1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RegAllocGreedy.h"
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "RegAllocEvictionAdvisor.h"
20 #include "SpillPlacement.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/MapVector.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/CodeGen/CalcSpillWeights.h"
36 #include "llvm/CodeGen/EdgeBundles.h"
37 #include "llvm/CodeGen/LiveInterval.h"
38 #include "llvm/CodeGen/LiveIntervalUnion.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveRangeEdit.h"
41 #include "llvm/CodeGen/LiveRegMatrix.h"
42 #include "llvm/CodeGen/LiveStacks.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFrameInfo.h"
47 #include "llvm/CodeGen/MachineFunction.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RegAllocRegistry.h"
55 #include "llvm/CodeGen/RegisterClassInfo.h"
56 #include "llvm/CodeGen/SlotIndexes.h"
57 #include "llvm/CodeGen/Spiller.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetRegisterInfo.h"
60 #include "llvm/CodeGen/TargetSubtargetInfo.h"
61 #include "llvm/CodeGen/VirtRegMap.h"
62 #include "llvm/IR/DebugInfoMetadata.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Support/BlockFrequency.h"
68 #include "llvm/Support/BranchProbability.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/Timer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstdint>
78 #include <memory>
79 #include <queue>
80 #include <tuple>
81 #include <utility>
82 
83 using namespace llvm;
84 
85 #define DEBUG_TYPE "regalloc"
86 
87 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
88 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
89 STATISTIC(NumEvicted,      "Number of interferences evicted");
90 
91 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
92     "split-spill-mode", cl::Hidden,
93     cl::desc("Spill mode for splitting live ranges"),
94     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
95                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
96                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
97     cl::init(SplitEditor::SM_Speed));
98 
99 static cl::opt<unsigned>
100 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
101                              cl::desc("Last chance recoloring max depth"),
102                              cl::init(5));
103 
104 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
105     "lcr-max-interf", cl::Hidden,
106     cl::desc("Last chance recoloring maximum number of considered"
107              " interference at a time"),
108     cl::init(8));
109 
110 static cl::opt<bool> ExhaustiveSearch(
111     "exhaustive-register-search", cl::NotHidden,
112     cl::desc("Exhaustive Search for registers bypassing the depth "
113              "and interference cutoffs of last chance recoloring"),
114     cl::Hidden);
115 
116 static cl::opt<bool> EnableDeferredSpilling(
117     "enable-deferred-spilling", cl::Hidden,
118     cl::desc("Instead of spilling a variable right away, defer the actual "
119              "code insertion to the end of the allocation. That way the "
120              "allocator might still find a suitable coloring for this "
121              "variable because of other evicted variables."),
122     cl::init(false));
123 
124 // FIXME: Find a good default for this flag and remove the flag.
125 static cl::opt<unsigned>
126 CSRFirstTimeCost("regalloc-csr-first-time-cost",
127               cl::desc("Cost for first time use of callee-saved register."),
128               cl::init(0), cl::Hidden);
129 
130 static cl::opt<bool> ConsiderLocalIntervalCost(
131     "consider-local-interval-cost", cl::Hidden,
132     cl::desc("Consider the cost of local intervals created by a split "
133              "candidate when choosing the best split candidate."),
134     cl::init(false));
135 
136 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
137                                        createGreedyRegisterAllocator);
138 
139 char RAGreedy::ID = 0;
140 char &llvm::RAGreedyID = RAGreedy::ID;
141 
142 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
143                 "Greedy Register Allocator", false, false)
144 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
145 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
146 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
147 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
148 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
149 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
150 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
151 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
152 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
153 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
154 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
155 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
156 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
157 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
158 INITIALIZE_PASS_END(RAGreedy, "greedy",
159                 "Greedy Register Allocator", false, false)
160 
161 #ifndef NDEBUG
162 const char *const RAGreedy::StageName[] = {
163     "RS_New",
164     "RS_Assign",
165     "RS_Split",
166     "RS_Split2",
167     "RS_Spill",
168     "RS_Memory",
169     "RS_Done"
170 };
171 #endif
172 
173 // Hysteresis to use when comparing floats.
174 // This helps stabilize decisions based on float comparisons.
175 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
176 
177 FunctionPass* llvm::createGreedyRegisterAllocator() {
178   return new RAGreedy();
179 }
180 
181 namespace llvm {
182 FunctionPass* createGreedyRegisterAllocator(
183   std::function<bool(const TargetRegisterInfo &TRI,
184                      const TargetRegisterClass &RC)> Ftor);
185 
186 }
187 
188 FunctionPass* llvm::createGreedyRegisterAllocator(
189   std::function<bool(const TargetRegisterInfo &TRI,
190                      const TargetRegisterClass &RC)> Ftor) {
191   return new RAGreedy(Ftor);
192 }
193 
194 RAGreedy::RAGreedy(RegClassFilterFunc F):
195   MachineFunctionPass(ID),
196   RegAllocBase(F) {
197 }
198 
199 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
200   AU.setPreservesCFG();
201   AU.addRequired<MachineBlockFrequencyInfo>();
202   AU.addPreserved<MachineBlockFrequencyInfo>();
203   AU.addRequired<AAResultsWrapperPass>();
204   AU.addPreserved<AAResultsWrapperPass>();
205   AU.addRequired<LiveIntervals>();
206   AU.addPreserved<LiveIntervals>();
207   AU.addRequired<SlotIndexes>();
208   AU.addPreserved<SlotIndexes>();
209   AU.addRequired<LiveDebugVariables>();
210   AU.addPreserved<LiveDebugVariables>();
211   AU.addRequired<LiveStacks>();
212   AU.addPreserved<LiveStacks>();
213   AU.addRequired<MachineDominatorTree>();
214   AU.addPreserved<MachineDominatorTree>();
215   AU.addRequired<MachineLoopInfo>();
216   AU.addPreserved<MachineLoopInfo>();
217   AU.addRequired<VirtRegMap>();
218   AU.addPreserved<VirtRegMap>();
219   AU.addRequired<LiveRegMatrix>();
220   AU.addPreserved<LiveRegMatrix>();
221   AU.addRequired<EdgeBundles>();
222   AU.addRequired<SpillPlacement>();
223   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
224   AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
225   MachineFunctionPass::getAnalysisUsage(AU);
226 }
227 
228 //===----------------------------------------------------------------------===//
229 //                     LiveRangeEdit delegate methods
230 //===----------------------------------------------------------------------===//
231 
232 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
233   LiveInterval &LI = LIS->getInterval(VirtReg);
234   if (VRM->hasPhys(VirtReg)) {
235     Matrix->unassign(LI);
236     aboutToRemoveInterval(LI);
237     return true;
238   }
239   // Unassigned virtreg is probably in the priority queue.
240   // RegAllocBase will erase it after dequeueing.
241   // Nonetheless, clear the live-range so that the debug
242   // dump will show the right state for that VirtReg.
243   LI.clear();
244   return false;
245 }
246 
247 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
248   if (!VRM->hasPhys(VirtReg))
249     return;
250 
251   // Register is assigned, put it back on the queue for reassignment.
252   LiveInterval &LI = LIS->getInterval(VirtReg);
253   Matrix->unassign(LI);
254   RegAllocBase::enqueue(&LI);
255 }
256 
257 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
258   ExtraInfo->LRE_DidCloneVirtReg(New, Old);
259 }
260 
261 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
262   // Cloning a register we haven't even heard about yet?  Just ignore it.
263   if (!Info.inBounds(Old))
264     return;
265 
266   // LRE may clone a virtual register because dead code elimination causes it to
267   // be split into connected components. The new components are much smaller
268   // than the original, so they should get a new chance at being assigned.
269   // same stage as the parent.
270   Info[Old].Stage = RS_Assign;
271   Info.grow(New.id());
272   Info[New] = Info[Old];
273 }
274 
275 void RAGreedy::releaseMemory() {
276   SpillerInstance.reset();
277   GlobalCand.clear();
278 }
279 
280 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); }
281 
282 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) {
283   // Prioritize live ranges by size, assigning larger ranges first.
284   // The queue holds (size, reg) pairs.
285   const unsigned Size = LI->getSize();
286   const Register Reg = LI->reg();
287   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
288   unsigned Prio;
289 
290   auto Stage = ExtraInfo->getOrInitStage(Reg);
291   if (Stage == RS_New) {
292     Stage = RS_Assign;
293     ExtraInfo->setStage(Reg, Stage);
294   }
295   if (Stage == RS_Split) {
296     // Unsplit ranges that couldn't be allocated immediately are deferred until
297     // everything else has been allocated.
298     Prio = Size;
299   } else if (Stage == RS_Memory) {
300     // Memory operand should be considered last.
301     // Change the priority such that Memory operand are assigned in
302     // the reverse order that they came in.
303     // TODO: Make this a member variable and probably do something about hints.
304     static unsigned MemOp = 0;
305     Prio = MemOp++;
306   } else {
307     // Giant live ranges fall back to the global assignment heuristic, which
308     // prevents excessive spilling in pathological cases.
309     bool ReverseLocal = TRI->reverseLocalAssignment();
310     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
311     bool ForceGlobal = !ReverseLocal &&
312       (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC));
313 
314     if (Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
315         LIS->intervalIsInOneMBB(*LI)) {
316       // Allocate original local ranges in linear instruction order. Since they
317       // are singly defined, this produces optimal coloring in the absence of
318       // global interference and other constraints.
319       if (!ReverseLocal)
320         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
321       else {
322         // Allocating bottom up may allow many short LRGs to be assigned first
323         // to one of the cheap registers. This could be much faster for very
324         // large blocks on targets with many physical registers.
325         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
326       }
327       Prio |= RC.AllocationPriority << 24;
328     } else {
329       // Allocate global and split ranges in long->short order. Long ranges that
330       // don't fit should be spilled (or split) ASAP so they don't create
331       // interference.  Mark a bit to prioritize global above local ranges.
332       Prio = (1u << 29) + Size;
333 
334       Prio |= RC.AllocationPriority << 24;
335     }
336     // Mark a higher bit to prioritize global and local above RS_Split.
337     Prio |= (1u << 31);
338 
339     // Boost ranges that have a physical register hint.
340     if (VRM->hasKnownPreference(Reg))
341       Prio |= (1u << 30);
342   }
343   // The virtual register number is a tie breaker for same-sized ranges.
344   // Give lower vreg numbers higher priority to assign them first.
345   CurQueue.push(std::make_pair(Prio, ~Reg));
346 }
347 
348 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
349 
350 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
351   if (CurQueue.empty())
352     return nullptr;
353   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
354   CurQueue.pop();
355   return LI;
356 }
357 
358 //===----------------------------------------------------------------------===//
359 //                            Direct Assignment
360 //===----------------------------------------------------------------------===//
361 
362 /// tryAssign - Try to assign VirtReg to an available register.
363 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg,
364                                AllocationOrder &Order,
365                                SmallVectorImpl<Register> &NewVRegs,
366                                const SmallVirtRegSet &FixedRegisters) {
367   MCRegister PhysReg;
368   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
369     assert(*I);
370     if (!Matrix->checkInterference(VirtReg, *I)) {
371       if (I.isHint())
372         return *I;
373       else
374         PhysReg = *I;
375     }
376   }
377   if (!PhysReg.isValid())
378     return PhysReg;
379 
380   // PhysReg is available, but there may be a better choice.
381 
382   // If we missed a simple hint, try to cheaply evict interference from the
383   // preferred register.
384   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
385     if (Order.isHint(Hint)) {
386       MCRegister PhysHint = Hint.asMCReg();
387       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
388 
389       if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
390                                                  FixedRegisters)) {
391         evictInterference(VirtReg, PhysHint, NewVRegs);
392         return PhysHint;
393       }
394       // Record the missed hint, we may be able to recover
395       // at the end if the surrounding allocation changed.
396       SetOfBrokenHints.insert(&VirtReg);
397     }
398 
399   // Try to evict interference from a cheaper alternative.
400   uint8_t Cost = RegCosts[PhysReg];
401 
402   // Most registers have 0 additional cost.
403   if (!Cost)
404     return PhysReg;
405 
406   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
407                     << (unsigned)Cost << '\n');
408   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
409   return CheapReg ? CheapReg : PhysReg;
410 }
411 
412 //===----------------------------------------------------------------------===//
413 //                         Interference eviction
414 //===----------------------------------------------------------------------===//
415 
416 Register RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg,
417                                               Register PrevReg) const {
418   auto Order =
419       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
420   MCRegister PhysReg;
421   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
422     if ((*I).id() == PrevReg.id())
423       continue;
424 
425     MCRegUnitIterator Units(*I, TRI);
426     for (; Units.isValid(); ++Units) {
427       // Instantiate a "subquery", not to be confused with the Queries array.
428       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
429       if (subQ.checkInterference())
430         break;
431     }
432     // If no units have interference, break out with the current PhysReg.
433     if (!Units.isValid())
434       PhysReg = *I;
435   }
436   if (PhysReg)
437     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
438                       << printReg(PrevReg, TRI) << " to "
439                       << printReg(PhysReg, TRI) << '\n');
440   return PhysReg;
441 }
442 
443 /// Return true if all interferences between VirtReg and PhysReg between
444 /// Start and End can be evicted.
445 ///
446 /// \param VirtReg Live range that is about to be assigned.
447 /// \param PhysReg Desired register for assignment.
448 /// \param Start   Start of range to look for interferences.
449 /// \param End     End of range to look for interferences.
450 /// \param MaxCost Only look for cheaper candidates and update with new cost
451 ///                when returning true.
452 /// \return True when interference can be evicted cheaper than MaxCost.
453 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg,
454                                            MCRegister PhysReg, SlotIndex Start,
455                                            SlotIndex End,
456                                            EvictionCost &MaxCost) const {
457   EvictionCost Cost;
458 
459   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
460     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
461 
462     // Check if any interfering live range is heavier than MaxWeight.
463     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
464       // Check if interference overlast the segment in interest.
465       if (!Intf->overlaps(Start, End))
466         continue;
467 
468       // Cannot evict non virtual reg interference.
469       if (!Register::isVirtualRegister(Intf->reg()))
470         return false;
471       // Never evict spill products. They cannot split or spill.
472       if (ExtraInfo->getStage(*Intf) == RS_Done)
473         return false;
474 
475       // Would this break a satisfied hint?
476       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
477       // Update eviction cost.
478       Cost.BrokenHints += BreaksHint;
479       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
480       // Abort if this would be too expensive.
481       if (!(Cost < MaxCost))
482         return false;
483     }
484   }
485 
486   if (Cost.MaxWeight == 0)
487     return false;
488 
489   MaxCost = Cost;
490   return true;
491 }
492 
493 /// Return the physical register that will be best
494 /// candidate for eviction by a local split interval that will be created
495 /// between Start and End.
496 ///
497 /// \param Order            The allocation order
498 /// \param VirtReg          Live range that is about to be assigned.
499 /// \param Start            Start of range to look for interferences
500 /// \param End              End of range to look for interferences
501 /// \param BestEvictweight  The eviction cost of that eviction
502 /// \return The PhysReg which is the best candidate for eviction and the
503 /// eviction cost in BestEvictweight
504 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
505                                               const LiveInterval &VirtReg,
506                                               SlotIndex Start, SlotIndex End,
507                                               float *BestEvictweight) const {
508   EvictionCost BestEvictCost;
509   BestEvictCost.setMax();
510   BestEvictCost.MaxWeight = VirtReg.weight();
511   MCRegister BestEvicteePhys;
512 
513   // Go over all physical registers and find the best candidate for eviction
514   for (MCRegister PhysReg : Order.getOrder()) {
515 
516     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
517                                      BestEvictCost))
518       continue;
519 
520     // Best so far.
521     BestEvicteePhys = PhysReg;
522   }
523   *BestEvictweight = BestEvictCost.MaxWeight;
524   return BestEvicteePhys;
525 }
526 
527 /// evictInterference - Evict any interferring registers that prevent VirtReg
528 /// from being assigned to Physreg. This assumes that canEvictInterference
529 /// returned true.
530 void RAGreedy::evictInterference(const LiveInterval &VirtReg,
531                                  MCRegister PhysReg,
532                                  SmallVectorImpl<Register> &NewVRegs) {
533   // Make sure that VirtReg has a cascade number, and assign that cascade
534   // number to every evicted register. These live ranges than then only be
535   // evicted by a newer cascade, preventing infinite loops.
536   unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
537 
538   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
539                     << " interference: Cascade " << Cascade << '\n');
540 
541   // Collect all interfering virtregs first.
542   SmallVector<const LiveInterval *, 8> Intfs;
543   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
544     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
545     // We usually have the interfering VRegs cached so collectInterferingVRegs()
546     // should be fast, we may need to recalculate if when different physregs
547     // overlap the same register unit so we had different SubRanges queried
548     // against it.
549     ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs();
550     Intfs.append(IVR.begin(), IVR.end());
551   }
552 
553   // Evict them second. This will invalidate the queries.
554   for (const LiveInterval *Intf : Intfs) {
555     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
556     if (!VRM->hasPhys(Intf->reg()))
557       continue;
558 
559     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
560 
561     Matrix->unassign(*Intf);
562     assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
563             VirtReg.isSpillable() < Intf->isSpillable()) &&
564            "Cannot decrease cascade number, illegal eviction");
565     ExtraInfo->setCascade(Intf->reg(), Cascade);
566     ++NumEvicted;
567     NewVRegs.push_back(Intf->reg());
568   }
569 }
570 
571 /// Returns true if the given \p PhysReg is a callee saved register and has not
572 /// been used for allocation yet.
573 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
574   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
575   if (!CSR)
576     return false;
577 
578   return !Matrix->isPhysRegUsed(PhysReg);
579 }
580 
581 Optional<unsigned>
582 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg,
583                                        const AllocationOrder &Order,
584                                        unsigned CostPerUseLimit) const {
585   unsigned OrderLimit = Order.getOrder().size();
586 
587   if (CostPerUseLimit < uint8_t(~0u)) {
588     // Check of any registers in RC are below CostPerUseLimit.
589     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
590     uint8_t MinCost = RegClassInfo.getMinCost(RC);
591     if (MinCost >= CostPerUseLimit) {
592       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
593                         << MinCost << ", no cheaper registers to be found.\n");
594       return None;
595     }
596 
597     // It is normal for register classes to have a long tail of registers with
598     // the same cost. We don't need to look at them if they're too expensive.
599     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
600       OrderLimit = RegClassInfo.getLastCostChange(RC);
601       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
602                         << " regs.\n");
603     }
604   }
605   return OrderLimit;
606 }
607 
608 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit,
609                                                  MCRegister PhysReg) const {
610   if (RegCosts[PhysReg] >= CostPerUseLimit)
611     return false;
612   // The first use of a callee-saved register in a function has cost 1.
613   // Don't start using a CSR when the CostPerUseLimit is low.
614   if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
615     LLVM_DEBUG(
616         dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
617                << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
618                << '\n');
619     return false;
620   }
621   return true;
622 }
623 
624 /// tryEvict - Try to evict all interferences for a physreg.
625 /// @param  VirtReg Currently unassigned virtual register.
626 /// @param  Order   Physregs to try.
627 /// @return         Physreg to assign VirtReg, or 0.
628 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg,
629                               AllocationOrder &Order,
630                               SmallVectorImpl<Register> &NewVRegs,
631                               uint8_t CostPerUseLimit,
632                               const SmallVirtRegSet &FixedRegisters) {
633   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
634                      TimePassesIsEnabled);
635 
636   MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
637       VirtReg, Order, CostPerUseLimit, FixedRegisters);
638   if (BestPhys.isValid())
639     evictInterference(VirtReg, BestPhys, NewVRegs);
640   return BestPhys;
641 }
642 
643 //===----------------------------------------------------------------------===//
644 //                              Region Splitting
645 //===----------------------------------------------------------------------===//
646 
647 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
648 /// interference pattern in Physreg and its aliases. Add the constraints to
649 /// SpillPlacement and return the static cost of this split in Cost, assuming
650 /// that all preferences in SplitConstraints are met.
651 /// Return false if there are no bundles with positive bias.
652 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
653                                    BlockFrequency &Cost) {
654   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
655 
656   // Reset interference dependent info.
657   SplitConstraints.resize(UseBlocks.size());
658   BlockFrequency StaticCost = 0;
659   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
660     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
661     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
662 
663     BC.Number = BI.MBB->getNumber();
664     Intf.moveToBlock(BC.Number);
665     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
666     BC.Exit = (BI.LiveOut &&
667                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
668                   ? SpillPlacement::PrefReg
669                   : SpillPlacement::DontCare;
670     BC.ChangesValue = BI.FirstDef.isValid();
671 
672     if (!Intf.hasInterference())
673       continue;
674 
675     // Number of spill code instructions to insert.
676     unsigned Ins = 0;
677 
678     // Interference for the live-in value.
679     if (BI.LiveIn) {
680       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
681         BC.Entry = SpillPlacement::MustSpill;
682         ++Ins;
683       } else if (Intf.first() < BI.FirstInstr) {
684         BC.Entry = SpillPlacement::PrefSpill;
685         ++Ins;
686       } else if (Intf.first() < BI.LastInstr) {
687         ++Ins;
688       }
689 
690       // Abort if the spill cannot be inserted at the MBB' start
691       if (((BC.Entry == SpillPlacement::MustSpill) ||
692            (BC.Entry == SpillPlacement::PrefSpill)) &&
693           SlotIndex::isEarlierInstr(BI.FirstInstr,
694                                     SA->getFirstSplitPoint(BC.Number)))
695         return false;
696     }
697 
698     // Interference for the live-out value.
699     if (BI.LiveOut) {
700       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
701         BC.Exit = SpillPlacement::MustSpill;
702         ++Ins;
703       } else if (Intf.last() > BI.LastInstr) {
704         BC.Exit = SpillPlacement::PrefSpill;
705         ++Ins;
706       } else if (Intf.last() > BI.FirstInstr) {
707         ++Ins;
708       }
709     }
710 
711     // Accumulate the total frequency of inserted spill code.
712     while (Ins--)
713       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
714   }
715   Cost = StaticCost;
716 
717   // Add constraints for use-blocks. Note that these are the only constraints
718   // that may add a positive bias, it is downhill from here.
719   SpillPlacer->addConstraints(SplitConstraints);
720   return SpillPlacer->scanActiveBundles();
721 }
722 
723 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
724 /// live-through blocks in Blocks.
725 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
726                                      ArrayRef<unsigned> Blocks) {
727   const unsigned GroupSize = 8;
728   SpillPlacement::BlockConstraint BCS[GroupSize];
729   unsigned TBS[GroupSize];
730   unsigned B = 0, T = 0;
731 
732   for (unsigned Number : Blocks) {
733     Intf.moveToBlock(Number);
734 
735     if (!Intf.hasInterference()) {
736       assert(T < GroupSize && "Array overflow");
737       TBS[T] = Number;
738       if (++T == GroupSize) {
739         SpillPlacer->addLinks(makeArrayRef(TBS, T));
740         T = 0;
741       }
742       continue;
743     }
744 
745     assert(B < GroupSize && "Array overflow");
746     BCS[B].Number = Number;
747 
748     // Abort if the spill cannot be inserted at the MBB' start
749     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
750     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
751     if (FirstNonDebugInstr != MBB->end() &&
752         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
753                                   SA->getFirstSplitPoint(Number)))
754       return false;
755     // Interference for the live-in value.
756     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
757       BCS[B].Entry = SpillPlacement::MustSpill;
758     else
759       BCS[B].Entry = SpillPlacement::PrefSpill;
760 
761     // Interference for the live-out value.
762     if (Intf.last() >= SA->getLastSplitPoint(Number))
763       BCS[B].Exit = SpillPlacement::MustSpill;
764     else
765       BCS[B].Exit = SpillPlacement::PrefSpill;
766 
767     if (++B == GroupSize) {
768       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
769       B = 0;
770     }
771   }
772 
773   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
774   SpillPlacer->addLinks(makeArrayRef(TBS, T));
775   return true;
776 }
777 
778 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
779   // Keep track of through blocks that have not been added to SpillPlacer.
780   BitVector Todo = SA->getThroughBlocks();
781   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
782   unsigned AddedTo = 0;
783 #ifndef NDEBUG
784   unsigned Visited = 0;
785 #endif
786 
787   while (true) {
788     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
789     // Find new through blocks in the periphery of PrefRegBundles.
790     for (unsigned Bundle : NewBundles) {
791       // Look at all blocks connected to Bundle in the full graph.
792       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
793       for (unsigned Block : Blocks) {
794         if (!Todo.test(Block))
795           continue;
796         Todo.reset(Block);
797         // This is a new through block. Add it to SpillPlacer later.
798         ActiveBlocks.push_back(Block);
799 #ifndef NDEBUG
800         ++Visited;
801 #endif
802       }
803     }
804     // Any new blocks to add?
805     if (ActiveBlocks.size() == AddedTo)
806       break;
807 
808     // Compute through constraints from the interference, or assume that all
809     // through blocks prefer spilling when forming compact regions.
810     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
811     if (Cand.PhysReg) {
812       if (!addThroughConstraints(Cand.Intf, NewBlocks))
813         return false;
814     } else
815       // Provide a strong negative bias on through blocks to prevent unwanted
816       // liveness on loop backedges.
817       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
818     AddedTo = ActiveBlocks.size();
819 
820     // Perhaps iterating can enable more bundles?
821     SpillPlacer->iterate();
822   }
823   LLVM_DEBUG(dbgs() << ", v=" << Visited);
824   return true;
825 }
826 
827 /// calcCompactRegion - Compute the set of edge bundles that should be live
828 /// when splitting the current live range into compact regions.  Compact
829 /// regions can be computed without looking at interference.  They are the
830 /// regions formed by removing all the live-through blocks from the live range.
831 ///
832 /// Returns false if the current live range is already compact, or if the
833 /// compact regions would form single block regions anyway.
834 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
835   // Without any through blocks, the live range is already compact.
836   if (!SA->getNumThroughBlocks())
837     return false;
838 
839   // Compact regions don't correspond to any physreg.
840   Cand.reset(IntfCache, MCRegister::NoRegister);
841 
842   LLVM_DEBUG(dbgs() << "Compact region bundles");
843 
844   // Use the spill placer to determine the live bundles. GrowRegion pretends
845   // that all the through blocks have interference when PhysReg is unset.
846   SpillPlacer->prepare(Cand.LiveBundles);
847 
848   // The static split cost will be zero since Cand.Intf reports no interference.
849   BlockFrequency Cost;
850   if (!addSplitConstraints(Cand.Intf, Cost)) {
851     LLVM_DEBUG(dbgs() << ", none.\n");
852     return false;
853   }
854 
855   if (!growRegion(Cand)) {
856     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
857     return false;
858   }
859 
860   SpillPlacer->finish();
861 
862   if (!Cand.LiveBundles.any()) {
863     LLVM_DEBUG(dbgs() << ", none.\n");
864     return false;
865   }
866 
867   LLVM_DEBUG({
868     for (int I : Cand.LiveBundles.set_bits())
869       dbgs() << " EB#" << I;
870     dbgs() << ".\n";
871   });
872   return true;
873 }
874 
875 /// calcSpillCost - Compute how expensive it would be to split the live range in
876 /// SA around all use blocks instead of forming bundle regions.
877 BlockFrequency RAGreedy::calcSpillCost() {
878   BlockFrequency Cost = 0;
879   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
880   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
881     unsigned Number = BI.MBB->getNumber();
882     // We normally only need one spill instruction - a load or a store.
883     Cost += SpillPlacer->getBlockFrequency(Number);
884 
885     // Unless the value is redefined in the block.
886     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
887       Cost += SpillPlacer->getBlockFrequency(Number);
888   }
889   return Cost;
890 }
891 
892 /// Check if splitting Evictee will create a local split interval in
893 /// basic block number BBNumber that may cause a bad eviction chain. This is
894 /// intended to prevent bad eviction sequences like:
895 /// movl	%ebp, 8(%esp)           # 4-byte Spill
896 /// movl	%ecx, %ebp
897 /// movl	%ebx, %ecx
898 /// movl	%edi, %ebx
899 /// movl	%edx, %edi
900 /// cltd
901 /// idivl	%esi
902 /// movl	%edi, %edx
903 /// movl	%ebx, %edi
904 /// movl	%ecx, %ebx
905 /// movl	%ebp, %ecx
906 /// movl	16(%esp), %ebp          # 4 - byte Reload
907 ///
908 /// Such sequences are created in 2 scenarios:
909 ///
910 /// Scenario #1:
911 /// %0 is evicted from physreg0 by %1.
912 /// Evictee %0 is intended for region splitting with split candidate
913 /// physreg0 (the reg %0 was evicted from).
914 /// Region splitting creates a local interval because of interference with the
915 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
916 /// and "by stack" intervals and local interval created when interference
917 /// occurs).
918 /// One of the split intervals ends up evicting %2 from physreg1.
919 /// Evictee %2 is intended for region splitting with split candidate
920 /// physreg1.
921 /// One of the split intervals ends up evicting %3 from physreg2, etc.
922 ///
923 /// Scenario #2
924 /// %0 is evicted from physreg0 by %1.
925 /// %2 is evicted from physreg2 by %3 etc.
926 /// Evictee %0 is intended for region splitting with split candidate
927 /// physreg1.
928 /// Region splitting creates a local interval because of interference with the
929 /// evictor %1.
930 /// One of the split intervals ends up evicting back original evictor %1
931 /// from physreg0 (the reg %0 was evicted from).
932 /// Another evictee %2 is intended for region splitting with split candidate
933 /// physreg1.
934 /// One of the split intervals ends up evicting %3 from physreg2, etc.
935 ///
936 /// \param Evictee  The register considered to be split.
937 /// \param Cand     The split candidate that determines the physical register
938 ///                 we are splitting for and the interferences.
939 /// \param BBNumber The number of a BB for which the region split process will
940 ///                 create a local split interval.
941 /// \param Order    The physical registers that may get evicted by a split
942 ///                 artifact of Evictee.
943 /// \return True if splitting Evictee may cause a bad eviction chain, false
944 /// otherwise.
945 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
946                                           GlobalSplitCandidate &Cand,
947                                           unsigned BBNumber,
948                                           const AllocationOrder &Order) {
949   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
950   unsigned Evictor = VregEvictorInfo.first;
951   MCRegister PhysReg = VregEvictorInfo.second;
952 
953   // No actual evictor.
954   if (!Evictor || !PhysReg)
955     return false;
956 
957   float MaxWeight = 0;
958   MCRegister FutureEvictedPhysReg =
959       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
960                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
961 
962   // The bad eviction chain occurs when either the split candidate is the
963   // evicting reg or one of the split artifact will evict the evicting reg.
964   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
965     return false;
966 
967   Cand.Intf.moveToBlock(BBNumber);
968 
969   // Check to see if the Evictor contains interference (with Evictee) in the
970   // given BB. If so, this interference caused the eviction of Evictee from
971   // PhysReg. This suggest that we will create a local interval during the
972   // region split to avoid this interference This local interval may cause a bad
973   // eviction chain.
974   if (!LIS->hasInterval(Evictor))
975     return false;
976   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
977   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
978     return false;
979 
980   // Now, check to see if the local interval we will create is going to be
981   // expensive enough to evict somebody If so, this may cause a bad eviction
982   // chain.
983   float splitArtifactWeight =
984       VRAI->futureWeight(LIS->getInterval(Evictee),
985                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
986   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
987     return false;
988 
989   return true;
990 }
991 
992 /// Check if splitting VirtRegToSplit will create a local split interval
993 /// in basic block number BBNumber that may cause a spill.
994 ///
995 /// \param VirtRegToSplit The register considered to be split.
996 /// \param Cand           The split candidate that determines the physical
997 ///                       register we are splitting for and the interferences.
998 /// \param BBNumber       The number of a BB for which the region split process
999 ///                       will create a local split interval.
1000 /// \param Order          The physical registers that may get evicted by a
1001 ///                       split artifact of VirtRegToSplit.
1002 /// \return True if splitting VirtRegToSplit may cause a spill, false
1003 /// otherwise.
1004 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1005                                        GlobalSplitCandidate &Cand,
1006                                        unsigned BBNumber,
1007                                        const AllocationOrder &Order) {
1008   Cand.Intf.moveToBlock(BBNumber);
1009 
1010   // Check if the local interval will find a non interfereing assignment.
1011   for (auto PhysReg : Order.getOrder()) {
1012     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1013                                    Cand.Intf.last(), PhysReg))
1014       return false;
1015   }
1016 
1017   // The local interval is not able to find non interferencing assignment
1018   // and not able to evict a less worthy interval, therfore, it can cause a
1019   // spill.
1020   return true;
1021 }
1022 
1023 /// calcGlobalSplitCost - Return the global split cost of following the split
1024 /// pattern in LiveBundles. This cost should be added to the local cost of the
1025 /// interference pattern in SplitConstraints.
1026 ///
1027 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1028                                              const AllocationOrder &Order,
1029                                              bool *CanCauseEvictionChain) {
1030   BlockFrequency GlobalCost = 0;
1031   const BitVector &LiveBundles = Cand.LiveBundles;
1032   Register VirtRegToSplit = SA->getParent().reg();
1033   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1034   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1035     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1036     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1037     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1038     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1039     unsigned Ins = 0;
1040 
1041     Cand.Intf.moveToBlock(BC.Number);
1042     // Check wheather a local interval is going to be created during the region
1043     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1044     // is enabled.
1045     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1046         BI.LiveOut && RegIn && RegOut) {
1047 
1048       if (CanCauseEvictionChain &&
1049           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1050         // This interference causes our eviction from this assignment, we might
1051         // evict somebody else and eventually someone will spill, add that cost.
1052         // See splitCanCauseEvictionChain for detailed description of scenarios.
1053         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1054         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1055 
1056         *CanCauseEvictionChain = true;
1057 
1058       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1059                                          Order)) {
1060         // This interference causes local interval to spill, add that cost.
1061         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1062         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1063       }
1064     }
1065 
1066     if (BI.LiveIn)
1067       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1068     if (BI.LiveOut)
1069       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1070     while (Ins--)
1071       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1072   }
1073 
1074   for (unsigned Number : Cand.ActiveBlocks) {
1075     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1076     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1077     if (!RegIn && !RegOut)
1078       continue;
1079     if (RegIn && RegOut) {
1080       // We need double spill code if this block has interference.
1081       Cand.Intf.moveToBlock(Number);
1082       if (Cand.Intf.hasInterference()) {
1083         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1084         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1085 
1086         // Check wheather a local interval is going to be created during the
1087         // region split.
1088         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1089             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1090           // This interference cause our eviction from this assignment, we might
1091           // evict somebody else, add that cost.
1092           // See splitCanCauseEvictionChain for detailed description of
1093           // scenarios.
1094           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1095           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1096 
1097           *CanCauseEvictionChain = true;
1098         }
1099       }
1100       continue;
1101     }
1102     // live-in / stack-out or stack-in live-out.
1103     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1104   }
1105   return GlobalCost;
1106 }
1107 
1108 /// splitAroundRegion - Split the current live range around the regions
1109 /// determined by BundleCand and GlobalCand.
1110 ///
1111 /// Before calling this function, GlobalCand and BundleCand must be initialized
1112 /// so each bundle is assigned to a valid candidate, or NoCand for the
1113 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1114 /// objects must be initialized for the current live range, and intervals
1115 /// created for the used candidates.
1116 ///
1117 /// @param LREdit    The LiveRangeEdit object handling the current split.
1118 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1119 ///                  must appear in this list.
1120 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1121                                  ArrayRef<unsigned> UsedCands) {
1122   // These are the intervals created for new global ranges. We may create more
1123   // intervals for local ranges.
1124   const unsigned NumGlobalIntvs = LREdit.size();
1125   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1126                     << " globals.\n");
1127   assert(NumGlobalIntvs && "No global intervals configured");
1128 
1129   // Isolate even single instructions when dealing with a proper sub-class.
1130   // That guarantees register class inflation for the stack interval because it
1131   // is all copies.
1132   Register Reg = SA->getParent().reg();
1133   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1134 
1135   // First handle all the blocks with uses.
1136   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1137   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1138     unsigned Number = BI.MBB->getNumber();
1139     unsigned IntvIn = 0, IntvOut = 0;
1140     SlotIndex IntfIn, IntfOut;
1141     if (BI.LiveIn) {
1142       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1143       if (CandIn != NoCand) {
1144         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1145         IntvIn = Cand.IntvIdx;
1146         Cand.Intf.moveToBlock(Number);
1147         IntfIn = Cand.Intf.first();
1148       }
1149     }
1150     if (BI.LiveOut) {
1151       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1152       if (CandOut != NoCand) {
1153         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1154         IntvOut = Cand.IntvIdx;
1155         Cand.Intf.moveToBlock(Number);
1156         IntfOut = Cand.Intf.last();
1157       }
1158     }
1159 
1160     // Create separate intervals for isolated blocks with multiple uses.
1161     if (!IntvIn && !IntvOut) {
1162       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1163       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1164         SE->splitSingleBlock(BI);
1165       continue;
1166     }
1167 
1168     if (IntvIn && IntvOut)
1169       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1170     else if (IntvIn)
1171       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1172     else
1173       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1174   }
1175 
1176   // Handle live-through blocks. The relevant live-through blocks are stored in
1177   // the ActiveBlocks list with each candidate. We need to filter out
1178   // duplicates.
1179   BitVector Todo = SA->getThroughBlocks();
1180   for (unsigned UsedCand : UsedCands) {
1181     ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
1182     for (unsigned Number : Blocks) {
1183       if (!Todo.test(Number))
1184         continue;
1185       Todo.reset(Number);
1186 
1187       unsigned IntvIn = 0, IntvOut = 0;
1188       SlotIndex IntfIn, IntfOut;
1189 
1190       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1191       if (CandIn != NoCand) {
1192         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1193         IntvIn = Cand.IntvIdx;
1194         Cand.Intf.moveToBlock(Number);
1195         IntfIn = Cand.Intf.first();
1196       }
1197 
1198       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1199       if (CandOut != NoCand) {
1200         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1201         IntvOut = Cand.IntvIdx;
1202         Cand.Intf.moveToBlock(Number);
1203         IntfOut = Cand.Intf.last();
1204       }
1205       if (!IntvIn && !IntvOut)
1206         continue;
1207       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1208     }
1209   }
1210 
1211   ++NumGlobalSplits;
1212 
1213   SmallVector<unsigned, 8> IntvMap;
1214   SE->finish(&IntvMap);
1215   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1216 
1217   unsigned OrigBlocks = SA->getNumLiveBlocks();
1218 
1219   // Sort out the new intervals created by splitting. We get four kinds:
1220   // - Remainder intervals should not be split again.
1221   // - Candidate intervals can be assigned to Cand.PhysReg.
1222   // - Block-local splits are candidates for local splitting.
1223   // - DCE leftovers should go back on the queue.
1224   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1225     const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1226 
1227     // Ignore old intervals from DCE.
1228     if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
1229       continue;
1230 
1231     // Remainder interval. Don't try splitting again, spill if it doesn't
1232     // allocate.
1233     if (IntvMap[I] == 0) {
1234       ExtraInfo->setStage(Reg, RS_Spill);
1235       continue;
1236     }
1237 
1238     // Global intervals. Allow repeated splitting as long as the number of live
1239     // blocks is strictly decreasing.
1240     if (IntvMap[I] < NumGlobalIntvs) {
1241       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1242         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1243                           << " blocks as original.\n");
1244         // Don't allow repeated splitting as a safe guard against looping.
1245         ExtraInfo->setStage(Reg, RS_Split2);
1246       }
1247       continue;
1248     }
1249 
1250     // Other intervals are treated as new. This includes local intervals created
1251     // for blocks with multiple uses, and anything created by DCE.
1252   }
1253 
1254   if (VerifyEnabled)
1255     MF->verify(this, "After splitting live range around region");
1256 }
1257 
1258 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg,
1259                                     AllocationOrder &Order,
1260                                     SmallVectorImpl<Register> &NewVRegs) {
1261   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1262     return MCRegister::NoRegister;
1263   unsigned NumCands = 0;
1264   BlockFrequency SpillCost = calcSpillCost();
1265   BlockFrequency BestCost;
1266 
1267   // Check if we can split this live range around a compact region.
1268   bool HasCompact = calcCompactRegion(GlobalCand.front());
1269   if (HasCompact) {
1270     // Yes, keep GlobalCand[0] as the compact region candidate.
1271     NumCands = 1;
1272     BestCost = BlockFrequency::getMaxFrequency();
1273   } else {
1274     // No benefit from the compact region, our fallback will be per-block
1275     // splitting. Make sure we find a solution that is cheaper than spilling.
1276     BestCost = SpillCost;
1277     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1278                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1279   }
1280 
1281   bool CanCauseEvictionChain = false;
1282   unsigned BestCand =
1283       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1284                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1285 
1286   // Split candidates with compact regions can cause a bad eviction sequence.
1287   // See splitCanCauseEvictionChain for detailed description of scenarios.
1288   // To avoid it, we need to comapre the cost with the spill cost and not the
1289   // current max frequency.
1290   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1291     CanCauseEvictionChain) {
1292     return MCRegister::NoRegister;
1293   }
1294 
1295   // No solutions found, fall back to single block splitting.
1296   if (!HasCompact && BestCand == NoCand)
1297     return MCRegister::NoRegister;
1298 
1299   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1300 }
1301 
1302 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg,
1303                                             AllocationOrder &Order,
1304                                             BlockFrequency &BestCost,
1305                                             unsigned &NumCands, bool IgnoreCSR,
1306                                             bool *CanCauseEvictionChain) {
1307   unsigned BestCand = NoCand;
1308   for (MCPhysReg PhysReg : Order) {
1309     assert(PhysReg);
1310     if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
1311       continue;
1312 
1313     // Discard bad candidates before we run out of interference cache cursors.
1314     // This will only affect register classes with a lot of registers (>32).
1315     if (NumCands == IntfCache.getMaxCursors()) {
1316       unsigned WorstCount = ~0u;
1317       unsigned Worst = 0;
1318       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1319         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1320           continue;
1321         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1322         if (Count < WorstCount) {
1323           Worst = CandIndex;
1324           WorstCount = Count;
1325         }
1326       }
1327       --NumCands;
1328       GlobalCand[Worst] = GlobalCand[NumCands];
1329       if (BestCand == NumCands)
1330         BestCand = Worst;
1331     }
1332 
1333     if (GlobalCand.size() <= NumCands)
1334       GlobalCand.resize(NumCands+1);
1335     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1336     Cand.reset(IntfCache, PhysReg);
1337 
1338     SpillPlacer->prepare(Cand.LiveBundles);
1339     BlockFrequency Cost;
1340     if (!addSplitConstraints(Cand.Intf, Cost)) {
1341       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1342       continue;
1343     }
1344     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1345                MBFI->printBlockFreq(dbgs(), Cost));
1346     if (Cost >= BestCost) {
1347       LLVM_DEBUG({
1348         if (BestCand == NoCand)
1349           dbgs() << " worse than no bundles\n";
1350         else
1351           dbgs() << " worse than "
1352                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1353       });
1354       continue;
1355     }
1356     if (!growRegion(Cand)) {
1357       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1358       continue;
1359     }
1360 
1361     SpillPlacer->finish();
1362 
1363     // No live bundles, defer to splitSingleBlocks().
1364     if (!Cand.LiveBundles.any()) {
1365       LLVM_DEBUG(dbgs() << " no bundles.\n");
1366       continue;
1367     }
1368 
1369     bool HasEvictionChain = false;
1370     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1371     LLVM_DEBUG({
1372       dbgs() << ", total = ";
1373       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1374       for (int I : Cand.LiveBundles.set_bits())
1375         dbgs() << " EB#" << I;
1376       dbgs() << ".\n";
1377     });
1378     if (Cost < BestCost) {
1379       BestCand = NumCands;
1380       BestCost = Cost;
1381       // See splitCanCauseEvictionChain for detailed description of bad
1382       // eviction chain scenarios.
1383       if (CanCauseEvictionChain)
1384         *CanCauseEvictionChain = HasEvictionChain;
1385     }
1386     ++NumCands;
1387   }
1388 
1389   if (CanCauseEvictionChain && BestCand != NoCand) {
1390     // See splitCanCauseEvictionChain for detailed description of bad
1391     // eviction chain scenarios.
1392     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1393                       << printReg(VirtReg.reg(), TRI) << "  may ");
1394     if (!(*CanCauseEvictionChain))
1395       LLVM_DEBUG(dbgs() << "not ");
1396     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1397   }
1398 
1399   return BestCand;
1400 }
1401 
1402 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand,
1403                                  bool HasCompact,
1404                                  SmallVectorImpl<Register> &NewVRegs) {
1405   SmallVector<unsigned, 8> UsedCands;
1406   // Prepare split editor.
1407   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1408   SE->reset(LREdit, SplitSpillMode);
1409 
1410   // Assign all edge bundles to the preferred candidate, or NoCand.
1411   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1412 
1413   // Assign bundles for the best candidate region.
1414   if (BestCand != NoCand) {
1415     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1416     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1417       UsedCands.push_back(BestCand);
1418       Cand.IntvIdx = SE->openIntv();
1419       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1420                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1421       (void)B;
1422     }
1423   }
1424 
1425   // Assign bundles for the compact region.
1426   if (HasCompact) {
1427     GlobalSplitCandidate &Cand = GlobalCand.front();
1428     assert(!Cand.PhysReg && "Compact region has no physreg");
1429     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1430       UsedCands.push_back(0);
1431       Cand.IntvIdx = SE->openIntv();
1432       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1433                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1434       (void)B;
1435     }
1436   }
1437 
1438   splitAroundRegion(LREdit, UsedCands);
1439   return 0;
1440 }
1441 
1442 //===----------------------------------------------------------------------===//
1443 //                            Per-Block Splitting
1444 //===----------------------------------------------------------------------===//
1445 
1446 /// tryBlockSplit - Split a global live range around every block with uses. This
1447 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1448 /// they don't allocate.
1449 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg,
1450                                  AllocationOrder &Order,
1451                                  SmallVectorImpl<Register> &NewVRegs) {
1452   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1453   Register Reg = VirtReg.reg();
1454   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1455   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1456   SE->reset(LREdit, SplitSpillMode);
1457   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1458   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1459     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1460       SE->splitSingleBlock(BI);
1461   }
1462   // No blocks were split.
1463   if (LREdit.empty())
1464     return 0;
1465 
1466   // We did split for some blocks.
1467   SmallVector<unsigned, 8> IntvMap;
1468   SE->finish(&IntvMap);
1469 
1470   // Tell LiveDebugVariables about the new ranges.
1471   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1472 
1473   // Sort out the new intervals created by splitting. The remainder interval
1474   // goes straight to spilling, the new local ranges get to stay RS_New.
1475   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1476     const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
1477     if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
1478       ExtraInfo->setStage(LI, RS_Spill);
1479   }
1480 
1481   if (VerifyEnabled)
1482     MF->verify(this, "After splitting live range around basic blocks");
1483   return 0;
1484 }
1485 
1486 //===----------------------------------------------------------------------===//
1487 //                         Per-Instruction Splitting
1488 //===----------------------------------------------------------------------===//
1489 
1490 /// Get the number of allocatable registers that match the constraints of \p Reg
1491 /// on \p MI and that are also in \p SuperRC.
1492 static unsigned getNumAllocatableRegsForConstraints(
1493     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
1494     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1495     const RegisterClassInfo &RCI) {
1496   assert(SuperRC && "Invalid register class");
1497 
1498   const TargetRegisterClass *ConstrainedRC =
1499       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1500                                              /* ExploreBundle */ true);
1501   if (!ConstrainedRC)
1502     return 0;
1503   return RCI.getNumAllocatableRegs(ConstrainedRC);
1504 }
1505 
1506 /// tryInstructionSplit - Split a live range around individual instructions.
1507 /// This is normally not worthwhile since the spiller is doing essentially the
1508 /// same thing. However, when the live range is in a constrained register
1509 /// class, it may help to insert copies such that parts of the live range can
1510 /// be moved to a larger register class.
1511 ///
1512 /// This is similar to spilling to a larger register class.
1513 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg,
1514                                        AllocationOrder &Order,
1515                                        SmallVectorImpl<Register> &NewVRegs) {
1516   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1517   // There is no point to this if there are no larger sub-classes.
1518   if (!RegClassInfo.isProperSubClass(CurRC))
1519     return 0;
1520 
1521   // Always enable split spill mode, since we're effectively spilling to a
1522   // register.
1523   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1524   SE->reset(LREdit, SplitEditor::SM_Size);
1525 
1526   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1527   if (Uses.size() <= 1)
1528     return 0;
1529 
1530   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
1531                     << " individual instrs.\n");
1532 
1533   const TargetRegisterClass *SuperRC =
1534       TRI->getLargestLegalSuperClass(CurRC, *MF);
1535   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
1536   // Split around every non-copy instruction if this split will relax
1537   // the constraints on the virtual register.
1538   // Otherwise, splitting just inserts uncoalescable copies that do not help
1539   // the allocation.
1540   for (const SlotIndex Use : Uses) {
1541     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
1542       if (MI->isFullCopy() ||
1543           SuperRCNumAllocatableRegs ==
1544               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
1545                                                   TII, TRI, RCI)) {
1546         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
1547         continue;
1548       }
1549     SE->openIntv();
1550     SlotIndex SegStart = SE->enterIntvBefore(Use);
1551     SlotIndex SegStop = SE->leaveIntvAfter(Use);
1552     SE->useIntv(SegStart, SegStop);
1553   }
1554 
1555   if (LREdit.empty()) {
1556     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
1557     return 0;
1558   }
1559 
1560   SmallVector<unsigned, 8> IntvMap;
1561   SE->finish(&IntvMap);
1562   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1563   // Assign all new registers to RS_Spill. This was the last chance.
1564   ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1565   return 0;
1566 }
1567 
1568 //===----------------------------------------------------------------------===//
1569 //                             Local Splitting
1570 //===----------------------------------------------------------------------===//
1571 
1572 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1573 /// in order to use PhysReg between two entries in SA->UseSlots.
1574 ///
1575 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
1576 ///
1577 void RAGreedy::calcGapWeights(MCRegister PhysReg,
1578                               SmallVectorImpl<float> &GapWeight) {
1579   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1580   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1581   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1582   const unsigned NumGaps = Uses.size()-1;
1583 
1584   // Start and end points for the interference check.
1585   SlotIndex StartIdx =
1586     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1587   SlotIndex StopIdx =
1588     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1589 
1590   GapWeight.assign(NumGaps, 0.0f);
1591 
1592   // Add interference from each overlapping register.
1593   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1594     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1595           .checkInterference())
1596       continue;
1597 
1598     // We know that VirtReg is a continuous interval from FirstInstr to
1599     // LastInstr, so we don't need InterferenceQuery.
1600     //
1601     // Interference that overlaps an instruction is counted in both gaps
1602     // surrounding the instruction. The exception is interference before
1603     // StartIdx and after StopIdx.
1604     //
1605     LiveIntervalUnion::SegmentIter IntI =
1606       Matrix->getLiveUnions()[*Units] .find(StartIdx);
1607     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1608       // Skip the gaps before IntI.
1609       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1610         if (++Gap == NumGaps)
1611           break;
1612       if (Gap == NumGaps)
1613         break;
1614 
1615       // Update the gaps covered by IntI.
1616       const float weight = IntI.value()->weight();
1617       for (; Gap != NumGaps; ++Gap) {
1618         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1619         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1620           break;
1621       }
1622       if (Gap == NumGaps)
1623         break;
1624     }
1625   }
1626 
1627   // Add fixed interference.
1628   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1629     const LiveRange &LR = LIS->getRegUnit(*Units);
1630     LiveRange::const_iterator I = LR.find(StartIdx);
1631     LiveRange::const_iterator E = LR.end();
1632 
1633     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1634     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1635       while (Uses[Gap+1].getBoundaryIndex() < I->start)
1636         if (++Gap == NumGaps)
1637           break;
1638       if (Gap == NumGaps)
1639         break;
1640 
1641       for (; Gap != NumGaps; ++Gap) {
1642         GapWeight[Gap] = huge_valf;
1643         if (Uses[Gap+1].getBaseIndex() >= I->end)
1644           break;
1645       }
1646       if (Gap == NumGaps)
1647         break;
1648     }
1649   }
1650 }
1651 
1652 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1653 /// basic block.
1654 ///
1655 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg,
1656                                  AllocationOrder &Order,
1657                                  SmallVectorImpl<Register> &NewVRegs) {
1658   // TODO: the function currently only handles a single UseBlock; it should be
1659   // possible to generalize.
1660   if (SA->getUseBlocks().size() != 1)
1661     return 0;
1662 
1663   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1664 
1665   // Note that it is possible to have an interval that is live-in or live-out
1666   // while only covering a single block - A phi-def can use undef values from
1667   // predecessors, and the block could be a single-block loop.
1668   // We don't bother doing anything clever about such a case, we simply assume
1669   // that the interval is continuous from FirstInstr to LastInstr. We should
1670   // make sure that we don't do anything illegal to such an interval, though.
1671 
1672   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1673   if (Uses.size() <= 2)
1674     return 0;
1675   const unsigned NumGaps = Uses.size()-1;
1676 
1677   LLVM_DEBUG({
1678     dbgs() << "tryLocalSplit: ";
1679     for (const auto &Use : Uses)
1680       dbgs() << ' ' << Use;
1681     dbgs() << '\n';
1682   });
1683 
1684   // If VirtReg is live across any register mask operands, compute a list of
1685   // gaps with register masks.
1686   SmallVector<unsigned, 8> RegMaskGaps;
1687   if (Matrix->checkRegMaskInterference(VirtReg)) {
1688     // Get regmask slots for the whole block.
1689     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1690     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1691     // Constrain to VirtReg's live range.
1692     unsigned RI =
1693         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
1694     unsigned RE = RMS.size();
1695     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
1696       // Look for Uses[I] <= RMS <= Uses[I + 1].
1697       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
1698       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
1699         continue;
1700       // Skip a regmask on the same instruction as the last use. It doesn't
1701       // overlap the live range.
1702       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
1703         break;
1704       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
1705                         << Uses[I + 1]);
1706       RegMaskGaps.push_back(I);
1707       // Advance ri to the next gap. A regmask on one of the uses counts in
1708       // both gaps.
1709       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
1710         ++RI;
1711     }
1712     LLVM_DEBUG(dbgs() << '\n');
1713   }
1714 
1715   // Since we allow local split results to be split again, there is a risk of
1716   // creating infinite loops. It is tempting to require that the new live
1717   // ranges have less instructions than the original. That would guarantee
1718   // convergence, but it is too strict. A live range with 3 instructions can be
1719   // split 2+3 (including the COPY), and we want to allow that.
1720   //
1721   // Instead we use these rules:
1722   //
1723   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1724   //    noop split, of course).
1725   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1726   //    the new ranges must have fewer instructions than before the split.
1727   // 3. New ranges with the same number of instructions are marked RS_Split2,
1728   //    smaller ranges are marked RS_New.
1729   //
1730   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1731   // excessive splitting and infinite loops.
1732   //
1733   bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
1734 
1735   // Best split candidate.
1736   unsigned BestBefore = NumGaps;
1737   unsigned BestAfter = 0;
1738   float BestDiff = 0;
1739 
1740   const float blockFreq =
1741     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1742     (1.0f / MBFI->getEntryFreq());
1743   SmallVector<float, 8> GapWeight;
1744 
1745   for (MCPhysReg PhysReg : Order) {
1746     assert(PhysReg);
1747     // Keep track of the largest spill weight that would need to be evicted in
1748     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
1749     calcGapWeights(PhysReg, GapWeight);
1750 
1751     // Remove any gaps with regmask clobbers.
1752     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1753       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
1754         GapWeight[RegMaskGaps[I]] = huge_valf;
1755 
1756     // Try to find the best sequence of gaps to close.
1757     // The new spill weight must be larger than any gap interference.
1758 
1759     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1760     unsigned SplitBefore = 0, SplitAfter = 1;
1761 
1762     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1763     // It is the spill weight that needs to be evicted.
1764     float MaxGap = GapWeight[0];
1765 
1766     while (true) {
1767       // Live before/after split?
1768       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1769       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1770 
1771       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
1772                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
1773 
1774       // Stop before the interval gets so big we wouldn't be making progress.
1775       if (!LiveBefore && !LiveAfter) {
1776         LLVM_DEBUG(dbgs() << " all\n");
1777         break;
1778       }
1779       // Should the interval be extended or shrunk?
1780       bool Shrink = true;
1781 
1782       // How many gaps would the new range have?
1783       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1784 
1785       // Legally, without causing looping?
1786       bool Legal = !ProgressRequired || NewGaps < NumGaps;
1787 
1788       if (Legal && MaxGap < huge_valf) {
1789         // Estimate the new spill weight. Each instruction reads or writes the
1790         // register. Conservatively assume there are no read-modify-write
1791         // instructions.
1792         //
1793         // Try to guess the size of the new interval.
1794         const float EstWeight = normalizeSpillWeight(
1795             blockFreq * (NewGaps + 1),
1796             Uses[SplitBefore].distance(Uses[SplitAfter]) +
1797                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1798             1);
1799         // Would this split be possible to allocate?
1800         // Never allocate all gaps, we wouldn't be making progress.
1801         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
1802         if (EstWeight * Hysteresis >= MaxGap) {
1803           Shrink = false;
1804           float Diff = EstWeight - MaxGap;
1805           if (Diff > BestDiff) {
1806             LLVM_DEBUG(dbgs() << " (best)");
1807             BestDiff = Hysteresis * Diff;
1808             BestBefore = SplitBefore;
1809             BestAfter = SplitAfter;
1810           }
1811         }
1812       }
1813 
1814       // Try to shrink.
1815       if (Shrink) {
1816         if (++SplitBefore < SplitAfter) {
1817           LLVM_DEBUG(dbgs() << " shrink\n");
1818           // Recompute the max when necessary.
1819           if (GapWeight[SplitBefore - 1] >= MaxGap) {
1820             MaxGap = GapWeight[SplitBefore];
1821             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
1822               MaxGap = std::max(MaxGap, GapWeight[I]);
1823           }
1824           continue;
1825         }
1826         MaxGap = 0;
1827       }
1828 
1829       // Try to extend the interval.
1830       if (SplitAfter >= NumGaps) {
1831         LLVM_DEBUG(dbgs() << " end\n");
1832         break;
1833       }
1834 
1835       LLVM_DEBUG(dbgs() << " extend\n");
1836       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1837     }
1838   }
1839 
1840   // Didn't find any candidates?
1841   if (BestBefore == NumGaps)
1842     return 0;
1843 
1844   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
1845                     << Uses[BestAfter] << ", " << BestDiff << ", "
1846                     << (BestAfter - BestBefore + 1) << " instrs\n");
1847 
1848   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1849   SE->reset(LREdit);
1850 
1851   SE->openIntv();
1852   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1853   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1854   SE->useIntv(SegStart, SegStop);
1855   SmallVector<unsigned, 8> IntvMap;
1856   SE->finish(&IntvMap);
1857   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1858   // If the new range has the same number of instructions as before, mark it as
1859   // RS_Split2 so the next split will be forced to make progress. Otherwise,
1860   // leave the new intervals as RS_New so they can compete.
1861   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1862   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1863   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1864   if (NewGaps >= NumGaps) {
1865     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1866     assert(!ProgressRequired && "Didn't make progress when it was required.");
1867     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
1868       if (IntvMap[I] == 1) {
1869         ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
1870         LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
1871       }
1872     LLVM_DEBUG(dbgs() << '\n');
1873   }
1874   ++NumLocalSplits;
1875 
1876   return 0;
1877 }
1878 
1879 //===----------------------------------------------------------------------===//
1880 //                          Live Range Splitting
1881 //===----------------------------------------------------------------------===//
1882 
1883 /// trySplit - Try to split VirtReg or one of its interferences, making it
1884 /// assignable.
1885 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1886 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order,
1887                             SmallVectorImpl<Register> &NewVRegs,
1888                             const SmallVirtRegSet &FixedRegisters) {
1889   // Ranges must be Split2 or less.
1890   if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
1891     return 0;
1892 
1893   // Local intervals are handled separately.
1894   if (LIS->intervalIsInOneMBB(VirtReg)) {
1895     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
1896                        TimerGroupDescription, TimePassesIsEnabled);
1897     SA->analyze(&VirtReg);
1898     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1899     if (PhysReg || !NewVRegs.empty())
1900       return PhysReg;
1901     return tryInstructionSplit(VirtReg, Order, NewVRegs);
1902   }
1903 
1904   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
1905                      TimerGroupDescription, TimePassesIsEnabled);
1906 
1907   SA->analyze(&VirtReg);
1908 
1909   // First try to split around a region spanning multiple blocks. RS_Split2
1910   // ranges already made dubious progress with region splitting, so they go
1911   // straight to single block splitting.
1912   if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
1913     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1914     if (PhysReg || !NewVRegs.empty())
1915       return PhysReg;
1916   }
1917 
1918   // Then isolate blocks.
1919   return tryBlockSplit(VirtReg, Order, NewVRegs);
1920 }
1921 
1922 //===----------------------------------------------------------------------===//
1923 //                          Last Chance Recoloring
1924 //===----------------------------------------------------------------------===//
1925 
1926 /// Return true if \p reg has any tied def operand.
1927 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
1928   for (const MachineOperand &MO : MRI->def_operands(reg))
1929     if (MO.isTied())
1930       return true;
1931 
1932   return false;
1933 }
1934 
1935 /// mayRecolorAllInterferences - Check if the virtual registers that
1936 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1937 /// recolored to free \p PhysReg.
1938 /// When true is returned, \p RecoloringCandidates has been augmented with all
1939 /// the live intervals that need to be recolored in order to free \p PhysReg
1940 /// for \p VirtReg.
1941 /// \p FixedRegisters contains all the virtual registers that cannot be
1942 /// recolored.
1943 bool RAGreedy::mayRecolorAllInterferences(
1944     MCRegister PhysReg, const LiveInterval &VirtReg,
1945     SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) {
1946   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1947 
1948   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1949     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1950     // If there is LastChanceRecoloringMaxInterference or more interferences,
1951     // chances are one would not be recolorable.
1952     if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
1953             LastChanceRecoloringMaxInterference &&
1954         !ExhaustiveSearch) {
1955       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1956       CutOffInfo |= CO_Interf;
1957       return false;
1958     }
1959     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1960       // If Intf is done and sit on the same register class as VirtReg,
1961       // it would not be recolorable as it is in the same state as VirtReg.
1962       // However, if VirtReg has tied defs and Intf doesn't, then
1963       // there is still a point in examining if it can be recolorable.
1964       if (((ExtraInfo->getStage(*Intf) == RS_Done &&
1965             MRI->getRegClass(Intf->reg()) == CurRC) &&
1966            !(hasTiedDef(MRI, VirtReg.reg()) &&
1967              !hasTiedDef(MRI, Intf->reg()))) ||
1968           FixedRegisters.count(Intf->reg())) {
1969         LLVM_DEBUG(
1970             dbgs() << "Early abort: the interference is not recolorable.\n");
1971         return false;
1972       }
1973       RecoloringCandidates.insert(Intf);
1974     }
1975   }
1976   return true;
1977 }
1978 
1979 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1980 /// its interferences.
1981 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
1982 /// virtual register that was using it. The recoloring process may recursively
1983 /// use the last chance recoloring. Therefore, when a virtual register has been
1984 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
1985 /// be last-chance-recolored again during this recoloring "session".
1986 /// E.g.,
1987 /// Let
1988 /// vA can use {R1, R2    }
1989 /// vB can use {    R2, R3}
1990 /// vC can use {R1        }
1991 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
1992 /// instance) and they all interfere.
1993 ///
1994 /// vA is assigned R1
1995 /// vB is assigned R2
1996 /// vC tries to evict vA but vA is already done.
1997 /// Regular register allocation fails.
1998 ///
1999 /// Last chance recoloring kicks in:
2000 /// vC does as if vA was evicted => vC uses R1.
2001 /// vC is marked as fixed.
2002 /// vA needs to find a color.
2003 /// None are available.
2004 /// vA cannot evict vC: vC is a fixed virtual register now.
2005 /// vA does as if vB was evicted => vA uses R2.
2006 /// vB needs to find a color.
2007 /// R3 is available.
2008 /// Recoloring => vC = R1, vA = R2, vB = R3
2009 ///
2010 /// \p Order defines the preferred allocation order for \p VirtReg.
2011 /// \p NewRegs will contain any new virtual register that have been created
2012 /// (split, spill) during the process and that must be assigned.
2013 /// \p FixedRegisters contains all the virtual registers that cannot be
2014 /// recolored.
2015 /// \p Depth gives the current depth of the last chance recoloring.
2016 /// \return a physical register that can be used for VirtReg or ~0u if none
2017 /// exists.
2018 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg,
2019                                            AllocationOrder &Order,
2020                                            SmallVectorImpl<Register> &NewVRegs,
2021                                            SmallVirtRegSet &FixedRegisters,
2022                                            unsigned Depth) {
2023   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2024     return ~0u;
2025 
2026   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2027   // Ranges must be Done.
2028   assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2029          "Last chance recoloring should really be last chance");
2030   // Set the max depth to LastChanceRecoloringMaxDepth.
2031   // We may want to reconsider that if we end up with a too large search space
2032   // for target with hundreds of registers.
2033   // Indeed, in that case we may want to cut the search space earlier.
2034   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2035     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2036     CutOffInfo |= CO_Depth;
2037     return ~0u;
2038   }
2039 
2040   // Set of Live intervals that will need to be recolored.
2041   SmallLISet RecoloringCandidates;
2042   // Record the original mapping virtual register to physical register in case
2043   // the recoloring fails.
2044   DenseMap<Register, MCRegister> VirtRegToPhysReg;
2045   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2046   // this recoloring "session".
2047   assert(!FixedRegisters.count(VirtReg.reg()));
2048   FixedRegisters.insert(VirtReg.reg());
2049   SmallVector<Register, 4> CurrentNewVRegs;
2050 
2051   for (MCRegister PhysReg : Order) {
2052     assert(PhysReg.isValid());
2053     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2054                       << printReg(PhysReg, TRI) << '\n');
2055     RecoloringCandidates.clear();
2056     VirtRegToPhysReg.clear();
2057     CurrentNewVRegs.clear();
2058 
2059     // It is only possible to recolor virtual register interference.
2060     if (Matrix->checkInterference(VirtReg, PhysReg) >
2061         LiveRegMatrix::IK_VirtReg) {
2062       LLVM_DEBUG(
2063           dbgs() << "Some interferences are not with virtual registers.\n");
2064 
2065       continue;
2066     }
2067 
2068     // Early give up on this PhysReg if it is obvious we cannot recolor all
2069     // the interferences.
2070     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2071                                     FixedRegisters)) {
2072       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2073       continue;
2074     }
2075 
2076     // RecoloringCandidates contains all the virtual registers that interfer
2077     // with VirtReg on PhysReg (or one of its aliases).
2078     // Enqueue them for recoloring and perform the actual recoloring.
2079     PQueue RecoloringQueue;
2080     for (const LiveInterval *RC : RecoloringCandidates) {
2081       Register ItVirtReg = RC->reg();
2082       enqueue(RecoloringQueue, RC);
2083       assert(VRM->hasPhys(ItVirtReg) &&
2084              "Interferences are supposed to be with allocated variables");
2085 
2086       // Record the current allocation.
2087       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2088       // unset the related struct.
2089       Matrix->unassign(*RC);
2090     }
2091 
2092     // Do as if VirtReg was assigned to PhysReg so that the underlying
2093     // recoloring has the right information about the interferes and
2094     // available colors.
2095     Matrix->assign(VirtReg, PhysReg);
2096 
2097     // Save the current recoloring state.
2098     // If we cannot recolor all the interferences, we will have to start again
2099     // at this point for the next physical register.
2100     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2101     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2102                                 FixedRegisters, Depth)) {
2103       // Push the queued vregs into the main queue.
2104       for (Register NewVReg : CurrentNewVRegs)
2105         NewVRegs.push_back(NewVReg);
2106       // Do not mess up with the global assignment process.
2107       // I.e., VirtReg must be unassigned.
2108       Matrix->unassign(VirtReg);
2109       return PhysReg;
2110     }
2111 
2112     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2113                       << printReg(PhysReg, TRI) << '\n');
2114 
2115     // The recoloring attempt failed, undo the changes.
2116     FixedRegisters = SaveFixedRegisters;
2117     Matrix->unassign(VirtReg);
2118 
2119     // For a newly created vreg which is also in RecoloringCandidates,
2120     // don't add it to NewVRegs because its physical register will be restored
2121     // below. Other vregs in CurrentNewVRegs are created by calling
2122     // selectOrSplit and should be added into NewVRegs.
2123     for (Register &R : CurrentNewVRegs) {
2124       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2125         continue;
2126       NewVRegs.push_back(R);
2127     }
2128 
2129     for (const LiveInterval *RC : RecoloringCandidates) {
2130       Register ItVirtReg = RC->reg();
2131       if (VRM->hasPhys(ItVirtReg))
2132         Matrix->unassign(*RC);
2133       MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2134       Matrix->assign(*RC, ItPhysReg);
2135     }
2136   }
2137 
2138   // Last chance recoloring did not worked either, give up.
2139   return ~0u;
2140 }
2141 
2142 /// tryRecoloringCandidates - Try to assign a new color to every register
2143 /// in \RecoloringQueue.
2144 /// \p NewRegs will contain any new virtual register created during the
2145 /// recoloring process.
2146 /// \p FixedRegisters[in/out] contains all the registers that have been
2147 /// recolored.
2148 /// \return true if all virtual registers in RecoloringQueue were successfully
2149 /// recolored, false otherwise.
2150 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2151                                        SmallVectorImpl<Register> &NewVRegs,
2152                                        SmallVirtRegSet &FixedRegisters,
2153                                        unsigned Depth) {
2154   while (!RecoloringQueue.empty()) {
2155     const LiveInterval *LI = dequeue(RecoloringQueue);
2156     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2157     MCRegister PhysReg =
2158         selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2159     // When splitting happens, the live-range may actually be empty.
2160     // In that case, this is okay to continue the recoloring even
2161     // if we did not find an alternative color for it. Indeed,
2162     // there will not be anything to color for LI in the end.
2163     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2164       return false;
2165 
2166     if (!PhysReg) {
2167       assert(LI->empty() && "Only empty live-range do not require a register");
2168       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2169                         << " succeeded. Empty LI.\n");
2170       continue;
2171     }
2172     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2173                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2174 
2175     Matrix->assign(*LI, PhysReg);
2176     FixedRegisters.insert(LI->reg());
2177   }
2178   return true;
2179 }
2180 
2181 //===----------------------------------------------------------------------===//
2182 //                            Main Entry Point
2183 //===----------------------------------------------------------------------===//
2184 
2185 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg,
2186                                    SmallVectorImpl<Register> &NewVRegs) {
2187   CutOffInfo = CO_None;
2188   LLVMContext &Ctx = MF->getFunction().getContext();
2189   SmallVirtRegSet FixedRegisters;
2190   MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2191   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2192     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2193     if (CutOffEncountered == CO_Depth)
2194       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2195                     "reached. Use -fexhaustive-register-search to skip "
2196                     "cutoffs");
2197     else if (CutOffEncountered == CO_Interf)
2198       Ctx.emitError("register allocation failed: maximum interference for "
2199                     "recoloring reached. Use -fexhaustive-register-search "
2200                     "to skip cutoffs");
2201     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2202       Ctx.emitError("register allocation failed: maximum interference and "
2203                     "depth for recoloring reached. Use "
2204                     "-fexhaustive-register-search to skip cutoffs");
2205   }
2206   return Reg;
2207 }
2208 
2209 /// Using a CSR for the first time has a cost because it causes push|pop
2210 /// to be added to prologue|epilogue. Splitting a cold section of the live
2211 /// range can have lower cost than using the CSR for the first time;
2212 /// Spilling a live range in the cold path can have lower cost than using
2213 /// the CSR for the first time. Returns the physical register if we decide
2214 /// to use the CSR; otherwise return 0.
2215 MCRegister RAGreedy::tryAssignCSRFirstTime(
2216     const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg,
2217     uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) {
2218   if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2219     // We choose spill over using the CSR for the first time if the spill cost
2220     // is lower than CSRCost.
2221     SA->analyze(&VirtReg);
2222     if (calcSpillCost() >= CSRCost)
2223       return PhysReg;
2224 
2225     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2226     // we will not use a callee-saved register in tryEvict.
2227     CostPerUseLimit = 1;
2228     return 0;
2229   }
2230   if (ExtraInfo->getStage(VirtReg) < RS_Split) {
2231     // We choose pre-splitting over using the CSR for the first time if
2232     // the cost of splitting is lower than CSRCost.
2233     SA->analyze(&VirtReg);
2234     unsigned NumCands = 0;
2235     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2236     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2237                                                  NumCands, true /*IgnoreCSR*/);
2238     if (BestCand == NoCand)
2239       // Use the CSR if we can't find a region split below CSRCost.
2240       return PhysReg;
2241 
2242     // Perform the actual pre-splitting.
2243     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2244     return 0;
2245   }
2246   return PhysReg;
2247 }
2248 
2249 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) {
2250   // Do not keep invalid information around.
2251   SetOfBrokenHints.remove(&LI);
2252 }
2253 
2254 void RAGreedy::initializeCSRCost() {
2255   // We use the larger one out of the command-line option and the value report
2256   // by TRI.
2257   CSRCost = BlockFrequency(
2258       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2259   if (!CSRCost.getFrequency())
2260     return;
2261 
2262   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2263   uint64_t ActualEntry = MBFI->getEntryFreq();
2264   if (!ActualEntry) {
2265     CSRCost = 0;
2266     return;
2267   }
2268   uint64_t FixedEntry = 1 << 14;
2269   if (ActualEntry < FixedEntry)
2270     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2271   else if (ActualEntry <= UINT32_MAX)
2272     // Invert the fraction and divide.
2273     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2274   else
2275     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2276     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2277 }
2278 
2279 /// Collect the hint info for \p Reg.
2280 /// The results are stored into \p Out.
2281 /// \p Out is not cleared before being populated.
2282 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2283   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2284     if (!Instr.isFullCopy())
2285       continue;
2286     // Look for the other end of the copy.
2287     Register OtherReg = Instr.getOperand(0).getReg();
2288     if (OtherReg == Reg) {
2289       OtherReg = Instr.getOperand(1).getReg();
2290       if (OtherReg == Reg)
2291         continue;
2292     }
2293     // Get the current assignment.
2294     MCRegister OtherPhysReg =
2295         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2296     // Push the collected information.
2297     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2298                            OtherPhysReg));
2299   }
2300 }
2301 
2302 /// Using the given \p List, compute the cost of the broken hints if
2303 /// \p PhysReg was used.
2304 /// \return The cost of \p List for \p PhysReg.
2305 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2306                                            MCRegister PhysReg) {
2307   BlockFrequency Cost = 0;
2308   for (const HintInfo &Info : List) {
2309     if (Info.PhysReg != PhysReg)
2310       Cost += Info.Freq;
2311   }
2312   return Cost;
2313 }
2314 
2315 /// Using the register assigned to \p VirtReg, try to recolor
2316 /// all the live ranges that are copy-related with \p VirtReg.
2317 /// The recoloring is then propagated to all the live-ranges that have
2318 /// been recolored and so on, until no more copies can be coalesced or
2319 /// it is not profitable.
2320 /// For a given live range, profitability is determined by the sum of the
2321 /// frequencies of the non-identity copies it would introduce with the old
2322 /// and new register.
2323 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) {
2324   // We have a broken hint, check if it is possible to fix it by
2325   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2326   // some register and PhysReg may be available for the other live-ranges.
2327   SmallSet<Register, 4> Visited;
2328   SmallVector<unsigned, 2> RecoloringCandidates;
2329   HintsInfo Info;
2330   Register Reg = VirtReg.reg();
2331   MCRegister PhysReg = VRM->getPhys(Reg);
2332   // Start the recoloring algorithm from the input live-interval, then
2333   // it will propagate to the ones that are copy-related with it.
2334   Visited.insert(Reg);
2335   RecoloringCandidates.push_back(Reg);
2336 
2337   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2338                     << '(' << printReg(PhysReg, TRI) << ")\n");
2339 
2340   do {
2341     Reg = RecoloringCandidates.pop_back_val();
2342 
2343     // We cannot recolor physical register.
2344     if (Register::isPhysicalRegister(Reg))
2345       continue;
2346 
2347     // This may be a skipped class
2348     if (!VRM->hasPhys(Reg)) {
2349       assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2350              "We have an unallocated variable which should have been handled");
2351       continue;
2352     }
2353 
2354     // Get the live interval mapped with this virtual register to be able
2355     // to check for the interference with the new color.
2356     LiveInterval &LI = LIS->getInterval(Reg);
2357     MCRegister CurrPhys = VRM->getPhys(Reg);
2358     // Check that the new color matches the register class constraints and
2359     // that it is free for this live range.
2360     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2361                                 Matrix->checkInterference(LI, PhysReg)))
2362       continue;
2363 
2364     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2365                       << ") is recolorable.\n");
2366 
2367     // Gather the hint info.
2368     Info.clear();
2369     collectHintInfo(Reg, Info);
2370     // Check if recoloring the live-range will increase the cost of the
2371     // non-identity copies.
2372     if (CurrPhys != PhysReg) {
2373       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2374       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2375       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2376       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2377                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2378                         << '\n');
2379       if (OldCopiesCost < NewCopiesCost) {
2380         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2381         continue;
2382       }
2383       // At this point, the cost is either cheaper or equal. If it is
2384       // equal, we consider this is profitable because it may expose
2385       // more recoloring opportunities.
2386       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2387       // Recolor the live-range.
2388       Matrix->unassign(LI);
2389       Matrix->assign(LI, PhysReg);
2390     }
2391     // Push all copy-related live-ranges to keep reconciling the broken
2392     // hints.
2393     for (const HintInfo &HI : Info) {
2394       if (Visited.insert(HI.Reg).second)
2395         RecoloringCandidates.push_back(HI.Reg);
2396     }
2397   } while (!RecoloringCandidates.empty());
2398 }
2399 
2400 /// Try to recolor broken hints.
2401 /// Broken hints may be repaired by recoloring when an evicted variable
2402 /// freed up a register for a larger live-range.
2403 /// Consider the following example:
2404 /// BB1:
2405 ///   a =
2406 ///   b =
2407 /// BB2:
2408 ///   ...
2409 ///   = b
2410 ///   = a
2411 /// Let us assume b gets split:
2412 /// BB1:
2413 ///   a =
2414 ///   b =
2415 /// BB2:
2416 ///   c = b
2417 ///   ...
2418 ///   d = c
2419 ///   = d
2420 ///   = a
2421 /// Because of how the allocation work, b, c, and d may be assigned different
2422 /// colors. Now, if a gets evicted later:
2423 /// BB1:
2424 ///   a =
2425 ///   st a, SpillSlot
2426 ///   b =
2427 /// BB2:
2428 ///   c = b
2429 ///   ...
2430 ///   d = c
2431 ///   = d
2432 ///   e = ld SpillSlot
2433 ///   = e
2434 /// This is likely that we can assign the same register for b, c, and d,
2435 /// getting rid of 2 copies.
2436 void RAGreedy::tryHintsRecoloring() {
2437   for (const LiveInterval *LI : SetOfBrokenHints) {
2438     assert(Register::isVirtualRegister(LI->reg()) &&
2439            "Recoloring is possible only for virtual registers");
2440     // Some dead defs may be around (e.g., because of debug uses).
2441     // Ignore those.
2442     if (!VRM->hasPhys(LI->reg()))
2443       continue;
2444     tryHintRecoloring(*LI);
2445   }
2446 }
2447 
2448 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg,
2449                                        SmallVectorImpl<Register> &NewVRegs,
2450                                        SmallVirtRegSet &FixedRegisters,
2451                                        unsigned Depth) {
2452   uint8_t CostPerUseLimit = uint8_t(~0u);
2453   // First try assigning a free register.
2454   auto Order =
2455       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
2456   if (MCRegister PhysReg =
2457           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
2458     // If VirtReg got an assignment, the eviction info is no longer relevant.
2459     LastEvicted.clearEvicteeInfo(VirtReg.reg());
2460     // When NewVRegs is not empty, we may have made decisions such as evicting
2461     // a virtual register, go with the earlier decisions and use the physical
2462     // register.
2463     if (CSRCost.getFrequency() &&
2464         EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
2465       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2466                                                 CostPerUseLimit, NewVRegs);
2467       if (CSRReg || !NewVRegs.empty())
2468         // Return now if we decide to use a CSR or create new vregs due to
2469         // pre-splitting.
2470         return CSRReg;
2471     } else
2472       return PhysReg;
2473   }
2474 
2475   LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
2476   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2477                     << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
2478 
2479   // Try to evict a less worthy live range, but only for ranges from the primary
2480   // queue. The RS_Split ranges already failed to do this, and they should not
2481   // get a second chance until they have been split.
2482   if (Stage != RS_Split)
2483     if (Register PhysReg =
2484             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
2485                      FixedRegisters)) {
2486       Register Hint = MRI->getSimpleHint(VirtReg.reg());
2487       // If VirtReg has a hint and that hint is broken record this
2488       // virtual register as a recoloring candidate for broken hint.
2489       // Indeed, since we evicted a variable in its neighborhood it is
2490       // likely we can at least partially recolor some of the
2491       // copy-related live-ranges.
2492       if (Hint && Hint != PhysReg)
2493         SetOfBrokenHints.insert(&VirtReg);
2494       // If VirtReg eviction someone, the eviction info for it as an evictee is
2495       // no longer relevant.
2496       LastEvicted.clearEvicteeInfo(VirtReg.reg());
2497       return PhysReg;
2498     }
2499 
2500   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2501 
2502   // The first time we see a live range, don't try to split or spill.
2503   // Wait until the second time, when all smaller ranges have been allocated.
2504   // This gives a better picture of the interference to split around.
2505   if (Stage < RS_Split) {
2506     ExtraInfo->setStage(VirtReg, RS_Split);
2507     LLVM_DEBUG(dbgs() << "wait for second round\n");
2508     NewVRegs.push_back(VirtReg.reg());
2509     return 0;
2510   }
2511 
2512   if (Stage < RS_Spill) {
2513     // Try splitting VirtReg or interferences.
2514     unsigned NewVRegSizeBefore = NewVRegs.size();
2515     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
2516     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
2517       // If VirtReg got split, the eviction info is no longer relevant.
2518       LastEvicted.clearEvicteeInfo(VirtReg.reg());
2519       return PhysReg;
2520     }
2521   }
2522 
2523   // If we couldn't allocate a register from spilling, there is probably some
2524   // invalid inline assembly. The base class will report it.
2525   if (Stage >= RS_Done || !VirtReg.isSpillable())
2526     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2527                                    Depth);
2528 
2529   // Finally spill VirtReg itself.
2530   if ((EnableDeferredSpilling ||
2531        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
2532       ExtraInfo->getStage(VirtReg) < RS_Memory) {
2533     // TODO: This is experimental and in particular, we do not model
2534     // the live range splitting done by spilling correctly.
2535     // We would need a deep integration with the spiller to do the
2536     // right thing here. Anyway, that is still good for early testing.
2537     ExtraInfo->setStage(VirtReg, RS_Memory);
2538     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2539     NewVRegs.push_back(VirtReg.reg());
2540   } else {
2541     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
2542                        TimerGroupDescription, TimePassesIsEnabled);
2543     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2544     spiller().spill(LRE);
2545     ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2546 
2547     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
2548     // the new regs are kept in LDV (still mapping to the old register), until
2549     // we rewrite spilled locations in LDV at a later stage.
2550     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
2551 
2552     if (VerifyEnabled)
2553       MF->verify(this, "After spilling");
2554   }
2555 
2556   // The live virtual register requesting allocation was spilled, so tell
2557   // the caller not to allocate anything during this round.
2558   return 0;
2559 }
2560 
2561 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
2562   using namespace ore;
2563   if (Spills) {
2564     R << NV("NumSpills", Spills) << " spills ";
2565     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
2566   }
2567   if (FoldedSpills) {
2568     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2569     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
2570       << " total folded spills cost ";
2571   }
2572   if (Reloads) {
2573     R << NV("NumReloads", Reloads) << " reloads ";
2574     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
2575   }
2576   if (FoldedReloads) {
2577     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2578     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
2579       << " total folded reloads cost ";
2580   }
2581   if (ZeroCostFoldedReloads)
2582     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
2583       << " zero cost folded reloads ";
2584   if (Copies) {
2585     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
2586     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
2587   }
2588 }
2589 
2590 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
2591   RAGreedyStats Stats;
2592   const MachineFrameInfo &MFI = MF->getFrameInfo();
2593   int FI;
2594 
2595   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
2596     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
2597         A->getPseudoValue())->getFrameIndex());
2598   };
2599   auto isPatchpointInstr = [](const MachineInstr &MI) {
2600     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
2601            MI.getOpcode() == TargetOpcode::STACKMAP ||
2602            MI.getOpcode() == TargetOpcode::STATEPOINT;
2603   };
2604   for (MachineInstr &MI : MBB) {
2605     if (MI.isCopy()) {
2606       MachineOperand &Dest = MI.getOperand(0);
2607       MachineOperand &Src = MI.getOperand(1);
2608       if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() &&
2609           Src.getReg().isVirtual())
2610         ++Stats.Copies;
2611       continue;
2612     }
2613 
2614     SmallVector<const MachineMemOperand *, 2> Accesses;
2615     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2616       ++Stats.Reloads;
2617       continue;
2618     }
2619     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2620       ++Stats.Spills;
2621       continue;
2622     }
2623     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
2624         llvm::any_of(Accesses, isSpillSlotAccess)) {
2625       if (!isPatchpointInstr(MI)) {
2626         Stats.FoldedReloads += Accesses.size();
2627         continue;
2628       }
2629       // For statepoint there may be folded and zero cost folded stack reloads.
2630       std::pair<unsigned, unsigned> NonZeroCostRange =
2631           TII->getPatchpointUnfoldableRange(MI);
2632       SmallSet<unsigned, 16> FoldedReloads;
2633       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
2634       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
2635         MachineOperand &MO = MI.getOperand(Idx);
2636         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
2637           continue;
2638         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
2639           FoldedReloads.insert(MO.getIndex());
2640         else
2641           ZeroCostFoldedReloads.insert(MO.getIndex());
2642       }
2643       // If stack slot is used in folded reload it is not zero cost then.
2644       for (unsigned Slot : FoldedReloads)
2645         ZeroCostFoldedReloads.erase(Slot);
2646       Stats.FoldedReloads += FoldedReloads.size();
2647       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
2648       continue;
2649     }
2650     Accesses.clear();
2651     if (TII->hasStoreToStackSlot(MI, Accesses) &&
2652         llvm::any_of(Accesses, isSpillSlotAccess)) {
2653       Stats.FoldedSpills += Accesses.size();
2654     }
2655   }
2656   // Set cost of collected statistic by multiplication to relative frequency of
2657   // this basic block.
2658   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
2659   Stats.ReloadsCost = RelFreq * Stats.Reloads;
2660   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
2661   Stats.SpillsCost = RelFreq * Stats.Spills;
2662   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
2663   Stats.CopiesCost = RelFreq * Stats.Copies;
2664   return Stats;
2665 }
2666 
2667 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
2668   RAGreedyStats Stats;
2669 
2670   // Sum up the spill and reloads in subloops.
2671   for (MachineLoop *SubLoop : *L)
2672     Stats.add(reportStats(SubLoop));
2673 
2674   for (MachineBasicBlock *MBB : L->getBlocks())
2675     // Handle blocks that were not included in subloops.
2676     if (Loops->getLoopFor(MBB) == L)
2677       Stats.add(computeStats(*MBB));
2678 
2679   if (!Stats.isEmpty()) {
2680     using namespace ore;
2681 
2682     ORE->emit([&]() {
2683       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
2684                                         L->getStartLoc(), L->getHeader());
2685       Stats.report(R);
2686       R << "generated in loop";
2687       return R;
2688     });
2689   }
2690   return Stats;
2691 }
2692 
2693 void RAGreedy::reportStats() {
2694   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
2695     return;
2696   RAGreedyStats Stats;
2697   for (MachineLoop *L : *Loops)
2698     Stats.add(reportStats(L));
2699   // Process non-loop blocks.
2700   for (MachineBasicBlock &MBB : *MF)
2701     if (!Loops->getLoopFor(&MBB))
2702       Stats.add(computeStats(MBB));
2703   if (!Stats.isEmpty()) {
2704     using namespace ore;
2705 
2706     ORE->emit([&]() {
2707       DebugLoc Loc;
2708       if (auto *SP = MF->getFunction().getSubprogram())
2709         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
2710       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
2711                                         &MF->front());
2712       Stats.report(R);
2713       R << "generated in function";
2714       return R;
2715     });
2716   }
2717 }
2718 
2719 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2720   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2721                     << "********** Function: " << mf.getName() << '\n');
2722 
2723   MF = &mf;
2724   TRI = MF->getSubtarget().getRegisterInfo();
2725   TII = MF->getSubtarget().getInstrInfo();
2726   RCI.runOnMachineFunction(mf);
2727 
2728   EnableAdvancedRASplitCost =
2729       ConsiderLocalIntervalCost.getNumOccurrences()
2730           ? ConsiderLocalIntervalCost
2731           : MF->getSubtarget().enableAdvancedRASplitCost();
2732 
2733   if (VerifyEnabled)
2734     MF->verify(this, "Before greedy register allocator");
2735 
2736   RegAllocBase::init(getAnalysis<VirtRegMap>(),
2737                      getAnalysis<LiveIntervals>(),
2738                      getAnalysis<LiveRegMatrix>());
2739   Indexes = &getAnalysis<SlotIndexes>();
2740   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2741   DomTree = &getAnalysis<MachineDominatorTree>();
2742   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2743   Loops = &getAnalysis<MachineLoopInfo>();
2744   Bundles = &getAnalysis<EdgeBundles>();
2745   SpillPlacer = &getAnalysis<SpillPlacement>();
2746   DebugVars = &getAnalysis<LiveDebugVariables>();
2747   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2748 
2749   initializeCSRCost();
2750 
2751   RegCosts = TRI->getRegisterCosts(*MF);
2752 
2753   ExtraInfo.emplace();
2754   EvictAdvisor =
2755       getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this);
2756 
2757   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
2758   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
2759 
2760   VRAI->calculateSpillWeightsAndHints();
2761 
2762   LLVM_DEBUG(LIS->dump());
2763 
2764   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2765   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
2766 
2767   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2768   GlobalCand.resize(32);  // This will grow as needed.
2769   SetOfBrokenHints.clear();
2770   LastEvicted.clear();
2771 
2772   allocatePhysRegs();
2773   tryHintsRecoloring();
2774 
2775   if (VerifyEnabled)
2776     MF->verify(this, "Before post optimization");
2777   postOptimization();
2778   reportStats();
2779 
2780   releaseMemory();
2781   return true;
2782 }
2783