FixedRegisters contains all the virtual registers that cannot be
2572 /// recolored.
2573 /// \p Depth gives the current depth of the last chance recoloring.
2574 /// \return a physical register that can be used for VirtReg or ~0u if none
2575 /// exists.
2576 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2577                                            AllocationOrder &Order,
2578                                            SmallVectorImpl<Register> &NewVRegs,
2579                                            SmallVirtRegSet &FixedRegisters,
2580                                            unsigned Depth) {
2581   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2582     return ~0u;
2583 
2584   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2585   // Ranges must be Done.
2586   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2587          "Last chance recoloring should really be last chance");
2588   // Set the max depth to LastChanceRecoloringMaxDepth.
2589   // We may want to reconsider that if we end up with a too large search space
2590   // for target with hundreds of registers.
2591   // Indeed, in that case we may want to cut the search space earlier.
2592   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2593     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2594     CutOffInfo |= CO_Depth;
2595     return ~0u;
2596   }
2597 
2598   // Set of Live intervals that will need to be recolored.
2599   SmallLISet RecoloringCandidates;
2600   // Record the original mapping virtual register to physical register in case
2601   // the recoloring fails.
2602   DenseMap<Register, MCRegister> VirtRegToPhysReg;
2603   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2604   // this recoloring "session".
2605   assert(!FixedRegisters.count(VirtReg.reg()));
2606   FixedRegisters.insert(VirtReg.reg());
2607   SmallVector<Register, 4> CurrentNewVRegs;
2608 
2609   for (MCRegister PhysReg : Order) {
2610     assert(PhysReg.isValid());
2611     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2612                       << printReg(PhysReg, TRI) << '\n');
2613     RecoloringCandidates.clear();
2614     VirtRegToPhysReg.clear();
2615     CurrentNewVRegs.clear();
2616 
2617     // It is only possible to recolor virtual register interference.
2618     if (Matrix->checkInterference(VirtReg, PhysReg) >
2619         LiveRegMatrix::IK_VirtReg) {
2620       LLVM_DEBUG(
2621           dbgs() << "Some interferences are not with virtual registers.\n");
2622 
2623       continue;
2624     }
2625 
2626     // Early give up on this PhysReg if it is obvious we cannot recolor all
2627     // the interferences.
2628     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2629                                     FixedRegisters)) {
2630       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2631       continue;
2632     }
2633 
2634     // RecoloringCandidates contains all the virtual registers that interfer
2635     // with VirtReg on PhysReg (or one of its aliases).
2636     // Enqueue them for recoloring and perform the actual recoloring.
2637     PQueue RecoloringQueue;
2638     for (LiveInterval *RC : RecoloringCandidates) {
2639       Register ItVirtReg = RC->reg();
2640       enqueue(RecoloringQueue, RC);
2641       assert(VRM->hasPhys(ItVirtReg) &&
2642              "Interferences are supposed to be with allocated variables");
2643 
2644       // Record the current allocation.
2645       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2646       // unset the related struct.
2647       Matrix->unassign(*RC);
2648     }
2649 
2650     // Do as if VirtReg was assigned to PhysReg so that the underlying
2651     // recoloring has the right information about the interferes and
2652     // available colors.
2653     Matrix->assign(VirtReg, PhysReg);
2654 
2655     // Save the current recoloring state.
2656     // If we cannot recolor all the interferences, we will have to start again
2657     // at this point for the next physical register.
2658     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2659     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2660                                 FixedRegisters, Depth)) {
2661       // Push the queued vregs into the main queue.
2662       for (Register NewVReg : CurrentNewVRegs)
2663         NewVRegs.push_back(NewVReg);
2664       // Do not mess up with the global assignment process.
2665       // I.e., VirtReg must be unassigned.
2666       Matrix->unassign(VirtReg);
2667       return PhysReg;
2668     }
2669 
2670     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2671                       << printReg(PhysReg, TRI) << '\n');
2672 
2673     // The recoloring attempt failed, undo the changes.
2674     FixedRegisters = SaveFixedRegisters;
2675     Matrix->unassign(VirtReg);
2676 
2677     // For a newly created vreg which is also in RecoloringCandidates,
2678     // don't add it to NewVRegs because its physical register will be restored
2679     // below. Other vregs in CurrentNewVRegs are created by calling
2680     // selectOrSplit and should be added into NewVRegs.
2681     for (Register &R : CurrentNewVRegs) {
2682       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2683         continue;
2684       NewVRegs.push_back(R);
2685     }
2686 
2687     for (LiveInterval *RC : RecoloringCandidates) {
2688       Register ItVirtReg = RC->reg();
2689       if (VRM->hasPhys(ItVirtReg))
2690         Matrix->unassign(*RC);
2691       MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2692       Matrix->assign(*RC, ItPhysReg);
2693     }
2694   }
2695 
2696   // Last chance recoloring did not worked either, give up.
2697   return ~0u;
2698 }
2699 
2700 /// tryRecoloringCandidates - Try to assign a new color to every register
2701 /// in \RecoloringQueue.
2702 /// \p NewRegs will contain any new virtual register created during the
2703 /// recoloring process.
2704 /// \p FixedRegisters[in/out] contains all the registers that have been
2705 /// recolored.
2706 /// \return true if all virtual registers in RecoloringQueue were successfully
2707 /// recolored, false otherwise.
2708 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2709                                        SmallVectorImpl<Register> &NewVRegs,
2710                                        SmallVirtRegSet &FixedRegisters,
2711                                        unsigned Depth) {
2712   while (!RecoloringQueue.empty()) {
2713     LiveInterval *LI = dequeue(RecoloringQueue);
2714     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2715     MCRegister PhysReg =
2716         selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2717     // When splitting happens, the live-range may actually be empty.
2718     // In that case, this is okay to continue the recoloring even
2719     // if we did not find an alternative color for it. Indeed,
2720     // there will not be anything to color for LI in the end.
2721     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2722       return false;
2723 
2724     if (!PhysReg) {
2725       assert(LI->empty() && "Only empty live-range do not require a register");
2726       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2727                         << " succeeded. Empty LI.\n");
2728       continue;
2729     }
2730     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2731                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2732 
2733     Matrix->assign(*LI, PhysReg);
2734     FixedRegisters.insert(LI->reg());
2735   }
2736   return true;
2737 }
2738 
2739 //===----------------------------------------------------------------------===//
2740 //                            Main Entry Point
2741 //===----------------------------------------------------------------------===//
2742 
2743 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2744                                    SmallVectorImpl<Register> &NewVRegs) {
2745   CutOffInfo = CO_None;
2746   LLVMContext &Ctx = MF->getFunction().getContext();
2747   SmallVirtRegSet FixedRegisters;
2748   MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2749   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2750     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2751     if (CutOffEncountered == CO_Depth)
2752       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2753                     "reached. Use -fexhaustive-register-search to skip "
2754                     "cutoffs");
2755     else if (CutOffEncountered == CO_Interf)
2756       Ctx.emitError("register allocation failed: maximum interference for "
2757                     "recoloring reached. Use -fexhaustive-register-search "
2758                     "to skip cutoffs");
2759     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2760       Ctx.emitError("register allocation failed: maximum interference and "
2761                     "depth for recoloring reached. Use "
2762                     "-fexhaustive-register-search to skip cutoffs");
2763   }
2764   return Reg;
2765 }
2766 
2767 /// Using a CSR for the first time has a cost because it causes push|pop
2768 /// to be added to prologue|epilogue. Splitting a cold section of the live
2769 /// range can have lower cost than using the CSR for the first time;
2770 /// Spilling a live range in the cold path can have lower cost than using
2771 /// the CSR for the first time. Returns the physical register if we decide
2772 /// to use the CSR; otherwise return 0.
2773 MCRegister
2774 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
2775                                 MCRegister PhysReg, uint8_t &CostPerUseLimit,
2776                                 SmallVectorImpl<Register> &NewVRegs) {
2777   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2778     // We choose spill over using the CSR for the first time if the spill cost
2779     // is lower than CSRCost.
2780     SA->analyze(&VirtReg);
2781     if (calcSpillCost() >= CSRCost)
2782       return PhysReg;
2783 
2784     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2785     // we will not use a callee-saved register in tryEvict.
2786     CostPerUseLimit = 1;
2787     return 0;
2788   }
2789   if (getStage(VirtReg) < RS_Split) {
2790     // We choose pre-splitting over using the CSR for the first time if
2791     // the cost of splitting is lower than CSRCost.
2792     SA->analyze(&VirtReg);
2793     unsigned NumCands = 0;
2794     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2795     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2796                                                  NumCands, true /*IgnoreCSR*/);
2797     if (BestCand == NoCand)
2798       // Use the CSR if we can't find a region split below CSRCost.
2799       return PhysReg;
2800 
2801     // Perform the actual pre-splitting.
2802     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2803     return 0;
2804   }
2805   return PhysReg;
2806 }
2807 
2808 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2809   // Do not keep invalid information around.
2810   SetOfBrokenHints.remove(&LI);
2811 }
2812 
2813 void RAGreedy::initializeCSRCost() {
2814   // We use the larger one out of the command-line option and the value report
2815   // by TRI.
2816   CSRCost = BlockFrequency(
2817       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2818   if (!CSRCost.getFrequency())
2819     return;
2820 
2821   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2822   uint64_t ActualEntry = MBFI->getEntryFreq();
2823   if (!ActualEntry) {
2824     CSRCost = 0;
2825     return;
2826   }
2827   uint64_t FixedEntry = 1 << 14;
2828   if (ActualEntry < FixedEntry)
2829     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2830   else if (ActualEntry <= UINT32_MAX)
2831     // Invert the fraction and divide.
2832     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2833   else
2834     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2835     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2836 }
2837 
2838 /// Collect the hint info for \p Reg.
2839 /// The results are stored into \p Out.
2840 /// \p Out is not cleared before being populated.
2841 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2842   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2843     if (!Instr.isFullCopy())
2844       continue;
2845     // Look for the other end of the copy.
2846     Register OtherReg = Instr.getOperand(0).getReg();
2847     if (OtherReg == Reg) {
2848       OtherReg = Instr.getOperand(1).getReg();
2849       if (OtherReg == Reg)
2850         continue;
2851     }
2852     // Get the current assignment.
2853     MCRegister OtherPhysReg =
2854         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2855     // Push the collected information.
2856     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2857                            OtherPhysReg));
2858   }
2859 }
2860 
2861 /// Using the given \p List, compute the cost of the broken hints if
2862 /// \p PhysReg was used.
2863 /// \return The cost of \p List for \p PhysReg.
2864 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2865                                            MCRegister PhysReg) {
2866   BlockFrequency Cost = 0;
2867   for (const HintInfo &Info : List) {
2868     if (Info.PhysReg != PhysReg)
2869       Cost += Info.Freq;
2870   }
2871   return Cost;
2872 }
2873 
2874 /// Using the register assigned to \p VirtReg, try to recolor
2875 /// all the live ranges that are copy-related with \p VirtReg.
2876 /// The recoloring is then propagated to all the live-ranges that have
2877 /// been recolored and so on, until no more copies can be coalesced or
2878 /// it is not profitable.
2879 /// For a given live range, profitability is determined by the sum of the
2880 /// frequencies of the non-identity copies it would introduce with the old
2881 /// and new register.
2882 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2883   // We have a broken hint, check if it is possible to fix it by
2884   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2885   // some register and PhysReg may be available for the other live-ranges.
2886   SmallSet<Register, 4> Visited;
2887   SmallVector<unsigned, 2> RecoloringCandidates;
2888   HintsInfo Info;
2889   Register Reg = VirtReg.reg();
2890   MCRegister PhysReg = VRM->getPhys(Reg);
2891   // Start the recoloring algorithm from the input live-interval, then
2892   // it will propagate to the ones that are copy-related with it.
2893   Visited.insert(Reg);
2894   RecoloringCandidates.push_back(Reg);
2895 
2896   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2897                     << '(' << printReg(PhysReg, TRI) << ")\n");
2898 
2899   do {
2900     Reg = RecoloringCandidates.pop_back_val();
2901 
2902     // We cannot recolor physical register.
2903     if (Register::isPhysicalRegister(Reg))
2904       continue;
2905 
2906     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2907 
2908     // Get the live interval mapped with this virtual register to be able
2909     // to check for the interference with the new color.
2910     LiveInterval &LI = LIS->getInterval(Reg);
2911     MCRegister CurrPhys = VRM->getPhys(Reg);
2912     // Check that the new color matches the register class constraints and
2913     // that it is free for this live range.
2914     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2915                                 Matrix->checkInterference(LI, PhysReg)))
2916       continue;
2917 
2918     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2919                       << ") is recolorable.\n");
2920 
2921     // Gather the hint info.
2922     Info.clear();
2923     collectHintInfo(Reg, Info);
2924     // Check if recoloring the live-range will increase the cost of the
2925     // non-identity copies.
2926     if (CurrPhys != PhysReg) {
2927       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2928       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2929       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2930       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2931                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2932                         << '\n');
2933       if (OldCopiesCost < NewCopiesCost) {
2934         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2935         continue;
2936       }
2937       // At this point, the cost is either cheaper or equal. If it is
2938       // equal, we consider this is profitable because it may expose
2939       // more recoloring opportunities.
2940       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2941       // Recolor the live-range.
2942       Matrix->unassign(LI);
2943       Matrix->assign(LI, PhysReg);
2944     }
2945     // Push all copy-related live-ranges to keep reconciling the broken
2946     // hints.
2947     for (const HintInfo &HI : Info) {
2948       if (Visited.insert(HI.Reg).second)
2949         RecoloringCandidates.push_back(HI.Reg);
2950     }
2951   } while (!RecoloringCandidates.empty());
2952 }
2953 
2954 /// Try to recolor broken hints.
2955 /// Broken hints may be repaired by recoloring when an evicted variable
2956 /// freed up a register for a larger live-range.
2957 /// Consider the following example:
2958 /// BB1:
2959 ///   a =
2960 ///   b =
2961 /// BB2:
2962 ///   ...
2963 ///   = b
2964 ///   = a
2965 /// Let us assume b gets split:
2966 /// BB1:
2967 ///   a =
2968 ///   b =
2969 /// BB2:
2970 ///   c = b
2971 ///   ...
2972 ///   d = c
2973 ///   = d
2974 ///   = a
2975 /// Because of how the allocation work, b, c, and d may be assigned different
2976 /// colors. Now, if a gets evicted later:
2977 /// BB1:
2978 ///   a =
2979 ///   st a, SpillSlot
2980 ///   b =
2981 /// BB2:
2982 ///   c = b
2983 ///   ...
2984 ///   d = c
2985 ///   = d
2986 ///   e = ld SpillSlot
2987 ///   = e
2988 /// This is likely that we can assign the same register for b, c, and d,
2989 /// getting rid of 2 copies.
2990 void RAGreedy::tryHintsRecoloring() {
2991   for (LiveInterval *LI : SetOfBrokenHints) {
2992     assert(Register::isVirtualRegister(LI->reg()) &&
2993            "Recoloring is possible only for virtual registers");
2994     // Some dead defs may be around (e.g., because of debug uses).
2995     // Ignore those.
2996     if (!VRM->hasPhys(LI->reg()))
2997       continue;
2998     tryHintRecoloring(*LI);
2999   }
3000 }
3001 
3002 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3003                                        SmallVectorImpl<Register> &NewVRegs,
3004                                        SmallVirtRegSet &FixedRegisters,
3005                                        unsigned Depth) {
3006   uint8_t CostPerUseLimit = uint8_t(~0u);
3007   // First try assigning a free register.
3008   auto Order =
3009       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
3010   if (MCRegister PhysReg =
3011           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3012     // If VirtReg got an assignment, the eviction info is no longer relevant.
3013     LastEvicted.clearEvicteeInfo(VirtReg.reg());
3014     // When NewVRegs is not empty, we may have made decisions such as evicting
3015     // a virtual register, go with the earlier decisions and use the physical
3016     // register.
3017     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3018         NewVRegs.empty()) {
3019       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3020                                                 CostPerUseLimit, NewVRegs);
3021       if (CSRReg || !NewVRegs.empty())
3022         // Return now if we decide to use a CSR or create new vregs due to
3023         // pre-splitting.
3024         return CSRReg;
3025     } else
3026       return PhysReg;
3027   }
3028 
3029   LiveRangeStage Stage = getStage(VirtReg);
3030   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3031                     << ExtraRegInfo[VirtReg.reg()].Cascade << '\n');
3032 
3033   // Try to evict a less worthy live range, but only for ranges from the primary
3034   // queue. The RS_Split ranges already failed to do this, and they should not
3035   // get a second chance until they have been split.
3036   if (Stage != RS_Split)
3037     if (Register PhysReg =
3038             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3039                      FixedRegisters)) {
3040       Register Hint = MRI->getSimpleHint(VirtReg.reg());
3041       // If VirtReg has a hint and that hint is broken record this
3042       // virtual register as a recoloring candidate for broken hint.
3043       // Indeed, since we evicted a variable in its neighborhood it is
3044       // likely we can at least partially recolor some of the
3045       // copy-related live-ranges.
3046       if (Hint && Hint != PhysReg)
3047         SetOfBrokenHints.insert(&VirtReg);
3048       // If VirtReg eviction someone, the eviction info for it as an evictee is
3049       // no longer relevant.
3050       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3051       return PhysReg;
3052     }
3053 
3054   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3055 
3056   // The first time we see a live range, don't try to split or spill.
3057   // Wait until the second time, when all smaller ranges have been allocated.
3058   // This gives a better picture of the interference to split around.
3059   if (Stage < RS_Split) {
3060     setStage(VirtReg, RS_Split);
3061     LLVM_DEBUG(dbgs() << "wait for second round\n");
3062     NewVRegs.push_back(VirtReg.reg());
3063     return 0;
3064   }
3065 
3066   if (Stage < RS_Spill) {
3067     // Try splitting VirtReg or interferences.
3068     unsigned NewVRegSizeBefore = NewVRegs.size();
3069     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3070     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3071       // If VirtReg got split, the eviction info is no longer relevant.
3072       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3073       return PhysReg;
3074     }
3075   }
3076 
3077   // If we couldn't allocate a register from spilling, there is probably some
3078   // invalid inline assembly. The base class will report it.
3079   if (Stage >= RS_Done || !VirtReg.isSpillable())
3080     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3081                                    Depth);
3082 
3083   // Finally spill VirtReg itself.
3084   if ((EnableDeferredSpilling ||
3085        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
3086       getStage(VirtReg) < RS_Memory) {
3087     // TODO: This is experimental and in particular, we do not model
3088     // the live range splitting done by spilling correctly.
3089     // We would need a deep integration with the spiller to do the
3090     // right thing here. Anyway, that is still good for early testing.
3091     setStage(VirtReg, RS_Memory);
3092     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3093     NewVRegs.push_back(VirtReg.reg());
3094   } else {
3095     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3096                        TimerGroupDescription, TimePassesIsEnabled);
3097     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3098     spiller().spill(LRE);
3099     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3100 
3101     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3102     // the new regs are kept in LDV (still mapping to the old register), until
3103     // we rewrite spilled locations in LDV at a later stage.
3104     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
3105 
3106     if (VerifyEnabled)
3107       MF->verify(this, "After spilling");
3108   }
3109 
3110   // The live virtual register requesting allocation was spilled, so tell
3111   // the caller not to allocate anything during this round.
3112   return 0;
3113 }
3114 
3115 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3116                                             unsigned &FoldedReloads,
3117                                             unsigned &Spills,
3118                                             unsigned &FoldedSpills) {
3119   Reloads = 0;
3120   FoldedReloads = 0;
3121   Spills = 0;
3122   FoldedSpills = 0;
3123 
3124   // Sum up the spill and reloads in subloops.
3125   for (MachineLoop *SubLoop : *L) {
3126     unsigned SubReloads;
3127     unsigned SubFoldedReloads;
3128     unsigned SubSpills;
3129     unsigned SubFoldedSpills;
3130 
3131     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3132                                  SubSpills, SubFoldedSpills);
3133     Reloads += SubReloads;
3134     FoldedReloads += SubFoldedReloads;
3135     Spills += SubSpills;
3136     FoldedSpills += SubFoldedSpills;
3137   }
3138 
3139   const MachineFrameInfo &MFI = MF->getFrameInfo();
3140   int FI;
3141 
3142   for (MachineBasicBlock *MBB : L->getBlocks())
3143     // Handle blocks that were not included in subloops.
3144     if (Loops->getLoopFor(MBB) == L)
3145       for (MachineInstr &MI : *MBB) {
3146         SmallVector<const MachineMemOperand *, 2> Accesses;
3147         auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3148           return MFI.isSpillSlotObjectIndex(
3149               cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3150                   ->getFrameIndex());
3151         };
3152 
3153         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3154           ++Reloads;
3155         else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3156                  llvm::any_of(Accesses, isSpillSlotAccess))
3157           ++FoldedReloads;
3158         else if (TII->isStoreToStackSlot(MI, FI) &&
3159                  MFI.isSpillSlotObjectIndex(FI))
3160           ++Spills;
3161         else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3162                  llvm::any_of(Accesses, isSpillSlotAccess))
3163           ++FoldedSpills;
3164       }
3165 
3166   if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3167     using namespace ore;
3168 
3169     ORE->emit([&]() {
3170       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3171                                         L->getStartLoc(), L->getHeader());
3172       if (Spills)
3173         R << NV("NumSpills", Spills) << " spills ";
3174       if (FoldedSpills)
3175         R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3176       if (Reloads)
3177         R << NV("NumReloads", Reloads) << " reloads ";
3178       if (FoldedReloads)
3179         R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3180       R << "generated in loop";
3181       return R;
3182     });
3183   }
3184 }
3185 
3186 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3187   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3188                     << "********** Function: " << mf.getName() << '\n');
3189 
3190   MF = &mf;
3191   TRI = MF->getSubtarget().getRegisterInfo();
3192   TII = MF->getSubtarget().getInstrInfo();
3193   RCI.runOnMachineFunction(mf);
3194 
3195   EnableLocalReassign = EnableLocalReassignment ||
3196                         MF->getSubtarget().enableRALocalReassignment(
3197                             MF->getTarget().getOptLevel());
3198 
3199   EnableAdvancedRASplitCost =
3200       ConsiderLocalIntervalCost.getNumOccurrences()
3201           ? ConsiderLocalIntervalCost
3202           : MF->getSubtarget().enableAdvancedRASplitCost();
3203 
3204   if (VerifyEnabled)
3205     MF->verify(this, "Before greedy register allocator");
3206 
3207   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3208                      getAnalysis<LiveIntervals>(),
3209                      getAnalysis<LiveRegMatrix>());
3210   Indexes = &getAnalysis<SlotIndexes>();
3211   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3212   DomTree = &getAnalysis<MachineDominatorTree>();
3213   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3214   Loops = &getAnalysis<MachineLoopInfo>();
3215   Bundles = &getAnalysis<EdgeBundles>();
3216   SpillPlacer = &getAnalysis<SpillPlacement>();
3217   DebugVars = &getAnalysis<LiveDebugVariables>();
3218   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3219 
3220   initializeCSRCost();
3221 
3222   RegCosts = TRI->getRegisterCosts(*MF);
3223 
3224   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
3225   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
3226 
3227   VRAI->calculateSpillWeightsAndHints();
3228 
3229   LLVM_DEBUG(LIS->dump());
3230 
3231   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3232   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
3233   ExtraRegInfo.clear();
3234   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3235   NextCascade = 1;
3236   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3237   GlobalCand.resize(32);  // This will grow as needed.
3238   SetOfBrokenHints.clear();
3239   LastEvicted.clear();
3240 
3241   allocatePhysRegs();
3242   tryHintsRecoloring();
3243 
3244   if (VerifyEnabled)
3245     MF->verify(this, "Before post optimization");
3246   postOptimization();
3247   reportNumberOfSplillsReloads();
3248 
3249   releaseMemory();
3250   return true;
3251 }
3252