1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "SpillPlacement.h" 20 #include "Spiller.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/CalcSpillWeights.h" 25 #include "llvm/CodeGen/EdgeBundles.h" 26 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 27 #include "llvm/CodeGen/LiveRangeEdit.h" 28 #include "llvm/CodeGen/LiveRegMatrix.h" 29 #include "llvm/CodeGen/LiveStackAnalysis.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineLoopInfo.h" 35 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/Passes.h" 38 #include "llvm/CodeGen/RegAllocRegistry.h" 39 #include "llvm/CodeGen/RegisterClassInfo.h" 40 #include "llvm/CodeGen/VirtRegMap.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/PassAnalysisSupport.h" 43 #include "llvm/Support/BranchProbability.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetSubtargetInfo.h" 51 #include <queue> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "regalloc" 56 57 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 58 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 59 STATISTIC(NumEvicted, "Number of interferences evicted"); 60 61 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 62 "split-spill-mode", cl::Hidden, 63 cl::desc("Spill mode for splitting live ranges"), 64 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 65 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 66 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 67 cl::init(SplitEditor::SM_Speed)); 68 69 static cl::opt<unsigned> 70 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 71 cl::desc("Last chance recoloring max depth"), 72 cl::init(5)); 73 74 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 75 "lcr-max-interf", cl::Hidden, 76 cl::desc("Last chance recoloring maximum number of considered" 77 " interference at a time"), 78 cl::init(8)); 79 80 static cl::opt<bool> 81 ExhaustiveSearch("exhaustive-register-search", cl::NotHidden, 82 cl::desc("Exhaustive Search for registers bypassing the depth " 83 "and interference cutoffs of last chance recoloring")); 84 85 static cl::opt<bool> EnableLocalReassignment( 86 "enable-local-reassign", cl::Hidden, 87 cl::desc("Local reassignment can yield better allocation decisions, but " 88 "may be compile time intensive"), 89 cl::init(false)); 90 91 static cl::opt<bool> EnableDeferredSpilling( 92 "enable-deferred-spilling", cl::Hidden, 93 cl::desc("Instead of spilling a variable right away, defer the actual " 94 "code insertion to the end of the allocation. That way the " 95 "allocator might still find a suitable coloring for this " 96 "variable because of other evicted variables."), 97 cl::init(false)); 98 99 // FIXME: Find a good default for this flag and remove the flag. 100 static cl::opt<unsigned> 101 CSRFirstTimeCost("regalloc-csr-first-time-cost", 102 cl::desc("Cost for first time use of callee-saved register."), 103 cl::init(0), cl::Hidden); 104 105 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 106 createGreedyRegisterAllocator); 107 108 namespace { 109 class RAGreedy : public MachineFunctionPass, 110 public RegAllocBase, 111 private LiveRangeEdit::Delegate { 112 // Convenient shortcuts. 113 typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue; 114 typedef SmallPtrSet<LiveInterval *, 4> SmallLISet; 115 typedef SmallSet<unsigned, 16> SmallVirtRegSet; 116 117 // context 118 MachineFunction *MF; 119 120 // Shortcuts to some useful interface. 121 const TargetInstrInfo *TII; 122 const TargetRegisterInfo *TRI; 123 RegisterClassInfo RCI; 124 125 // analyses 126 SlotIndexes *Indexes; 127 MachineBlockFrequencyInfo *MBFI; 128 MachineDominatorTree *DomTree; 129 MachineLoopInfo *Loops; 130 MachineOptimizationRemarkEmitter *ORE; 131 EdgeBundles *Bundles; 132 SpillPlacement *SpillPlacer; 133 LiveDebugVariables *DebugVars; 134 AliasAnalysis *AA; 135 136 // state 137 std::unique_ptr<Spiller> SpillerInstance; 138 PQueue Queue; 139 unsigned NextCascade; 140 141 // Live ranges pass through a number of stages as we try to allocate them. 142 // Some of the stages may also create new live ranges: 143 // 144 // - Region splitting. 145 // - Per-block splitting. 146 // - Local splitting. 147 // - Spilling. 148 // 149 // Ranges produced by one of the stages skip the previous stages when they are 150 // dequeued. This improves performance because we can skip interference checks 151 // that are unlikely to give any results. It also guarantees that the live 152 // range splitting algorithm terminates, something that is otherwise hard to 153 // ensure. 154 enum LiveRangeStage { 155 /// Newly created live range that has never been queued. 156 RS_New, 157 158 /// Only attempt assignment and eviction. Then requeue as RS_Split. 159 RS_Assign, 160 161 /// Attempt live range splitting if assignment is impossible. 162 RS_Split, 163 164 /// Attempt more aggressive live range splitting that is guaranteed to make 165 /// progress. This is used for split products that may not be making 166 /// progress. 167 RS_Split2, 168 169 /// Live range will be spilled. No more splitting will be attempted. 170 RS_Spill, 171 172 173 /// Live range is in memory. Because of other evictions, it might get moved 174 /// in a register in the end. 175 RS_Memory, 176 177 /// There is nothing more we can do to this live range. Abort compilation 178 /// if it can't be assigned. 179 RS_Done 180 }; 181 182 // Enum CutOffStage to keep a track whether the register allocation failed 183 // because of the cutoffs encountered in last chance recoloring. 184 // Note: This is used as bitmask. New value should be next power of 2. 185 enum CutOffStage { 186 // No cutoffs encountered 187 CO_None = 0, 188 189 // lcr-max-depth cutoff encountered 190 CO_Depth = 1, 191 192 // lcr-max-interf cutoff encountered 193 CO_Interf = 2 194 }; 195 196 uint8_t CutOffInfo; 197 198 #ifndef NDEBUG 199 static const char *const StageName[]; 200 #endif 201 202 // RegInfo - Keep additional information about each live range. 203 struct RegInfo { 204 LiveRangeStage Stage; 205 206 // Cascade - Eviction loop prevention. See canEvictInterference(). 207 unsigned Cascade; 208 209 RegInfo() : Stage(RS_New), Cascade(0) {} 210 }; 211 212 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 213 214 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 215 return ExtraRegInfo[VirtReg.reg].Stage; 216 } 217 218 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 219 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 220 ExtraRegInfo[VirtReg.reg].Stage = Stage; 221 } 222 223 template<typename Iterator> 224 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 225 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 226 for (;Begin != End; ++Begin) { 227 unsigned Reg = *Begin; 228 if (ExtraRegInfo[Reg].Stage == RS_New) 229 ExtraRegInfo[Reg].Stage = NewStage; 230 } 231 } 232 233 /// Cost of evicting interference. 234 struct EvictionCost { 235 unsigned BrokenHints; ///< Total number of broken hints. 236 float MaxWeight; ///< Maximum spill weight evicted. 237 238 EvictionCost(): BrokenHints(0), MaxWeight(0) {} 239 240 bool isMax() const { return BrokenHints == ~0u; } 241 242 void setMax() { BrokenHints = ~0u; } 243 244 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 245 246 bool operator<(const EvictionCost &O) const { 247 return std::tie(BrokenHints, MaxWeight) < 248 std::tie(O.BrokenHints, O.MaxWeight); 249 } 250 }; 251 252 // splitting state. 253 std::unique_ptr<SplitAnalysis> SA; 254 std::unique_ptr<SplitEditor> SE; 255 256 /// Cached per-block interference maps 257 InterferenceCache IntfCache; 258 259 /// All basic blocks where the current register has uses. 260 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 261 262 /// Global live range splitting candidate info. 263 struct GlobalSplitCandidate { 264 // Register intended for assignment, or 0. 265 unsigned PhysReg; 266 267 // SplitKit interval index for this candidate. 268 unsigned IntvIdx; 269 270 // Interference for PhysReg. 271 InterferenceCache::Cursor Intf; 272 273 // Bundles where this candidate should be live. 274 BitVector LiveBundles; 275 SmallVector<unsigned, 8> ActiveBlocks; 276 277 void reset(InterferenceCache &Cache, unsigned Reg) { 278 PhysReg = Reg; 279 IntvIdx = 0; 280 Intf.setPhysReg(Cache, Reg); 281 LiveBundles.clear(); 282 ActiveBlocks.clear(); 283 } 284 285 // Set B[i] = C for every live bundle where B[i] was NoCand. 286 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 287 unsigned Count = 0; 288 for (int i = LiveBundles.find_first(); i >= 0; 289 i = LiveBundles.find_next(i)) 290 if (B[i] == NoCand) { 291 B[i] = C; 292 Count++; 293 } 294 return Count; 295 } 296 }; 297 298 /// Candidate info for each PhysReg in AllocationOrder. 299 /// This vector never shrinks, but grows to the size of the largest register 300 /// class. 301 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 302 303 enum : unsigned { NoCand = ~0u }; 304 305 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 306 /// NoCand which indicates the stack interval. 307 SmallVector<unsigned, 32> BundleCand; 308 309 /// Callee-save register cost, calculated once per machine function. 310 BlockFrequency CSRCost; 311 312 /// Run or not the local reassignment heuristic. This information is 313 /// obtained from the TargetSubtargetInfo. 314 bool EnableLocalReassign; 315 316 /// Set of broken hints that may be reconciled later because of eviction. 317 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 318 319 public: 320 RAGreedy(); 321 322 /// Return the pass name. 323 StringRef getPassName() const override { return "Greedy Register Allocator"; } 324 325 /// RAGreedy analysis usage. 326 void getAnalysisUsage(AnalysisUsage &AU) const override; 327 void releaseMemory() override; 328 Spiller &spiller() override { return *SpillerInstance; } 329 void enqueue(LiveInterval *LI) override; 330 LiveInterval *dequeue() override; 331 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; 332 void aboutToRemoveInterval(LiveInterval &) override; 333 334 /// Perform register allocation. 335 bool runOnMachineFunction(MachineFunction &mf) override; 336 337 MachineFunctionProperties getRequiredProperties() const override { 338 return MachineFunctionProperties().set( 339 MachineFunctionProperties::Property::NoPHIs); 340 } 341 342 static char ID; 343 344 private: 345 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, 346 SmallVirtRegSet &, unsigned = 0); 347 348 bool LRE_CanEraseVirtReg(unsigned) override; 349 void LRE_WillShrinkVirtReg(unsigned) override; 350 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 351 void enqueue(PQueue &CurQueue, LiveInterval *LI); 352 LiveInterval *dequeue(PQueue &CurQueue); 353 354 BlockFrequency calcSpillCost(); 355 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 356 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 357 void growRegion(GlobalSplitCandidate &Cand); 358 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&); 359 bool calcCompactRegion(GlobalSplitCandidate&); 360 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 361 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 362 unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg); 363 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 364 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 365 void evictInterference(LiveInterval&, unsigned, 366 SmallVectorImpl<unsigned>&); 367 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 368 SmallLISet &RecoloringCandidates, 369 const SmallVirtRegSet &FixedRegisters); 370 371 unsigned tryAssign(LiveInterval&, AllocationOrder&, 372 SmallVectorImpl<unsigned>&); 373 unsigned tryEvict(LiveInterval&, AllocationOrder&, 374 SmallVectorImpl<unsigned>&, unsigned = ~0u); 375 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 376 SmallVectorImpl<unsigned>&); 377 /// Calculate cost of region splitting. 378 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 379 AllocationOrder &Order, 380 BlockFrequency &BestCost, 381 unsigned &NumCands, bool IgnoreCSR); 382 /// Perform region splitting. 383 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 384 bool HasCompact, 385 SmallVectorImpl<unsigned> &NewVRegs); 386 /// Check other options before using a callee-saved register for the first 387 /// time. 388 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 389 unsigned PhysReg, unsigned &CostPerUseLimit, 390 SmallVectorImpl<unsigned> &NewVRegs); 391 void initializeCSRCost(); 392 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 393 SmallVectorImpl<unsigned>&); 394 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 395 SmallVectorImpl<unsigned>&); 396 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 397 SmallVectorImpl<unsigned>&); 398 unsigned trySplit(LiveInterval&, AllocationOrder&, 399 SmallVectorImpl<unsigned>&); 400 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 401 SmallVectorImpl<unsigned> &, 402 SmallVirtRegSet &, unsigned); 403 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, 404 SmallVirtRegSet &, unsigned); 405 void tryHintRecoloring(LiveInterval &); 406 void tryHintsRecoloring(); 407 408 /// Model the information carried by one end of a copy. 409 struct HintInfo { 410 /// The frequency of the copy. 411 BlockFrequency Freq; 412 /// The virtual register or physical register. 413 unsigned Reg; 414 /// Its currently assigned register. 415 /// In case of a physical register Reg == PhysReg. 416 unsigned PhysReg; 417 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) 418 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 419 }; 420 typedef SmallVector<HintInfo, 4> HintsInfo; 421 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 422 void collectHintInfo(unsigned, HintsInfo &); 423 424 bool isUnusedCalleeSavedReg(unsigned PhysReg) const; 425 426 /// Compute and report the number of spills and reloads for a loop. 427 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 428 unsigned &FoldedReloads, unsigned &Spills, 429 unsigned &FoldedSpills); 430 431 /// Report the number of spills and reloads for each loop. 432 void reportNumberOfSplillsReloads() { 433 for (MachineLoop *L : *Loops) { 434 unsigned Reloads, FoldedReloads, Spills, FoldedSpills; 435 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills, 436 FoldedSpills); 437 } 438 } 439 }; 440 } // end anonymous namespace 441 442 char RAGreedy::ID = 0; 443 char &llvm::RAGreedyID = RAGreedy::ID; 444 445 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 446 "Greedy Register Allocator", false, false) 447 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 448 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 449 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 450 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 451 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 452 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 453 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 454 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 455 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 456 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 457 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 458 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 459 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 460 INITIALIZE_PASS_END(RAGreedy, "greedy", 461 "Greedy Register Allocator", false, false) 462 463 #ifndef NDEBUG 464 const char *const RAGreedy::StageName[] = { 465 "RS_New", 466 "RS_Assign", 467 "RS_Split", 468 "RS_Split2", 469 "RS_Spill", 470 "RS_Memory", 471 "RS_Done" 472 }; 473 #endif 474 475 // Hysteresis to use when comparing floats. 476 // This helps stabilize decisions based on float comparisons. 477 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 478 479 480 FunctionPass* llvm::createGreedyRegisterAllocator() { 481 return new RAGreedy(); 482 } 483 484 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 485 } 486 487 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 488 AU.setPreservesCFG(); 489 AU.addRequired<MachineBlockFrequencyInfo>(); 490 AU.addPreserved<MachineBlockFrequencyInfo>(); 491 AU.addRequired<AAResultsWrapperPass>(); 492 AU.addPreserved<AAResultsWrapperPass>(); 493 AU.addRequired<LiveIntervals>(); 494 AU.addPreserved<LiveIntervals>(); 495 AU.addRequired<SlotIndexes>(); 496 AU.addPreserved<SlotIndexes>(); 497 AU.addRequired<LiveDebugVariables>(); 498 AU.addPreserved<LiveDebugVariables>(); 499 AU.addRequired<LiveStacks>(); 500 AU.addPreserved<LiveStacks>(); 501 AU.addRequired<MachineDominatorTree>(); 502 AU.addPreserved<MachineDominatorTree>(); 503 AU.addRequired<MachineLoopInfo>(); 504 AU.addPreserved<MachineLoopInfo>(); 505 AU.addRequired<VirtRegMap>(); 506 AU.addPreserved<VirtRegMap>(); 507 AU.addRequired<LiveRegMatrix>(); 508 AU.addPreserved<LiveRegMatrix>(); 509 AU.addRequired<EdgeBundles>(); 510 AU.addRequired<SpillPlacement>(); 511 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 512 MachineFunctionPass::getAnalysisUsage(AU); 513 } 514 515 516 //===----------------------------------------------------------------------===// 517 // LiveRangeEdit delegate methods 518 //===----------------------------------------------------------------------===// 519 520 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 521 if (VRM->hasPhys(VirtReg)) { 522 LiveInterval &LI = LIS->getInterval(VirtReg); 523 Matrix->unassign(LI); 524 aboutToRemoveInterval(LI); 525 return true; 526 } 527 // Unassigned virtreg is probably in the priority queue. 528 // RegAllocBase will erase it after dequeueing. 529 return false; 530 } 531 532 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 533 if (!VRM->hasPhys(VirtReg)) 534 return; 535 536 // Register is assigned, put it back on the queue for reassignment. 537 LiveInterval &LI = LIS->getInterval(VirtReg); 538 Matrix->unassign(LI); 539 enqueue(&LI); 540 } 541 542 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 543 // Cloning a register we haven't even heard about yet? Just ignore it. 544 if (!ExtraRegInfo.inBounds(Old)) 545 return; 546 547 // LRE may clone a virtual register because dead code elimination causes it to 548 // be split into connected components. The new components are much smaller 549 // than the original, so they should get a new chance at being assigned. 550 // same stage as the parent. 551 ExtraRegInfo[Old].Stage = RS_Assign; 552 ExtraRegInfo.grow(New); 553 ExtraRegInfo[New] = ExtraRegInfo[Old]; 554 } 555 556 void RAGreedy::releaseMemory() { 557 SpillerInstance.reset(); 558 ExtraRegInfo.clear(); 559 GlobalCand.clear(); 560 } 561 562 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 563 564 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 565 // Prioritize live ranges by size, assigning larger ranges first. 566 // The queue holds (size, reg) pairs. 567 const unsigned Size = LI->getSize(); 568 const unsigned Reg = LI->reg; 569 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 570 "Can only enqueue virtual registers"); 571 unsigned Prio; 572 573 ExtraRegInfo.grow(Reg); 574 if (ExtraRegInfo[Reg].Stage == RS_New) 575 ExtraRegInfo[Reg].Stage = RS_Assign; 576 577 if (ExtraRegInfo[Reg].Stage == RS_Split) { 578 // Unsplit ranges that couldn't be allocated immediately are deferred until 579 // everything else has been allocated. 580 Prio = Size; 581 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 582 // Memory operand should be considered last. 583 // Change the priority such that Memory operand are assigned in 584 // the reverse order that they came in. 585 // TODO: Make this a member variable and probably do something about hints. 586 static unsigned MemOp = 0; 587 Prio = MemOp++; 588 } else { 589 // Giant live ranges fall back to the global assignment heuristic, which 590 // prevents excessive spilling in pathological cases. 591 bool ReverseLocal = TRI->reverseLocalAssignment(); 592 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 593 bool ForceGlobal = !ReverseLocal && 594 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 595 596 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 597 LIS->intervalIsInOneMBB(*LI)) { 598 // Allocate original local ranges in linear instruction order. Since they 599 // are singly defined, this produces optimal coloring in the absence of 600 // global interference and other constraints. 601 if (!ReverseLocal) 602 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 603 else { 604 // Allocating bottom up may allow many short LRGs to be assigned first 605 // to one of the cheap registers. This could be much faster for very 606 // large blocks on targets with many physical registers. 607 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 608 } 609 Prio |= RC.AllocationPriority << 24; 610 } else { 611 // Allocate global and split ranges in long->short order. Long ranges that 612 // don't fit should be spilled (or split) ASAP so they don't create 613 // interference. Mark a bit to prioritize global above local ranges. 614 Prio = (1u << 29) + Size; 615 } 616 // Mark a higher bit to prioritize global and local above RS_Split. 617 Prio |= (1u << 31); 618 619 // Boost ranges that have a physical register hint. 620 if (VRM->hasKnownPreference(Reg)) 621 Prio |= (1u << 30); 622 } 623 // The virtual register number is a tie breaker for same-sized ranges. 624 // Give lower vreg numbers higher priority to assign them first. 625 CurQueue.push(std::make_pair(Prio, ~Reg)); 626 } 627 628 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 629 630 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 631 if (CurQueue.empty()) 632 return nullptr; 633 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 634 CurQueue.pop(); 635 return LI; 636 } 637 638 639 //===----------------------------------------------------------------------===// 640 // Direct Assignment 641 //===----------------------------------------------------------------------===// 642 643 /// tryAssign - Try to assign VirtReg to an available register. 644 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 645 AllocationOrder &Order, 646 SmallVectorImpl<unsigned> &NewVRegs) { 647 Order.rewind(); 648 unsigned PhysReg; 649 while ((PhysReg = Order.next())) 650 if (!Matrix->checkInterference(VirtReg, PhysReg)) 651 break; 652 if (!PhysReg || Order.isHint()) 653 return PhysReg; 654 655 // PhysReg is available, but there may be a better choice. 656 657 // If we missed a simple hint, try to cheaply evict interference from the 658 // preferred register. 659 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 660 if (Order.isHint(Hint)) { 661 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); 662 EvictionCost MaxCost; 663 MaxCost.setBrokenHints(1); 664 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 665 evictInterference(VirtReg, Hint, NewVRegs); 666 return Hint; 667 } 668 // Record the missed hint, we may be able to recover 669 // at the end if the surrounding allocation changed. 670 SetOfBrokenHints.insert(&VirtReg); 671 } 672 673 // Try to evict interference from a cheaper alternative. 674 unsigned Cost = TRI->getCostPerUse(PhysReg); 675 676 // Most registers have 0 additional cost. 677 if (!Cost) 678 return PhysReg; 679 680 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost 681 << '\n'); 682 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 683 return CheapReg ? CheapReg : PhysReg; 684 } 685 686 687 //===----------------------------------------------------------------------===// 688 // Interference eviction 689 //===----------------------------------------------------------------------===// 690 691 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { 692 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 693 unsigned PhysReg; 694 while ((PhysReg = Order.next())) { 695 if (PhysReg == PrevReg) 696 continue; 697 698 MCRegUnitIterator Units(PhysReg, TRI); 699 for (; Units.isValid(); ++Units) { 700 // Instantiate a "subquery", not to be confused with the Queries array. 701 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 702 if (subQ.checkInterference()) 703 break; 704 } 705 // If no units have interference, break out with the current PhysReg. 706 if (!Units.isValid()) 707 break; 708 } 709 if (PhysReg) 710 DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 711 << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI) 712 << '\n'); 713 return PhysReg; 714 } 715 716 /// shouldEvict - determine if A should evict the assigned live range B. The 717 /// eviction policy defined by this function together with the allocation order 718 /// defined by enqueue() decides which registers ultimately end up being split 719 /// and spilled. 720 /// 721 /// Cascade numbers are used to prevent infinite loops if this function is a 722 /// cyclic relation. 723 /// 724 /// @param A The live range to be assigned. 725 /// @param IsHint True when A is about to be assigned to its preferred 726 /// register. 727 /// @param B The live range to be evicted. 728 /// @param BreaksHint True when B is already assigned to its preferred register. 729 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 730 LiveInterval &B, bool BreaksHint) { 731 bool CanSplit = getStage(B) < RS_Spill; 732 733 // Be fairly aggressive about following hints as long as the evictee can be 734 // split. 735 if (CanSplit && IsHint && !BreaksHint) 736 return true; 737 738 if (A.weight > B.weight) { 739 DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); 740 return true; 741 } 742 return false; 743 } 744 745 /// canEvictInterference - Return true if all interferences between VirtReg and 746 /// PhysReg can be evicted. 747 /// 748 /// @param VirtReg Live range that is about to be assigned. 749 /// @param PhysReg Desired register for assignment. 750 /// @param IsHint True when PhysReg is VirtReg's preferred register. 751 /// @param MaxCost Only look for cheaper candidates and update with new cost 752 /// when returning true. 753 /// @returns True when interference can be evicted cheaper than MaxCost. 754 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 755 bool IsHint, EvictionCost &MaxCost) { 756 // It is only possible to evict virtual register interference. 757 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 758 return false; 759 760 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 761 762 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 763 // involved in an eviction before. If a cascade number was assigned, deny 764 // evicting anything with the same or a newer cascade number. This prevents 765 // infinite eviction loops. 766 // 767 // This works out so a register without a cascade number is allowed to evict 768 // anything, and it can be evicted by anything. 769 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 770 if (!Cascade) 771 Cascade = NextCascade; 772 773 EvictionCost Cost; 774 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 775 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 776 // If there is 10 or more interferences, chances are one is heavier. 777 if (Q.collectInterferingVRegs(10) >= 10) 778 return false; 779 780 // Check if any interfering live range is heavier than MaxWeight. 781 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 782 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 783 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && 784 "Only expecting virtual register interference from query"); 785 // Never evict spill products. They cannot split or spill. 786 if (getStage(*Intf) == RS_Done) 787 return false; 788 // Once a live range becomes small enough, it is urgent that we find a 789 // register for it. This is indicated by an infinite spill weight. These 790 // urgent live ranges get to evict almost anything. 791 // 792 // Also allow urgent evictions of unspillable ranges from a strictly 793 // larger allocation order. 794 bool Urgent = !VirtReg.isSpillable() && 795 (Intf->isSpillable() || 796 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 797 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 798 // Only evict older cascades or live ranges without a cascade. 799 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 800 if (Cascade <= IntfCascade) { 801 if (!Urgent) 802 return false; 803 // We permit breaking cascades for urgent evictions. It should be the 804 // last resort, though, so make it really expensive. 805 Cost.BrokenHints += 10; 806 } 807 // Would this break a satisfied hint? 808 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 809 // Update eviction cost. 810 Cost.BrokenHints += BreaksHint; 811 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 812 // Abort if this would be too expensive. 813 if (!(Cost < MaxCost)) 814 return false; 815 if (Urgent) 816 continue; 817 // Apply the eviction policy for non-urgent evictions. 818 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 819 return false; 820 // If !MaxCost.isMax(), then we're just looking for a cheap register. 821 // Evicting another local live range in this case could lead to suboptimal 822 // coloring. 823 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 824 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 825 return false; 826 } 827 } 828 } 829 MaxCost = Cost; 830 return true; 831 } 832 833 /// evictInterference - Evict any interferring registers that prevent VirtReg 834 /// from being assigned to Physreg. This assumes that canEvictInterference 835 /// returned true. 836 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 837 SmallVectorImpl<unsigned> &NewVRegs) { 838 // Make sure that VirtReg has a cascade number, and assign that cascade 839 // number to every evicted register. These live ranges than then only be 840 // evicted by a newer cascade, preventing infinite loops. 841 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 842 if (!Cascade) 843 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 844 845 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) 846 << " interference: Cascade " << Cascade << '\n'); 847 848 // Collect all interfering virtregs first. 849 SmallVector<LiveInterval*, 8> Intfs; 850 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 851 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 852 // We usually have the interfering VRegs cached so collectInterferingVRegs() 853 // should be fast, we may need to recalculate if when different physregs 854 // overlap the same register unit so we had different SubRanges queried 855 // against it. 856 Q.collectInterferingVRegs(); 857 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 858 Intfs.append(IVR.begin(), IVR.end()); 859 } 860 861 // Evict them second. This will invalidate the queries. 862 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 863 LiveInterval *Intf = Intfs[i]; 864 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 865 if (!VRM->hasPhys(Intf->reg)) 866 continue; 867 Matrix->unassign(*Intf); 868 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 869 VirtReg.isSpillable() < Intf->isSpillable()) && 870 "Cannot decrease cascade number, illegal eviction"); 871 ExtraRegInfo[Intf->reg].Cascade = Cascade; 872 ++NumEvicted; 873 NewVRegs.push_back(Intf->reg); 874 } 875 } 876 877 /// Returns true if the given \p PhysReg is a callee saved register and has not 878 /// been used for allocation yet. 879 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { 880 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 881 if (CSR == 0) 882 return false; 883 884 return !Matrix->isPhysRegUsed(PhysReg); 885 } 886 887 /// tryEvict - Try to evict all interferences for a physreg. 888 /// @param VirtReg Currently unassigned virtual register. 889 /// @param Order Physregs to try. 890 /// @return Physreg to assign VirtReg, or 0. 891 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 892 AllocationOrder &Order, 893 SmallVectorImpl<unsigned> &NewVRegs, 894 unsigned CostPerUseLimit) { 895 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 896 TimePassesIsEnabled); 897 898 // Keep track of the cheapest interference seen so far. 899 EvictionCost BestCost; 900 BestCost.setMax(); 901 unsigned BestPhys = 0; 902 unsigned OrderLimit = Order.getOrder().size(); 903 904 // When we are just looking for a reduced cost per use, don't break any 905 // hints, and only evict smaller spill weights. 906 if (CostPerUseLimit < ~0u) { 907 BestCost.BrokenHints = 0; 908 BestCost.MaxWeight = VirtReg.weight; 909 910 // Check of any registers in RC are below CostPerUseLimit. 911 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 912 unsigned MinCost = RegClassInfo.getMinCost(RC); 913 if (MinCost >= CostPerUseLimit) { 914 DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost 915 << ", no cheaper registers to be found.\n"); 916 return 0; 917 } 918 919 // It is normal for register classes to have a long tail of registers with 920 // the same cost. We don't need to look at them if they're too expensive. 921 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 922 OrderLimit = RegClassInfo.getLastCostChange(RC); 923 DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n"); 924 } 925 } 926 927 Order.rewind(); 928 while (unsigned PhysReg = Order.next(OrderLimit)) { 929 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 930 continue; 931 // The first use of a callee-saved register in a function has cost 1. 932 // Don't start using a CSR when the CostPerUseLimit is low. 933 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 934 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " 935 << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 936 << '\n'); 937 continue; 938 } 939 940 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 941 continue; 942 943 // Best so far. 944 BestPhys = PhysReg; 945 946 // Stop if the hint can be used. 947 if (Order.isHint()) 948 break; 949 } 950 951 if (!BestPhys) 952 return 0; 953 954 evictInterference(VirtReg, BestPhys, NewVRegs); 955 return BestPhys; 956 } 957 958 959 //===----------------------------------------------------------------------===// 960 // Region Splitting 961 //===----------------------------------------------------------------------===// 962 963 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 964 /// interference pattern in Physreg and its aliases. Add the constraints to 965 /// SpillPlacement and return the static cost of this split in Cost, assuming 966 /// that all preferences in SplitConstraints are met. 967 /// Return false if there are no bundles with positive bias. 968 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 969 BlockFrequency &Cost) { 970 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 971 972 // Reset interference dependent info. 973 SplitConstraints.resize(UseBlocks.size()); 974 BlockFrequency StaticCost = 0; 975 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 976 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 977 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 978 979 BC.Number = BI.MBB->getNumber(); 980 Intf.moveToBlock(BC.Number); 981 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 982 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 983 BC.ChangesValue = BI.FirstDef.isValid(); 984 985 if (!Intf.hasInterference()) 986 continue; 987 988 // Number of spill code instructions to insert. 989 unsigned Ins = 0; 990 991 // Interference for the live-in value. 992 if (BI.LiveIn) { 993 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 994 BC.Entry = SpillPlacement::MustSpill; 995 ++Ins; 996 } else if (Intf.first() < BI.FirstInstr) { 997 BC.Entry = SpillPlacement::PrefSpill; 998 ++Ins; 999 } else if (Intf.first() < BI.LastInstr) { 1000 ++Ins; 1001 } 1002 } 1003 1004 // Interference for the live-out value. 1005 if (BI.LiveOut) { 1006 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1007 BC.Exit = SpillPlacement::MustSpill; 1008 ++Ins; 1009 } else if (Intf.last() > BI.LastInstr) { 1010 BC.Exit = SpillPlacement::PrefSpill; 1011 ++Ins; 1012 } else if (Intf.last() > BI.FirstInstr) { 1013 ++Ins; 1014 } 1015 } 1016 1017 // Accumulate the total frequency of inserted spill code. 1018 while (Ins--) 1019 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1020 } 1021 Cost = StaticCost; 1022 1023 // Add constraints for use-blocks. Note that these are the only constraints 1024 // that may add a positive bias, it is downhill from here. 1025 SpillPlacer->addConstraints(SplitConstraints); 1026 return SpillPlacer->scanActiveBundles(); 1027 } 1028 1029 1030 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1031 /// live-through blocks in Blocks. 1032 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1033 ArrayRef<unsigned> Blocks) { 1034 const unsigned GroupSize = 8; 1035 SpillPlacement::BlockConstraint BCS[GroupSize]; 1036 unsigned TBS[GroupSize]; 1037 unsigned B = 0, T = 0; 1038 1039 for (unsigned i = 0; i != Blocks.size(); ++i) { 1040 unsigned Number = Blocks[i]; 1041 Intf.moveToBlock(Number); 1042 1043 if (!Intf.hasInterference()) { 1044 assert(T < GroupSize && "Array overflow"); 1045 TBS[T] = Number; 1046 if (++T == GroupSize) { 1047 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1048 T = 0; 1049 } 1050 continue; 1051 } 1052 1053 assert(B < GroupSize && "Array overflow"); 1054 BCS[B].Number = Number; 1055 1056 // Interference for the live-in value. 1057 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1058 BCS[B].Entry = SpillPlacement::MustSpill; 1059 else 1060 BCS[B].Entry = SpillPlacement::PrefSpill; 1061 1062 // Interference for the live-out value. 1063 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1064 BCS[B].Exit = SpillPlacement::MustSpill; 1065 else 1066 BCS[B].Exit = SpillPlacement::PrefSpill; 1067 1068 if (++B == GroupSize) { 1069 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1070 B = 0; 1071 } 1072 } 1073 1074 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1075 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1076 } 1077 1078 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1079 // Keep track of through blocks that have not been added to SpillPlacer. 1080 BitVector Todo = SA->getThroughBlocks(); 1081 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1082 unsigned AddedTo = 0; 1083 #ifndef NDEBUG 1084 unsigned Visited = 0; 1085 #endif 1086 1087 for (;;) { 1088 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1089 // Find new through blocks in the periphery of PrefRegBundles. 1090 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1091 unsigned Bundle = NewBundles[i]; 1092 // Look at all blocks connected to Bundle in the full graph. 1093 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1094 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1095 I != E; ++I) { 1096 unsigned Block = *I; 1097 if (!Todo.test(Block)) 1098 continue; 1099 Todo.reset(Block); 1100 // This is a new through block. Add it to SpillPlacer later. 1101 ActiveBlocks.push_back(Block); 1102 #ifndef NDEBUG 1103 ++Visited; 1104 #endif 1105 } 1106 } 1107 // Any new blocks to add? 1108 if (ActiveBlocks.size() == AddedTo) 1109 break; 1110 1111 // Compute through constraints from the interference, or assume that all 1112 // through blocks prefer spilling when forming compact regions. 1113 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1114 if (Cand.PhysReg) 1115 addThroughConstraints(Cand.Intf, NewBlocks); 1116 else 1117 // Provide a strong negative bias on through blocks to prevent unwanted 1118 // liveness on loop backedges. 1119 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1120 AddedTo = ActiveBlocks.size(); 1121 1122 // Perhaps iterating can enable more bundles? 1123 SpillPlacer->iterate(); 1124 } 1125 DEBUG(dbgs() << ", v=" << Visited); 1126 } 1127 1128 /// calcCompactRegion - Compute the set of edge bundles that should be live 1129 /// when splitting the current live range into compact regions. Compact 1130 /// regions can be computed without looking at interference. They are the 1131 /// regions formed by removing all the live-through blocks from the live range. 1132 /// 1133 /// Returns false if the current live range is already compact, or if the 1134 /// compact regions would form single block regions anyway. 1135 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1136 // Without any through blocks, the live range is already compact. 1137 if (!SA->getNumThroughBlocks()) 1138 return false; 1139 1140 // Compact regions don't correspond to any physreg. 1141 Cand.reset(IntfCache, 0); 1142 1143 DEBUG(dbgs() << "Compact region bundles"); 1144 1145 // Use the spill placer to determine the live bundles. GrowRegion pretends 1146 // that all the through blocks have interference when PhysReg is unset. 1147 SpillPlacer->prepare(Cand.LiveBundles); 1148 1149 // The static split cost will be zero since Cand.Intf reports no interference. 1150 BlockFrequency Cost; 1151 if (!addSplitConstraints(Cand.Intf, Cost)) { 1152 DEBUG(dbgs() << ", none.\n"); 1153 return false; 1154 } 1155 1156 growRegion(Cand); 1157 SpillPlacer->finish(); 1158 1159 if (!Cand.LiveBundles.any()) { 1160 DEBUG(dbgs() << ", none.\n"); 1161 return false; 1162 } 1163 1164 DEBUG({ 1165 for (int i = Cand.LiveBundles.find_first(); i>=0; 1166 i = Cand.LiveBundles.find_next(i)) 1167 dbgs() << " EB#" << i; 1168 dbgs() << ".\n"; 1169 }); 1170 return true; 1171 } 1172 1173 /// calcSpillCost - Compute how expensive it would be to split the live range in 1174 /// SA around all use blocks instead of forming bundle regions. 1175 BlockFrequency RAGreedy::calcSpillCost() { 1176 BlockFrequency Cost = 0; 1177 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1178 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1179 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1180 unsigned Number = BI.MBB->getNumber(); 1181 // We normally only need one spill instruction - a load or a store. 1182 Cost += SpillPlacer->getBlockFrequency(Number); 1183 1184 // Unless the value is redefined in the block. 1185 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1186 Cost += SpillPlacer->getBlockFrequency(Number); 1187 } 1188 return Cost; 1189 } 1190 1191 /// calcGlobalSplitCost - Return the global split cost of following the split 1192 /// pattern in LiveBundles. This cost should be added to the local cost of the 1193 /// interference pattern in SplitConstraints. 1194 /// 1195 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) { 1196 BlockFrequency GlobalCost = 0; 1197 const BitVector &LiveBundles = Cand.LiveBundles; 1198 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1199 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1200 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1201 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1202 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)]; 1203 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)]; 1204 unsigned Ins = 0; 1205 1206 if (BI.LiveIn) 1207 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1208 if (BI.LiveOut) 1209 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1210 while (Ins--) 1211 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1212 } 1213 1214 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1215 unsigned Number = Cand.ActiveBlocks[i]; 1216 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)]; 1217 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)]; 1218 if (!RegIn && !RegOut) 1219 continue; 1220 if (RegIn && RegOut) { 1221 // We need double spill code if this block has interference. 1222 Cand.Intf.moveToBlock(Number); 1223 if (Cand.Intf.hasInterference()) { 1224 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1225 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1226 } 1227 continue; 1228 } 1229 // live-in / stack-out or stack-in live-out. 1230 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1231 } 1232 return GlobalCost; 1233 } 1234 1235 /// splitAroundRegion - Split the current live range around the regions 1236 /// determined by BundleCand and GlobalCand. 1237 /// 1238 /// Before calling this function, GlobalCand and BundleCand must be initialized 1239 /// so each bundle is assigned to a valid candidate, or NoCand for the 1240 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1241 /// objects must be initialized for the current live range, and intervals 1242 /// created for the used candidates. 1243 /// 1244 /// @param LREdit The LiveRangeEdit object handling the current split. 1245 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1246 /// must appear in this list. 1247 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1248 ArrayRef<unsigned> UsedCands) { 1249 // These are the intervals created for new global ranges. We may create more 1250 // intervals for local ranges. 1251 const unsigned NumGlobalIntvs = LREdit.size(); 1252 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 1253 assert(NumGlobalIntvs && "No global intervals configured"); 1254 1255 // Isolate even single instructions when dealing with a proper sub-class. 1256 // That guarantees register class inflation for the stack interval because it 1257 // is all copies. 1258 unsigned Reg = SA->getParent().reg; 1259 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1260 1261 // First handle all the blocks with uses. 1262 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1263 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1264 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1265 unsigned Number = BI.MBB->getNumber(); 1266 unsigned IntvIn = 0, IntvOut = 0; 1267 SlotIndex IntfIn, IntfOut; 1268 if (BI.LiveIn) { 1269 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1270 if (CandIn != NoCand) { 1271 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1272 IntvIn = Cand.IntvIdx; 1273 Cand.Intf.moveToBlock(Number); 1274 IntfIn = Cand.Intf.first(); 1275 } 1276 } 1277 if (BI.LiveOut) { 1278 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1279 if (CandOut != NoCand) { 1280 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1281 IntvOut = Cand.IntvIdx; 1282 Cand.Intf.moveToBlock(Number); 1283 IntfOut = Cand.Intf.last(); 1284 } 1285 } 1286 1287 // Create separate intervals for isolated blocks with multiple uses. 1288 if (!IntvIn && !IntvOut) { 1289 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); 1290 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1291 SE->splitSingleBlock(BI); 1292 continue; 1293 } 1294 1295 if (IntvIn && IntvOut) 1296 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1297 else if (IntvIn) 1298 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1299 else 1300 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1301 } 1302 1303 // Handle live-through blocks. The relevant live-through blocks are stored in 1304 // the ActiveBlocks list with each candidate. We need to filter out 1305 // duplicates. 1306 BitVector Todo = SA->getThroughBlocks(); 1307 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1308 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1309 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1310 unsigned Number = Blocks[i]; 1311 if (!Todo.test(Number)) 1312 continue; 1313 Todo.reset(Number); 1314 1315 unsigned IntvIn = 0, IntvOut = 0; 1316 SlotIndex IntfIn, IntfOut; 1317 1318 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1319 if (CandIn != NoCand) { 1320 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1321 IntvIn = Cand.IntvIdx; 1322 Cand.Intf.moveToBlock(Number); 1323 IntfIn = Cand.Intf.first(); 1324 } 1325 1326 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1327 if (CandOut != NoCand) { 1328 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1329 IntvOut = Cand.IntvIdx; 1330 Cand.Intf.moveToBlock(Number); 1331 IntfOut = Cand.Intf.last(); 1332 } 1333 if (!IntvIn && !IntvOut) 1334 continue; 1335 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1336 } 1337 } 1338 1339 ++NumGlobalSplits; 1340 1341 SmallVector<unsigned, 8> IntvMap; 1342 SE->finish(&IntvMap); 1343 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1344 1345 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1346 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1347 1348 // Sort out the new intervals created by splitting. We get four kinds: 1349 // - Remainder intervals should not be split again. 1350 // - Candidate intervals can be assigned to Cand.PhysReg. 1351 // - Block-local splits are candidates for local splitting. 1352 // - DCE leftovers should go back on the queue. 1353 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1354 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1355 1356 // Ignore old intervals from DCE. 1357 if (getStage(Reg) != RS_New) 1358 continue; 1359 1360 // Remainder interval. Don't try splitting again, spill if it doesn't 1361 // allocate. 1362 if (IntvMap[i] == 0) { 1363 setStage(Reg, RS_Spill); 1364 continue; 1365 } 1366 1367 // Global intervals. Allow repeated splitting as long as the number of live 1368 // blocks is strictly decreasing. 1369 if (IntvMap[i] < NumGlobalIntvs) { 1370 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1371 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1372 << " blocks as original.\n"); 1373 // Don't allow repeated splitting as a safe guard against looping. 1374 setStage(Reg, RS_Split2); 1375 } 1376 continue; 1377 } 1378 1379 // Other intervals are treated as new. This includes local intervals created 1380 // for blocks with multiple uses, and anything created by DCE. 1381 } 1382 1383 if (VerifyEnabled) 1384 MF->verify(this, "After splitting live range around region"); 1385 } 1386 1387 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1388 SmallVectorImpl<unsigned> &NewVRegs) { 1389 unsigned NumCands = 0; 1390 BlockFrequency BestCost; 1391 1392 // Check if we can split this live range around a compact region. 1393 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1394 if (HasCompact) { 1395 // Yes, keep GlobalCand[0] as the compact region candidate. 1396 NumCands = 1; 1397 BestCost = BlockFrequency::getMaxFrequency(); 1398 } else { 1399 // No benefit from the compact region, our fallback will be per-block 1400 // splitting. Make sure we find a solution that is cheaper than spilling. 1401 BestCost = calcSpillCost(); 1402 DEBUG(dbgs() << "Cost of isolating all blocks = "; 1403 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1404 } 1405 1406 unsigned BestCand = 1407 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1408 false/*IgnoreCSR*/); 1409 1410 // No solutions found, fall back to single block splitting. 1411 if (!HasCompact && BestCand == NoCand) 1412 return 0; 1413 1414 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1415 } 1416 1417 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1418 AllocationOrder &Order, 1419 BlockFrequency &BestCost, 1420 unsigned &NumCands, 1421 bool IgnoreCSR) { 1422 unsigned BestCand = NoCand; 1423 Order.rewind(); 1424 while (unsigned PhysReg = Order.next()) { 1425 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1426 continue; 1427 1428 // Discard bad candidates before we run out of interference cache cursors. 1429 // This will only affect register classes with a lot of registers (>32). 1430 if (NumCands == IntfCache.getMaxCursors()) { 1431 unsigned WorstCount = ~0u; 1432 unsigned Worst = 0; 1433 for (unsigned i = 0; i != NumCands; ++i) { 1434 if (i == BestCand || !GlobalCand[i].PhysReg) 1435 continue; 1436 unsigned Count = GlobalCand[i].LiveBundles.count(); 1437 if (Count < WorstCount) { 1438 Worst = i; 1439 WorstCount = Count; 1440 } 1441 } 1442 --NumCands; 1443 GlobalCand[Worst] = GlobalCand[NumCands]; 1444 if (BestCand == NumCands) 1445 BestCand = Worst; 1446 } 1447 1448 if (GlobalCand.size() <= NumCands) 1449 GlobalCand.resize(NumCands+1); 1450 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1451 Cand.reset(IntfCache, PhysReg); 1452 1453 SpillPlacer->prepare(Cand.LiveBundles); 1454 BlockFrequency Cost; 1455 if (!addSplitConstraints(Cand.Intf, Cost)) { 1456 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); 1457 continue; 1458 } 1459 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = "; 1460 MBFI->printBlockFreq(dbgs(), Cost)); 1461 if (Cost >= BestCost) { 1462 DEBUG({ 1463 if (BestCand == NoCand) 1464 dbgs() << " worse than no bundles\n"; 1465 else 1466 dbgs() << " worse than " 1467 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1468 }); 1469 continue; 1470 } 1471 growRegion(Cand); 1472 1473 SpillPlacer->finish(); 1474 1475 // No live bundles, defer to splitSingleBlocks(). 1476 if (!Cand.LiveBundles.any()) { 1477 DEBUG(dbgs() << " no bundles.\n"); 1478 continue; 1479 } 1480 1481 Cost += calcGlobalSplitCost(Cand); 1482 DEBUG({ 1483 dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost) 1484 << " with bundles"; 1485 for (int i = Cand.LiveBundles.find_first(); i>=0; 1486 i = Cand.LiveBundles.find_next(i)) 1487 dbgs() << " EB#" << i; 1488 dbgs() << ".\n"; 1489 }); 1490 if (Cost < BestCost) { 1491 BestCand = NumCands; 1492 BestCost = Cost; 1493 } 1494 ++NumCands; 1495 } 1496 return BestCand; 1497 } 1498 1499 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1500 bool HasCompact, 1501 SmallVectorImpl<unsigned> &NewVRegs) { 1502 SmallVector<unsigned, 8> UsedCands; 1503 // Prepare split editor. 1504 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1505 SE->reset(LREdit, SplitSpillMode); 1506 1507 // Assign all edge bundles to the preferred candidate, or NoCand. 1508 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1509 1510 // Assign bundles for the best candidate region. 1511 if (BestCand != NoCand) { 1512 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1513 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1514 UsedCands.push_back(BestCand); 1515 Cand.IntvIdx = SE->openIntv(); 1516 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in " 1517 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1518 (void)B; 1519 } 1520 } 1521 1522 // Assign bundles for the compact region. 1523 if (HasCompact) { 1524 GlobalSplitCandidate &Cand = GlobalCand.front(); 1525 assert(!Cand.PhysReg && "Compact region has no physreg"); 1526 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1527 UsedCands.push_back(0); 1528 Cand.IntvIdx = SE->openIntv(); 1529 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1530 << Cand.IntvIdx << ".\n"); 1531 (void)B; 1532 } 1533 } 1534 1535 splitAroundRegion(LREdit, UsedCands); 1536 return 0; 1537 } 1538 1539 1540 //===----------------------------------------------------------------------===// 1541 // Per-Block Splitting 1542 //===----------------------------------------------------------------------===// 1543 1544 /// tryBlockSplit - Split a global live range around every block with uses. This 1545 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1546 /// they don't allocate. 1547 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1548 SmallVectorImpl<unsigned> &NewVRegs) { 1549 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1550 unsigned Reg = VirtReg.reg; 1551 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1552 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1553 SE->reset(LREdit, SplitSpillMode); 1554 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1555 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1556 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1557 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1558 SE->splitSingleBlock(BI); 1559 } 1560 // No blocks were split. 1561 if (LREdit.empty()) 1562 return 0; 1563 1564 // We did split for some blocks. 1565 SmallVector<unsigned, 8> IntvMap; 1566 SE->finish(&IntvMap); 1567 1568 // Tell LiveDebugVariables about the new ranges. 1569 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1570 1571 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1572 1573 // Sort out the new intervals created by splitting. The remainder interval 1574 // goes straight to spilling, the new local ranges get to stay RS_New. 1575 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1576 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 1577 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1578 setStage(LI, RS_Spill); 1579 } 1580 1581 if (VerifyEnabled) 1582 MF->verify(this, "After splitting live range around basic blocks"); 1583 return 0; 1584 } 1585 1586 1587 //===----------------------------------------------------------------------===// 1588 // Per-Instruction Splitting 1589 //===----------------------------------------------------------------------===// 1590 1591 /// Get the number of allocatable registers that match the constraints of \p Reg 1592 /// on \p MI and that are also in \p SuperRC. 1593 static unsigned getNumAllocatableRegsForConstraints( 1594 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 1595 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1596 const RegisterClassInfo &RCI) { 1597 assert(SuperRC && "Invalid register class"); 1598 1599 const TargetRegisterClass *ConstrainedRC = 1600 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1601 /* ExploreBundle */ true); 1602 if (!ConstrainedRC) 1603 return 0; 1604 return RCI.getNumAllocatableRegs(ConstrainedRC); 1605 } 1606 1607 /// tryInstructionSplit - Split a live range around individual instructions. 1608 /// This is normally not worthwhile since the spiller is doing essentially the 1609 /// same thing. However, when the live range is in a constrained register 1610 /// class, it may help to insert copies such that parts of the live range can 1611 /// be moved to a larger register class. 1612 /// 1613 /// This is similar to spilling to a larger register class. 1614 unsigned 1615 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1616 SmallVectorImpl<unsigned> &NewVRegs) { 1617 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 1618 // There is no point to this if there are no larger sub-classes. 1619 if (!RegClassInfo.isProperSubClass(CurRC)) 1620 return 0; 1621 1622 // Always enable split spill mode, since we're effectively spilling to a 1623 // register. 1624 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1625 SE->reset(LREdit, SplitEditor::SM_Size); 1626 1627 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1628 if (Uses.size() <= 1) 1629 return 0; 1630 1631 DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n"); 1632 1633 const TargetRegisterClass *SuperRC = 1634 TRI->getLargestLegalSuperClass(CurRC, *MF); 1635 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 1636 // Split around every non-copy instruction if this split will relax 1637 // the constraints on the virtual register. 1638 // Otherwise, splitting just inserts uncoalescable copies that do not help 1639 // the allocation. 1640 for (unsigned i = 0; i != Uses.size(); ++i) { 1641 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 1642 if (MI->isFullCopy() || 1643 SuperRCNumAllocatableRegs == 1644 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, 1645 TRI, RCI)) { 1646 DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 1647 continue; 1648 } 1649 SE->openIntv(); 1650 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 1651 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 1652 SE->useIntv(SegStart, SegStop); 1653 } 1654 1655 if (LREdit.empty()) { 1656 DEBUG(dbgs() << "All uses were copies.\n"); 1657 return 0; 1658 } 1659 1660 SmallVector<unsigned, 8> IntvMap; 1661 SE->finish(&IntvMap); 1662 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 1663 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1664 1665 // Assign all new registers to RS_Spill. This was the last chance. 1666 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1667 return 0; 1668 } 1669 1670 1671 //===----------------------------------------------------------------------===// 1672 // Local Splitting 1673 //===----------------------------------------------------------------------===// 1674 1675 1676 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1677 /// in order to use PhysReg between two entries in SA->UseSlots. 1678 /// 1679 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 1680 /// 1681 void RAGreedy::calcGapWeights(unsigned PhysReg, 1682 SmallVectorImpl<float> &GapWeight) { 1683 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1684 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1685 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1686 const unsigned NumGaps = Uses.size()-1; 1687 1688 // Start and end points for the interference check. 1689 SlotIndex StartIdx = 1690 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1691 SlotIndex StopIdx = 1692 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1693 1694 GapWeight.assign(NumGaps, 0.0f); 1695 1696 // Add interference from each overlapping register. 1697 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1698 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1699 .checkInterference()) 1700 continue; 1701 1702 // We know that VirtReg is a continuous interval from FirstInstr to 1703 // LastInstr, so we don't need InterferenceQuery. 1704 // 1705 // Interference that overlaps an instruction is counted in both gaps 1706 // surrounding the instruction. The exception is interference before 1707 // StartIdx and after StopIdx. 1708 // 1709 LiveIntervalUnion::SegmentIter IntI = 1710 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1711 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1712 // Skip the gaps before IntI. 1713 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1714 if (++Gap == NumGaps) 1715 break; 1716 if (Gap == NumGaps) 1717 break; 1718 1719 // Update the gaps covered by IntI. 1720 const float weight = IntI.value()->weight; 1721 for (; Gap != NumGaps; ++Gap) { 1722 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1723 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1724 break; 1725 } 1726 if (Gap == NumGaps) 1727 break; 1728 } 1729 } 1730 1731 // Add fixed interference. 1732 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1733 const LiveRange &LR = LIS->getRegUnit(*Units); 1734 LiveRange::const_iterator I = LR.find(StartIdx); 1735 LiveRange::const_iterator E = LR.end(); 1736 1737 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1738 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1739 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1740 if (++Gap == NumGaps) 1741 break; 1742 if (Gap == NumGaps) 1743 break; 1744 1745 for (; Gap != NumGaps; ++Gap) { 1746 GapWeight[Gap] = llvm::huge_valf; 1747 if (Uses[Gap+1].getBaseIndex() >= I->end) 1748 break; 1749 } 1750 if (Gap == NumGaps) 1751 break; 1752 } 1753 } 1754 } 1755 1756 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1757 /// basic block. 1758 /// 1759 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1760 SmallVectorImpl<unsigned> &NewVRegs) { 1761 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1762 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1763 1764 // Note that it is possible to have an interval that is live-in or live-out 1765 // while only covering a single block - A phi-def can use undef values from 1766 // predecessors, and the block could be a single-block loop. 1767 // We don't bother doing anything clever about such a case, we simply assume 1768 // that the interval is continuous from FirstInstr to LastInstr. We should 1769 // make sure that we don't do anything illegal to such an interval, though. 1770 1771 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1772 if (Uses.size() <= 2) 1773 return 0; 1774 const unsigned NumGaps = Uses.size()-1; 1775 1776 DEBUG({ 1777 dbgs() << "tryLocalSplit: "; 1778 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 1779 dbgs() << ' ' << Uses[i]; 1780 dbgs() << '\n'; 1781 }); 1782 1783 // If VirtReg is live across any register mask operands, compute a list of 1784 // gaps with register masks. 1785 SmallVector<unsigned, 8> RegMaskGaps; 1786 if (Matrix->checkRegMaskInterference(VirtReg)) { 1787 // Get regmask slots for the whole block. 1788 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1789 DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1790 // Constrain to VirtReg's live range. 1791 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 1792 Uses.front().getRegSlot()) - RMS.begin(); 1793 unsigned re = RMS.size(); 1794 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 1795 // Look for Uses[i] <= RMS <= Uses[i+1]. 1796 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 1797 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 1798 continue; 1799 // Skip a regmask on the same instruction as the last use. It doesn't 1800 // overlap the live range. 1801 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 1802 break; 1803 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]); 1804 RegMaskGaps.push_back(i); 1805 // Advance ri to the next gap. A regmask on one of the uses counts in 1806 // both gaps. 1807 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 1808 ++ri; 1809 } 1810 DEBUG(dbgs() << '\n'); 1811 } 1812 1813 // Since we allow local split results to be split again, there is a risk of 1814 // creating infinite loops. It is tempting to require that the new live 1815 // ranges have less instructions than the original. That would guarantee 1816 // convergence, but it is too strict. A live range with 3 instructions can be 1817 // split 2+3 (including the COPY), and we want to allow that. 1818 // 1819 // Instead we use these rules: 1820 // 1821 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1822 // noop split, of course). 1823 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1824 // the new ranges must have fewer instructions than before the split. 1825 // 3. New ranges with the same number of instructions are marked RS_Split2, 1826 // smaller ranges are marked RS_New. 1827 // 1828 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1829 // excessive splitting and infinite loops. 1830 // 1831 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 1832 1833 // Best split candidate. 1834 unsigned BestBefore = NumGaps; 1835 unsigned BestAfter = 0; 1836 float BestDiff = 0; 1837 1838 const float blockFreq = 1839 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1840 (1.0f / MBFI->getEntryFreq()); 1841 SmallVector<float, 8> GapWeight; 1842 1843 Order.rewind(); 1844 while (unsigned PhysReg = Order.next()) { 1845 // Keep track of the largest spill weight that would need to be evicted in 1846 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 1847 calcGapWeights(PhysReg, GapWeight); 1848 1849 // Remove any gaps with regmask clobbers. 1850 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1851 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 1852 GapWeight[RegMaskGaps[i]] = llvm::huge_valf; 1853 1854 // Try to find the best sequence of gaps to close. 1855 // The new spill weight must be larger than any gap interference. 1856 1857 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1858 unsigned SplitBefore = 0, SplitAfter = 1; 1859 1860 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1861 // It is the spill weight that needs to be evicted. 1862 float MaxGap = GapWeight[0]; 1863 1864 for (;;) { 1865 // Live before/after split? 1866 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1867 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1868 1869 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' 1870 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 1871 << " i=" << MaxGap); 1872 1873 // Stop before the interval gets so big we wouldn't be making progress. 1874 if (!LiveBefore && !LiveAfter) { 1875 DEBUG(dbgs() << " all\n"); 1876 break; 1877 } 1878 // Should the interval be extended or shrunk? 1879 bool Shrink = true; 1880 1881 // How many gaps would the new range have? 1882 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1883 1884 // Legally, without causing looping? 1885 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1886 1887 if (Legal && MaxGap < llvm::huge_valf) { 1888 // Estimate the new spill weight. Each instruction reads or writes the 1889 // register. Conservatively assume there are no read-modify-write 1890 // instructions. 1891 // 1892 // Try to guess the size of the new interval. 1893 const float EstWeight = normalizeSpillWeight( 1894 blockFreq * (NewGaps + 1), 1895 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1896 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1897 1); 1898 // Would this split be possible to allocate? 1899 // Never allocate all gaps, we wouldn't be making progress. 1900 DEBUG(dbgs() << " w=" << EstWeight); 1901 if (EstWeight * Hysteresis >= MaxGap) { 1902 Shrink = false; 1903 float Diff = EstWeight - MaxGap; 1904 if (Diff > BestDiff) { 1905 DEBUG(dbgs() << " (best)"); 1906 BestDiff = Hysteresis * Diff; 1907 BestBefore = SplitBefore; 1908 BestAfter = SplitAfter; 1909 } 1910 } 1911 } 1912 1913 // Try to shrink. 1914 if (Shrink) { 1915 if (++SplitBefore < SplitAfter) { 1916 DEBUG(dbgs() << " shrink\n"); 1917 // Recompute the max when necessary. 1918 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1919 MaxGap = GapWeight[SplitBefore]; 1920 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 1921 MaxGap = std::max(MaxGap, GapWeight[i]); 1922 } 1923 continue; 1924 } 1925 MaxGap = 0; 1926 } 1927 1928 // Try to extend the interval. 1929 if (SplitAfter >= NumGaps) { 1930 DEBUG(dbgs() << " end\n"); 1931 break; 1932 } 1933 1934 DEBUG(dbgs() << " extend\n"); 1935 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1936 } 1937 } 1938 1939 // Didn't find any candidates? 1940 if (BestBefore == NumGaps) 1941 return 0; 1942 1943 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 1944 << '-' << Uses[BestAfter] << ", " << BestDiff 1945 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 1946 1947 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1948 SE->reset(LREdit); 1949 1950 SE->openIntv(); 1951 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1952 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1953 SE->useIntv(SegStart, SegStop); 1954 SmallVector<unsigned, 8> IntvMap; 1955 SE->finish(&IntvMap); 1956 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 1957 1958 // If the new range has the same number of instructions as before, mark it as 1959 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1960 // leave the new intervals as RS_New so they can compete. 1961 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1962 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1963 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1964 if (NewGaps >= NumGaps) { 1965 DEBUG(dbgs() << "Tagging non-progress ranges: "); 1966 assert(!ProgressRequired && "Didn't make progress when it was required."); 1967 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 1968 if (IntvMap[i] == 1) { 1969 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 1970 DEBUG(dbgs() << PrintReg(LREdit.get(i))); 1971 } 1972 DEBUG(dbgs() << '\n'); 1973 } 1974 ++NumLocalSplits; 1975 1976 return 0; 1977 } 1978 1979 //===----------------------------------------------------------------------===// 1980 // Live Range Splitting 1981 //===----------------------------------------------------------------------===// 1982 1983 /// trySplit - Try to split VirtReg or one of its interferences, making it 1984 /// assignable. 1985 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1986 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 1987 SmallVectorImpl<unsigned>&NewVRegs) { 1988 // Ranges must be Split2 or less. 1989 if (getStage(VirtReg) >= RS_Spill) 1990 return 0; 1991 1992 // Local intervals are handled separately. 1993 if (LIS->intervalIsInOneMBB(VirtReg)) { 1994 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 1995 TimerGroupDescription, TimePassesIsEnabled); 1996 SA->analyze(&VirtReg); 1997 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1998 if (PhysReg || !NewVRegs.empty()) 1999 return PhysReg; 2000 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2001 } 2002 2003 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2004 TimerGroupDescription, TimePassesIsEnabled); 2005 2006 SA->analyze(&VirtReg); 2007 2008 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2009 // coalescer. That may cause the range to become allocatable which means that 2010 // tryRegionSplit won't be making progress. This check should be replaced with 2011 // an assertion when the coalescer is fixed. 2012 if (SA->didRepairRange()) { 2013 // VirtReg has changed, so all cached queries are invalid. 2014 Matrix->invalidateVirtRegs(); 2015 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 2016 return PhysReg; 2017 } 2018 2019 // First try to split around a region spanning multiple blocks. RS_Split2 2020 // ranges already made dubious progress with region splitting, so they go 2021 // straight to single block splitting. 2022 if (getStage(VirtReg) < RS_Split2) { 2023 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2024 if (PhysReg || !NewVRegs.empty()) 2025 return PhysReg; 2026 } 2027 2028 // Then isolate blocks. 2029 return tryBlockSplit(VirtReg, Order, NewVRegs); 2030 } 2031 2032 //===----------------------------------------------------------------------===// 2033 // Last Chance Recoloring 2034 //===----------------------------------------------------------------------===// 2035 2036 /// mayRecolorAllInterferences - Check if the virtual registers that 2037 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2038 /// recolored to free \p PhysReg. 2039 /// When true is returned, \p RecoloringCandidates has been augmented with all 2040 /// the live intervals that need to be recolored in order to free \p PhysReg 2041 /// for \p VirtReg. 2042 /// \p FixedRegisters contains all the virtual registers that cannot be 2043 /// recolored. 2044 bool 2045 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 2046 SmallLISet &RecoloringCandidates, 2047 const SmallVirtRegSet &FixedRegisters) { 2048 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2049 2050 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2051 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2052 // If there is LastChanceRecoloringMaxInterference or more interferences, 2053 // chances are one would not be recolorable. 2054 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2055 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2056 DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2057 CutOffInfo |= CO_Interf; 2058 return false; 2059 } 2060 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 2061 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 2062 // If Intf is done and sit on the same register class as VirtReg, 2063 // it would not be recolorable as it is in the same state as VirtReg. 2064 if ((getStage(*Intf) == RS_Done && 2065 MRI->getRegClass(Intf->reg) == CurRC) || 2066 FixedRegisters.count(Intf->reg)) { 2067 DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n"); 2068 return false; 2069 } 2070 RecoloringCandidates.insert(Intf); 2071 } 2072 } 2073 return true; 2074 } 2075 2076 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2077 /// its interferences. 2078 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2079 /// virtual register that was using it. The recoloring process may recursively 2080 /// use the last chance recoloring. Therefore, when a virtual register has been 2081 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2082 /// be last-chance-recolored again during this recoloring "session". 2083 /// E.g., 2084 /// Let 2085 /// vA can use {R1, R2 } 2086 /// vB can use { R2, R3} 2087 /// vC can use {R1 } 2088 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2089 /// instance) and they all interfere. 2090 /// 2091 /// vA is assigned R1 2092 /// vB is assigned R2 2093 /// vC tries to evict vA but vA is already done. 2094 /// Regular register allocation fails. 2095 /// 2096 /// Last chance recoloring kicks in: 2097 /// vC does as if vA was evicted => vC uses R1. 2098 /// vC is marked as fixed. 2099 /// vA needs to find a color. 2100 /// None are available. 2101 /// vA cannot evict vC: vC is a fixed virtual register now. 2102 /// vA does as if vB was evicted => vA uses R2. 2103 /// vB needs to find a color. 2104 /// R3 is available. 2105 /// Recoloring => vC = R1, vA = R2, vB = R3 2106 /// 2107 /// \p Order defines the preferred allocation order for \p VirtReg. 2108 /// \p NewRegs will contain any new virtual register that have been created 2109 /// (split, spill) during the process and that must be assigned. 2110 /// \p FixedRegisters contains all the virtual registers that cannot be 2111 /// recolored. 2112 /// \p Depth gives the current depth of the last chance recoloring. 2113 /// \return a physical register that can be used for VirtReg or ~0u if none 2114 /// exists. 2115 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2116 AllocationOrder &Order, 2117 SmallVectorImpl<unsigned> &NewVRegs, 2118 SmallVirtRegSet &FixedRegisters, 2119 unsigned Depth) { 2120 DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2121 // Ranges must be Done. 2122 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2123 "Last chance recoloring should really be last chance"); 2124 // Set the max depth to LastChanceRecoloringMaxDepth. 2125 // We may want to reconsider that if we end up with a too large search space 2126 // for target with hundreds of registers. 2127 // Indeed, in that case we may want to cut the search space earlier. 2128 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2129 DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2130 CutOffInfo |= CO_Depth; 2131 return ~0u; 2132 } 2133 2134 // Set of Live intervals that will need to be recolored. 2135 SmallLISet RecoloringCandidates; 2136 // Record the original mapping virtual register to physical register in case 2137 // the recoloring fails. 2138 DenseMap<unsigned, unsigned> VirtRegToPhysReg; 2139 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2140 // this recoloring "session". 2141 FixedRegisters.insert(VirtReg.reg); 2142 SmallVector<unsigned, 4> CurrentNewVRegs; 2143 2144 Order.rewind(); 2145 while (unsigned PhysReg = Order.next()) { 2146 DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2147 << PrintReg(PhysReg, TRI) << '\n'); 2148 RecoloringCandidates.clear(); 2149 VirtRegToPhysReg.clear(); 2150 CurrentNewVRegs.clear(); 2151 2152 // It is only possible to recolor virtual register interference. 2153 if (Matrix->checkInterference(VirtReg, PhysReg) > 2154 LiveRegMatrix::IK_VirtReg) { 2155 DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n"); 2156 2157 continue; 2158 } 2159 2160 // Early give up on this PhysReg if it is obvious we cannot recolor all 2161 // the interferences. 2162 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2163 FixedRegisters)) { 2164 DEBUG(dbgs() << "Some inteferences cannot be recolored.\n"); 2165 continue; 2166 } 2167 2168 // RecoloringCandidates contains all the virtual registers that interfer 2169 // with VirtReg on PhysReg (or one of its aliases). 2170 // Enqueue them for recoloring and perform the actual recoloring. 2171 PQueue RecoloringQueue; 2172 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2173 EndIt = RecoloringCandidates.end(); 2174 It != EndIt; ++It) { 2175 unsigned ItVirtReg = (*It)->reg; 2176 enqueue(RecoloringQueue, *It); 2177 assert(VRM->hasPhys(ItVirtReg) && 2178 "Interferences are supposed to be with allocated vairables"); 2179 2180 // Record the current allocation. 2181 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2182 // unset the related struct. 2183 Matrix->unassign(**It); 2184 } 2185 2186 // Do as if VirtReg was assigned to PhysReg so that the underlying 2187 // recoloring has the right information about the interferes and 2188 // available colors. 2189 Matrix->assign(VirtReg, PhysReg); 2190 2191 // Save the current recoloring state. 2192 // If we cannot recolor all the interferences, we will have to start again 2193 // at this point for the next physical register. 2194 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2195 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2196 FixedRegisters, Depth)) { 2197 // Push the queued vregs into the main queue. 2198 for (unsigned NewVReg : CurrentNewVRegs) 2199 NewVRegs.push_back(NewVReg); 2200 // Do not mess up with the global assignment process. 2201 // I.e., VirtReg must be unassigned. 2202 Matrix->unassign(VirtReg); 2203 return PhysReg; 2204 } 2205 2206 DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2207 << PrintReg(PhysReg, TRI) << '\n'); 2208 2209 // The recoloring attempt failed, undo the changes. 2210 FixedRegisters = SaveFixedRegisters; 2211 Matrix->unassign(VirtReg); 2212 2213 // For a newly created vreg which is also in RecoloringCandidates, 2214 // don't add it to NewVRegs because its physical register will be restored 2215 // below. Other vregs in CurrentNewVRegs are created by calling 2216 // selectOrSplit and should be added into NewVRegs. 2217 for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(), 2218 End = CurrentNewVRegs.end(); 2219 Next != End; ++Next) { 2220 if (RecoloringCandidates.count(&LIS->getInterval(*Next))) 2221 continue; 2222 NewVRegs.push_back(*Next); 2223 } 2224 2225 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2226 EndIt = RecoloringCandidates.end(); 2227 It != EndIt; ++It) { 2228 unsigned ItVirtReg = (*It)->reg; 2229 if (VRM->hasPhys(ItVirtReg)) 2230 Matrix->unassign(**It); 2231 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2232 Matrix->assign(**It, ItPhysReg); 2233 } 2234 } 2235 2236 // Last chance recoloring did not worked either, give up. 2237 return ~0u; 2238 } 2239 2240 /// tryRecoloringCandidates - Try to assign a new color to every register 2241 /// in \RecoloringQueue. 2242 /// \p NewRegs will contain any new virtual register created during the 2243 /// recoloring process. 2244 /// \p FixedRegisters[in/out] contains all the registers that have been 2245 /// recolored. 2246 /// \return true if all virtual registers in RecoloringQueue were successfully 2247 /// recolored, false otherwise. 2248 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2249 SmallVectorImpl<unsigned> &NewVRegs, 2250 SmallVirtRegSet &FixedRegisters, 2251 unsigned Depth) { 2252 while (!RecoloringQueue.empty()) { 2253 LiveInterval *LI = dequeue(RecoloringQueue); 2254 DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2255 unsigned PhysReg; 2256 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2257 // When splitting happens, the live-range may actually be empty. 2258 // In that case, this is okay to continue the recoloring even 2259 // if we did not find an alternative color for it. Indeed, 2260 // there will not be anything to color for LI in the end. 2261 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2262 return false; 2263 2264 if (!PhysReg) { 2265 assert(LI->empty() && "Only empty live-range do not require a register"); 2266 DEBUG(dbgs() << "Recoloring of " << *LI << " succeeded. Empty LI.\n"); 2267 continue; 2268 } 2269 DEBUG(dbgs() << "Recoloring of " << *LI 2270 << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n'); 2271 2272 Matrix->assign(*LI, PhysReg); 2273 FixedRegisters.insert(LI->reg); 2274 } 2275 return true; 2276 } 2277 2278 //===----------------------------------------------------------------------===// 2279 // Main Entry Point 2280 //===----------------------------------------------------------------------===// 2281 2282 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2283 SmallVectorImpl<unsigned> &NewVRegs) { 2284 CutOffInfo = CO_None; 2285 LLVMContext &Ctx = MF->getFunction()->getContext(); 2286 SmallVirtRegSet FixedRegisters; 2287 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2288 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2289 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2290 if (CutOffEncountered == CO_Depth) 2291 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2292 "reached. Use -fexhaustive-register-search to skip " 2293 "cutoffs"); 2294 else if (CutOffEncountered == CO_Interf) 2295 Ctx.emitError("register allocation failed: maximum interference for " 2296 "recoloring reached. Use -fexhaustive-register-search " 2297 "to skip cutoffs"); 2298 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2299 Ctx.emitError("register allocation failed: maximum interference and " 2300 "depth for recoloring reached. Use " 2301 "-fexhaustive-register-search to skip cutoffs"); 2302 } 2303 return Reg; 2304 } 2305 2306 /// Using a CSR for the first time has a cost because it causes push|pop 2307 /// to be added to prologue|epilogue. Splitting a cold section of the live 2308 /// range can have lower cost than using the CSR for the first time; 2309 /// Spilling a live range in the cold path can have lower cost than using 2310 /// the CSR for the first time. Returns the physical register if we decide 2311 /// to use the CSR; otherwise return 0. 2312 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2313 AllocationOrder &Order, 2314 unsigned PhysReg, 2315 unsigned &CostPerUseLimit, 2316 SmallVectorImpl<unsigned> &NewVRegs) { 2317 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2318 // We choose spill over using the CSR for the first time if the spill cost 2319 // is lower than CSRCost. 2320 SA->analyze(&VirtReg); 2321 if (calcSpillCost() >= CSRCost) 2322 return PhysReg; 2323 2324 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2325 // we will not use a callee-saved register in tryEvict. 2326 CostPerUseLimit = 1; 2327 return 0; 2328 } 2329 if (getStage(VirtReg) < RS_Split) { 2330 // We choose pre-splitting over using the CSR for the first time if 2331 // the cost of splitting is lower than CSRCost. 2332 SA->analyze(&VirtReg); 2333 unsigned NumCands = 0; 2334 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2335 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2336 NumCands, true /*IgnoreCSR*/); 2337 if (BestCand == NoCand) 2338 // Use the CSR if we can't find a region split below CSRCost. 2339 return PhysReg; 2340 2341 // Perform the actual pre-splitting. 2342 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2343 return 0; 2344 } 2345 return PhysReg; 2346 } 2347 2348 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2349 // Do not keep invalid information around. 2350 SetOfBrokenHints.remove(&LI); 2351 } 2352 2353 void RAGreedy::initializeCSRCost() { 2354 // We use the larger one out of the command-line option and the value report 2355 // by TRI. 2356 CSRCost = BlockFrequency( 2357 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2358 if (!CSRCost.getFrequency()) 2359 return; 2360 2361 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2362 uint64_t ActualEntry = MBFI->getEntryFreq(); 2363 if (!ActualEntry) { 2364 CSRCost = 0; 2365 return; 2366 } 2367 uint64_t FixedEntry = 1 << 14; 2368 if (ActualEntry < FixedEntry) 2369 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2370 else if (ActualEntry <= UINT32_MAX) 2371 // Invert the fraction and divide. 2372 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2373 else 2374 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2375 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2376 } 2377 2378 /// \brief Collect the hint info for \p Reg. 2379 /// The results are stored into \p Out. 2380 /// \p Out is not cleared before being populated. 2381 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2382 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2383 if (!Instr.isFullCopy()) 2384 continue; 2385 // Look for the other end of the copy. 2386 unsigned OtherReg = Instr.getOperand(0).getReg(); 2387 if (OtherReg == Reg) { 2388 OtherReg = Instr.getOperand(1).getReg(); 2389 if (OtherReg == Reg) 2390 continue; 2391 } 2392 // Get the current assignment. 2393 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg) 2394 ? OtherReg 2395 : VRM->getPhys(OtherReg); 2396 // Push the collected information. 2397 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2398 OtherPhysReg)); 2399 } 2400 } 2401 2402 /// \brief Using the given \p List, compute the cost of the broken hints if 2403 /// \p PhysReg was used. 2404 /// \return The cost of \p List for \p PhysReg. 2405 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2406 unsigned PhysReg) { 2407 BlockFrequency Cost = 0; 2408 for (const HintInfo &Info : List) { 2409 if (Info.PhysReg != PhysReg) 2410 Cost += Info.Freq; 2411 } 2412 return Cost; 2413 } 2414 2415 /// \brief Using the register assigned to \p VirtReg, try to recolor 2416 /// all the live ranges that are copy-related with \p VirtReg. 2417 /// The recoloring is then propagated to all the live-ranges that have 2418 /// been recolored and so on, until no more copies can be coalesced or 2419 /// it is not profitable. 2420 /// For a given live range, profitability is determined by the sum of the 2421 /// frequencies of the non-identity copies it would introduce with the old 2422 /// and new register. 2423 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2424 // We have a broken hint, check if it is possible to fix it by 2425 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2426 // some register and PhysReg may be available for the other live-ranges. 2427 SmallSet<unsigned, 4> Visited; 2428 SmallVector<unsigned, 2> RecoloringCandidates; 2429 HintsInfo Info; 2430 unsigned Reg = VirtReg.reg; 2431 unsigned PhysReg = VRM->getPhys(Reg); 2432 // Start the recoloring algorithm from the input live-interval, then 2433 // it will propagate to the ones that are copy-related with it. 2434 Visited.insert(Reg); 2435 RecoloringCandidates.push_back(Reg); 2436 2437 DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '(' 2438 << PrintReg(PhysReg, TRI) << ")\n"); 2439 2440 do { 2441 Reg = RecoloringCandidates.pop_back_val(); 2442 2443 // We cannot recolor physcal register. 2444 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 2445 continue; 2446 2447 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2448 2449 // Get the live interval mapped with this virtual register to be able 2450 // to check for the interference with the new color. 2451 LiveInterval &LI = LIS->getInterval(Reg); 2452 unsigned CurrPhys = VRM->getPhys(Reg); 2453 // Check that the new color matches the register class constraints and 2454 // that it is free for this live range. 2455 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2456 Matrix->checkInterference(LI, PhysReg))) 2457 continue; 2458 2459 DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI) 2460 << ") is recolorable.\n"); 2461 2462 // Gather the hint info. 2463 Info.clear(); 2464 collectHintInfo(Reg, Info); 2465 // Check if recoloring the live-range will increase the cost of the 2466 // non-identity copies. 2467 if (CurrPhys != PhysReg) { 2468 DEBUG(dbgs() << "Checking profitability:\n"); 2469 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2470 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2471 DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2472 << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n'); 2473 if (OldCopiesCost < NewCopiesCost) { 2474 DEBUG(dbgs() << "=> Not profitable.\n"); 2475 continue; 2476 } 2477 // At this point, the cost is either cheaper or equal. If it is 2478 // equal, we consider this is profitable because it may expose 2479 // more recoloring opportunities. 2480 DEBUG(dbgs() << "=> Profitable.\n"); 2481 // Recolor the live-range. 2482 Matrix->unassign(LI); 2483 Matrix->assign(LI, PhysReg); 2484 } 2485 // Push all copy-related live-ranges to keep reconciling the broken 2486 // hints. 2487 for (const HintInfo &HI : Info) { 2488 if (Visited.insert(HI.Reg).second) 2489 RecoloringCandidates.push_back(HI.Reg); 2490 } 2491 } while (!RecoloringCandidates.empty()); 2492 } 2493 2494 /// \brief Try to recolor broken hints. 2495 /// Broken hints may be repaired by recoloring when an evicted variable 2496 /// freed up a register for a larger live-range. 2497 /// Consider the following example: 2498 /// BB1: 2499 /// a = 2500 /// b = 2501 /// BB2: 2502 /// ... 2503 /// = b 2504 /// = a 2505 /// Let us assume b gets split: 2506 /// BB1: 2507 /// a = 2508 /// b = 2509 /// BB2: 2510 /// c = b 2511 /// ... 2512 /// d = c 2513 /// = d 2514 /// = a 2515 /// Because of how the allocation work, b, c, and d may be assigned different 2516 /// colors. Now, if a gets evicted later: 2517 /// BB1: 2518 /// a = 2519 /// st a, SpillSlot 2520 /// b = 2521 /// BB2: 2522 /// c = b 2523 /// ... 2524 /// d = c 2525 /// = d 2526 /// e = ld SpillSlot 2527 /// = e 2528 /// This is likely that we can assign the same register for b, c, and d, 2529 /// getting rid of 2 copies. 2530 void RAGreedy::tryHintsRecoloring() { 2531 for (LiveInterval *LI : SetOfBrokenHints) { 2532 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) && 2533 "Recoloring is possible only for virtual registers"); 2534 // Some dead defs may be around (e.g., because of debug uses). 2535 // Ignore those. 2536 if (!VRM->hasPhys(LI->reg)) 2537 continue; 2538 tryHintRecoloring(*LI); 2539 } 2540 } 2541 2542 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2543 SmallVectorImpl<unsigned> &NewVRegs, 2544 SmallVirtRegSet &FixedRegisters, 2545 unsigned Depth) { 2546 unsigned CostPerUseLimit = ~0u; 2547 // First try assigning a free register. 2548 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 2549 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) { 2550 // When NewVRegs is not empty, we may have made decisions such as evicting 2551 // a virtual register, go with the earlier decisions and use the physical 2552 // register. 2553 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 2554 NewVRegs.empty()) { 2555 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2556 CostPerUseLimit, NewVRegs); 2557 if (CSRReg || !NewVRegs.empty()) 2558 // Return now if we decide to use a CSR or create new vregs due to 2559 // pre-splitting. 2560 return CSRReg; 2561 } else 2562 return PhysReg; 2563 } 2564 2565 LiveRangeStage Stage = getStage(VirtReg); 2566 DEBUG(dbgs() << StageName[Stage] 2567 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 2568 2569 // Try to evict a less worthy live range, but only for ranges from the primary 2570 // queue. The RS_Split ranges already failed to do this, and they should not 2571 // get a second chance until they have been split. 2572 if (Stage != RS_Split) 2573 if (unsigned PhysReg = 2574 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) { 2575 unsigned Hint = MRI->getSimpleHint(VirtReg.reg); 2576 // If VirtReg has a hint and that hint is broken record this 2577 // virtual register as a recoloring candidate for broken hint. 2578 // Indeed, since we evicted a variable in its neighborhood it is 2579 // likely we can at least partially recolor some of the 2580 // copy-related live-ranges. 2581 if (Hint && Hint != PhysReg) 2582 SetOfBrokenHints.insert(&VirtReg); 2583 return PhysReg; 2584 } 2585 2586 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2587 2588 // The first time we see a live range, don't try to split or spill. 2589 // Wait until the second time, when all smaller ranges have been allocated. 2590 // This gives a better picture of the interference to split around. 2591 if (Stage < RS_Split) { 2592 setStage(VirtReg, RS_Split); 2593 DEBUG(dbgs() << "wait for second round\n"); 2594 NewVRegs.push_back(VirtReg.reg); 2595 return 0; 2596 } 2597 2598 if (Stage < RS_Spill) { 2599 // Try splitting VirtReg or interferences. 2600 unsigned NewVRegSizeBefore = NewVRegs.size(); 2601 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 2602 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) 2603 return PhysReg; 2604 } 2605 2606 // If we couldn't allocate a register from spilling, there is probably some 2607 // invalid inline assembly. The base class wil report it. 2608 if (Stage >= RS_Done || !VirtReg.isSpillable()) 2609 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2610 Depth); 2611 2612 // Finally spill VirtReg itself. 2613 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) { 2614 // TODO: This is experimental and in particular, we do not model 2615 // the live range splitting done by spilling correctly. 2616 // We would need a deep integration with the spiller to do the 2617 // right thing here. Anyway, that is still good for early testing. 2618 setStage(VirtReg, RS_Memory); 2619 DEBUG(dbgs() << "Do as if this register is in memory\n"); 2620 NewVRegs.push_back(VirtReg.reg); 2621 } else { 2622 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2623 TimerGroupDescription, TimePassesIsEnabled); 2624 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2625 spiller().spill(LRE); 2626 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2627 2628 if (VerifyEnabled) 2629 MF->verify(this, "After spilling"); 2630 } 2631 2632 // The live virtual register requesting allocation was spilled, so tell 2633 // the caller not to allocate anything during this round. 2634 return 0; 2635 } 2636 2637 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 2638 unsigned &FoldedReloads, 2639 unsigned &Spills, 2640 unsigned &FoldedSpills) { 2641 Reloads = 0; 2642 FoldedReloads = 0; 2643 Spills = 0; 2644 FoldedSpills = 0; 2645 2646 // Sum up the spill and reloads in subloops. 2647 for (MachineLoop *SubLoop : *L) { 2648 unsigned SubReloads; 2649 unsigned SubFoldedReloads; 2650 unsigned SubSpills; 2651 unsigned SubFoldedSpills; 2652 2653 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads, 2654 SubSpills, SubFoldedSpills); 2655 Reloads += SubReloads; 2656 FoldedReloads += SubFoldedReloads; 2657 Spills += SubSpills; 2658 FoldedSpills += SubFoldedSpills; 2659 } 2660 2661 const MachineFrameInfo &MFI = MF->getFrameInfo(); 2662 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2663 int FI; 2664 2665 for (MachineBasicBlock *MBB : L->getBlocks()) 2666 // Handle blocks that were not included in subloops. 2667 if (Loops->getLoopFor(MBB) == L) 2668 for (MachineInstr &MI : *MBB) { 2669 const MachineMemOperand *MMO; 2670 2671 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) 2672 ++Reloads; 2673 else if (TII->hasLoadFromStackSlot(MI, MMO, FI) && 2674 MFI.isSpillSlotObjectIndex(FI)) 2675 ++FoldedReloads; 2676 else if (TII->isStoreToStackSlot(MI, FI) && 2677 MFI.isSpillSlotObjectIndex(FI)) 2678 ++Spills; 2679 else if (TII->hasStoreToStackSlot(MI, MMO, FI) && 2680 MFI.isSpillSlotObjectIndex(FI)) 2681 ++FoldedSpills; 2682 } 2683 2684 if (Reloads || FoldedReloads || Spills || FoldedSpills) { 2685 using namespace ore; 2686 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", 2687 L->getStartLoc(), L->getHeader()); 2688 if (Spills) 2689 R << NV("NumSpills", Spills) << " spills "; 2690 if (FoldedSpills) 2691 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 2692 if (Reloads) 2693 R << NV("NumReloads", Reloads) << " reloads "; 2694 if (FoldedReloads) 2695 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 2696 ORE->emit(R << "generated in loop"); 2697 } 2698 } 2699 2700 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2701 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2702 << "********** Function: " << mf.getName() << '\n'); 2703 2704 MF = &mf; 2705 TRI = MF->getSubtarget().getRegisterInfo(); 2706 TII = MF->getSubtarget().getInstrInfo(); 2707 RCI.runOnMachineFunction(mf); 2708 2709 EnableLocalReassign = EnableLocalReassignment || 2710 MF->getSubtarget().enableRALocalReassignment( 2711 MF->getTarget().getOptLevel()); 2712 2713 if (VerifyEnabled) 2714 MF->verify(this, "Before greedy register allocator"); 2715 2716 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2717 getAnalysis<LiveIntervals>(), 2718 getAnalysis<LiveRegMatrix>()); 2719 Indexes = &getAnalysis<SlotIndexes>(); 2720 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2721 DomTree = &getAnalysis<MachineDominatorTree>(); 2722 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2723 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 2724 Loops = &getAnalysis<MachineLoopInfo>(); 2725 Bundles = &getAnalysis<EdgeBundles>(); 2726 SpillPlacer = &getAnalysis<SpillPlacement>(); 2727 DebugVars = &getAnalysis<LiveDebugVariables>(); 2728 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2729 2730 initializeCSRCost(); 2731 2732 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); 2733 2734 DEBUG(LIS->dump()); 2735 2736 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2737 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); 2738 ExtraRegInfo.clear(); 2739 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2740 NextCascade = 1; 2741 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2742 GlobalCand.resize(32); // This will grow as needed. 2743 SetOfBrokenHints.clear(); 2744 2745 allocatePhysRegs(); 2746 tryHintsRecoloring(); 2747 postOptimization(); 2748 reportNumberOfSplillsReloads(); 2749 2750 releaseMemory(); 2751 return true; 2752 } 2753