1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "SpillPlacement.h" 20 #include "Spiller.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IndexedMap.h" 26 #include "llvm/ADT/MapVector.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/CodeGen/CalcSpillWeights.h" 36 #include "llvm/CodeGen/EdgeBundles.h" 37 #include "llvm/CodeGen/LiveInterval.h" 38 #include "llvm/CodeGen/LiveIntervalUnion.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveRangeEdit.h" 41 #include "llvm/CodeGen/LiveRegMatrix.h" 42 #include "llvm/CodeGen/LiveStacks.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 45 #include "llvm/CodeGen/MachineDominators.h" 46 #include "llvm/CodeGen/MachineFrameInfo.h" 47 #include "llvm/CodeGen/MachineFunction.h" 48 #include "llvm/CodeGen/MachineFunctionPass.h" 49 #include "llvm/CodeGen/MachineInstr.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RegAllocRegistry.h" 55 #include "llvm/CodeGen/RegisterClassInfo.h" 56 #include "llvm/CodeGen/SlotIndexes.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/VirtRegMap.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/MC/MCRegisterInfo.h" 64 #include "llvm/Pass.h" 65 #include "llvm/Support/BlockFrequency.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetMachine.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <memory> 77 #include <queue> 78 #include <tuple> 79 #include <utility> 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "regalloc" 84 85 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 86 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 87 STATISTIC(NumEvicted, "Number of interferences evicted"); 88 89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 90 "split-spill-mode", cl::Hidden, 91 cl::desc("Spill mode for splitting live ranges"), 92 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 93 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 94 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 95 cl::init(SplitEditor::SM_Speed)); 96 97 static cl::opt<unsigned> 98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 99 cl::desc("Last chance recoloring max depth"), 100 cl::init(5)); 101 102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 103 "lcr-max-interf", cl::Hidden, 104 cl::desc("Last chance recoloring maximum number of considered" 105 " interference at a time"), 106 cl::init(8)); 107 108 static cl::opt<bool> ExhaustiveSearch( 109 "exhaustive-register-search", cl::NotHidden, 110 cl::desc("Exhaustive Search for registers bypassing the depth " 111 "and interference cutoffs of last chance recoloring"), 112 cl::Hidden); 113 114 static cl::opt<bool> EnableLocalReassignment( 115 "enable-local-reassign", cl::Hidden, 116 cl::desc("Local reassignment can yield better allocation decisions, but " 117 "may be compile time intensive"), 118 cl::init(false)); 119 120 static cl::opt<bool> EnableDeferredSpilling( 121 "enable-deferred-spilling", cl::Hidden, 122 cl::desc("Instead of spilling a variable right away, defer the actual " 123 "code insertion to the end of the allocation. That way the " 124 "allocator might still find a suitable coloring for this " 125 "variable because of other evicted variables."), 126 cl::init(false)); 127 128 // FIXME: Find a good default for this flag and remove the flag. 129 static cl::opt<unsigned> 130 CSRFirstTimeCost("regalloc-csr-first-time-cost", 131 cl::desc("Cost for first time use of callee-saved register."), 132 cl::init(0), cl::Hidden); 133 134 static cl::opt<bool> ConsiderLocalIntervalCost( 135 "condsider-local-interval-cost", cl::Hidden, 136 cl::desc("Consider the cost of local intervals created by a split " 137 "candidate when choosing the best split candidate."), 138 cl::init(false)); 139 140 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 141 createGreedyRegisterAllocator); 142 143 namespace { 144 145 class RAGreedy : public MachineFunctionPass, 146 public RegAllocBase, 147 private LiveRangeEdit::Delegate { 148 // Convenient shortcuts. 149 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 150 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 151 using SmallVirtRegSet = SmallSet<unsigned, 16>; 152 153 // context 154 MachineFunction *MF; 155 156 // Shortcuts to some useful interface. 157 const TargetInstrInfo *TII; 158 const TargetRegisterInfo *TRI; 159 RegisterClassInfo RCI; 160 161 // analyses 162 SlotIndexes *Indexes; 163 MachineBlockFrequencyInfo *MBFI; 164 MachineDominatorTree *DomTree; 165 MachineLoopInfo *Loops; 166 MachineOptimizationRemarkEmitter *ORE; 167 EdgeBundles *Bundles; 168 SpillPlacement *SpillPlacer; 169 LiveDebugVariables *DebugVars; 170 AliasAnalysis *AA; 171 172 // state 173 std::unique_ptr<Spiller> SpillerInstance; 174 PQueue Queue; 175 unsigned NextCascade; 176 177 // Live ranges pass through a number of stages as we try to allocate them. 178 // Some of the stages may also create new live ranges: 179 // 180 // - Region splitting. 181 // - Per-block splitting. 182 // - Local splitting. 183 // - Spilling. 184 // 185 // Ranges produced by one of the stages skip the previous stages when they are 186 // dequeued. This improves performance because we can skip interference checks 187 // that are unlikely to give any results. It also guarantees that the live 188 // range splitting algorithm terminates, something that is otherwise hard to 189 // ensure. 190 enum LiveRangeStage { 191 /// Newly created live range that has never been queued. 192 RS_New, 193 194 /// Only attempt assignment and eviction. Then requeue as RS_Split. 195 RS_Assign, 196 197 /// Attempt live range splitting if assignment is impossible. 198 RS_Split, 199 200 /// Attempt more aggressive live range splitting that is guaranteed to make 201 /// progress. This is used for split products that may not be making 202 /// progress. 203 RS_Split2, 204 205 /// Live range will be spilled. No more splitting will be attempted. 206 RS_Spill, 207 208 209 /// Live range is in memory. Because of other evictions, it might get moved 210 /// in a register in the end. 211 RS_Memory, 212 213 /// There is nothing more we can do to this live range. Abort compilation 214 /// if it can't be assigned. 215 RS_Done 216 }; 217 218 // Enum CutOffStage to keep a track whether the register allocation failed 219 // because of the cutoffs encountered in last chance recoloring. 220 // Note: This is used as bitmask. New value should be next power of 2. 221 enum CutOffStage { 222 // No cutoffs encountered 223 CO_None = 0, 224 225 // lcr-max-depth cutoff encountered 226 CO_Depth = 1, 227 228 // lcr-max-interf cutoff encountered 229 CO_Interf = 2 230 }; 231 232 uint8_t CutOffInfo; 233 234 #ifndef NDEBUG 235 static const char *const StageName[]; 236 #endif 237 238 // RegInfo - Keep additional information about each live range. 239 struct RegInfo { 240 LiveRangeStage Stage = RS_New; 241 242 // Cascade - Eviction loop prevention. See canEvictInterference(). 243 unsigned Cascade = 0; 244 245 RegInfo() = default; 246 }; 247 248 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 249 250 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 251 return ExtraRegInfo[VirtReg.reg].Stage; 252 } 253 254 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 255 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 256 ExtraRegInfo[VirtReg.reg].Stage = Stage; 257 } 258 259 template<typename Iterator> 260 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 261 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 262 for (;Begin != End; ++Begin) { 263 unsigned Reg = *Begin; 264 if (ExtraRegInfo[Reg].Stage == RS_New) 265 ExtraRegInfo[Reg].Stage = NewStage; 266 } 267 } 268 269 /// Cost of evicting interference. 270 struct EvictionCost { 271 unsigned BrokenHints = 0; ///< Total number of broken hints. 272 float MaxWeight = 0; ///< Maximum spill weight evicted. 273 274 EvictionCost() = default; 275 276 bool isMax() const { return BrokenHints == ~0u; } 277 278 void setMax() { BrokenHints = ~0u; } 279 280 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 281 282 bool operator<(const EvictionCost &O) const { 283 return std::tie(BrokenHints, MaxWeight) < 284 std::tie(O.BrokenHints, O.MaxWeight); 285 } 286 }; 287 288 /// EvictionTrack - Keeps track of past evictions in order to optimize region 289 /// split decision. 290 class EvictionTrack { 291 292 public: 293 using EvictorInfo = 294 std::pair<unsigned /* evictor */, unsigned /* physreg */>; 295 using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>; 296 297 private: 298 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 299 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 300 EvicteeInfo Evictees; 301 302 public: 303 /// Clear all eviction information. 304 void clear() { Evictees.clear(); } 305 306 /// Clear eviction information for the given evictee Vreg. 307 /// E.g. when Vreg get's a new allocation, the old eviction info is no 308 /// longer relevant. 309 /// \param Evictee The evictee Vreg for whom we want to clear collected 310 /// eviction info. 311 void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); } 312 313 /// Track new eviction. 314 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 315 /// \praram PhysReg The phisical register Evictee was evicted from. 316 /// \praram Evictor The evictor Vreg that evicted Evictee. 317 /// \praram Evictee The evictee Vreg. 318 void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) { 319 Evictees[Evictee].first = Evictor; 320 Evictees[Evictee].second = PhysReg; 321 } 322 323 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 324 /// \praram Evictee The evictee vreg. 325 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 326 /// nobody has evicted Evictee from PhysReg. 327 EvictorInfo getEvictor(unsigned Evictee) { 328 if (Evictees.count(Evictee)) { 329 return Evictees[Evictee]; 330 } 331 332 return EvictorInfo(0, 0); 333 } 334 }; 335 336 // Keeps track of past evictions in order to optimize region split decision. 337 EvictionTrack LastEvicted; 338 339 // splitting state. 340 std::unique_ptr<SplitAnalysis> SA; 341 std::unique_ptr<SplitEditor> SE; 342 343 /// Cached per-block interference maps 344 InterferenceCache IntfCache; 345 346 /// All basic blocks where the current register has uses. 347 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 348 349 /// Global live range splitting candidate info. 350 struct GlobalSplitCandidate { 351 // Register intended for assignment, or 0. 352 unsigned PhysReg; 353 354 // SplitKit interval index for this candidate. 355 unsigned IntvIdx; 356 357 // Interference for PhysReg. 358 InterferenceCache::Cursor Intf; 359 360 // Bundles where this candidate should be live. 361 BitVector LiveBundles; 362 SmallVector<unsigned, 8> ActiveBlocks; 363 364 void reset(InterferenceCache &Cache, unsigned Reg) { 365 PhysReg = Reg; 366 IntvIdx = 0; 367 Intf.setPhysReg(Cache, Reg); 368 LiveBundles.clear(); 369 ActiveBlocks.clear(); 370 } 371 372 // Set B[i] = C for every live bundle where B[i] was NoCand. 373 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 374 unsigned Count = 0; 375 for (unsigned i : LiveBundles.set_bits()) 376 if (B[i] == NoCand) { 377 B[i] = C; 378 Count++; 379 } 380 return Count; 381 } 382 }; 383 384 /// Candidate info for each PhysReg in AllocationOrder. 385 /// This vector never shrinks, but grows to the size of the largest register 386 /// class. 387 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 388 389 enum : unsigned { NoCand = ~0u }; 390 391 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 392 /// NoCand which indicates the stack interval. 393 SmallVector<unsigned, 32> BundleCand; 394 395 /// Callee-save register cost, calculated once per machine function. 396 BlockFrequency CSRCost; 397 398 /// Run or not the local reassignment heuristic. This information is 399 /// obtained from the TargetSubtargetInfo. 400 bool EnableLocalReassign; 401 402 /// Enable or not the consideration of the cost of local intervals created 403 /// by a split candidate when choosing the best split candidate. 404 bool EnableAdvancedRASplitCost; 405 406 /// Set of broken hints that may be reconciled later because of eviction. 407 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 408 409 public: 410 RAGreedy(); 411 412 /// Return the pass name. 413 StringRef getPassName() const override { return "Greedy Register Allocator"; } 414 415 /// RAGreedy analysis usage. 416 void getAnalysisUsage(AnalysisUsage &AU) const override; 417 void releaseMemory() override; 418 Spiller &spiller() override { return *SpillerInstance; } 419 void enqueue(LiveInterval *LI) override; 420 LiveInterval *dequeue() override; 421 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; 422 void aboutToRemoveInterval(LiveInterval &) override; 423 424 /// Perform register allocation. 425 bool runOnMachineFunction(MachineFunction &mf) override; 426 427 MachineFunctionProperties getRequiredProperties() const override { 428 return MachineFunctionProperties().set( 429 MachineFunctionProperties::Property::NoPHIs); 430 } 431 432 static char ID; 433 434 private: 435 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, 436 SmallVirtRegSet &, unsigned = 0); 437 438 bool LRE_CanEraseVirtReg(unsigned) override; 439 void LRE_WillShrinkVirtReg(unsigned) override; 440 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 441 void enqueue(PQueue &CurQueue, LiveInterval *LI); 442 LiveInterval *dequeue(PQueue &CurQueue); 443 444 BlockFrequency calcSpillCost(); 445 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 446 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 447 void growRegion(GlobalSplitCandidate &Cand); 448 bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand, 449 unsigned BBNumber, 450 const AllocationOrder &Order); 451 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 452 GlobalSplitCandidate &Cand, unsigned BBNumber, 453 const AllocationOrder &Order); 454 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 455 const AllocationOrder &Order, 456 bool *CanCauseEvictionChain); 457 bool calcCompactRegion(GlobalSplitCandidate&); 458 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 459 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 460 unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg); 461 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 462 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 463 bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg, 464 SlotIndex Start, SlotIndex End, 465 EvictionCost &MaxCost); 466 unsigned getCheapestEvicteeWeight(const AllocationOrder &Order, 467 LiveInterval &VirtReg, SlotIndex Start, 468 SlotIndex End, float *BestEvictWeight); 469 void evictInterference(LiveInterval&, unsigned, 470 SmallVectorImpl<unsigned>&); 471 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 472 SmallLISet &RecoloringCandidates, 473 const SmallVirtRegSet &FixedRegisters); 474 475 unsigned tryAssign(LiveInterval&, AllocationOrder&, 476 SmallVectorImpl<unsigned>&); 477 unsigned tryEvict(LiveInterval&, AllocationOrder&, 478 SmallVectorImpl<unsigned>&, unsigned = ~0u); 479 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 480 SmallVectorImpl<unsigned>&); 481 /// Calculate cost of region splitting. 482 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 483 AllocationOrder &Order, 484 BlockFrequency &BestCost, 485 unsigned &NumCands, bool IgnoreCSR, 486 bool *CanCauseEvictionChain = nullptr); 487 /// Perform region splitting. 488 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 489 bool HasCompact, 490 SmallVectorImpl<unsigned> &NewVRegs); 491 /// Check other options before using a callee-saved register for the first 492 /// time. 493 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 494 unsigned PhysReg, unsigned &CostPerUseLimit, 495 SmallVectorImpl<unsigned> &NewVRegs); 496 void initializeCSRCost(); 497 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 498 SmallVectorImpl<unsigned>&); 499 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 500 SmallVectorImpl<unsigned>&); 501 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 502 SmallVectorImpl<unsigned>&); 503 unsigned trySplit(LiveInterval&, AllocationOrder&, 504 SmallVectorImpl<unsigned>&); 505 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 506 SmallVectorImpl<unsigned> &, 507 SmallVirtRegSet &, unsigned); 508 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, 509 SmallVirtRegSet &, unsigned); 510 void tryHintRecoloring(LiveInterval &); 511 void tryHintsRecoloring(); 512 513 /// Model the information carried by one end of a copy. 514 struct HintInfo { 515 /// The frequency of the copy. 516 BlockFrequency Freq; 517 /// The virtual register or physical register. 518 unsigned Reg; 519 /// Its currently assigned register. 520 /// In case of a physical register Reg == PhysReg. 521 unsigned PhysReg; 522 523 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) 524 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 525 }; 526 using HintsInfo = SmallVector<HintInfo, 4>; 527 528 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 529 void collectHintInfo(unsigned, HintsInfo &); 530 531 bool isUnusedCalleeSavedReg(unsigned PhysReg) const; 532 533 /// Compute and report the number of spills and reloads for a loop. 534 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 535 unsigned &FoldedReloads, unsigned &Spills, 536 unsigned &FoldedSpills); 537 538 /// Report the number of spills and reloads for each loop. 539 void reportNumberOfSplillsReloads() { 540 for (MachineLoop *L : *Loops) { 541 unsigned Reloads, FoldedReloads, Spills, FoldedSpills; 542 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills, 543 FoldedSpills); 544 } 545 } 546 }; 547 548 } // end anonymous namespace 549 550 char RAGreedy::ID = 0; 551 char &llvm::RAGreedyID = RAGreedy::ID; 552 553 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 554 "Greedy Register Allocator", false, false) 555 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 556 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 557 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 558 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 559 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 560 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 561 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 562 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 563 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 564 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 565 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 566 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 567 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 568 INITIALIZE_PASS_END(RAGreedy, "greedy", 569 "Greedy Register Allocator", false, false) 570 571 #ifndef NDEBUG 572 const char *const RAGreedy::StageName[] = { 573 "RS_New", 574 "RS_Assign", 575 "RS_Split", 576 "RS_Split2", 577 "RS_Spill", 578 "RS_Memory", 579 "RS_Done" 580 }; 581 #endif 582 583 // Hysteresis to use when comparing floats. 584 // This helps stabilize decisions based on float comparisons. 585 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 586 587 FunctionPass* llvm::createGreedyRegisterAllocator() { 588 return new RAGreedy(); 589 } 590 591 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 592 } 593 594 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 595 AU.setPreservesCFG(); 596 AU.addRequired<MachineBlockFrequencyInfo>(); 597 AU.addPreserved<MachineBlockFrequencyInfo>(); 598 AU.addRequired<AAResultsWrapperPass>(); 599 AU.addPreserved<AAResultsWrapperPass>(); 600 AU.addRequired<LiveIntervals>(); 601 AU.addPreserved<LiveIntervals>(); 602 AU.addRequired<SlotIndexes>(); 603 AU.addPreserved<SlotIndexes>(); 604 AU.addRequired<LiveDebugVariables>(); 605 AU.addPreserved<LiveDebugVariables>(); 606 AU.addRequired<LiveStacks>(); 607 AU.addPreserved<LiveStacks>(); 608 AU.addRequired<MachineDominatorTree>(); 609 AU.addPreserved<MachineDominatorTree>(); 610 AU.addRequired<MachineLoopInfo>(); 611 AU.addPreserved<MachineLoopInfo>(); 612 AU.addRequired<VirtRegMap>(); 613 AU.addPreserved<VirtRegMap>(); 614 AU.addRequired<LiveRegMatrix>(); 615 AU.addPreserved<LiveRegMatrix>(); 616 AU.addRequired<EdgeBundles>(); 617 AU.addRequired<SpillPlacement>(); 618 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 619 MachineFunctionPass::getAnalysisUsage(AU); 620 } 621 622 //===----------------------------------------------------------------------===// 623 // LiveRangeEdit delegate methods 624 //===----------------------------------------------------------------------===// 625 626 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 627 LiveInterval &LI = LIS->getInterval(VirtReg); 628 if (VRM->hasPhys(VirtReg)) { 629 Matrix->unassign(LI); 630 aboutToRemoveInterval(LI); 631 return true; 632 } 633 // Unassigned virtreg is probably in the priority queue. 634 // RegAllocBase will erase it after dequeueing. 635 // Nonetheless, clear the live-range so that the debug 636 // dump will show the right state for that VirtReg. 637 LI.clear(); 638 return false; 639 } 640 641 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 642 if (!VRM->hasPhys(VirtReg)) 643 return; 644 645 // Register is assigned, put it back on the queue for reassignment. 646 LiveInterval &LI = LIS->getInterval(VirtReg); 647 Matrix->unassign(LI); 648 enqueue(&LI); 649 } 650 651 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 652 // Cloning a register we haven't even heard about yet? Just ignore it. 653 if (!ExtraRegInfo.inBounds(Old)) 654 return; 655 656 // LRE may clone a virtual register because dead code elimination causes it to 657 // be split into connected components. The new components are much smaller 658 // than the original, so they should get a new chance at being assigned. 659 // same stage as the parent. 660 ExtraRegInfo[Old].Stage = RS_Assign; 661 ExtraRegInfo.grow(New); 662 ExtraRegInfo[New] = ExtraRegInfo[Old]; 663 } 664 665 void RAGreedy::releaseMemory() { 666 SpillerInstance.reset(); 667 ExtraRegInfo.clear(); 668 GlobalCand.clear(); 669 } 670 671 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 672 673 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 674 // Prioritize live ranges by size, assigning larger ranges first. 675 // The queue holds (size, reg) pairs. 676 const unsigned Size = LI->getSize(); 677 const unsigned Reg = LI->reg; 678 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 679 "Can only enqueue virtual registers"); 680 unsigned Prio; 681 682 ExtraRegInfo.grow(Reg); 683 if (ExtraRegInfo[Reg].Stage == RS_New) 684 ExtraRegInfo[Reg].Stage = RS_Assign; 685 686 if (ExtraRegInfo[Reg].Stage == RS_Split) { 687 // Unsplit ranges that couldn't be allocated immediately are deferred until 688 // everything else has been allocated. 689 Prio = Size; 690 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 691 // Memory operand should be considered last. 692 // Change the priority such that Memory operand are assigned in 693 // the reverse order that they came in. 694 // TODO: Make this a member variable and probably do something about hints. 695 static unsigned MemOp = 0; 696 Prio = MemOp++; 697 } else { 698 // Giant live ranges fall back to the global assignment heuristic, which 699 // prevents excessive spilling in pathological cases. 700 bool ReverseLocal = TRI->reverseLocalAssignment(); 701 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 702 bool ForceGlobal = !ReverseLocal && 703 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 704 705 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 706 LIS->intervalIsInOneMBB(*LI)) { 707 // Allocate original local ranges in linear instruction order. Since they 708 // are singly defined, this produces optimal coloring in the absence of 709 // global interference and other constraints. 710 if (!ReverseLocal) 711 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 712 else { 713 // Allocating bottom up may allow many short LRGs to be assigned first 714 // to one of the cheap registers. This could be much faster for very 715 // large blocks on targets with many physical registers. 716 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 717 } 718 Prio |= RC.AllocationPriority << 24; 719 } else { 720 // Allocate global and split ranges in long->short order. Long ranges that 721 // don't fit should be spilled (or split) ASAP so they don't create 722 // interference. Mark a bit to prioritize global above local ranges. 723 Prio = (1u << 29) + Size; 724 } 725 // Mark a higher bit to prioritize global and local above RS_Split. 726 Prio |= (1u << 31); 727 728 // Boost ranges that have a physical register hint. 729 if (VRM->hasKnownPreference(Reg)) 730 Prio |= (1u << 30); 731 } 732 // The virtual register number is a tie breaker for same-sized ranges. 733 // Give lower vreg numbers higher priority to assign them first. 734 CurQueue.push(std::make_pair(Prio, ~Reg)); 735 } 736 737 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 738 739 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 740 if (CurQueue.empty()) 741 return nullptr; 742 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 743 CurQueue.pop(); 744 return LI; 745 } 746 747 //===----------------------------------------------------------------------===// 748 // Direct Assignment 749 //===----------------------------------------------------------------------===// 750 751 /// tryAssign - Try to assign VirtReg to an available register. 752 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 753 AllocationOrder &Order, 754 SmallVectorImpl<unsigned> &NewVRegs) { 755 Order.rewind(); 756 unsigned PhysReg; 757 while ((PhysReg = Order.next())) 758 if (!Matrix->checkInterference(VirtReg, PhysReg)) 759 break; 760 if (!PhysReg || Order.isHint()) 761 return PhysReg; 762 763 // PhysReg is available, but there may be a better choice. 764 765 // If we missed a simple hint, try to cheaply evict interference from the 766 // preferred register. 767 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 768 if (Order.isHint(Hint)) { 769 LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n'); 770 EvictionCost MaxCost; 771 MaxCost.setBrokenHints(1); 772 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 773 evictInterference(VirtReg, Hint, NewVRegs); 774 return Hint; 775 } 776 // Record the missed hint, we may be able to recover 777 // at the end if the surrounding allocation changed. 778 SetOfBrokenHints.insert(&VirtReg); 779 } 780 781 // Try to evict interference from a cheaper alternative. 782 unsigned Cost = TRI->getCostPerUse(PhysReg); 783 784 // Most registers have 0 additional cost. 785 if (!Cost) 786 return PhysReg; 787 788 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 789 << Cost << '\n'); 790 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 791 return CheapReg ? CheapReg : PhysReg; 792 } 793 794 //===----------------------------------------------------------------------===// 795 // Interference eviction 796 //===----------------------------------------------------------------------===// 797 798 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { 799 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 800 unsigned PhysReg; 801 while ((PhysReg = Order.next())) { 802 if (PhysReg == PrevReg) 803 continue; 804 805 MCRegUnitIterator Units(PhysReg, TRI); 806 for (; Units.isValid(); ++Units) { 807 // Instantiate a "subquery", not to be confused with the Queries array. 808 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 809 if (subQ.checkInterference()) 810 break; 811 } 812 // If no units have interference, break out with the current PhysReg. 813 if (!Units.isValid()) 814 break; 815 } 816 if (PhysReg) 817 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 818 << printReg(PrevReg, TRI) << " to " 819 << printReg(PhysReg, TRI) << '\n'); 820 return PhysReg; 821 } 822 823 /// shouldEvict - determine if A should evict the assigned live range B. The 824 /// eviction policy defined by this function together with the allocation order 825 /// defined by enqueue() decides which registers ultimately end up being split 826 /// and spilled. 827 /// 828 /// Cascade numbers are used to prevent infinite loops if this function is a 829 /// cyclic relation. 830 /// 831 /// @param A The live range to be assigned. 832 /// @param IsHint True when A is about to be assigned to its preferred 833 /// register. 834 /// @param B The live range to be evicted. 835 /// @param BreaksHint True when B is already assigned to its preferred register. 836 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 837 LiveInterval &B, bool BreaksHint) { 838 bool CanSplit = getStage(B) < RS_Spill; 839 840 // Be fairly aggressive about following hints as long as the evictee can be 841 // split. 842 if (CanSplit && IsHint && !BreaksHint) 843 return true; 844 845 if (A.weight > B.weight) { 846 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); 847 return true; 848 } 849 return false; 850 } 851 852 /// canEvictInterference - Return true if all interferences between VirtReg and 853 /// PhysReg can be evicted. 854 /// 855 /// @param VirtReg Live range that is about to be assigned. 856 /// @param PhysReg Desired register for assignment. 857 /// @param IsHint True when PhysReg is VirtReg's preferred register. 858 /// @param MaxCost Only look for cheaper candidates and update with new cost 859 /// when returning true. 860 /// @returns True when interference can be evicted cheaper than MaxCost. 861 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 862 bool IsHint, EvictionCost &MaxCost) { 863 // It is only possible to evict virtual register interference. 864 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 865 return false; 866 867 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 868 869 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 870 // involved in an eviction before. If a cascade number was assigned, deny 871 // evicting anything with the same or a newer cascade number. This prevents 872 // infinite eviction loops. 873 // 874 // This works out so a register without a cascade number is allowed to evict 875 // anything, and it can be evicted by anything. 876 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 877 if (!Cascade) 878 Cascade = NextCascade; 879 880 EvictionCost Cost; 881 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 882 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 883 // If there is 10 or more interferences, chances are one is heavier. 884 if (Q.collectInterferingVRegs(10) >= 10) 885 return false; 886 887 // Check if any interfering live range is heavier than MaxWeight. 888 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 889 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 890 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && 891 "Only expecting virtual register interference from query"); 892 // Never evict spill products. They cannot split or spill. 893 if (getStage(*Intf) == RS_Done) 894 return false; 895 // Once a live range becomes small enough, it is urgent that we find a 896 // register for it. This is indicated by an infinite spill weight. These 897 // urgent live ranges get to evict almost anything. 898 // 899 // Also allow urgent evictions of unspillable ranges from a strictly 900 // larger allocation order. 901 bool Urgent = !VirtReg.isSpillable() && 902 (Intf->isSpillable() || 903 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 904 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 905 // Only evict older cascades or live ranges without a cascade. 906 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 907 if (Cascade <= IntfCascade) { 908 if (!Urgent) 909 return false; 910 // We permit breaking cascades for urgent evictions. It should be the 911 // last resort, though, so make it really expensive. 912 Cost.BrokenHints += 10; 913 } 914 // Would this break a satisfied hint? 915 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 916 // Update eviction cost. 917 Cost.BrokenHints += BreaksHint; 918 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 919 // Abort if this would be too expensive. 920 if (!(Cost < MaxCost)) 921 return false; 922 if (Urgent) 923 continue; 924 // Apply the eviction policy for non-urgent evictions. 925 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 926 return false; 927 // If !MaxCost.isMax(), then we're just looking for a cheap register. 928 // Evicting another local live range in this case could lead to suboptimal 929 // coloring. 930 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 931 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 932 return false; 933 } 934 } 935 } 936 MaxCost = Cost; 937 return true; 938 } 939 940 /// Return true if all interferences between VirtReg and PhysReg between 941 /// Start and End can be evicted. 942 /// 943 /// \param VirtReg Live range that is about to be assigned. 944 /// \param PhysReg Desired register for assignment. 945 /// \param Start Start of range to look for interferences. 946 /// \param End End of range to look for interferences. 947 /// \param MaxCost Only look for cheaper candidates and update with new cost 948 /// when returning true. 949 /// \return True when interference can be evicted cheaper than MaxCost. 950 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg, 951 unsigned PhysReg, SlotIndex Start, 952 SlotIndex End, 953 EvictionCost &MaxCost) { 954 EvictionCost Cost; 955 956 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 957 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 958 959 // Check if any interfering live range is heavier than MaxWeight. 960 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 961 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 962 963 // Check if interference overlast the segment in interest. 964 if (!Intf->overlaps(Start, End)) 965 continue; 966 967 // Cannot evict non virtual reg interference. 968 if (!TargetRegisterInfo::isVirtualRegister(Intf->reg)) 969 return false; 970 // Never evict spill products. They cannot split or spill. 971 if (getStage(*Intf) == RS_Done) 972 return false; 973 974 // Would this break a satisfied hint? 975 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 976 // Update eviction cost. 977 Cost.BrokenHints += BreaksHint; 978 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 979 // Abort if this would be too expensive. 980 if (!(Cost < MaxCost)) 981 return false; 982 } 983 } 984 985 if (Cost.MaxWeight == 0) 986 return false; 987 988 MaxCost = Cost; 989 return true; 990 } 991 992 /// Return tthe physical register that will be best 993 /// candidate for eviction by a local split interval that will be created 994 /// between Start and End. 995 /// 996 /// \param Order The allocation order 997 /// \param VirtReg Live range that is about to be assigned. 998 /// \param Start Start of range to look for interferences 999 /// \param End End of range to look for interferences 1000 /// \param BestEvictweight The eviction cost of that eviction 1001 /// \return The PhysReg which is the best candidate for eviction and the 1002 /// eviction cost in BestEvictweight 1003 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1004 LiveInterval &VirtReg, 1005 SlotIndex Start, SlotIndex End, 1006 float *BestEvictweight) { 1007 EvictionCost BestEvictCost; 1008 BestEvictCost.setMax(); 1009 BestEvictCost.MaxWeight = VirtReg.weight; 1010 unsigned BestEvicteePhys = 0; 1011 1012 // Go over all physical registers and find the best candidate for eviction 1013 for (auto PhysReg : Order.getOrder()) { 1014 1015 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1016 BestEvictCost)) 1017 continue; 1018 1019 // Best so far. 1020 BestEvicteePhys = PhysReg; 1021 } 1022 *BestEvictweight = BestEvictCost.MaxWeight; 1023 return BestEvicteePhys; 1024 } 1025 1026 /// evictInterference - Evict any interferring registers that prevent VirtReg 1027 /// from being assigned to Physreg. This assumes that canEvictInterference 1028 /// returned true. 1029 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 1030 SmallVectorImpl<unsigned> &NewVRegs) { 1031 // Make sure that VirtReg has a cascade number, and assign that cascade 1032 // number to every evicted register. These live ranges than then only be 1033 // evicted by a newer cascade, preventing infinite loops. 1034 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 1035 if (!Cascade) 1036 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 1037 1038 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1039 << " interference: Cascade " << Cascade << '\n'); 1040 1041 // Collect all interfering virtregs first. 1042 SmallVector<LiveInterval*, 8> Intfs; 1043 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1044 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1045 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1046 // should be fast, we may need to recalculate if when different physregs 1047 // overlap the same register unit so we had different SubRanges queried 1048 // against it. 1049 Q.collectInterferingVRegs(); 1050 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1051 Intfs.append(IVR.begin(), IVR.end()); 1052 } 1053 1054 // Evict them second. This will invalidate the queries. 1055 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 1056 LiveInterval *Intf = Intfs[i]; 1057 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1058 if (!VRM->hasPhys(Intf->reg)) 1059 continue; 1060 1061 LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg); 1062 1063 Matrix->unassign(*Intf); 1064 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 1065 VirtReg.isSpillable() < Intf->isSpillable()) && 1066 "Cannot decrease cascade number, illegal eviction"); 1067 ExtraRegInfo[Intf->reg].Cascade = Cascade; 1068 ++NumEvicted; 1069 NewVRegs.push_back(Intf->reg); 1070 } 1071 } 1072 1073 /// Returns true if the given \p PhysReg is a callee saved register and has not 1074 /// been used for allocation yet. 1075 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { 1076 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1077 if (CSR == 0) 1078 return false; 1079 1080 return !Matrix->isPhysRegUsed(PhysReg); 1081 } 1082 1083 /// tryEvict - Try to evict all interferences for a physreg. 1084 /// @param VirtReg Currently unassigned virtual register. 1085 /// @param Order Physregs to try. 1086 /// @return Physreg to assign VirtReg, or 0. 1087 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 1088 AllocationOrder &Order, 1089 SmallVectorImpl<unsigned> &NewVRegs, 1090 unsigned CostPerUseLimit) { 1091 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1092 TimePassesIsEnabled); 1093 1094 // Keep track of the cheapest interference seen so far. 1095 EvictionCost BestCost; 1096 BestCost.setMax(); 1097 unsigned BestPhys = 0; 1098 unsigned OrderLimit = Order.getOrder().size(); 1099 1100 // When we are just looking for a reduced cost per use, don't break any 1101 // hints, and only evict smaller spill weights. 1102 if (CostPerUseLimit < ~0u) { 1103 BestCost.BrokenHints = 0; 1104 BestCost.MaxWeight = VirtReg.weight; 1105 1106 // Check of any registers in RC are below CostPerUseLimit. 1107 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 1108 unsigned MinCost = RegClassInfo.getMinCost(RC); 1109 if (MinCost >= CostPerUseLimit) { 1110 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1111 << MinCost << ", no cheaper registers to be found.\n"); 1112 return 0; 1113 } 1114 1115 // It is normal for register classes to have a long tail of registers with 1116 // the same cost. We don't need to look at them if they're too expensive. 1117 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 1118 OrderLimit = RegClassInfo.getLastCostChange(RC); 1119 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1120 << " regs.\n"); 1121 } 1122 } 1123 1124 Order.rewind(); 1125 while (unsigned PhysReg = Order.next(OrderLimit)) { 1126 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 1127 continue; 1128 // The first use of a callee-saved register in a function has cost 1. 1129 // Don't start using a CSR when the CostPerUseLimit is low. 1130 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1131 LLVM_DEBUG( 1132 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1133 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1134 << '\n'); 1135 continue; 1136 } 1137 1138 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 1139 continue; 1140 1141 // Best so far. 1142 BestPhys = PhysReg; 1143 1144 // Stop if the hint can be used. 1145 if (Order.isHint()) 1146 break; 1147 } 1148 1149 if (!BestPhys) 1150 return 0; 1151 1152 evictInterference(VirtReg, BestPhys, NewVRegs); 1153 return BestPhys; 1154 } 1155 1156 //===----------------------------------------------------------------------===// 1157 // Region Splitting 1158 //===----------------------------------------------------------------------===// 1159 1160 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1161 /// interference pattern in Physreg and its aliases. Add the constraints to 1162 /// SpillPlacement and return the static cost of this split in Cost, assuming 1163 /// that all preferences in SplitConstraints are met. 1164 /// Return false if there are no bundles with positive bias. 1165 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1166 BlockFrequency &Cost) { 1167 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1168 1169 // Reset interference dependent info. 1170 SplitConstraints.resize(UseBlocks.size()); 1171 BlockFrequency StaticCost = 0; 1172 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1173 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1174 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1175 1176 BC.Number = BI.MBB->getNumber(); 1177 Intf.moveToBlock(BC.Number); 1178 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1179 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1180 BC.ChangesValue = BI.FirstDef.isValid(); 1181 1182 if (!Intf.hasInterference()) 1183 continue; 1184 1185 // Number of spill code instructions to insert. 1186 unsigned Ins = 0; 1187 1188 // Interference for the live-in value. 1189 if (BI.LiveIn) { 1190 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1191 BC.Entry = SpillPlacement::MustSpill; 1192 ++Ins; 1193 } else if (Intf.first() < BI.FirstInstr) { 1194 BC.Entry = SpillPlacement::PrefSpill; 1195 ++Ins; 1196 } else if (Intf.first() < BI.LastInstr) { 1197 ++Ins; 1198 } 1199 } 1200 1201 // Interference for the live-out value. 1202 if (BI.LiveOut) { 1203 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1204 BC.Exit = SpillPlacement::MustSpill; 1205 ++Ins; 1206 } else if (Intf.last() > BI.LastInstr) { 1207 BC.Exit = SpillPlacement::PrefSpill; 1208 ++Ins; 1209 } else if (Intf.last() > BI.FirstInstr) { 1210 ++Ins; 1211 } 1212 } 1213 1214 // Accumulate the total frequency of inserted spill code. 1215 while (Ins--) 1216 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1217 } 1218 Cost = StaticCost; 1219 1220 // Add constraints for use-blocks. Note that these are the only constraints 1221 // that may add a positive bias, it is downhill from here. 1222 SpillPlacer->addConstraints(SplitConstraints); 1223 return SpillPlacer->scanActiveBundles(); 1224 } 1225 1226 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1227 /// live-through blocks in Blocks. 1228 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1229 ArrayRef<unsigned> Blocks) { 1230 const unsigned GroupSize = 8; 1231 SpillPlacement::BlockConstraint BCS[GroupSize]; 1232 unsigned TBS[GroupSize]; 1233 unsigned B = 0, T = 0; 1234 1235 for (unsigned i = 0; i != Blocks.size(); ++i) { 1236 unsigned Number = Blocks[i]; 1237 Intf.moveToBlock(Number); 1238 1239 if (!Intf.hasInterference()) { 1240 assert(T < GroupSize && "Array overflow"); 1241 TBS[T] = Number; 1242 if (++T == GroupSize) { 1243 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1244 T = 0; 1245 } 1246 continue; 1247 } 1248 1249 assert(B < GroupSize && "Array overflow"); 1250 BCS[B].Number = Number; 1251 1252 // Interference for the live-in value. 1253 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1254 BCS[B].Entry = SpillPlacement::MustSpill; 1255 else 1256 BCS[B].Entry = SpillPlacement::PrefSpill; 1257 1258 // Interference for the live-out value. 1259 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1260 BCS[B].Exit = SpillPlacement::MustSpill; 1261 else 1262 BCS[B].Exit = SpillPlacement::PrefSpill; 1263 1264 if (++B == GroupSize) { 1265 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1266 B = 0; 1267 } 1268 } 1269 1270 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1271 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1272 } 1273 1274 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1275 // Keep track of through blocks that have not been added to SpillPlacer. 1276 BitVector Todo = SA->getThroughBlocks(); 1277 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1278 unsigned AddedTo = 0; 1279 #ifndef NDEBUG 1280 unsigned Visited = 0; 1281 #endif 1282 1283 while (true) { 1284 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1285 // Find new through blocks in the periphery of PrefRegBundles. 1286 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1287 unsigned Bundle = NewBundles[i]; 1288 // Look at all blocks connected to Bundle in the full graph. 1289 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1290 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1291 I != E; ++I) { 1292 unsigned Block = *I; 1293 if (!Todo.test(Block)) 1294 continue; 1295 Todo.reset(Block); 1296 // This is a new through block. Add it to SpillPlacer later. 1297 ActiveBlocks.push_back(Block); 1298 #ifndef NDEBUG 1299 ++Visited; 1300 #endif 1301 } 1302 } 1303 // Any new blocks to add? 1304 if (ActiveBlocks.size() == AddedTo) 1305 break; 1306 1307 // Compute through constraints from the interference, or assume that all 1308 // through blocks prefer spilling when forming compact regions. 1309 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1310 if (Cand.PhysReg) 1311 addThroughConstraints(Cand.Intf, NewBlocks); 1312 else 1313 // Provide a strong negative bias on through blocks to prevent unwanted 1314 // liveness on loop backedges. 1315 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1316 AddedTo = ActiveBlocks.size(); 1317 1318 // Perhaps iterating can enable more bundles? 1319 SpillPlacer->iterate(); 1320 } 1321 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1322 } 1323 1324 /// calcCompactRegion - Compute the set of edge bundles that should be live 1325 /// when splitting the current live range into compact regions. Compact 1326 /// regions can be computed without looking at interference. They are the 1327 /// regions formed by removing all the live-through blocks from the live range. 1328 /// 1329 /// Returns false if the current live range is already compact, or if the 1330 /// compact regions would form single block regions anyway. 1331 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1332 // Without any through blocks, the live range is already compact. 1333 if (!SA->getNumThroughBlocks()) 1334 return false; 1335 1336 // Compact regions don't correspond to any physreg. 1337 Cand.reset(IntfCache, 0); 1338 1339 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1340 1341 // Use the spill placer to determine the live bundles. GrowRegion pretends 1342 // that all the through blocks have interference when PhysReg is unset. 1343 SpillPlacer->prepare(Cand.LiveBundles); 1344 1345 // The static split cost will be zero since Cand.Intf reports no interference. 1346 BlockFrequency Cost; 1347 if (!addSplitConstraints(Cand.Intf, Cost)) { 1348 LLVM_DEBUG(dbgs() << ", none.\n"); 1349 return false; 1350 } 1351 1352 growRegion(Cand); 1353 SpillPlacer->finish(); 1354 1355 if (!Cand.LiveBundles.any()) { 1356 LLVM_DEBUG(dbgs() << ", none.\n"); 1357 return false; 1358 } 1359 1360 LLVM_DEBUG({ 1361 for (int i : Cand.LiveBundles.set_bits()) 1362 dbgs() << " EB#" << i; 1363 dbgs() << ".\n"; 1364 }); 1365 return true; 1366 } 1367 1368 /// calcSpillCost - Compute how expensive it would be to split the live range in 1369 /// SA around all use blocks instead of forming bundle regions. 1370 BlockFrequency RAGreedy::calcSpillCost() { 1371 BlockFrequency Cost = 0; 1372 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1373 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1374 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1375 unsigned Number = BI.MBB->getNumber(); 1376 // We normally only need one spill instruction - a load or a store. 1377 Cost += SpillPlacer->getBlockFrequency(Number); 1378 1379 // Unless the value is redefined in the block. 1380 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1381 Cost += SpillPlacer->getBlockFrequency(Number); 1382 } 1383 return Cost; 1384 } 1385 1386 /// Check if splitting Evictee will create a local split interval in 1387 /// basic block number BBNumber that may cause a bad eviction chain. This is 1388 /// intended to prevent bad eviction sequences like: 1389 /// movl %ebp, 8(%esp) # 4-byte Spill 1390 /// movl %ecx, %ebp 1391 /// movl %ebx, %ecx 1392 /// movl %edi, %ebx 1393 /// movl %edx, %edi 1394 /// cltd 1395 /// idivl %esi 1396 /// movl %edi, %edx 1397 /// movl %ebx, %edi 1398 /// movl %ecx, %ebx 1399 /// movl %ebp, %ecx 1400 /// movl 16(%esp), %ebp # 4 - byte Reload 1401 /// 1402 /// Such sequences are created in 2 scenarios: 1403 /// 1404 /// Scenario #1: 1405 /// %0 is evicted from physreg0 by %1. 1406 /// Evictee %0 is intended for region splitting with split candidate 1407 /// physreg0 (the reg %0 was evicted from). 1408 /// Region splitting creates a local interval because of interference with the 1409 /// evictor %1 (normally region spliitting creates 2 interval, the "by reg" 1410 /// and "by stack" intervals and local interval created when interference 1411 /// occurs). 1412 /// One of the split intervals ends up evicting %2 from physreg1. 1413 /// Evictee %2 is intended for region splitting with split candidate 1414 /// physreg1. 1415 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1416 /// 1417 /// Scenario #2 1418 /// %0 is evicted from physreg0 by %1. 1419 /// %2 is evicted from physreg2 by %3 etc. 1420 /// Evictee %0 is intended for region splitting with split candidate 1421 /// physreg1. 1422 /// Region splitting creates a local interval because of interference with the 1423 /// evictor %1. 1424 /// One of the split intervals ends up evicting back original evictor %1 1425 /// from physreg0 (the reg %0 was evicted from). 1426 /// Another evictee %2 is intended for region splitting with split candidate 1427 /// physreg1. 1428 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1429 /// 1430 /// \param Evictee The register considered to be split. 1431 /// \param Cand The split candidate that determines the physical register 1432 /// we are splitting for and the interferences. 1433 /// \param BBNumber The number of a BB for which the region split process will 1434 /// create a local split interval. 1435 /// \param Order The physical registers that may get evicted by a split 1436 /// artifact of Evictee. 1437 /// \return True if splitting Evictee may cause a bad eviction chain, false 1438 /// otherwise. 1439 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee, 1440 GlobalSplitCandidate &Cand, 1441 unsigned BBNumber, 1442 const AllocationOrder &Order) { 1443 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1444 unsigned Evictor = VregEvictorInfo.first; 1445 unsigned PhysReg = VregEvictorInfo.second; 1446 1447 // No actual evictor. 1448 if (!Evictor || !PhysReg) 1449 return false; 1450 1451 float MaxWeight = 0; 1452 unsigned FutureEvictedPhysReg = 1453 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1454 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1455 1456 // The bad eviction chain occurs when either the split candidate is the 1457 // evicting reg or one of the split artifact will evict the evicting reg. 1458 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1459 return false; 1460 1461 Cand.Intf.moveToBlock(BBNumber); 1462 1463 // Check to see if the Evictor contains interference (with Evictee) in the 1464 // given BB. If so, this interference caused the eviction of Evictee from 1465 // PhysReg. This suggest that we will create a local interval during the 1466 // region split to avoid this interference This local interval may cause a bad 1467 // eviction chain. 1468 if (!LIS->hasInterval(Evictor)) 1469 return false; 1470 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1471 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1472 return false; 1473 1474 // Now, check to see if the local interval we will create is going to be 1475 // expensive enough to evict somebody If so, this may cause a bad eviction 1476 // chain. 1477 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); 1478 float splitArtifactWeight = 1479 VRAI.futureWeight(LIS->getInterval(Evictee), 1480 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1481 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1482 return false; 1483 1484 return true; 1485 } 1486 1487 /// Check if splitting VirtRegToSplit will create a local split interval 1488 /// in basic block number BBNumber that may cause a spill. 1489 /// 1490 /// \param VirtRegToSplit The register considered to be split. 1491 /// \param Cand The split candidate that determines the physical 1492 /// register we are splitting for and the interferences. 1493 /// \param BBNumber The number of a BB for which the region split process 1494 /// will create a local split interval. 1495 /// \param Order The physical registers that may get evicted by a 1496 /// split artifact of VirtRegToSplit. 1497 /// \return True if splitting VirtRegToSplit may cause a spill, false 1498 /// otherwise. 1499 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1500 GlobalSplitCandidate &Cand, 1501 unsigned BBNumber, 1502 const AllocationOrder &Order) { 1503 Cand.Intf.moveToBlock(BBNumber); 1504 1505 // Check if the local interval will find a non interfereing assignment. 1506 for (auto PhysReg : Order.getOrder()) { 1507 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1508 Cand.Intf.last(), PhysReg)) 1509 return false; 1510 } 1511 1512 // Check if the local interval will evict a cheaper interval. 1513 float CheapestEvictWeight = 0; 1514 unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight( 1515 Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(), 1516 Cand.Intf.last(), &CheapestEvictWeight); 1517 1518 // Have we found an interval that can be evicted? 1519 if (FutureEvictedPhysReg) { 1520 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); 1521 float splitArtifactWeight = 1522 VRAI.futureWeight(LIS->getInterval(VirtRegToSplit), 1523 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1524 // Will the weight of the local interval be higher than the cheapest evictee 1525 // weight? If so it will evict it and will not cause a spill. 1526 if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight) 1527 return false; 1528 } 1529 1530 // The local interval is not able to find non interferening assignment and not 1531 // able to evict a less worthy interval, therfore, it can cause a spill. 1532 return true; 1533 } 1534 1535 /// calcGlobalSplitCost - Return the global split cost of following the split 1536 /// pattern in LiveBundles. This cost should be added to the local cost of the 1537 /// interference pattern in SplitConstraints. 1538 /// 1539 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1540 const AllocationOrder &Order, 1541 bool *CanCauseEvictionChain) { 1542 BlockFrequency GlobalCost = 0; 1543 const BitVector &LiveBundles = Cand.LiveBundles; 1544 unsigned VirtRegToSplit = SA->getParent().reg; 1545 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1546 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1547 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1548 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1549 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1550 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1551 unsigned Ins = 0; 1552 1553 Cand.Intf.moveToBlock(BC.Number); 1554 // Check wheather a local interval is going to be created during the region 1555 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1556 // is enabled. 1557 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1558 BI.LiveOut && RegIn && RegOut) { 1559 1560 if (CanCauseEvictionChain && 1561 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1562 // This interference causes our eviction from this assignment, we might 1563 // evict somebody else and eventually someone will spill, add that cost. 1564 // See splitCanCauseEvictionChain for detailed description of scenarios. 1565 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1566 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1567 1568 *CanCauseEvictionChain = true; 1569 1570 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1571 Order)) { 1572 // This interference causes local interval to spill, add that cost. 1573 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1574 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1575 } 1576 } 1577 1578 if (BI.LiveIn) 1579 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1580 if (BI.LiveOut) 1581 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1582 while (Ins--) 1583 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1584 } 1585 1586 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1587 unsigned Number = Cand.ActiveBlocks[i]; 1588 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1589 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1590 if (!RegIn && !RegOut) 1591 continue; 1592 if (RegIn && RegOut) { 1593 // We need double spill code if this block has interference. 1594 Cand.Intf.moveToBlock(Number); 1595 if (Cand.Intf.hasInterference()) { 1596 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1597 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1598 1599 // Check wheather a local interval is going to be created during the 1600 // region split. 1601 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1602 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1603 // This interference cause our eviction from this assignment, we might 1604 // evict somebody else, add that cost. 1605 // See splitCanCauseEvictionChain for detailed description of 1606 // scenarios. 1607 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1608 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1609 1610 *CanCauseEvictionChain = true; 1611 } 1612 } 1613 continue; 1614 } 1615 // live-in / stack-out or stack-in live-out. 1616 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1617 } 1618 return GlobalCost; 1619 } 1620 1621 /// splitAroundRegion - Split the current live range around the regions 1622 /// determined by BundleCand and GlobalCand. 1623 /// 1624 /// Before calling this function, GlobalCand and BundleCand must be initialized 1625 /// so each bundle is assigned to a valid candidate, or NoCand for the 1626 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1627 /// objects must be initialized for the current live range, and intervals 1628 /// created for the used candidates. 1629 /// 1630 /// @param LREdit The LiveRangeEdit object handling the current split. 1631 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1632 /// must appear in this list. 1633 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1634 ArrayRef<unsigned> UsedCands) { 1635 // These are the intervals created for new global ranges. We may create more 1636 // intervals for local ranges. 1637 const unsigned NumGlobalIntvs = LREdit.size(); 1638 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1639 << " globals.\n"); 1640 assert(NumGlobalIntvs && "No global intervals configured"); 1641 1642 // Isolate even single instructions when dealing with a proper sub-class. 1643 // That guarantees register class inflation for the stack interval because it 1644 // is all copies. 1645 unsigned Reg = SA->getParent().reg; 1646 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1647 1648 // First handle all the blocks with uses. 1649 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1650 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1651 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1652 unsigned Number = BI.MBB->getNumber(); 1653 unsigned IntvIn = 0, IntvOut = 0; 1654 SlotIndex IntfIn, IntfOut; 1655 if (BI.LiveIn) { 1656 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1657 if (CandIn != NoCand) { 1658 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1659 IntvIn = Cand.IntvIdx; 1660 Cand.Intf.moveToBlock(Number); 1661 IntfIn = Cand.Intf.first(); 1662 } 1663 } 1664 if (BI.LiveOut) { 1665 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1666 if (CandOut != NoCand) { 1667 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1668 IntvOut = Cand.IntvIdx; 1669 Cand.Intf.moveToBlock(Number); 1670 IntfOut = Cand.Intf.last(); 1671 } 1672 } 1673 1674 // Create separate intervals for isolated blocks with multiple uses. 1675 if (!IntvIn && !IntvOut) { 1676 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1677 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1678 SE->splitSingleBlock(BI); 1679 continue; 1680 } 1681 1682 if (IntvIn && IntvOut) 1683 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1684 else if (IntvIn) 1685 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1686 else 1687 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1688 } 1689 1690 // Handle live-through blocks. The relevant live-through blocks are stored in 1691 // the ActiveBlocks list with each candidate. We need to filter out 1692 // duplicates. 1693 BitVector Todo = SA->getThroughBlocks(); 1694 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1695 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1696 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1697 unsigned Number = Blocks[i]; 1698 if (!Todo.test(Number)) 1699 continue; 1700 Todo.reset(Number); 1701 1702 unsigned IntvIn = 0, IntvOut = 0; 1703 SlotIndex IntfIn, IntfOut; 1704 1705 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1706 if (CandIn != NoCand) { 1707 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1708 IntvIn = Cand.IntvIdx; 1709 Cand.Intf.moveToBlock(Number); 1710 IntfIn = Cand.Intf.first(); 1711 } 1712 1713 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1714 if (CandOut != NoCand) { 1715 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1716 IntvOut = Cand.IntvIdx; 1717 Cand.Intf.moveToBlock(Number); 1718 IntfOut = Cand.Intf.last(); 1719 } 1720 if (!IntvIn && !IntvOut) 1721 continue; 1722 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1723 } 1724 } 1725 1726 ++NumGlobalSplits; 1727 1728 SmallVector<unsigned, 8> IntvMap; 1729 SE->finish(&IntvMap); 1730 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1731 1732 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1733 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1734 1735 // Sort out the new intervals created by splitting. We get four kinds: 1736 // - Remainder intervals should not be split again. 1737 // - Candidate intervals can be assigned to Cand.PhysReg. 1738 // - Block-local splits are candidates for local splitting. 1739 // - DCE leftovers should go back on the queue. 1740 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1741 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1742 1743 // Ignore old intervals from DCE. 1744 if (getStage(Reg) != RS_New) 1745 continue; 1746 1747 // Remainder interval. Don't try splitting again, spill if it doesn't 1748 // allocate. 1749 if (IntvMap[i] == 0) { 1750 setStage(Reg, RS_Spill); 1751 continue; 1752 } 1753 1754 // Global intervals. Allow repeated splitting as long as the number of live 1755 // blocks is strictly decreasing. 1756 if (IntvMap[i] < NumGlobalIntvs) { 1757 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1758 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1759 << " blocks as original.\n"); 1760 // Don't allow repeated splitting as a safe guard against looping. 1761 setStage(Reg, RS_Split2); 1762 } 1763 continue; 1764 } 1765 1766 // Other intervals are treated as new. This includes local intervals created 1767 // for blocks with multiple uses, and anything created by DCE. 1768 } 1769 1770 if (VerifyEnabled) 1771 MF->verify(this, "After splitting live range around region"); 1772 } 1773 1774 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1775 SmallVectorImpl<unsigned> &NewVRegs) { 1776 unsigned NumCands = 0; 1777 BlockFrequency SpillCost = calcSpillCost(); 1778 BlockFrequency BestCost; 1779 1780 // Check if we can split this live range around a compact region. 1781 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1782 if (HasCompact) { 1783 // Yes, keep GlobalCand[0] as the compact region candidate. 1784 NumCands = 1; 1785 BestCost = BlockFrequency::getMaxFrequency(); 1786 } else { 1787 // No benefit from the compact region, our fallback will be per-block 1788 // splitting. Make sure we find a solution that is cheaper than spilling. 1789 BestCost = SpillCost; 1790 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1791 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1792 } 1793 1794 bool CanCauseEvictionChain = false; 1795 unsigned BestCand = 1796 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1797 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1798 1799 // Split candidates with compact regions can cause a bad eviction sequence. 1800 // See splitCanCauseEvictionChain for detailed description of scenarios. 1801 // To avoid it, we need to comapre the cost with the spill cost and not the 1802 // current max frequency. 1803 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1804 CanCauseEvictionChain) { 1805 return 0; 1806 } 1807 1808 // No solutions found, fall back to single block splitting. 1809 if (!HasCompact && BestCand == NoCand) 1810 return 0; 1811 1812 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1813 } 1814 1815 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1816 AllocationOrder &Order, 1817 BlockFrequency &BestCost, 1818 unsigned &NumCands, bool IgnoreCSR, 1819 bool *CanCauseEvictionChain) { 1820 unsigned BestCand = NoCand; 1821 Order.rewind(); 1822 while (unsigned PhysReg = Order.next()) { 1823 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1824 continue; 1825 1826 // Discard bad candidates before we run out of interference cache cursors. 1827 // This will only affect register classes with a lot of registers (>32). 1828 if (NumCands == IntfCache.getMaxCursors()) { 1829 unsigned WorstCount = ~0u; 1830 unsigned Worst = 0; 1831 for (unsigned i = 0; i != NumCands; ++i) { 1832 if (i == BestCand || !GlobalCand[i].PhysReg) 1833 continue; 1834 unsigned Count = GlobalCand[i].LiveBundles.count(); 1835 if (Count < WorstCount) { 1836 Worst = i; 1837 WorstCount = Count; 1838 } 1839 } 1840 --NumCands; 1841 GlobalCand[Worst] = GlobalCand[NumCands]; 1842 if (BestCand == NumCands) 1843 BestCand = Worst; 1844 } 1845 1846 if (GlobalCand.size() <= NumCands) 1847 GlobalCand.resize(NumCands+1); 1848 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1849 Cand.reset(IntfCache, PhysReg); 1850 1851 SpillPlacer->prepare(Cand.LiveBundles); 1852 BlockFrequency Cost; 1853 if (!addSplitConstraints(Cand.Intf, Cost)) { 1854 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1855 continue; 1856 } 1857 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1858 MBFI->printBlockFreq(dbgs(), Cost)); 1859 if (Cost >= BestCost) { 1860 LLVM_DEBUG({ 1861 if (BestCand == NoCand) 1862 dbgs() << " worse than no bundles\n"; 1863 else 1864 dbgs() << " worse than " 1865 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1866 }); 1867 continue; 1868 } 1869 growRegion(Cand); 1870 1871 SpillPlacer->finish(); 1872 1873 // No live bundles, defer to splitSingleBlocks(). 1874 if (!Cand.LiveBundles.any()) { 1875 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1876 continue; 1877 } 1878 1879 bool HasEvictionChain = false; 1880 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1881 LLVM_DEBUG({ 1882 dbgs() << ", total = "; 1883 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1884 for (int i : Cand.LiveBundles.set_bits()) 1885 dbgs() << " EB#" << i; 1886 dbgs() << ".\n"; 1887 }); 1888 if (Cost < BestCost) { 1889 BestCand = NumCands; 1890 BestCost = Cost; 1891 // See splitCanCauseEvictionChain for detailed description of bad 1892 // eviction chain scenarios. 1893 if (CanCauseEvictionChain) 1894 *CanCauseEvictionChain = HasEvictionChain; 1895 } 1896 ++NumCands; 1897 } 1898 1899 if (CanCauseEvictionChain && BestCand != NoCand) { 1900 // See splitCanCauseEvictionChain for detailed description of bad 1901 // eviction chain scenarios. 1902 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1903 << printReg(VirtReg.reg, TRI) << " may "); 1904 if (!(*CanCauseEvictionChain)) 1905 LLVM_DEBUG(dbgs() << "not "); 1906 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1907 } 1908 1909 return BestCand; 1910 } 1911 1912 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1913 bool HasCompact, 1914 SmallVectorImpl<unsigned> &NewVRegs) { 1915 SmallVector<unsigned, 8> UsedCands; 1916 // Prepare split editor. 1917 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1918 SE->reset(LREdit, SplitSpillMode); 1919 1920 // Assign all edge bundles to the preferred candidate, or NoCand. 1921 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1922 1923 // Assign bundles for the best candidate region. 1924 if (BestCand != NoCand) { 1925 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1926 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1927 UsedCands.push_back(BestCand); 1928 Cand.IntvIdx = SE->openIntv(); 1929 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1930 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1931 (void)B; 1932 } 1933 } 1934 1935 // Assign bundles for the compact region. 1936 if (HasCompact) { 1937 GlobalSplitCandidate &Cand = GlobalCand.front(); 1938 assert(!Cand.PhysReg && "Compact region has no physreg"); 1939 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1940 UsedCands.push_back(0); 1941 Cand.IntvIdx = SE->openIntv(); 1942 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1943 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1944 (void)B; 1945 } 1946 } 1947 1948 splitAroundRegion(LREdit, UsedCands); 1949 return 0; 1950 } 1951 1952 //===----------------------------------------------------------------------===// 1953 // Per-Block Splitting 1954 //===----------------------------------------------------------------------===// 1955 1956 /// tryBlockSplit - Split a global live range around every block with uses. This 1957 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1958 /// they don't allocate. 1959 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1960 SmallVectorImpl<unsigned> &NewVRegs) { 1961 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1962 unsigned Reg = VirtReg.reg; 1963 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1964 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1965 SE->reset(LREdit, SplitSpillMode); 1966 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1967 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1968 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1969 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1970 SE->splitSingleBlock(BI); 1971 } 1972 // No blocks were split. 1973 if (LREdit.empty()) 1974 return 0; 1975 1976 // We did split for some blocks. 1977 SmallVector<unsigned, 8> IntvMap; 1978 SE->finish(&IntvMap); 1979 1980 // Tell LiveDebugVariables about the new ranges. 1981 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1982 1983 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1984 1985 // Sort out the new intervals created by splitting. The remainder interval 1986 // goes straight to spilling, the new local ranges get to stay RS_New. 1987 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1988 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 1989 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1990 setStage(LI, RS_Spill); 1991 } 1992 1993 if (VerifyEnabled) 1994 MF->verify(this, "After splitting live range around basic blocks"); 1995 return 0; 1996 } 1997 1998 //===----------------------------------------------------------------------===// 1999 // Per-Instruction Splitting 2000 //===----------------------------------------------------------------------===// 2001 2002 /// Get the number of allocatable registers that match the constraints of \p Reg 2003 /// on \p MI and that are also in \p SuperRC. 2004 static unsigned getNumAllocatableRegsForConstraints( 2005 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 2006 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2007 const RegisterClassInfo &RCI) { 2008 assert(SuperRC && "Invalid register class"); 2009 2010 const TargetRegisterClass *ConstrainedRC = 2011 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2012 /* ExploreBundle */ true); 2013 if (!ConstrainedRC) 2014 return 0; 2015 return RCI.getNumAllocatableRegs(ConstrainedRC); 2016 } 2017 2018 /// tryInstructionSplit - Split a live range around individual instructions. 2019 /// This is normally not worthwhile since the spiller is doing essentially the 2020 /// same thing. However, when the live range is in a constrained register 2021 /// class, it may help to insert copies such that parts of the live range can 2022 /// be moved to a larger register class. 2023 /// 2024 /// This is similar to spilling to a larger register class. 2025 unsigned 2026 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2027 SmallVectorImpl<unsigned> &NewVRegs) { 2028 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2029 // There is no point to this if there are no larger sub-classes. 2030 if (!RegClassInfo.isProperSubClass(CurRC)) 2031 return 0; 2032 2033 // Always enable split spill mode, since we're effectively spilling to a 2034 // register. 2035 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2036 SE->reset(LREdit, SplitEditor::SM_Size); 2037 2038 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2039 if (Uses.size() <= 1) 2040 return 0; 2041 2042 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2043 << " individual instrs.\n"); 2044 2045 const TargetRegisterClass *SuperRC = 2046 TRI->getLargestLegalSuperClass(CurRC, *MF); 2047 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2048 // Split around every non-copy instruction if this split will relax 2049 // the constraints on the virtual register. 2050 // Otherwise, splitting just inserts uncoalescable copies that do not help 2051 // the allocation. 2052 for (unsigned i = 0; i != Uses.size(); ++i) { 2053 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 2054 if (MI->isFullCopy() || 2055 SuperRCNumAllocatableRegs == 2056 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, 2057 TRI, RCI)) { 2058 LLVM_DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 2059 continue; 2060 } 2061 SE->openIntv(); 2062 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 2063 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 2064 SE->useIntv(SegStart, SegStop); 2065 } 2066 2067 if (LREdit.empty()) { 2068 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2069 return 0; 2070 } 2071 2072 SmallVector<unsigned, 8> IntvMap; 2073 SE->finish(&IntvMap); 2074 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 2075 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2076 2077 // Assign all new registers to RS_Spill. This was the last chance. 2078 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2079 return 0; 2080 } 2081 2082 //===----------------------------------------------------------------------===// 2083 // Local Splitting 2084 //===----------------------------------------------------------------------===// 2085 2086 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2087 /// in order to use PhysReg between two entries in SA->UseSlots. 2088 /// 2089 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 2090 /// 2091 void RAGreedy::calcGapWeights(unsigned PhysReg, 2092 SmallVectorImpl<float> &GapWeight) { 2093 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2094 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2095 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2096 const unsigned NumGaps = Uses.size()-1; 2097 2098 // Start and end points for the interference check. 2099 SlotIndex StartIdx = 2100 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2101 SlotIndex StopIdx = 2102 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2103 2104 GapWeight.assign(NumGaps, 0.0f); 2105 2106 // Add interference from each overlapping register. 2107 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2108 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2109 .checkInterference()) 2110 continue; 2111 2112 // We know that VirtReg is a continuous interval from FirstInstr to 2113 // LastInstr, so we don't need InterferenceQuery. 2114 // 2115 // Interference that overlaps an instruction is counted in both gaps 2116 // surrounding the instruction. The exception is interference before 2117 // StartIdx and after StopIdx. 2118 // 2119 LiveIntervalUnion::SegmentIter IntI = 2120 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2121 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2122 // Skip the gaps before IntI. 2123 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2124 if (++Gap == NumGaps) 2125 break; 2126 if (Gap == NumGaps) 2127 break; 2128 2129 // Update the gaps covered by IntI. 2130 const float weight = IntI.value()->weight; 2131 for (; Gap != NumGaps; ++Gap) { 2132 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2133 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2134 break; 2135 } 2136 if (Gap == NumGaps) 2137 break; 2138 } 2139 } 2140 2141 // Add fixed interference. 2142 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2143 const LiveRange &LR = LIS->getRegUnit(*Units); 2144 LiveRange::const_iterator I = LR.find(StartIdx); 2145 LiveRange::const_iterator E = LR.end(); 2146 2147 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2148 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2149 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2150 if (++Gap == NumGaps) 2151 break; 2152 if (Gap == NumGaps) 2153 break; 2154 2155 for (; Gap != NumGaps; ++Gap) { 2156 GapWeight[Gap] = huge_valf; 2157 if (Uses[Gap+1].getBaseIndex() >= I->end) 2158 break; 2159 } 2160 if (Gap == NumGaps) 2161 break; 2162 } 2163 } 2164 } 2165 2166 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2167 /// basic block. 2168 /// 2169 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2170 SmallVectorImpl<unsigned> &NewVRegs) { 2171 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2172 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2173 2174 // Note that it is possible to have an interval that is live-in or live-out 2175 // while only covering a single block - A phi-def can use undef values from 2176 // predecessors, and the block could be a single-block loop. 2177 // We don't bother doing anything clever about such a case, we simply assume 2178 // that the interval is continuous from FirstInstr to LastInstr. We should 2179 // make sure that we don't do anything illegal to such an interval, though. 2180 2181 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2182 if (Uses.size() <= 2) 2183 return 0; 2184 const unsigned NumGaps = Uses.size()-1; 2185 2186 LLVM_DEBUG({ 2187 dbgs() << "tryLocalSplit: "; 2188 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 2189 dbgs() << ' ' << Uses[i]; 2190 dbgs() << '\n'; 2191 }); 2192 2193 // If VirtReg is live across any register mask operands, compute a list of 2194 // gaps with register masks. 2195 SmallVector<unsigned, 8> RegMaskGaps; 2196 if (Matrix->checkRegMaskInterference(VirtReg)) { 2197 // Get regmask slots for the whole block. 2198 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2199 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2200 // Constrain to VirtReg's live range. 2201 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 2202 Uses.front().getRegSlot()) - RMS.begin(); 2203 unsigned re = RMS.size(); 2204 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 2205 // Look for Uses[i] <= RMS <= Uses[i+1]. 2206 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 2207 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 2208 continue; 2209 // Skip a regmask on the same instruction as the last use. It doesn't 2210 // overlap the live range. 2211 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 2212 break; 2213 LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' 2214 << Uses[i + 1]); 2215 RegMaskGaps.push_back(i); 2216 // Advance ri to the next gap. A regmask on one of the uses counts in 2217 // both gaps. 2218 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 2219 ++ri; 2220 } 2221 LLVM_DEBUG(dbgs() << '\n'); 2222 } 2223 2224 // Since we allow local split results to be split again, there is a risk of 2225 // creating infinite loops. It is tempting to require that the new live 2226 // ranges have less instructions than the original. That would guarantee 2227 // convergence, but it is too strict. A live range with 3 instructions can be 2228 // split 2+3 (including the COPY), and we want to allow that. 2229 // 2230 // Instead we use these rules: 2231 // 2232 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2233 // noop split, of course). 2234 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2235 // the new ranges must have fewer instructions than before the split. 2236 // 3. New ranges with the same number of instructions are marked RS_Split2, 2237 // smaller ranges are marked RS_New. 2238 // 2239 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2240 // excessive splitting and infinite loops. 2241 // 2242 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2243 2244 // Best split candidate. 2245 unsigned BestBefore = NumGaps; 2246 unsigned BestAfter = 0; 2247 float BestDiff = 0; 2248 2249 const float blockFreq = 2250 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2251 (1.0f / MBFI->getEntryFreq()); 2252 SmallVector<float, 8> GapWeight; 2253 2254 Order.rewind(); 2255 while (unsigned PhysReg = Order.next()) { 2256 // Keep track of the largest spill weight that would need to be evicted in 2257 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 2258 calcGapWeights(PhysReg, GapWeight); 2259 2260 // Remove any gaps with regmask clobbers. 2261 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2262 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 2263 GapWeight[RegMaskGaps[i]] = huge_valf; 2264 2265 // Try to find the best sequence of gaps to close. 2266 // The new spill weight must be larger than any gap interference. 2267 2268 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2269 unsigned SplitBefore = 0, SplitAfter = 1; 2270 2271 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2272 // It is the spill weight that needs to be evicted. 2273 float MaxGap = GapWeight[0]; 2274 2275 while (true) { 2276 // Live before/after split? 2277 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2278 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2279 2280 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2281 << '-' << Uses[SplitAfter] << " i=" << MaxGap); 2282 2283 // Stop before the interval gets so big we wouldn't be making progress. 2284 if (!LiveBefore && !LiveAfter) { 2285 LLVM_DEBUG(dbgs() << " all\n"); 2286 break; 2287 } 2288 // Should the interval be extended or shrunk? 2289 bool Shrink = true; 2290 2291 // How many gaps would the new range have? 2292 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2293 2294 // Legally, without causing looping? 2295 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2296 2297 if (Legal && MaxGap < huge_valf) { 2298 // Estimate the new spill weight. Each instruction reads or writes the 2299 // register. Conservatively assume there are no read-modify-write 2300 // instructions. 2301 // 2302 // Try to guess the size of the new interval. 2303 const float EstWeight = normalizeSpillWeight( 2304 blockFreq * (NewGaps + 1), 2305 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2306 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2307 1); 2308 // Would this split be possible to allocate? 2309 // Never allocate all gaps, we wouldn't be making progress. 2310 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2311 if (EstWeight * Hysteresis >= MaxGap) { 2312 Shrink = false; 2313 float Diff = EstWeight - MaxGap; 2314 if (Diff > BestDiff) { 2315 LLVM_DEBUG(dbgs() << " (best)"); 2316 BestDiff = Hysteresis * Diff; 2317 BestBefore = SplitBefore; 2318 BestAfter = SplitAfter; 2319 } 2320 } 2321 } 2322 2323 // Try to shrink. 2324 if (Shrink) { 2325 if (++SplitBefore < SplitAfter) { 2326 LLVM_DEBUG(dbgs() << " shrink\n"); 2327 // Recompute the max when necessary. 2328 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2329 MaxGap = GapWeight[SplitBefore]; 2330 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 2331 MaxGap = std::max(MaxGap, GapWeight[i]); 2332 } 2333 continue; 2334 } 2335 MaxGap = 0; 2336 } 2337 2338 // Try to extend the interval. 2339 if (SplitAfter >= NumGaps) { 2340 LLVM_DEBUG(dbgs() << " end\n"); 2341 break; 2342 } 2343 2344 LLVM_DEBUG(dbgs() << " extend\n"); 2345 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2346 } 2347 } 2348 2349 // Didn't find any candidates? 2350 if (BestBefore == NumGaps) 2351 return 0; 2352 2353 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2354 << Uses[BestAfter] << ", " << BestDiff << ", " 2355 << (BestAfter - BestBefore + 1) << " instrs\n"); 2356 2357 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2358 SE->reset(LREdit); 2359 2360 SE->openIntv(); 2361 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2362 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2363 SE->useIntv(SegStart, SegStop); 2364 SmallVector<unsigned, 8> IntvMap; 2365 SE->finish(&IntvMap); 2366 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 2367 2368 // If the new range has the same number of instructions as before, mark it as 2369 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2370 // leave the new intervals as RS_New so they can compete. 2371 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2372 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2373 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2374 if (NewGaps >= NumGaps) { 2375 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: "); 2376 assert(!ProgressRequired && "Didn't make progress when it was required."); 2377 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 2378 if (IntvMap[i] == 1) { 2379 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 2380 LLVM_DEBUG(dbgs() << printReg(LREdit.get(i))); 2381 } 2382 LLVM_DEBUG(dbgs() << '\n'); 2383 } 2384 ++NumLocalSplits; 2385 2386 return 0; 2387 } 2388 2389 //===----------------------------------------------------------------------===// 2390 // Live Range Splitting 2391 //===----------------------------------------------------------------------===// 2392 2393 /// trySplit - Try to split VirtReg or one of its interferences, making it 2394 /// assignable. 2395 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2396 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2397 SmallVectorImpl<unsigned>&NewVRegs) { 2398 // Ranges must be Split2 or less. 2399 if (getStage(VirtReg) >= RS_Spill) 2400 return 0; 2401 2402 // Local intervals are handled separately. 2403 if (LIS->intervalIsInOneMBB(VirtReg)) { 2404 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2405 TimerGroupDescription, TimePassesIsEnabled); 2406 SA->analyze(&VirtReg); 2407 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2408 if (PhysReg || !NewVRegs.empty()) 2409 return PhysReg; 2410 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2411 } 2412 2413 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2414 TimerGroupDescription, TimePassesIsEnabled); 2415 2416 SA->analyze(&VirtReg); 2417 2418 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2419 // coalescer. That may cause the range to become allocatable which means that 2420 // tryRegionSplit won't be making progress. This check should be replaced with 2421 // an assertion when the coalescer is fixed. 2422 if (SA->didRepairRange()) { 2423 // VirtReg has changed, so all cached queries are invalid. 2424 Matrix->invalidateVirtRegs(); 2425 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 2426 return PhysReg; 2427 } 2428 2429 // First try to split around a region spanning multiple blocks. RS_Split2 2430 // ranges already made dubious progress with region splitting, so they go 2431 // straight to single block splitting. 2432 if (getStage(VirtReg) < RS_Split2) { 2433 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2434 if (PhysReg || !NewVRegs.empty()) 2435 return PhysReg; 2436 } 2437 2438 // Then isolate blocks. 2439 return tryBlockSplit(VirtReg, Order, NewVRegs); 2440 } 2441 2442 //===----------------------------------------------------------------------===// 2443 // Last Chance Recoloring 2444 //===----------------------------------------------------------------------===// 2445 2446 /// Return true if \p reg has any tied def operand. 2447 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2448 for (const MachineOperand &MO : MRI->def_operands(reg)) 2449 if (MO.isTied()) 2450 return true; 2451 2452 return false; 2453 } 2454 2455 /// mayRecolorAllInterferences - Check if the virtual registers that 2456 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2457 /// recolored to free \p PhysReg. 2458 /// When true is returned, \p RecoloringCandidates has been augmented with all 2459 /// the live intervals that need to be recolored in order to free \p PhysReg 2460 /// for \p VirtReg. 2461 /// \p FixedRegisters contains all the virtual registers that cannot be 2462 /// recolored. 2463 bool 2464 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 2465 SmallLISet &RecoloringCandidates, 2466 const SmallVirtRegSet &FixedRegisters) { 2467 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2468 2469 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2470 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2471 // If there is LastChanceRecoloringMaxInterference or more interferences, 2472 // chances are one would not be recolorable. 2473 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2474 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2475 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2476 CutOffInfo |= CO_Interf; 2477 return false; 2478 } 2479 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 2480 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 2481 // If Intf is done and sit on the same register class as VirtReg, 2482 // it would not be recolorable as it is in the same state as VirtReg. 2483 // However, if VirtReg has tied defs and Intf doesn't, then 2484 // there is still a point in examining if it can be recolorable. 2485 if (((getStage(*Intf) == RS_Done && 2486 MRI->getRegClass(Intf->reg) == CurRC) && 2487 !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) || 2488 FixedRegisters.count(Intf->reg)) { 2489 LLVM_DEBUG( 2490 dbgs() << "Early abort: the interference is not recolorable.\n"); 2491 return false; 2492 } 2493 RecoloringCandidates.insert(Intf); 2494 } 2495 } 2496 return true; 2497 } 2498 2499 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2500 /// its interferences. 2501 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2502 /// virtual register that was using it. The recoloring process may recursively 2503 /// use the last chance recoloring. Therefore, when a virtual register has been 2504 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2505 /// be last-chance-recolored again during this recoloring "session". 2506 /// E.g., 2507 /// Let 2508 /// vA can use {R1, R2 } 2509 /// vB can use { R2, R3} 2510 /// vC can use {R1 } 2511 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2512 /// instance) and they all interfere. 2513 /// 2514 /// vA is assigned R1 2515 /// vB is assigned R2 2516 /// vC tries to evict vA but vA is already done. 2517 /// Regular register allocation fails. 2518 /// 2519 /// Last chance recoloring kicks in: 2520 /// vC does as if vA was evicted => vC uses R1. 2521 /// vC is marked as fixed. 2522 /// vA needs to find a color. 2523 /// None are available. 2524 /// vA cannot evict vC: vC is a fixed virtual register now. 2525 /// vA does as if vB was evicted => vA uses R2. 2526 /// vB needs to find a color. 2527 /// R3 is available. 2528 /// Recoloring => vC = R1, vA = R2, vB = R3 2529 /// 2530 /// \p Order defines the preferred allocation order for \p VirtReg. 2531 /// \p NewRegs will contain any new virtual register that have been created 2532 /// (split, spill) during the process and that must be assigned. 2533 /// \p FixedRegisters contains all the virtual registers that cannot be 2534 /// recolored. 2535 /// \p Depth gives the current depth of the last chance recoloring. 2536 /// \return a physical register that can be used for VirtReg or ~0u if none 2537 /// exists. 2538 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2539 AllocationOrder &Order, 2540 SmallVectorImpl<unsigned> &NewVRegs, 2541 SmallVirtRegSet &FixedRegisters, 2542 unsigned Depth) { 2543 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2544 // Ranges must be Done. 2545 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2546 "Last chance recoloring should really be last chance"); 2547 // Set the max depth to LastChanceRecoloringMaxDepth. 2548 // We may want to reconsider that if we end up with a too large search space 2549 // for target with hundreds of registers. 2550 // Indeed, in that case we may want to cut the search space earlier. 2551 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2552 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2553 CutOffInfo |= CO_Depth; 2554 return ~0u; 2555 } 2556 2557 // Set of Live intervals that will need to be recolored. 2558 SmallLISet RecoloringCandidates; 2559 // Record the original mapping virtual register to physical register in case 2560 // the recoloring fails. 2561 DenseMap<unsigned, unsigned> VirtRegToPhysReg; 2562 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2563 // this recoloring "session". 2564 FixedRegisters.insert(VirtReg.reg); 2565 SmallVector<unsigned, 4> CurrentNewVRegs; 2566 2567 Order.rewind(); 2568 while (unsigned PhysReg = Order.next()) { 2569 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2570 << printReg(PhysReg, TRI) << '\n'); 2571 RecoloringCandidates.clear(); 2572 VirtRegToPhysReg.clear(); 2573 CurrentNewVRegs.clear(); 2574 2575 // It is only possible to recolor virtual register interference. 2576 if (Matrix->checkInterference(VirtReg, PhysReg) > 2577 LiveRegMatrix::IK_VirtReg) { 2578 LLVM_DEBUG( 2579 dbgs() << "Some interferences are not with virtual registers.\n"); 2580 2581 continue; 2582 } 2583 2584 // Early give up on this PhysReg if it is obvious we cannot recolor all 2585 // the interferences. 2586 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2587 FixedRegisters)) { 2588 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2589 continue; 2590 } 2591 2592 // RecoloringCandidates contains all the virtual registers that interfer 2593 // with VirtReg on PhysReg (or one of its aliases). 2594 // Enqueue them for recoloring and perform the actual recoloring. 2595 PQueue RecoloringQueue; 2596 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2597 EndIt = RecoloringCandidates.end(); 2598 It != EndIt; ++It) { 2599 unsigned ItVirtReg = (*It)->reg; 2600 enqueue(RecoloringQueue, *It); 2601 assert(VRM->hasPhys(ItVirtReg) && 2602 "Interferences are supposed to be with allocated vairables"); 2603 2604 // Record the current allocation. 2605 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2606 // unset the related struct. 2607 Matrix->unassign(**It); 2608 } 2609 2610 // Do as if VirtReg was assigned to PhysReg so that the underlying 2611 // recoloring has the right information about the interferes and 2612 // available colors. 2613 Matrix->assign(VirtReg, PhysReg); 2614 2615 // Save the current recoloring state. 2616 // If we cannot recolor all the interferences, we will have to start again 2617 // at this point for the next physical register. 2618 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2619 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2620 FixedRegisters, Depth)) { 2621 // Push the queued vregs into the main queue. 2622 for (unsigned NewVReg : CurrentNewVRegs) 2623 NewVRegs.push_back(NewVReg); 2624 // Do not mess up with the global assignment process. 2625 // I.e., VirtReg must be unassigned. 2626 Matrix->unassign(VirtReg); 2627 return PhysReg; 2628 } 2629 2630 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2631 << printReg(PhysReg, TRI) << '\n'); 2632 2633 // The recoloring attempt failed, undo the changes. 2634 FixedRegisters = SaveFixedRegisters; 2635 Matrix->unassign(VirtReg); 2636 2637 // For a newly created vreg which is also in RecoloringCandidates, 2638 // don't add it to NewVRegs because its physical register will be restored 2639 // below. Other vregs in CurrentNewVRegs are created by calling 2640 // selectOrSplit and should be added into NewVRegs. 2641 for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(), 2642 End = CurrentNewVRegs.end(); 2643 Next != End; ++Next) { 2644 if (RecoloringCandidates.count(&LIS->getInterval(*Next))) 2645 continue; 2646 NewVRegs.push_back(*Next); 2647 } 2648 2649 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2650 EndIt = RecoloringCandidates.end(); 2651 It != EndIt; ++It) { 2652 unsigned ItVirtReg = (*It)->reg; 2653 if (VRM->hasPhys(ItVirtReg)) 2654 Matrix->unassign(**It); 2655 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2656 Matrix->assign(**It, ItPhysReg); 2657 } 2658 } 2659 2660 // Last chance recoloring did not worked either, give up. 2661 return ~0u; 2662 } 2663 2664 /// tryRecoloringCandidates - Try to assign a new color to every register 2665 /// in \RecoloringQueue. 2666 /// \p NewRegs will contain any new virtual register created during the 2667 /// recoloring process. 2668 /// \p FixedRegisters[in/out] contains all the registers that have been 2669 /// recolored. 2670 /// \return true if all virtual registers in RecoloringQueue were successfully 2671 /// recolored, false otherwise. 2672 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2673 SmallVectorImpl<unsigned> &NewVRegs, 2674 SmallVirtRegSet &FixedRegisters, 2675 unsigned Depth) { 2676 while (!RecoloringQueue.empty()) { 2677 LiveInterval *LI = dequeue(RecoloringQueue); 2678 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2679 unsigned PhysReg; 2680 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2681 // When splitting happens, the live-range may actually be empty. 2682 // In that case, this is okay to continue the recoloring even 2683 // if we did not find an alternative color for it. Indeed, 2684 // there will not be anything to color for LI in the end. 2685 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2686 return false; 2687 2688 if (!PhysReg) { 2689 assert(LI->empty() && "Only empty live-range do not require a register"); 2690 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2691 << " succeeded. Empty LI.\n"); 2692 continue; 2693 } 2694 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2695 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2696 2697 Matrix->assign(*LI, PhysReg); 2698 FixedRegisters.insert(LI->reg); 2699 } 2700 return true; 2701 } 2702 2703 //===----------------------------------------------------------------------===// 2704 // Main Entry Point 2705 //===----------------------------------------------------------------------===// 2706 2707 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2708 SmallVectorImpl<unsigned> &NewVRegs) { 2709 CutOffInfo = CO_None; 2710 LLVMContext &Ctx = MF->getFunction().getContext(); 2711 SmallVirtRegSet FixedRegisters; 2712 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2713 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2714 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2715 if (CutOffEncountered == CO_Depth) 2716 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2717 "reached. Use -fexhaustive-register-search to skip " 2718 "cutoffs"); 2719 else if (CutOffEncountered == CO_Interf) 2720 Ctx.emitError("register allocation failed: maximum interference for " 2721 "recoloring reached. Use -fexhaustive-register-search " 2722 "to skip cutoffs"); 2723 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2724 Ctx.emitError("register allocation failed: maximum interference and " 2725 "depth for recoloring reached. Use " 2726 "-fexhaustive-register-search to skip cutoffs"); 2727 } 2728 return Reg; 2729 } 2730 2731 /// Using a CSR for the first time has a cost because it causes push|pop 2732 /// to be added to prologue|epilogue. Splitting a cold section of the live 2733 /// range can have lower cost than using the CSR for the first time; 2734 /// Spilling a live range in the cold path can have lower cost than using 2735 /// the CSR for the first time. Returns the physical register if we decide 2736 /// to use the CSR; otherwise return 0. 2737 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2738 AllocationOrder &Order, 2739 unsigned PhysReg, 2740 unsigned &CostPerUseLimit, 2741 SmallVectorImpl<unsigned> &NewVRegs) { 2742 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2743 // We choose spill over using the CSR for the first time if the spill cost 2744 // is lower than CSRCost. 2745 SA->analyze(&VirtReg); 2746 if (calcSpillCost() >= CSRCost) 2747 return PhysReg; 2748 2749 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2750 // we will not use a callee-saved register in tryEvict. 2751 CostPerUseLimit = 1; 2752 return 0; 2753 } 2754 if (getStage(VirtReg) < RS_Split) { 2755 // We choose pre-splitting over using the CSR for the first time if 2756 // the cost of splitting is lower than CSRCost. 2757 SA->analyze(&VirtReg); 2758 unsigned NumCands = 0; 2759 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2760 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2761 NumCands, true /*IgnoreCSR*/); 2762 if (BestCand == NoCand) 2763 // Use the CSR if we can't find a region split below CSRCost. 2764 return PhysReg; 2765 2766 // Perform the actual pre-splitting. 2767 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2768 return 0; 2769 } 2770 return PhysReg; 2771 } 2772 2773 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2774 // Do not keep invalid information around. 2775 SetOfBrokenHints.remove(&LI); 2776 } 2777 2778 void RAGreedy::initializeCSRCost() { 2779 // We use the larger one out of the command-line option and the value report 2780 // by TRI. 2781 CSRCost = BlockFrequency( 2782 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2783 if (!CSRCost.getFrequency()) 2784 return; 2785 2786 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2787 uint64_t ActualEntry = MBFI->getEntryFreq(); 2788 if (!ActualEntry) { 2789 CSRCost = 0; 2790 return; 2791 } 2792 uint64_t FixedEntry = 1 << 14; 2793 if (ActualEntry < FixedEntry) 2794 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2795 else if (ActualEntry <= UINT32_MAX) 2796 // Invert the fraction and divide. 2797 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2798 else 2799 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2800 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2801 } 2802 2803 /// Collect the hint info for \p Reg. 2804 /// The results are stored into \p Out. 2805 /// \p Out is not cleared before being populated. 2806 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2807 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2808 if (!Instr.isFullCopy()) 2809 continue; 2810 // Look for the other end of the copy. 2811 unsigned OtherReg = Instr.getOperand(0).getReg(); 2812 if (OtherReg == Reg) { 2813 OtherReg = Instr.getOperand(1).getReg(); 2814 if (OtherReg == Reg) 2815 continue; 2816 } 2817 // Get the current assignment. 2818 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg) 2819 ? OtherReg 2820 : VRM->getPhys(OtherReg); 2821 // Push the collected information. 2822 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2823 OtherPhysReg)); 2824 } 2825 } 2826 2827 /// Using the given \p List, compute the cost of the broken hints if 2828 /// \p PhysReg was used. 2829 /// \return The cost of \p List for \p PhysReg. 2830 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2831 unsigned PhysReg) { 2832 BlockFrequency Cost = 0; 2833 for (const HintInfo &Info : List) { 2834 if (Info.PhysReg != PhysReg) 2835 Cost += Info.Freq; 2836 } 2837 return Cost; 2838 } 2839 2840 /// Using the register assigned to \p VirtReg, try to recolor 2841 /// all the live ranges that are copy-related with \p VirtReg. 2842 /// The recoloring is then propagated to all the live-ranges that have 2843 /// been recolored and so on, until no more copies can be coalesced or 2844 /// it is not profitable. 2845 /// For a given live range, profitability is determined by the sum of the 2846 /// frequencies of the non-identity copies it would introduce with the old 2847 /// and new register. 2848 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2849 // We have a broken hint, check if it is possible to fix it by 2850 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2851 // some register and PhysReg may be available for the other live-ranges. 2852 SmallSet<unsigned, 4> Visited; 2853 SmallVector<unsigned, 2> RecoloringCandidates; 2854 HintsInfo Info; 2855 unsigned Reg = VirtReg.reg; 2856 unsigned PhysReg = VRM->getPhys(Reg); 2857 // Start the recoloring algorithm from the input live-interval, then 2858 // it will propagate to the ones that are copy-related with it. 2859 Visited.insert(Reg); 2860 RecoloringCandidates.push_back(Reg); 2861 2862 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2863 << '(' << printReg(PhysReg, TRI) << ")\n"); 2864 2865 do { 2866 Reg = RecoloringCandidates.pop_back_val(); 2867 2868 // We cannot recolor physical register. 2869 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 2870 continue; 2871 2872 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2873 2874 // Get the live interval mapped with this virtual register to be able 2875 // to check for the interference with the new color. 2876 LiveInterval &LI = LIS->getInterval(Reg); 2877 unsigned CurrPhys = VRM->getPhys(Reg); 2878 // Check that the new color matches the register class constraints and 2879 // that it is free for this live range. 2880 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2881 Matrix->checkInterference(LI, PhysReg))) 2882 continue; 2883 2884 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2885 << ") is recolorable.\n"); 2886 2887 // Gather the hint info. 2888 Info.clear(); 2889 collectHintInfo(Reg, Info); 2890 // Check if recoloring the live-range will increase the cost of the 2891 // non-identity copies. 2892 if (CurrPhys != PhysReg) { 2893 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2894 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2895 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2896 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2897 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2898 << '\n'); 2899 if (OldCopiesCost < NewCopiesCost) { 2900 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2901 continue; 2902 } 2903 // At this point, the cost is either cheaper or equal. If it is 2904 // equal, we consider this is profitable because it may expose 2905 // more recoloring opportunities. 2906 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2907 // Recolor the live-range. 2908 Matrix->unassign(LI); 2909 Matrix->assign(LI, PhysReg); 2910 } 2911 // Push all copy-related live-ranges to keep reconciling the broken 2912 // hints. 2913 for (const HintInfo &HI : Info) { 2914 if (Visited.insert(HI.Reg).second) 2915 RecoloringCandidates.push_back(HI.Reg); 2916 } 2917 } while (!RecoloringCandidates.empty()); 2918 } 2919 2920 /// Try to recolor broken hints. 2921 /// Broken hints may be repaired by recoloring when an evicted variable 2922 /// freed up a register for a larger live-range. 2923 /// Consider the following example: 2924 /// BB1: 2925 /// a = 2926 /// b = 2927 /// BB2: 2928 /// ... 2929 /// = b 2930 /// = a 2931 /// Let us assume b gets split: 2932 /// BB1: 2933 /// a = 2934 /// b = 2935 /// BB2: 2936 /// c = b 2937 /// ... 2938 /// d = c 2939 /// = d 2940 /// = a 2941 /// Because of how the allocation work, b, c, and d may be assigned different 2942 /// colors. Now, if a gets evicted later: 2943 /// BB1: 2944 /// a = 2945 /// st a, SpillSlot 2946 /// b = 2947 /// BB2: 2948 /// c = b 2949 /// ... 2950 /// d = c 2951 /// = d 2952 /// e = ld SpillSlot 2953 /// = e 2954 /// This is likely that we can assign the same register for b, c, and d, 2955 /// getting rid of 2 copies. 2956 void RAGreedy::tryHintsRecoloring() { 2957 for (LiveInterval *LI : SetOfBrokenHints) { 2958 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) && 2959 "Recoloring is possible only for virtual registers"); 2960 // Some dead defs may be around (e.g., because of debug uses). 2961 // Ignore those. 2962 if (!VRM->hasPhys(LI->reg)) 2963 continue; 2964 tryHintRecoloring(*LI); 2965 } 2966 } 2967 2968 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2969 SmallVectorImpl<unsigned> &NewVRegs, 2970 SmallVirtRegSet &FixedRegisters, 2971 unsigned Depth) { 2972 unsigned CostPerUseLimit = ~0u; 2973 // First try assigning a free register. 2974 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 2975 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) { 2976 // If VirtReg got an assignment, the eviction info is no longre relevant. 2977 LastEvicted.clearEvicteeInfo(VirtReg.reg); 2978 // When NewVRegs is not empty, we may have made decisions such as evicting 2979 // a virtual register, go with the earlier decisions and use the physical 2980 // register. 2981 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 2982 NewVRegs.empty()) { 2983 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2984 CostPerUseLimit, NewVRegs); 2985 if (CSRReg || !NewVRegs.empty()) 2986 // Return now if we decide to use a CSR or create new vregs due to 2987 // pre-splitting. 2988 return CSRReg; 2989 } else 2990 return PhysReg; 2991 } 2992 2993 LiveRangeStage Stage = getStage(VirtReg); 2994 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 2995 << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 2996 2997 // Try to evict a less worthy live range, but only for ranges from the primary 2998 // queue. The RS_Split ranges already failed to do this, and they should not 2999 // get a second chance until they have been split. 3000 if (Stage != RS_Split) 3001 if (unsigned PhysReg = 3002 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) { 3003 unsigned Hint = MRI->getSimpleHint(VirtReg.reg); 3004 // If VirtReg has a hint and that hint is broken record this 3005 // virtual register as a recoloring candidate for broken hint. 3006 // Indeed, since we evicted a variable in its neighborhood it is 3007 // likely we can at least partially recolor some of the 3008 // copy-related live-ranges. 3009 if (Hint && Hint != PhysReg) 3010 SetOfBrokenHints.insert(&VirtReg); 3011 // If VirtReg eviction someone, the eviction info for it as an evictee is 3012 // no longre relevant. 3013 LastEvicted.clearEvicteeInfo(VirtReg.reg); 3014 return PhysReg; 3015 } 3016 3017 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3018 3019 // The first time we see a live range, don't try to split or spill. 3020 // Wait until the second time, when all smaller ranges have been allocated. 3021 // This gives a better picture of the interference to split around. 3022 if (Stage < RS_Split) { 3023 setStage(VirtReg, RS_Split); 3024 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3025 NewVRegs.push_back(VirtReg.reg); 3026 return 0; 3027 } 3028 3029 if (Stage < RS_Spill) { 3030 // Try splitting VirtReg or interferences. 3031 unsigned NewVRegSizeBefore = NewVRegs.size(); 3032 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 3033 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3034 // If VirtReg got split, the eviction info is no longre relevant. 3035 LastEvicted.clearEvicteeInfo(VirtReg.reg); 3036 return PhysReg; 3037 } 3038 } 3039 3040 // If we couldn't allocate a register from spilling, there is probably some 3041 // invalid inline assembly. The base class will report it. 3042 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3043 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3044 Depth); 3045 3046 // Finally spill VirtReg itself. 3047 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) { 3048 // TODO: This is experimental and in particular, we do not model 3049 // the live range splitting done by spilling correctly. 3050 // We would need a deep integration with the spiller to do the 3051 // right thing here. Anyway, that is still good for early testing. 3052 setStage(VirtReg, RS_Memory); 3053 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3054 NewVRegs.push_back(VirtReg.reg); 3055 } else { 3056 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3057 TimerGroupDescription, TimePassesIsEnabled); 3058 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3059 spiller().spill(LRE); 3060 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3061 3062 if (VerifyEnabled) 3063 MF->verify(this, "After spilling"); 3064 } 3065 3066 // The live virtual register requesting allocation was spilled, so tell 3067 // the caller not to allocate anything during this round. 3068 return 0; 3069 } 3070 3071 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 3072 unsigned &FoldedReloads, 3073 unsigned &Spills, 3074 unsigned &FoldedSpills) { 3075 Reloads = 0; 3076 FoldedReloads = 0; 3077 Spills = 0; 3078 FoldedSpills = 0; 3079 3080 // Sum up the spill and reloads in subloops. 3081 for (MachineLoop *SubLoop : *L) { 3082 unsigned SubReloads; 3083 unsigned SubFoldedReloads; 3084 unsigned SubSpills; 3085 unsigned SubFoldedSpills; 3086 3087 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads, 3088 SubSpills, SubFoldedSpills); 3089 Reloads += SubReloads; 3090 FoldedReloads += SubFoldedReloads; 3091 Spills += SubSpills; 3092 FoldedSpills += SubFoldedSpills; 3093 } 3094 3095 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3096 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 3097 int FI; 3098 3099 for (MachineBasicBlock *MBB : L->getBlocks()) 3100 // Handle blocks that were not included in subloops. 3101 if (Loops->getLoopFor(MBB) == L) 3102 for (MachineInstr &MI : *MBB) { 3103 const MachineMemOperand *MMO; 3104 3105 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) 3106 ++Reloads; 3107 else if (TII->hasLoadFromStackSlot(MI, MMO, FI) && 3108 MFI.isSpillSlotObjectIndex(FI)) 3109 ++FoldedReloads; 3110 else if (TII->isStoreToStackSlot(MI, FI) && 3111 MFI.isSpillSlotObjectIndex(FI)) 3112 ++Spills; 3113 else if (TII->hasStoreToStackSlot(MI, MMO, FI) && 3114 MFI.isSpillSlotObjectIndex(FI)) 3115 ++FoldedSpills; 3116 } 3117 3118 if (Reloads || FoldedReloads || Spills || FoldedSpills) { 3119 using namespace ore; 3120 3121 ORE->emit([&]() { 3122 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", 3123 L->getStartLoc(), L->getHeader()); 3124 if (Spills) 3125 R << NV("NumSpills", Spills) << " spills "; 3126 if (FoldedSpills) 3127 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3128 if (Reloads) 3129 R << NV("NumReloads", Reloads) << " reloads "; 3130 if (FoldedReloads) 3131 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3132 R << "generated in loop"; 3133 return R; 3134 }); 3135 } 3136 } 3137 3138 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3139 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3140 << "********** Function: " << mf.getName() << '\n'); 3141 3142 MF = &mf; 3143 TRI = MF->getSubtarget().getRegisterInfo(); 3144 TII = MF->getSubtarget().getInstrInfo(); 3145 RCI.runOnMachineFunction(mf); 3146 3147 EnableLocalReassign = EnableLocalReassignment || 3148 MF->getSubtarget().enableRALocalReassignment( 3149 MF->getTarget().getOptLevel()); 3150 3151 EnableAdvancedRASplitCost = ConsiderLocalIntervalCost || 3152 MF->getSubtarget().enableAdvancedRASplitCost(); 3153 3154 if (VerifyEnabled) 3155 MF->verify(this, "Before greedy register allocator"); 3156 3157 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3158 getAnalysis<LiveIntervals>(), 3159 getAnalysis<LiveRegMatrix>()); 3160 Indexes = &getAnalysis<SlotIndexes>(); 3161 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3162 DomTree = &getAnalysis<MachineDominatorTree>(); 3163 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3164 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 3165 Loops = &getAnalysis<MachineLoopInfo>(); 3166 Bundles = &getAnalysis<EdgeBundles>(); 3167 SpillPlacer = &getAnalysis<SpillPlacement>(); 3168 DebugVars = &getAnalysis<LiveDebugVariables>(); 3169 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3170 3171 initializeCSRCost(); 3172 3173 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); 3174 3175 LLVM_DEBUG(LIS->dump()); 3176 3177 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3178 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); 3179 ExtraRegInfo.clear(); 3180 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3181 NextCascade = 1; 3182 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3183 GlobalCand.resize(32); // This will grow as needed. 3184 SetOfBrokenHints.clear(); 3185 LastEvicted.clear(); 3186 3187 allocatePhysRegs(); 3188 tryHintsRecoloring(); 3189 postOptimization(); 3190 reportNumberOfSplillsReloads(); 3191 3192 releaseMemory(); 3193 return true; 3194 } 3195