1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RAGreedy function pass for register allocation in
11 // optimized builds.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "SpillPlacement.h"
20 #include "Spiller.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/MapVector.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/CodeGen/CalcSpillWeights.h"
36 #include "llvm/CodeGen/EdgeBundles.h"
37 #include "llvm/CodeGen/LiveInterval.h"
38 #include "llvm/CodeGen/LiveIntervalUnion.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveRangeEdit.h"
41 #include "llvm/CodeGen/LiveRegMatrix.h"
42 #include "llvm/CodeGen/LiveStacks.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFrameInfo.h"
47 #include "llvm/CodeGen/MachineFunction.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RegAllocRegistry.h"
55 #include "llvm/CodeGen/RegisterClassInfo.h"
56 #include "llvm/CodeGen/SlotIndexes.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/VirtRegMap.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Pass.h"
65 #include "llvm/Support/BlockFrequency.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetMachine.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <memory>
77 #include <queue>
78 #include <tuple>
79 #include <utility>
80 
81 using namespace llvm;
82 
83 #define DEBUG_TYPE "regalloc"
84 
85 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
86 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
87 STATISTIC(NumEvicted,      "Number of interferences evicted");
88 
89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
90     "split-spill-mode", cl::Hidden,
91     cl::desc("Spill mode for splitting live ranges"),
92     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
93                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
94                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
95     cl::init(SplitEditor::SM_Speed));
96 
97 static cl::opt<unsigned>
98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
99                              cl::desc("Last chance recoloring max depth"),
100                              cl::init(5));
101 
102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
103     "lcr-max-interf", cl::Hidden,
104     cl::desc("Last chance recoloring maximum number of considered"
105              " interference at a time"),
106     cl::init(8));
107 
108 static cl::opt<bool> ExhaustiveSearch(
109     "exhaustive-register-search", cl::NotHidden,
110     cl::desc("Exhaustive Search for registers bypassing the depth "
111              "and interference cutoffs of last chance recoloring"),
112     cl::Hidden);
113 
114 static cl::opt<bool> EnableLocalReassignment(
115     "enable-local-reassign", cl::Hidden,
116     cl::desc("Local reassignment can yield better allocation decisions, but "
117              "may be compile time intensive"),
118     cl::init(false));
119 
120 static cl::opt<bool> EnableDeferredSpilling(
121     "enable-deferred-spilling", cl::Hidden,
122     cl::desc("Instead of spilling a variable right away, defer the actual "
123              "code insertion to the end of the allocation. That way the "
124              "allocator might still find a suitable coloring for this "
125              "variable because of other evicted variables."),
126     cl::init(false));
127 
128 // FIXME: Find a good default for this flag and remove the flag.
129 static cl::opt<unsigned>
130 CSRFirstTimeCost("regalloc-csr-first-time-cost",
131               cl::desc("Cost for first time use of callee-saved register."),
132               cl::init(0), cl::Hidden);
133 
134 static cl::opt<bool> ConsiderLocalIntervalCost(
135     "condsider-local-interval-cost", cl::Hidden,
136     cl::desc("Consider the cost of local intervals created by a split "
137              "candidate when choosing the best split candidate."),
138     cl::init(false));
139 
140 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
141                                        createGreedyRegisterAllocator);
142 
143 namespace {
144 
145 class RAGreedy : public MachineFunctionPass,
146                  public RegAllocBase,
147                  private LiveRangeEdit::Delegate {
148   // Convenient shortcuts.
149   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
150   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
151   using SmallVirtRegSet = SmallSet<unsigned, 16>;
152 
153   // context
154   MachineFunction *MF;
155 
156   // Shortcuts to some useful interface.
157   const TargetInstrInfo *TII;
158   const TargetRegisterInfo *TRI;
159   RegisterClassInfo RCI;
160 
161   // analyses
162   SlotIndexes *Indexes;
163   MachineBlockFrequencyInfo *MBFI;
164   MachineDominatorTree *DomTree;
165   MachineLoopInfo *Loops;
166   MachineOptimizationRemarkEmitter *ORE;
167   EdgeBundles *Bundles;
168   SpillPlacement *SpillPlacer;
169   LiveDebugVariables *DebugVars;
170   AliasAnalysis *AA;
171 
172   // state
173   std::unique_ptr<Spiller> SpillerInstance;
174   PQueue Queue;
175   unsigned NextCascade;
176 
177   // Live ranges pass through a number of stages as we try to allocate them.
178   // Some of the stages may also create new live ranges:
179   //
180   // - Region splitting.
181   // - Per-block splitting.
182   // - Local splitting.
183   // - Spilling.
184   //
185   // Ranges produced by one of the stages skip the previous stages when they are
186   // dequeued. This improves performance because we can skip interference checks
187   // that are unlikely to give any results. It also guarantees that the live
188   // range splitting algorithm terminates, something that is otherwise hard to
189   // ensure.
190   enum LiveRangeStage {
191     /// Newly created live range that has never been queued.
192     RS_New,
193 
194     /// Only attempt assignment and eviction. Then requeue as RS_Split.
195     RS_Assign,
196 
197     /// Attempt live range splitting if assignment is impossible.
198     RS_Split,
199 
200     /// Attempt more aggressive live range splitting that is guaranteed to make
201     /// progress.  This is used for split products that may not be making
202     /// progress.
203     RS_Split2,
204 
205     /// Live range will be spilled.  No more splitting will be attempted.
206     RS_Spill,
207 
208 
209     /// Live range is in memory. Because of other evictions, it might get moved
210     /// in a register in the end.
211     RS_Memory,
212 
213     /// There is nothing more we can do to this live range.  Abort compilation
214     /// if it can't be assigned.
215     RS_Done
216   };
217 
218   // Enum CutOffStage to keep a track whether the register allocation failed
219   // because of the cutoffs encountered in last chance recoloring.
220   // Note: This is used as bitmask. New value should be next power of 2.
221   enum CutOffStage {
222     // No cutoffs encountered
223     CO_None = 0,
224 
225     // lcr-max-depth cutoff encountered
226     CO_Depth = 1,
227 
228     // lcr-max-interf cutoff encountered
229     CO_Interf = 2
230   };
231 
232   uint8_t CutOffInfo;
233 
234 #ifndef NDEBUG
235   static const char *const StageName[];
236 #endif
237 
238   // RegInfo - Keep additional information about each live range.
239   struct RegInfo {
240     LiveRangeStage Stage = RS_New;
241 
242     // Cascade - Eviction loop prevention. See canEvictInterference().
243     unsigned Cascade = 0;
244 
245     RegInfo() = default;
246   };
247 
248   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
249 
250   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
251     return ExtraRegInfo[VirtReg.reg].Stage;
252   }
253 
254   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
255     ExtraRegInfo.resize(MRI->getNumVirtRegs());
256     ExtraRegInfo[VirtReg.reg].Stage = Stage;
257   }
258 
259   template<typename Iterator>
260   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
261     ExtraRegInfo.resize(MRI->getNumVirtRegs());
262     for (;Begin != End; ++Begin) {
263       unsigned Reg = *Begin;
264       if (ExtraRegInfo[Reg].Stage == RS_New)
265         ExtraRegInfo[Reg].Stage = NewStage;
266     }
267   }
268 
269   /// Cost of evicting interference.
270   struct EvictionCost {
271     unsigned BrokenHints = 0; ///< Total number of broken hints.
272     float MaxWeight = 0;      ///< Maximum spill weight evicted.
273 
274     EvictionCost() = default;
275 
276     bool isMax() const { return BrokenHints == ~0u; }
277 
278     void setMax() { BrokenHints = ~0u; }
279 
280     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
281 
282     bool operator<(const EvictionCost &O) const {
283       return std::tie(BrokenHints, MaxWeight) <
284              std::tie(O.BrokenHints, O.MaxWeight);
285     }
286   };
287 
288   /// EvictionTrack - Keeps track of past evictions in order to optimize region
289   /// split decision.
290   class EvictionTrack {
291 
292   public:
293     using EvictorInfo =
294         std::pair<unsigned /* evictor */, unsigned /* physreg */>;
295     using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>;
296 
297   private:
298     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
299     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
300     EvicteeInfo Evictees;
301 
302   public:
303     /// Clear all eviction information.
304     void clear() { Evictees.clear(); }
305 
306     ///  Clear eviction information for the given evictee Vreg.
307     /// E.g. when Vreg get's a new allocation, the old eviction info is no
308     /// longer relevant.
309     /// \param Evictee The evictee Vreg for whom we want to clear collected
310     /// eviction info.
311     void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); }
312 
313     /// Track new eviction.
314     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
315     /// \praram PhysReg The phisical register Evictee was evicted from.
316     /// \praram Evictor The evictor Vreg that evicted Evictee.
317     /// \praram Evictee The evictee Vreg.
318     void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) {
319       Evictees[Evictee].first = Evictor;
320       Evictees[Evictee].second = PhysReg;
321     }
322 
323     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
324     /// \praram Evictee The evictee vreg.
325     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
326     /// nobody has evicted Evictee from PhysReg.
327     EvictorInfo getEvictor(unsigned Evictee) {
328       if (Evictees.count(Evictee)) {
329         return Evictees[Evictee];
330       }
331 
332       return EvictorInfo(0, 0);
333     }
334   };
335 
336   // Keeps track of past evictions in order to optimize region split decision.
337   EvictionTrack LastEvicted;
338 
339   // splitting state.
340   std::unique_ptr<SplitAnalysis> SA;
341   std::unique_ptr<SplitEditor> SE;
342 
343   /// Cached per-block interference maps
344   InterferenceCache IntfCache;
345 
346   /// All basic blocks where the current register has uses.
347   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
348 
349   /// Global live range splitting candidate info.
350   struct GlobalSplitCandidate {
351     // Register intended for assignment, or 0.
352     unsigned PhysReg;
353 
354     // SplitKit interval index for this candidate.
355     unsigned IntvIdx;
356 
357     // Interference for PhysReg.
358     InterferenceCache::Cursor Intf;
359 
360     // Bundles where this candidate should be live.
361     BitVector LiveBundles;
362     SmallVector<unsigned, 8> ActiveBlocks;
363 
364     void reset(InterferenceCache &Cache, unsigned Reg) {
365       PhysReg = Reg;
366       IntvIdx = 0;
367       Intf.setPhysReg(Cache, Reg);
368       LiveBundles.clear();
369       ActiveBlocks.clear();
370     }
371 
372     // Set B[i] = C for every live bundle where B[i] was NoCand.
373     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
374       unsigned Count = 0;
375       for (unsigned i : LiveBundles.set_bits())
376         if (B[i] == NoCand) {
377           B[i] = C;
378           Count++;
379         }
380       return Count;
381     }
382   };
383 
384   /// Candidate info for each PhysReg in AllocationOrder.
385   /// This vector never shrinks, but grows to the size of the largest register
386   /// class.
387   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
388 
389   enum : unsigned { NoCand = ~0u };
390 
391   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
392   /// NoCand which indicates the stack interval.
393   SmallVector<unsigned, 32> BundleCand;
394 
395   /// Callee-save register cost, calculated once per machine function.
396   BlockFrequency CSRCost;
397 
398   /// Run or not the local reassignment heuristic. This information is
399   /// obtained from the TargetSubtargetInfo.
400   bool EnableLocalReassign;
401 
402   /// Enable or not the consideration of the cost of local intervals created
403   /// by a split candidate when choosing the best split candidate.
404   bool EnableAdvancedRASplitCost;
405 
406   /// Set of broken hints that may be reconciled later because of eviction.
407   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
408 
409 public:
410   RAGreedy();
411 
412   /// Return the pass name.
413   StringRef getPassName() const override { return "Greedy Register Allocator"; }
414 
415   /// RAGreedy analysis usage.
416   void getAnalysisUsage(AnalysisUsage &AU) const override;
417   void releaseMemory() override;
418   Spiller &spiller() override { return *SpillerInstance; }
419   void enqueue(LiveInterval *LI) override;
420   LiveInterval *dequeue() override;
421   unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
422   void aboutToRemoveInterval(LiveInterval &) override;
423 
424   /// Perform register allocation.
425   bool runOnMachineFunction(MachineFunction &mf) override;
426 
427   MachineFunctionProperties getRequiredProperties() const override {
428     return MachineFunctionProperties().set(
429         MachineFunctionProperties::Property::NoPHIs);
430   }
431 
432   static char ID;
433 
434 private:
435   unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
436                              SmallVirtRegSet &, unsigned = 0);
437 
438   bool LRE_CanEraseVirtReg(unsigned) override;
439   void LRE_WillShrinkVirtReg(unsigned) override;
440   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
441   void enqueue(PQueue &CurQueue, LiveInterval *LI);
442   LiveInterval *dequeue(PQueue &CurQueue);
443 
444   BlockFrequency calcSpillCost();
445   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
446   void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
447   void growRegion(GlobalSplitCandidate &Cand);
448   bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand,
449                                   unsigned BBNumber,
450                                   const AllocationOrder &Order);
451   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
452                                GlobalSplitCandidate &Cand, unsigned BBNumber,
453                                const AllocationOrder &Order);
454   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
455                                      const AllocationOrder &Order,
456                                      bool *CanCauseEvictionChain);
457   bool calcCompactRegion(GlobalSplitCandidate&);
458   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
459   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
460   unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
461   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
462   bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
463   bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg,
464                                    SlotIndex Start, SlotIndex End,
465                                    EvictionCost &MaxCost);
466   unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
467                                     LiveInterval &VirtReg, SlotIndex Start,
468                                     SlotIndex End, float *BestEvictWeight);
469   void evictInterference(LiveInterval&, unsigned,
470                          SmallVectorImpl<unsigned>&);
471   bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
472                                   SmallLISet &RecoloringCandidates,
473                                   const SmallVirtRegSet &FixedRegisters);
474 
475   unsigned tryAssign(LiveInterval&, AllocationOrder&,
476                      SmallVectorImpl<unsigned>&);
477   unsigned tryEvict(LiveInterval&, AllocationOrder&,
478                     SmallVectorImpl<unsigned>&, unsigned = ~0u);
479   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
480                           SmallVectorImpl<unsigned>&);
481   /// Calculate cost of region splitting.
482   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
483                                     AllocationOrder &Order,
484                                     BlockFrequency &BestCost,
485                                     unsigned &NumCands, bool IgnoreCSR,
486                                     bool *CanCauseEvictionChain = nullptr);
487   /// Perform region splitting.
488   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
489                          bool HasCompact,
490                          SmallVectorImpl<unsigned> &NewVRegs);
491   /// Check other options before using a callee-saved register for the first
492   /// time.
493   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
494                                  unsigned PhysReg, unsigned &CostPerUseLimit,
495                                  SmallVectorImpl<unsigned> &NewVRegs);
496   void initializeCSRCost();
497   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
498                          SmallVectorImpl<unsigned>&);
499   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
500                                SmallVectorImpl<unsigned>&);
501   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
502     SmallVectorImpl<unsigned>&);
503   unsigned trySplit(LiveInterval&, AllocationOrder&,
504                     SmallVectorImpl<unsigned>&);
505   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
506                                    SmallVectorImpl<unsigned> &,
507                                    SmallVirtRegSet &, unsigned);
508   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
509                                SmallVirtRegSet &, unsigned);
510   void tryHintRecoloring(LiveInterval &);
511   void tryHintsRecoloring();
512 
513   /// Model the information carried by one end of a copy.
514   struct HintInfo {
515     /// The frequency of the copy.
516     BlockFrequency Freq;
517     /// The virtual register or physical register.
518     unsigned Reg;
519     /// Its currently assigned register.
520     /// In case of a physical register Reg == PhysReg.
521     unsigned PhysReg;
522 
523     HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
524         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
525   };
526   using HintsInfo = SmallVector<HintInfo, 4>;
527 
528   BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
529   void collectHintInfo(unsigned, HintsInfo &);
530 
531   bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
532 
533   /// Compute and report the number of spills and reloads for a loop.
534   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
535                                     unsigned &FoldedReloads, unsigned &Spills,
536                                     unsigned &FoldedSpills);
537 
538   /// Report the number of spills and reloads for each loop.
539   void reportNumberOfSplillsReloads() {
540     for (MachineLoop *L : *Loops) {
541       unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
542       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
543                                    FoldedSpills);
544     }
545   }
546 };
547 
548 } // end anonymous namespace
549 
550 char RAGreedy::ID = 0;
551 char &llvm::RAGreedyID = RAGreedy::ID;
552 
553 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
554                 "Greedy Register Allocator", false, false)
555 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
556 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
557 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
558 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
559 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
560 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
561 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
562 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
563 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
564 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
565 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
566 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
567 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
568 INITIALIZE_PASS_END(RAGreedy, "greedy",
569                 "Greedy Register Allocator", false, false)
570 
571 #ifndef NDEBUG
572 const char *const RAGreedy::StageName[] = {
573     "RS_New",
574     "RS_Assign",
575     "RS_Split",
576     "RS_Split2",
577     "RS_Spill",
578     "RS_Memory",
579     "RS_Done"
580 };
581 #endif
582 
583 // Hysteresis to use when comparing floats.
584 // This helps stabilize decisions based on float comparisons.
585 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
586 
587 FunctionPass* llvm::createGreedyRegisterAllocator() {
588   return new RAGreedy();
589 }
590 
591 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
592 }
593 
594 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
595   AU.setPreservesCFG();
596   AU.addRequired<MachineBlockFrequencyInfo>();
597   AU.addPreserved<MachineBlockFrequencyInfo>();
598   AU.addRequired<AAResultsWrapperPass>();
599   AU.addPreserved<AAResultsWrapperPass>();
600   AU.addRequired<LiveIntervals>();
601   AU.addPreserved<LiveIntervals>();
602   AU.addRequired<SlotIndexes>();
603   AU.addPreserved<SlotIndexes>();
604   AU.addRequired<LiveDebugVariables>();
605   AU.addPreserved<LiveDebugVariables>();
606   AU.addRequired<LiveStacks>();
607   AU.addPreserved<LiveStacks>();
608   AU.addRequired<MachineDominatorTree>();
609   AU.addPreserved<MachineDominatorTree>();
610   AU.addRequired<MachineLoopInfo>();
611   AU.addPreserved<MachineLoopInfo>();
612   AU.addRequired<VirtRegMap>();
613   AU.addPreserved<VirtRegMap>();
614   AU.addRequired<LiveRegMatrix>();
615   AU.addPreserved<LiveRegMatrix>();
616   AU.addRequired<EdgeBundles>();
617   AU.addRequired<SpillPlacement>();
618   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
619   MachineFunctionPass::getAnalysisUsage(AU);
620 }
621 
622 //===----------------------------------------------------------------------===//
623 //                     LiveRangeEdit delegate methods
624 //===----------------------------------------------------------------------===//
625 
626 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
627   LiveInterval &LI = LIS->getInterval(VirtReg);
628   if (VRM->hasPhys(VirtReg)) {
629     Matrix->unassign(LI);
630     aboutToRemoveInterval(LI);
631     return true;
632   }
633   // Unassigned virtreg is probably in the priority queue.
634   // RegAllocBase will erase it after dequeueing.
635   // Nonetheless, clear the live-range so that the debug
636   // dump will show the right state for that VirtReg.
637   LI.clear();
638   return false;
639 }
640 
641 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
642   if (!VRM->hasPhys(VirtReg))
643     return;
644 
645   // Register is assigned, put it back on the queue for reassignment.
646   LiveInterval &LI = LIS->getInterval(VirtReg);
647   Matrix->unassign(LI);
648   enqueue(&LI);
649 }
650 
651 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
652   // Cloning a register we haven't even heard about yet?  Just ignore it.
653   if (!ExtraRegInfo.inBounds(Old))
654     return;
655 
656   // LRE may clone a virtual register because dead code elimination causes it to
657   // be split into connected components. The new components are much smaller
658   // than the original, so they should get a new chance at being assigned.
659   // same stage as the parent.
660   ExtraRegInfo[Old].Stage = RS_Assign;
661   ExtraRegInfo.grow(New);
662   ExtraRegInfo[New] = ExtraRegInfo[Old];
663 }
664 
665 void RAGreedy::releaseMemory() {
666   SpillerInstance.reset();
667   ExtraRegInfo.clear();
668   GlobalCand.clear();
669 }
670 
671 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
672 
673 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
674   // Prioritize live ranges by size, assigning larger ranges first.
675   // The queue holds (size, reg) pairs.
676   const unsigned Size = LI->getSize();
677   const unsigned Reg = LI->reg;
678   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
679          "Can only enqueue virtual registers");
680   unsigned Prio;
681 
682   ExtraRegInfo.grow(Reg);
683   if (ExtraRegInfo[Reg].Stage == RS_New)
684     ExtraRegInfo[Reg].Stage = RS_Assign;
685 
686   if (ExtraRegInfo[Reg].Stage == RS_Split) {
687     // Unsplit ranges that couldn't be allocated immediately are deferred until
688     // everything else has been allocated.
689     Prio = Size;
690   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
691     // Memory operand should be considered last.
692     // Change the priority such that Memory operand are assigned in
693     // the reverse order that they came in.
694     // TODO: Make this a member variable and probably do something about hints.
695     static unsigned MemOp = 0;
696     Prio = MemOp++;
697   } else {
698     // Giant live ranges fall back to the global assignment heuristic, which
699     // prevents excessive spilling in pathological cases.
700     bool ReverseLocal = TRI->reverseLocalAssignment();
701     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
702     bool ForceGlobal = !ReverseLocal &&
703       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
704 
705     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
706         LIS->intervalIsInOneMBB(*LI)) {
707       // Allocate original local ranges in linear instruction order. Since they
708       // are singly defined, this produces optimal coloring in the absence of
709       // global interference and other constraints.
710       if (!ReverseLocal)
711         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
712       else {
713         // Allocating bottom up may allow many short LRGs to be assigned first
714         // to one of the cheap registers. This could be much faster for very
715         // large blocks on targets with many physical registers.
716         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
717       }
718       Prio |= RC.AllocationPriority << 24;
719     } else {
720       // Allocate global and split ranges in long->short order. Long ranges that
721       // don't fit should be spilled (or split) ASAP so they don't create
722       // interference.  Mark a bit to prioritize global above local ranges.
723       Prio = (1u << 29) + Size;
724     }
725     // Mark a higher bit to prioritize global and local above RS_Split.
726     Prio |= (1u << 31);
727 
728     // Boost ranges that have a physical register hint.
729     if (VRM->hasKnownPreference(Reg))
730       Prio |= (1u << 30);
731   }
732   // The virtual register number is a tie breaker for same-sized ranges.
733   // Give lower vreg numbers higher priority to assign them first.
734   CurQueue.push(std::make_pair(Prio, ~Reg));
735 }
736 
737 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
738 
739 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
740   if (CurQueue.empty())
741     return nullptr;
742   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
743   CurQueue.pop();
744   return LI;
745 }
746 
747 //===----------------------------------------------------------------------===//
748 //                            Direct Assignment
749 //===----------------------------------------------------------------------===//
750 
751 /// tryAssign - Try to assign VirtReg to an available register.
752 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
753                              AllocationOrder &Order,
754                              SmallVectorImpl<unsigned> &NewVRegs) {
755   Order.rewind();
756   unsigned PhysReg;
757   while ((PhysReg = Order.next()))
758     if (!Matrix->checkInterference(VirtReg, PhysReg))
759       break;
760   if (!PhysReg || Order.isHint())
761     return PhysReg;
762 
763   // PhysReg is available, but there may be a better choice.
764 
765   // If we missed a simple hint, try to cheaply evict interference from the
766   // preferred register.
767   if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
768     if (Order.isHint(Hint)) {
769       LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n');
770       EvictionCost MaxCost;
771       MaxCost.setBrokenHints(1);
772       if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
773         evictInterference(VirtReg, Hint, NewVRegs);
774         return Hint;
775       }
776       // Record the missed hint, we may be able to recover
777       // at the end if the surrounding allocation changed.
778       SetOfBrokenHints.insert(&VirtReg);
779     }
780 
781   // Try to evict interference from a cheaper alternative.
782   unsigned Cost = TRI->getCostPerUse(PhysReg);
783 
784   // Most registers have 0 additional cost.
785   if (!Cost)
786     return PhysReg;
787 
788   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
789                     << Cost << '\n');
790   unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
791   return CheapReg ? CheapReg : PhysReg;
792 }
793 
794 //===----------------------------------------------------------------------===//
795 //                         Interference eviction
796 //===----------------------------------------------------------------------===//
797 
798 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
799   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
800   unsigned PhysReg;
801   while ((PhysReg = Order.next())) {
802     if (PhysReg == PrevReg)
803       continue;
804 
805     MCRegUnitIterator Units(PhysReg, TRI);
806     for (; Units.isValid(); ++Units) {
807       // Instantiate a "subquery", not to be confused with the Queries array.
808       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
809       if (subQ.checkInterference())
810         break;
811     }
812     // If no units have interference, break out with the current PhysReg.
813     if (!Units.isValid())
814       break;
815   }
816   if (PhysReg)
817     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
818                       << printReg(PrevReg, TRI) << " to "
819                       << printReg(PhysReg, TRI) << '\n');
820   return PhysReg;
821 }
822 
823 /// shouldEvict - determine if A should evict the assigned live range B. The
824 /// eviction policy defined by this function together with the allocation order
825 /// defined by enqueue() decides which registers ultimately end up being split
826 /// and spilled.
827 ///
828 /// Cascade numbers are used to prevent infinite loops if this function is a
829 /// cyclic relation.
830 ///
831 /// @param A          The live range to be assigned.
832 /// @param IsHint     True when A is about to be assigned to its preferred
833 ///                   register.
834 /// @param B          The live range to be evicted.
835 /// @param BreaksHint True when B is already assigned to its preferred register.
836 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
837                            LiveInterval &B, bool BreaksHint) {
838   bool CanSplit = getStage(B) < RS_Spill;
839 
840   // Be fairly aggressive about following hints as long as the evictee can be
841   // split.
842   if (CanSplit && IsHint && !BreaksHint)
843     return true;
844 
845   if (A.weight > B.weight) {
846     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
847     return true;
848   }
849   return false;
850 }
851 
852 /// canEvictInterference - Return true if all interferences between VirtReg and
853 /// PhysReg can be evicted.
854 ///
855 /// @param VirtReg Live range that is about to be assigned.
856 /// @param PhysReg Desired register for assignment.
857 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
858 /// @param MaxCost Only look for cheaper candidates and update with new cost
859 ///                when returning true.
860 /// @returns True when interference can be evicted cheaper than MaxCost.
861 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
862                                     bool IsHint, EvictionCost &MaxCost) {
863   // It is only possible to evict virtual register interference.
864   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
865     return false;
866 
867   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
868 
869   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
870   // involved in an eviction before. If a cascade number was assigned, deny
871   // evicting anything with the same or a newer cascade number. This prevents
872   // infinite eviction loops.
873   //
874   // This works out so a register without a cascade number is allowed to evict
875   // anything, and it can be evicted by anything.
876   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
877   if (!Cascade)
878     Cascade = NextCascade;
879 
880   EvictionCost Cost;
881   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
882     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
883     // If there is 10 or more interferences, chances are one is heavier.
884     if (Q.collectInterferingVRegs(10) >= 10)
885       return false;
886 
887     // Check if any interfering live range is heavier than MaxWeight.
888     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
889       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
890       assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
891              "Only expecting virtual register interference from query");
892       // Never evict spill products. They cannot split or spill.
893       if (getStage(*Intf) == RS_Done)
894         return false;
895       // Once a live range becomes small enough, it is urgent that we find a
896       // register for it. This is indicated by an infinite spill weight. These
897       // urgent live ranges get to evict almost anything.
898       //
899       // Also allow urgent evictions of unspillable ranges from a strictly
900       // larger allocation order.
901       bool Urgent = !VirtReg.isSpillable() &&
902         (Intf->isSpillable() ||
903          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
904          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
905       // Only evict older cascades or live ranges without a cascade.
906       unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
907       if (Cascade <= IntfCascade) {
908         if (!Urgent)
909           return false;
910         // We permit breaking cascades for urgent evictions. It should be the
911         // last resort, though, so make it really expensive.
912         Cost.BrokenHints += 10;
913       }
914       // Would this break a satisfied hint?
915       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
916       // Update eviction cost.
917       Cost.BrokenHints += BreaksHint;
918       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
919       // Abort if this would be too expensive.
920       if (!(Cost < MaxCost))
921         return false;
922       if (Urgent)
923         continue;
924       // Apply the eviction policy for non-urgent evictions.
925       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
926         return false;
927       // If !MaxCost.isMax(), then we're just looking for a cheap register.
928       // Evicting another local live range in this case could lead to suboptimal
929       // coloring.
930       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
931           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
932         return false;
933       }
934     }
935   }
936   MaxCost = Cost;
937   return true;
938 }
939 
940 /// Return true if all interferences between VirtReg and PhysReg between
941 /// Start and End can be evicted.
942 ///
943 /// \param VirtReg Live range that is about to be assigned.
944 /// \param PhysReg Desired register for assignment.
945 /// \param Start   Start of range to look for interferences.
946 /// \param End     End of range to look for interferences.
947 /// \param MaxCost Only look for cheaper candidates and update with new cost
948 ///                when returning true.
949 /// \return True when interference can be evicted cheaper than MaxCost.
950 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
951                                            unsigned PhysReg, SlotIndex Start,
952                                            SlotIndex End,
953                                            EvictionCost &MaxCost) {
954   EvictionCost Cost;
955 
956   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
957     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
958 
959     // Check if any interfering live range is heavier than MaxWeight.
960     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
961       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
962 
963       // Check if interference overlast the segment in interest.
964       if (!Intf->overlaps(Start, End))
965         continue;
966 
967       // Cannot evict non virtual reg interference.
968       if (!TargetRegisterInfo::isVirtualRegister(Intf->reg))
969         return false;
970       // Never evict spill products. They cannot split or spill.
971       if (getStage(*Intf) == RS_Done)
972         return false;
973 
974       // Would this break a satisfied hint?
975       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
976       // Update eviction cost.
977       Cost.BrokenHints += BreaksHint;
978       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
979       // Abort if this would be too expensive.
980       if (!(Cost < MaxCost))
981         return false;
982     }
983   }
984 
985   if (Cost.MaxWeight == 0)
986     return false;
987 
988   MaxCost = Cost;
989   return true;
990 }
991 
992 /// Return tthe physical register that will be best
993 /// candidate for eviction by a local split interval that will be created
994 /// between Start and End.
995 ///
996 /// \param Order            The allocation order
997 /// \param VirtReg          Live range that is about to be assigned.
998 /// \param Start            Start of range to look for interferences
999 /// \param End              End of range to look for interferences
1000 /// \param BestEvictweight  The eviction cost of that eviction
1001 /// \return The PhysReg which is the best candidate for eviction and the
1002 /// eviction cost in BestEvictweight
1003 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1004                                             LiveInterval &VirtReg,
1005                                             SlotIndex Start, SlotIndex End,
1006                                             float *BestEvictweight) {
1007   EvictionCost BestEvictCost;
1008   BestEvictCost.setMax();
1009   BestEvictCost.MaxWeight = VirtReg.weight;
1010   unsigned BestEvicteePhys = 0;
1011 
1012   // Go over all physical registers and find the best candidate for eviction
1013   for (auto PhysReg : Order.getOrder()) {
1014 
1015     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1016                                      BestEvictCost))
1017       continue;
1018 
1019     // Best so far.
1020     BestEvicteePhys = PhysReg;
1021   }
1022   *BestEvictweight = BestEvictCost.MaxWeight;
1023   return BestEvicteePhys;
1024 }
1025 
1026 /// evictInterference - Evict any interferring registers that prevent VirtReg
1027 /// from being assigned to Physreg. This assumes that canEvictInterference
1028 /// returned true.
1029 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
1030                                  SmallVectorImpl<unsigned> &NewVRegs) {
1031   // Make sure that VirtReg has a cascade number, and assign that cascade
1032   // number to every evicted register. These live ranges than then only be
1033   // evicted by a newer cascade, preventing infinite loops.
1034   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
1035   if (!Cascade)
1036     Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
1037 
1038   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1039                     << " interference: Cascade " << Cascade << '\n');
1040 
1041   // Collect all interfering virtregs first.
1042   SmallVector<LiveInterval*, 8> Intfs;
1043   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1044     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1045     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1046     // should be fast, we may need to recalculate if when different physregs
1047     // overlap the same register unit so we had different SubRanges queried
1048     // against it.
1049     Q.collectInterferingVRegs();
1050     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1051     Intfs.append(IVR.begin(), IVR.end());
1052   }
1053 
1054   // Evict them second. This will invalidate the queries.
1055   for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
1056     LiveInterval *Intf = Intfs[i];
1057     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1058     if (!VRM->hasPhys(Intf->reg))
1059       continue;
1060 
1061     LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg);
1062 
1063     Matrix->unassign(*Intf);
1064     assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
1065             VirtReg.isSpillable() < Intf->isSpillable()) &&
1066            "Cannot decrease cascade number, illegal eviction");
1067     ExtraRegInfo[Intf->reg].Cascade = Cascade;
1068     ++NumEvicted;
1069     NewVRegs.push_back(Intf->reg);
1070   }
1071 }
1072 
1073 /// Returns true if the given \p PhysReg is a callee saved register and has not
1074 /// been used for allocation yet.
1075 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
1076   unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1077   if (CSR == 0)
1078     return false;
1079 
1080   return !Matrix->isPhysRegUsed(PhysReg);
1081 }
1082 
1083 /// tryEvict - Try to evict all interferences for a physreg.
1084 /// @param  VirtReg Currently unassigned virtual register.
1085 /// @param  Order   Physregs to try.
1086 /// @return         Physreg to assign VirtReg, or 0.
1087 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
1088                             AllocationOrder &Order,
1089                             SmallVectorImpl<unsigned> &NewVRegs,
1090                             unsigned CostPerUseLimit) {
1091   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1092                      TimePassesIsEnabled);
1093 
1094   // Keep track of the cheapest interference seen so far.
1095   EvictionCost BestCost;
1096   BestCost.setMax();
1097   unsigned BestPhys = 0;
1098   unsigned OrderLimit = Order.getOrder().size();
1099 
1100   // When we are just looking for a reduced cost per use, don't break any
1101   // hints, and only evict smaller spill weights.
1102   if (CostPerUseLimit < ~0u) {
1103     BestCost.BrokenHints = 0;
1104     BestCost.MaxWeight = VirtReg.weight;
1105 
1106     // Check of any registers in RC are below CostPerUseLimit.
1107     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
1108     unsigned MinCost = RegClassInfo.getMinCost(RC);
1109     if (MinCost >= CostPerUseLimit) {
1110       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1111                         << MinCost << ", no cheaper registers to be found.\n");
1112       return 0;
1113     }
1114 
1115     // It is normal for register classes to have a long tail of registers with
1116     // the same cost. We don't need to look at them if they're too expensive.
1117     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
1118       OrderLimit = RegClassInfo.getLastCostChange(RC);
1119       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1120                         << " regs.\n");
1121     }
1122   }
1123 
1124   Order.rewind();
1125   while (unsigned PhysReg = Order.next(OrderLimit)) {
1126     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
1127       continue;
1128     // The first use of a callee-saved register in a function has cost 1.
1129     // Don't start using a CSR when the CostPerUseLimit is low.
1130     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1131       LLVM_DEBUG(
1132           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1133                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1134                  << '\n');
1135       continue;
1136     }
1137 
1138     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
1139       continue;
1140 
1141     // Best so far.
1142     BestPhys = PhysReg;
1143 
1144     // Stop if the hint can be used.
1145     if (Order.isHint())
1146       break;
1147   }
1148 
1149   if (!BestPhys)
1150     return 0;
1151 
1152   evictInterference(VirtReg, BestPhys, NewVRegs);
1153   return BestPhys;
1154 }
1155 
1156 //===----------------------------------------------------------------------===//
1157 //                              Region Splitting
1158 //===----------------------------------------------------------------------===//
1159 
1160 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1161 /// interference pattern in Physreg and its aliases. Add the constraints to
1162 /// SpillPlacement and return the static cost of this split in Cost, assuming
1163 /// that all preferences in SplitConstraints are met.
1164 /// Return false if there are no bundles with positive bias.
1165 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1166                                    BlockFrequency &Cost) {
1167   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1168 
1169   // Reset interference dependent info.
1170   SplitConstraints.resize(UseBlocks.size());
1171   BlockFrequency StaticCost = 0;
1172   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1173     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1174     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1175 
1176     BC.Number = BI.MBB->getNumber();
1177     Intf.moveToBlock(BC.Number);
1178     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1179     BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1180     BC.ChangesValue = BI.FirstDef.isValid();
1181 
1182     if (!Intf.hasInterference())
1183       continue;
1184 
1185     // Number of spill code instructions to insert.
1186     unsigned Ins = 0;
1187 
1188     // Interference for the live-in value.
1189     if (BI.LiveIn) {
1190       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1191         BC.Entry = SpillPlacement::MustSpill;
1192         ++Ins;
1193       } else if (Intf.first() < BI.FirstInstr) {
1194         BC.Entry = SpillPlacement::PrefSpill;
1195         ++Ins;
1196       } else if (Intf.first() < BI.LastInstr) {
1197         ++Ins;
1198       }
1199     }
1200 
1201     // Interference for the live-out value.
1202     if (BI.LiveOut) {
1203       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1204         BC.Exit = SpillPlacement::MustSpill;
1205         ++Ins;
1206       } else if (Intf.last() > BI.LastInstr) {
1207         BC.Exit = SpillPlacement::PrefSpill;
1208         ++Ins;
1209       } else if (Intf.last() > BI.FirstInstr) {
1210         ++Ins;
1211       }
1212     }
1213 
1214     // Accumulate the total frequency of inserted spill code.
1215     while (Ins--)
1216       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1217   }
1218   Cost = StaticCost;
1219 
1220   // Add constraints for use-blocks. Note that these are the only constraints
1221   // that may add a positive bias, it is downhill from here.
1222   SpillPlacer->addConstraints(SplitConstraints);
1223   return SpillPlacer->scanActiveBundles();
1224 }
1225 
1226 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1227 /// live-through blocks in Blocks.
1228 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1229                                      ArrayRef<unsigned> Blocks) {
1230   const unsigned GroupSize = 8;
1231   SpillPlacement::BlockConstraint BCS[GroupSize];
1232   unsigned TBS[GroupSize];
1233   unsigned B = 0, T = 0;
1234 
1235   for (unsigned i = 0; i != Blocks.size(); ++i) {
1236     unsigned Number = Blocks[i];
1237     Intf.moveToBlock(Number);
1238 
1239     if (!Intf.hasInterference()) {
1240       assert(T < GroupSize && "Array overflow");
1241       TBS[T] = Number;
1242       if (++T == GroupSize) {
1243         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1244         T = 0;
1245       }
1246       continue;
1247     }
1248 
1249     assert(B < GroupSize && "Array overflow");
1250     BCS[B].Number = Number;
1251 
1252     // Interference for the live-in value.
1253     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1254       BCS[B].Entry = SpillPlacement::MustSpill;
1255     else
1256       BCS[B].Entry = SpillPlacement::PrefSpill;
1257 
1258     // Interference for the live-out value.
1259     if (Intf.last() >= SA->getLastSplitPoint(Number))
1260       BCS[B].Exit = SpillPlacement::MustSpill;
1261     else
1262       BCS[B].Exit = SpillPlacement::PrefSpill;
1263 
1264     if (++B == GroupSize) {
1265       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1266       B = 0;
1267     }
1268   }
1269 
1270   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1271   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1272 }
1273 
1274 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1275   // Keep track of through blocks that have not been added to SpillPlacer.
1276   BitVector Todo = SA->getThroughBlocks();
1277   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1278   unsigned AddedTo = 0;
1279 #ifndef NDEBUG
1280   unsigned Visited = 0;
1281 #endif
1282 
1283   while (true) {
1284     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1285     // Find new through blocks in the periphery of PrefRegBundles.
1286     for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1287       unsigned Bundle = NewBundles[i];
1288       // Look at all blocks connected to Bundle in the full graph.
1289       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1290       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1291            I != E; ++I) {
1292         unsigned Block = *I;
1293         if (!Todo.test(Block))
1294           continue;
1295         Todo.reset(Block);
1296         // This is a new through block. Add it to SpillPlacer later.
1297         ActiveBlocks.push_back(Block);
1298 #ifndef NDEBUG
1299         ++Visited;
1300 #endif
1301       }
1302     }
1303     // Any new blocks to add?
1304     if (ActiveBlocks.size() == AddedTo)
1305       break;
1306 
1307     // Compute through constraints from the interference, or assume that all
1308     // through blocks prefer spilling when forming compact regions.
1309     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1310     if (Cand.PhysReg)
1311       addThroughConstraints(Cand.Intf, NewBlocks);
1312     else
1313       // Provide a strong negative bias on through blocks to prevent unwanted
1314       // liveness on loop backedges.
1315       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1316     AddedTo = ActiveBlocks.size();
1317 
1318     // Perhaps iterating can enable more bundles?
1319     SpillPlacer->iterate();
1320   }
1321   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1322 }
1323 
1324 /// calcCompactRegion - Compute the set of edge bundles that should be live
1325 /// when splitting the current live range into compact regions.  Compact
1326 /// regions can be computed without looking at interference.  They are the
1327 /// regions formed by removing all the live-through blocks from the live range.
1328 ///
1329 /// Returns false if the current live range is already compact, or if the
1330 /// compact regions would form single block regions anyway.
1331 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1332   // Without any through blocks, the live range is already compact.
1333   if (!SA->getNumThroughBlocks())
1334     return false;
1335 
1336   // Compact regions don't correspond to any physreg.
1337   Cand.reset(IntfCache, 0);
1338 
1339   LLVM_DEBUG(dbgs() << "Compact region bundles");
1340 
1341   // Use the spill placer to determine the live bundles. GrowRegion pretends
1342   // that all the through blocks have interference when PhysReg is unset.
1343   SpillPlacer->prepare(Cand.LiveBundles);
1344 
1345   // The static split cost will be zero since Cand.Intf reports no interference.
1346   BlockFrequency Cost;
1347   if (!addSplitConstraints(Cand.Intf, Cost)) {
1348     LLVM_DEBUG(dbgs() << ", none.\n");
1349     return false;
1350   }
1351 
1352   growRegion(Cand);
1353   SpillPlacer->finish();
1354 
1355   if (!Cand.LiveBundles.any()) {
1356     LLVM_DEBUG(dbgs() << ", none.\n");
1357     return false;
1358   }
1359 
1360   LLVM_DEBUG({
1361     for (int i : Cand.LiveBundles.set_bits())
1362       dbgs() << " EB#" << i;
1363     dbgs() << ".\n";
1364   });
1365   return true;
1366 }
1367 
1368 /// calcSpillCost - Compute how expensive it would be to split the live range in
1369 /// SA around all use blocks instead of forming bundle regions.
1370 BlockFrequency RAGreedy::calcSpillCost() {
1371   BlockFrequency Cost = 0;
1372   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1373   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1374     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1375     unsigned Number = BI.MBB->getNumber();
1376     // We normally only need one spill instruction - a load or a store.
1377     Cost += SpillPlacer->getBlockFrequency(Number);
1378 
1379     // Unless the value is redefined in the block.
1380     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1381       Cost += SpillPlacer->getBlockFrequency(Number);
1382   }
1383   return Cost;
1384 }
1385 
1386 /// Check if splitting Evictee will create a local split interval in
1387 /// basic block number BBNumber that may cause a bad eviction chain. This is
1388 /// intended to prevent bad eviction sequences like:
1389 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1390 /// movl	%ecx, %ebp
1391 /// movl	%ebx, %ecx
1392 /// movl	%edi, %ebx
1393 /// movl	%edx, %edi
1394 /// cltd
1395 /// idivl	%esi
1396 /// movl	%edi, %edx
1397 /// movl	%ebx, %edi
1398 /// movl	%ecx, %ebx
1399 /// movl	%ebp, %ecx
1400 /// movl	16(%esp), %ebp          # 4 - byte Reload
1401 ///
1402 /// Such sequences are created in 2 scenarios:
1403 ///
1404 /// Scenario #1:
1405 /// %0 is evicted from physreg0 by %1.
1406 /// Evictee %0 is intended for region splitting with split candidate
1407 /// physreg0 (the reg %0 was evicted from).
1408 /// Region splitting creates a local interval because of interference with the
1409 /// evictor %1 (normally region spliitting creates 2 interval, the "by reg"
1410 /// and "by stack" intervals and local interval created when interference
1411 /// occurs).
1412 /// One of the split intervals ends up evicting %2 from physreg1.
1413 /// Evictee %2 is intended for region splitting with split candidate
1414 /// physreg1.
1415 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1416 ///
1417 /// Scenario #2
1418 /// %0 is evicted from physreg0 by %1.
1419 /// %2 is evicted from physreg2 by %3 etc.
1420 /// Evictee %0 is intended for region splitting with split candidate
1421 /// physreg1.
1422 /// Region splitting creates a local interval because of interference with the
1423 /// evictor %1.
1424 /// One of the split intervals ends up evicting back original evictor %1
1425 /// from physreg0 (the reg %0 was evicted from).
1426 /// Another evictee %2 is intended for region splitting with split candidate
1427 /// physreg1.
1428 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1429 ///
1430 /// \param Evictee  The register considered to be split.
1431 /// \param Cand     The split candidate that determines the physical register
1432 ///                 we are splitting for and the interferences.
1433 /// \param BBNumber The number of a BB for which the region split process will
1434 ///                 create a local split interval.
1435 /// \param Order    The physical registers that may get evicted by a split
1436 ///                 artifact of Evictee.
1437 /// \return True if splitting Evictee may cause a bad eviction chain, false
1438 /// otherwise.
1439 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee,
1440                                           GlobalSplitCandidate &Cand,
1441                                           unsigned BBNumber,
1442                                           const AllocationOrder &Order) {
1443   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1444   unsigned Evictor = VregEvictorInfo.first;
1445   unsigned PhysReg = VregEvictorInfo.second;
1446 
1447   // No actual evictor.
1448   if (!Evictor || !PhysReg)
1449     return false;
1450 
1451   float MaxWeight = 0;
1452   unsigned FutureEvictedPhysReg =
1453       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1454                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1455 
1456   // The bad eviction chain occurs when either the split candidate is the
1457   // evicting reg or one of the split artifact will evict the evicting reg.
1458   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1459     return false;
1460 
1461   Cand.Intf.moveToBlock(BBNumber);
1462 
1463   // Check to see if the Evictor contains interference (with Evictee) in the
1464   // given BB. If so, this interference caused the eviction of Evictee from
1465   // PhysReg. This suggest that we will create a local interval during the
1466   // region split to avoid this interference This local interval may cause a bad
1467   // eviction chain.
1468   if (!LIS->hasInterval(Evictor))
1469     return false;
1470   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1471   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1472     return false;
1473 
1474   // Now, check to see if the local interval we will create is going to be
1475   // expensive enough to evict somebody If so, this may cause a bad eviction
1476   // chain.
1477   VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1478   float splitArtifactWeight =
1479       VRAI.futureWeight(LIS->getInterval(Evictee),
1480                         Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1481   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1482     return false;
1483 
1484   return true;
1485 }
1486 
1487 /// Check if splitting VirtRegToSplit will create a local split interval
1488 /// in basic block number BBNumber that may cause a spill.
1489 ///
1490 /// \param VirtRegToSplit The register considered to be split.
1491 /// \param Cand           The split candidate that determines the physical
1492 ///                       register we are splitting for and the interferences.
1493 /// \param BBNumber       The number of a BB for which the region split process
1494 ///                       will create a local split interval.
1495 /// \param Order          The physical registers that may get evicted by a
1496 ///                       split artifact of VirtRegToSplit.
1497 /// \return True if splitting VirtRegToSplit may cause a spill, false
1498 /// otherwise.
1499 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1500                                        GlobalSplitCandidate &Cand,
1501                                        unsigned BBNumber,
1502                                        const AllocationOrder &Order) {
1503   Cand.Intf.moveToBlock(BBNumber);
1504 
1505   // Check if the local interval will find a non interfereing assignment.
1506   for (auto PhysReg : Order.getOrder()) {
1507     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1508                                    Cand.Intf.last(), PhysReg))
1509       return false;
1510   }
1511 
1512   // Check if the local interval will evict a cheaper interval.
1513   float CheapestEvictWeight = 0;
1514   unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
1515       Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1516       Cand.Intf.last(), &CheapestEvictWeight);
1517 
1518   // Have we found an interval that can be evicted?
1519   if (FutureEvictedPhysReg) {
1520     VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1521     float splitArtifactWeight =
1522         VRAI.futureWeight(LIS->getInterval(VirtRegToSplit),
1523                           Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1524     // Will the weight of the local interval be higher than the cheapest evictee
1525     // weight? If so it will evict it and will not cause a spill.
1526     if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1527       return false;
1528   }
1529 
1530   // The local interval is not able to find non interferening assignment and not
1531   // able to evict a less worthy interval, therfore, it can cause a spill.
1532   return true;
1533 }
1534 
1535 /// calcGlobalSplitCost - Return the global split cost of following the split
1536 /// pattern in LiveBundles. This cost should be added to the local cost of the
1537 /// interference pattern in SplitConstraints.
1538 ///
1539 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1540                                              const AllocationOrder &Order,
1541                                              bool *CanCauseEvictionChain) {
1542   BlockFrequency GlobalCost = 0;
1543   const BitVector &LiveBundles = Cand.LiveBundles;
1544   unsigned VirtRegToSplit = SA->getParent().reg;
1545   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1546   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1547     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1548     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1549     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1550     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1551     unsigned Ins = 0;
1552 
1553     Cand.Intf.moveToBlock(BC.Number);
1554     // Check wheather a local interval is going to be created during the region
1555     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1556     // is enabled.
1557     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1558         BI.LiveOut && RegIn && RegOut) {
1559 
1560       if (CanCauseEvictionChain &&
1561           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1562         // This interference causes our eviction from this assignment, we might
1563         // evict somebody else and eventually someone will spill, add that cost.
1564         // See splitCanCauseEvictionChain for detailed description of scenarios.
1565         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1566         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1567 
1568         *CanCauseEvictionChain = true;
1569 
1570       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1571                                          Order)) {
1572         // This interference causes local interval to spill, add that cost.
1573         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1574         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1575       }
1576     }
1577 
1578     if (BI.LiveIn)
1579       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1580     if (BI.LiveOut)
1581       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1582     while (Ins--)
1583       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1584   }
1585 
1586   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1587     unsigned Number = Cand.ActiveBlocks[i];
1588     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1589     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1590     if (!RegIn && !RegOut)
1591       continue;
1592     if (RegIn && RegOut) {
1593       // We need double spill code if this block has interference.
1594       Cand.Intf.moveToBlock(Number);
1595       if (Cand.Intf.hasInterference()) {
1596         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1597         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1598 
1599         // Check wheather a local interval is going to be created during the
1600         // region split.
1601         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1602             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1603           // This interference cause our eviction from this assignment, we might
1604           // evict somebody else, add that cost.
1605           // See splitCanCauseEvictionChain for detailed description of
1606           // scenarios.
1607           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1608           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1609 
1610           *CanCauseEvictionChain = true;
1611         }
1612       }
1613       continue;
1614     }
1615     // live-in / stack-out or stack-in live-out.
1616     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1617   }
1618   return GlobalCost;
1619 }
1620 
1621 /// splitAroundRegion - Split the current live range around the regions
1622 /// determined by BundleCand and GlobalCand.
1623 ///
1624 /// Before calling this function, GlobalCand and BundleCand must be initialized
1625 /// so each bundle is assigned to a valid candidate, or NoCand for the
1626 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1627 /// objects must be initialized for the current live range, and intervals
1628 /// created for the used candidates.
1629 ///
1630 /// @param LREdit    The LiveRangeEdit object handling the current split.
1631 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1632 ///                  must appear in this list.
1633 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1634                                  ArrayRef<unsigned> UsedCands) {
1635   // These are the intervals created for new global ranges. We may create more
1636   // intervals for local ranges.
1637   const unsigned NumGlobalIntvs = LREdit.size();
1638   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1639                     << " globals.\n");
1640   assert(NumGlobalIntvs && "No global intervals configured");
1641 
1642   // Isolate even single instructions when dealing with a proper sub-class.
1643   // That guarantees register class inflation for the stack interval because it
1644   // is all copies.
1645   unsigned Reg = SA->getParent().reg;
1646   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1647 
1648   // First handle all the blocks with uses.
1649   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1650   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1651     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1652     unsigned Number = BI.MBB->getNumber();
1653     unsigned IntvIn = 0, IntvOut = 0;
1654     SlotIndex IntfIn, IntfOut;
1655     if (BI.LiveIn) {
1656       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1657       if (CandIn != NoCand) {
1658         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1659         IntvIn = Cand.IntvIdx;
1660         Cand.Intf.moveToBlock(Number);
1661         IntfIn = Cand.Intf.first();
1662       }
1663     }
1664     if (BI.LiveOut) {
1665       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1666       if (CandOut != NoCand) {
1667         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1668         IntvOut = Cand.IntvIdx;
1669         Cand.Intf.moveToBlock(Number);
1670         IntfOut = Cand.Intf.last();
1671       }
1672     }
1673 
1674     // Create separate intervals for isolated blocks with multiple uses.
1675     if (!IntvIn && !IntvOut) {
1676       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1677       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1678         SE->splitSingleBlock(BI);
1679       continue;
1680     }
1681 
1682     if (IntvIn && IntvOut)
1683       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1684     else if (IntvIn)
1685       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1686     else
1687       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1688   }
1689 
1690   // Handle live-through blocks. The relevant live-through blocks are stored in
1691   // the ActiveBlocks list with each candidate. We need to filter out
1692   // duplicates.
1693   BitVector Todo = SA->getThroughBlocks();
1694   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1695     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1696     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1697       unsigned Number = Blocks[i];
1698       if (!Todo.test(Number))
1699         continue;
1700       Todo.reset(Number);
1701 
1702       unsigned IntvIn = 0, IntvOut = 0;
1703       SlotIndex IntfIn, IntfOut;
1704 
1705       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1706       if (CandIn != NoCand) {
1707         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1708         IntvIn = Cand.IntvIdx;
1709         Cand.Intf.moveToBlock(Number);
1710         IntfIn = Cand.Intf.first();
1711       }
1712 
1713       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1714       if (CandOut != NoCand) {
1715         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1716         IntvOut = Cand.IntvIdx;
1717         Cand.Intf.moveToBlock(Number);
1718         IntfOut = Cand.Intf.last();
1719       }
1720       if (!IntvIn && !IntvOut)
1721         continue;
1722       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1723     }
1724   }
1725 
1726   ++NumGlobalSplits;
1727 
1728   SmallVector<unsigned, 8> IntvMap;
1729   SE->finish(&IntvMap);
1730   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1731 
1732   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1733   unsigned OrigBlocks = SA->getNumLiveBlocks();
1734 
1735   // Sort out the new intervals created by splitting. We get four kinds:
1736   // - Remainder intervals should not be split again.
1737   // - Candidate intervals can be assigned to Cand.PhysReg.
1738   // - Block-local splits are candidates for local splitting.
1739   // - DCE leftovers should go back on the queue.
1740   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1741     LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1742 
1743     // Ignore old intervals from DCE.
1744     if (getStage(Reg) != RS_New)
1745       continue;
1746 
1747     // Remainder interval. Don't try splitting again, spill if it doesn't
1748     // allocate.
1749     if (IntvMap[i] == 0) {
1750       setStage(Reg, RS_Spill);
1751       continue;
1752     }
1753 
1754     // Global intervals. Allow repeated splitting as long as the number of live
1755     // blocks is strictly decreasing.
1756     if (IntvMap[i] < NumGlobalIntvs) {
1757       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1758         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1759                           << " blocks as original.\n");
1760         // Don't allow repeated splitting as a safe guard against looping.
1761         setStage(Reg, RS_Split2);
1762       }
1763       continue;
1764     }
1765 
1766     // Other intervals are treated as new. This includes local intervals created
1767     // for blocks with multiple uses, and anything created by DCE.
1768   }
1769 
1770   if (VerifyEnabled)
1771     MF->verify(this, "After splitting live range around region");
1772 }
1773 
1774 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1775                                   SmallVectorImpl<unsigned> &NewVRegs) {
1776   unsigned NumCands = 0;
1777   BlockFrequency SpillCost = calcSpillCost();
1778   BlockFrequency BestCost;
1779 
1780   // Check if we can split this live range around a compact region.
1781   bool HasCompact = calcCompactRegion(GlobalCand.front());
1782   if (HasCompact) {
1783     // Yes, keep GlobalCand[0] as the compact region candidate.
1784     NumCands = 1;
1785     BestCost = BlockFrequency::getMaxFrequency();
1786   } else {
1787     // No benefit from the compact region, our fallback will be per-block
1788     // splitting. Make sure we find a solution that is cheaper than spilling.
1789     BestCost = SpillCost;
1790     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1791                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1792   }
1793 
1794   bool CanCauseEvictionChain = false;
1795   unsigned BestCand =
1796       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1797                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1798 
1799   // Split candidates with compact regions can cause a bad eviction sequence.
1800   // See splitCanCauseEvictionChain for detailed description of scenarios.
1801   // To avoid it, we need to comapre the cost with the spill cost and not the
1802   // current max frequency.
1803   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1804     CanCauseEvictionChain) {
1805     return 0;
1806   }
1807 
1808   // No solutions found, fall back to single block splitting.
1809   if (!HasCompact && BestCand == NoCand)
1810     return 0;
1811 
1812   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1813 }
1814 
1815 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1816                                             AllocationOrder &Order,
1817                                             BlockFrequency &BestCost,
1818                                             unsigned &NumCands, bool IgnoreCSR,
1819                                             bool *CanCauseEvictionChain) {
1820   unsigned BestCand = NoCand;
1821   Order.rewind();
1822   while (unsigned PhysReg = Order.next()) {
1823     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1824       continue;
1825 
1826     // Discard bad candidates before we run out of interference cache cursors.
1827     // This will only affect register classes with a lot of registers (>32).
1828     if (NumCands == IntfCache.getMaxCursors()) {
1829       unsigned WorstCount = ~0u;
1830       unsigned Worst = 0;
1831       for (unsigned i = 0; i != NumCands; ++i) {
1832         if (i == BestCand || !GlobalCand[i].PhysReg)
1833           continue;
1834         unsigned Count = GlobalCand[i].LiveBundles.count();
1835         if (Count < WorstCount) {
1836           Worst = i;
1837           WorstCount = Count;
1838         }
1839       }
1840       --NumCands;
1841       GlobalCand[Worst] = GlobalCand[NumCands];
1842       if (BestCand == NumCands)
1843         BestCand = Worst;
1844     }
1845 
1846     if (GlobalCand.size() <= NumCands)
1847       GlobalCand.resize(NumCands+1);
1848     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1849     Cand.reset(IntfCache, PhysReg);
1850 
1851     SpillPlacer->prepare(Cand.LiveBundles);
1852     BlockFrequency Cost;
1853     if (!addSplitConstraints(Cand.Intf, Cost)) {
1854       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1855       continue;
1856     }
1857     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1858                MBFI->printBlockFreq(dbgs(), Cost));
1859     if (Cost >= BestCost) {
1860       LLVM_DEBUG({
1861         if (BestCand == NoCand)
1862           dbgs() << " worse than no bundles\n";
1863         else
1864           dbgs() << " worse than "
1865                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1866       });
1867       continue;
1868     }
1869     growRegion(Cand);
1870 
1871     SpillPlacer->finish();
1872 
1873     // No live bundles, defer to splitSingleBlocks().
1874     if (!Cand.LiveBundles.any()) {
1875       LLVM_DEBUG(dbgs() << " no bundles.\n");
1876       continue;
1877     }
1878 
1879     bool HasEvictionChain = false;
1880     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1881     LLVM_DEBUG({
1882       dbgs() << ", total = ";
1883       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1884       for (int i : Cand.LiveBundles.set_bits())
1885         dbgs() << " EB#" << i;
1886       dbgs() << ".\n";
1887     });
1888     if (Cost < BestCost) {
1889       BestCand = NumCands;
1890       BestCost = Cost;
1891       // See splitCanCauseEvictionChain for detailed description of bad
1892       // eviction chain scenarios.
1893       if (CanCauseEvictionChain)
1894         *CanCauseEvictionChain = HasEvictionChain;
1895     }
1896     ++NumCands;
1897   }
1898 
1899   if (CanCauseEvictionChain && BestCand != NoCand) {
1900     // See splitCanCauseEvictionChain for detailed description of bad
1901     // eviction chain scenarios.
1902     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1903                       << printReg(VirtReg.reg, TRI) << "  may ");
1904     if (!(*CanCauseEvictionChain))
1905       LLVM_DEBUG(dbgs() << "not ");
1906     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1907   }
1908 
1909   return BestCand;
1910 }
1911 
1912 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1913                                  bool HasCompact,
1914                                  SmallVectorImpl<unsigned> &NewVRegs) {
1915   SmallVector<unsigned, 8> UsedCands;
1916   // Prepare split editor.
1917   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1918   SE->reset(LREdit, SplitSpillMode);
1919 
1920   // Assign all edge bundles to the preferred candidate, or NoCand.
1921   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1922 
1923   // Assign bundles for the best candidate region.
1924   if (BestCand != NoCand) {
1925     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1926     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1927       UsedCands.push_back(BestCand);
1928       Cand.IntvIdx = SE->openIntv();
1929       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1930                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1931       (void)B;
1932     }
1933   }
1934 
1935   // Assign bundles for the compact region.
1936   if (HasCompact) {
1937     GlobalSplitCandidate &Cand = GlobalCand.front();
1938     assert(!Cand.PhysReg && "Compact region has no physreg");
1939     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1940       UsedCands.push_back(0);
1941       Cand.IntvIdx = SE->openIntv();
1942       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1943                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1944       (void)B;
1945     }
1946   }
1947 
1948   splitAroundRegion(LREdit, UsedCands);
1949   return 0;
1950 }
1951 
1952 //===----------------------------------------------------------------------===//
1953 //                            Per-Block Splitting
1954 //===----------------------------------------------------------------------===//
1955 
1956 /// tryBlockSplit - Split a global live range around every block with uses. This
1957 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1958 /// they don't allocate.
1959 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1960                                  SmallVectorImpl<unsigned> &NewVRegs) {
1961   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1962   unsigned Reg = VirtReg.reg;
1963   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1964   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1965   SE->reset(LREdit, SplitSpillMode);
1966   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1967   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1968     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1969     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1970       SE->splitSingleBlock(BI);
1971   }
1972   // No blocks were split.
1973   if (LREdit.empty())
1974     return 0;
1975 
1976   // We did split for some blocks.
1977   SmallVector<unsigned, 8> IntvMap;
1978   SE->finish(&IntvMap);
1979 
1980   // Tell LiveDebugVariables about the new ranges.
1981   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1982 
1983   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1984 
1985   // Sort out the new intervals created by splitting. The remainder interval
1986   // goes straight to spilling, the new local ranges get to stay RS_New.
1987   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1988     LiveInterval &LI = LIS->getInterval(LREdit.get(i));
1989     if (getStage(LI) == RS_New && IntvMap[i] == 0)
1990       setStage(LI, RS_Spill);
1991   }
1992 
1993   if (VerifyEnabled)
1994     MF->verify(this, "After splitting live range around basic blocks");
1995   return 0;
1996 }
1997 
1998 //===----------------------------------------------------------------------===//
1999 //                         Per-Instruction Splitting
2000 //===----------------------------------------------------------------------===//
2001 
2002 /// Get the number of allocatable registers that match the constraints of \p Reg
2003 /// on \p MI and that are also in \p SuperRC.
2004 static unsigned getNumAllocatableRegsForConstraints(
2005     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
2006     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2007     const RegisterClassInfo &RCI) {
2008   assert(SuperRC && "Invalid register class");
2009 
2010   const TargetRegisterClass *ConstrainedRC =
2011       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2012                                              /* ExploreBundle */ true);
2013   if (!ConstrainedRC)
2014     return 0;
2015   return RCI.getNumAllocatableRegs(ConstrainedRC);
2016 }
2017 
2018 /// tryInstructionSplit - Split a live range around individual instructions.
2019 /// This is normally not worthwhile since the spiller is doing essentially the
2020 /// same thing. However, when the live range is in a constrained register
2021 /// class, it may help to insert copies such that parts of the live range can
2022 /// be moved to a larger register class.
2023 ///
2024 /// This is similar to spilling to a larger register class.
2025 unsigned
2026 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2027                               SmallVectorImpl<unsigned> &NewVRegs) {
2028   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2029   // There is no point to this if there are no larger sub-classes.
2030   if (!RegClassInfo.isProperSubClass(CurRC))
2031     return 0;
2032 
2033   // Always enable split spill mode, since we're effectively spilling to a
2034   // register.
2035   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2036   SE->reset(LREdit, SplitEditor::SM_Size);
2037 
2038   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2039   if (Uses.size() <= 1)
2040     return 0;
2041 
2042   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2043                     << " individual instrs.\n");
2044 
2045   const TargetRegisterClass *SuperRC =
2046       TRI->getLargestLegalSuperClass(CurRC, *MF);
2047   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2048   // Split around every non-copy instruction if this split will relax
2049   // the constraints on the virtual register.
2050   // Otherwise, splitting just inserts uncoalescable copies that do not help
2051   // the allocation.
2052   for (unsigned i = 0; i != Uses.size(); ++i) {
2053     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
2054       if (MI->isFullCopy() ||
2055           SuperRCNumAllocatableRegs ==
2056               getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
2057                                                   TRI, RCI)) {
2058         LLVM_DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
2059         continue;
2060       }
2061     SE->openIntv();
2062     SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
2063     SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
2064     SE->useIntv(SegStart, SegStop);
2065   }
2066 
2067   if (LREdit.empty()) {
2068     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2069     return 0;
2070   }
2071 
2072   SmallVector<unsigned, 8> IntvMap;
2073   SE->finish(&IntvMap);
2074   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2075   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2076 
2077   // Assign all new registers to RS_Spill. This was the last chance.
2078   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2079   return 0;
2080 }
2081 
2082 //===----------------------------------------------------------------------===//
2083 //                             Local Splitting
2084 //===----------------------------------------------------------------------===//
2085 
2086 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2087 /// in order to use PhysReg between two entries in SA->UseSlots.
2088 ///
2089 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
2090 ///
2091 void RAGreedy::calcGapWeights(unsigned PhysReg,
2092                               SmallVectorImpl<float> &GapWeight) {
2093   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2094   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2095   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2096   const unsigned NumGaps = Uses.size()-1;
2097 
2098   // Start and end points for the interference check.
2099   SlotIndex StartIdx =
2100     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2101   SlotIndex StopIdx =
2102     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2103 
2104   GapWeight.assign(NumGaps, 0.0f);
2105 
2106   // Add interference from each overlapping register.
2107   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2108     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2109           .checkInterference())
2110       continue;
2111 
2112     // We know that VirtReg is a continuous interval from FirstInstr to
2113     // LastInstr, so we don't need InterferenceQuery.
2114     //
2115     // Interference that overlaps an instruction is counted in both gaps
2116     // surrounding the instruction. The exception is interference before
2117     // StartIdx and after StopIdx.
2118     //
2119     LiveIntervalUnion::SegmentIter IntI =
2120       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2121     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2122       // Skip the gaps before IntI.
2123       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2124         if (++Gap == NumGaps)
2125           break;
2126       if (Gap == NumGaps)
2127         break;
2128 
2129       // Update the gaps covered by IntI.
2130       const float weight = IntI.value()->weight;
2131       for (; Gap != NumGaps; ++Gap) {
2132         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2133         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2134           break;
2135       }
2136       if (Gap == NumGaps)
2137         break;
2138     }
2139   }
2140 
2141   // Add fixed interference.
2142   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2143     const LiveRange &LR = LIS->getRegUnit(*Units);
2144     LiveRange::const_iterator I = LR.find(StartIdx);
2145     LiveRange::const_iterator E = LR.end();
2146 
2147     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2148     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2149       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2150         if (++Gap == NumGaps)
2151           break;
2152       if (Gap == NumGaps)
2153         break;
2154 
2155       for (; Gap != NumGaps; ++Gap) {
2156         GapWeight[Gap] = huge_valf;
2157         if (Uses[Gap+1].getBaseIndex() >= I->end)
2158           break;
2159       }
2160       if (Gap == NumGaps)
2161         break;
2162     }
2163   }
2164 }
2165 
2166 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2167 /// basic block.
2168 ///
2169 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2170                                  SmallVectorImpl<unsigned> &NewVRegs) {
2171   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2172   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2173 
2174   // Note that it is possible to have an interval that is live-in or live-out
2175   // while only covering a single block - A phi-def can use undef values from
2176   // predecessors, and the block could be a single-block loop.
2177   // We don't bother doing anything clever about such a case, we simply assume
2178   // that the interval is continuous from FirstInstr to LastInstr. We should
2179   // make sure that we don't do anything illegal to such an interval, though.
2180 
2181   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2182   if (Uses.size() <= 2)
2183     return 0;
2184   const unsigned NumGaps = Uses.size()-1;
2185 
2186   LLVM_DEBUG({
2187     dbgs() << "tryLocalSplit: ";
2188     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
2189       dbgs() << ' ' << Uses[i];
2190     dbgs() << '\n';
2191   });
2192 
2193   // If VirtReg is live across any register mask operands, compute a list of
2194   // gaps with register masks.
2195   SmallVector<unsigned, 8> RegMaskGaps;
2196   if (Matrix->checkRegMaskInterference(VirtReg)) {
2197     // Get regmask slots for the whole block.
2198     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2199     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2200     // Constrain to VirtReg's live range.
2201     unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
2202                                    Uses.front().getRegSlot()) - RMS.begin();
2203     unsigned re = RMS.size();
2204     for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
2205       // Look for Uses[i] <= RMS <= Uses[i+1].
2206       assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
2207       if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
2208         continue;
2209       // Skip a regmask on the same instruction as the last use. It doesn't
2210       // overlap the live range.
2211       if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
2212         break;
2213       LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-'
2214                         << Uses[i + 1]);
2215       RegMaskGaps.push_back(i);
2216       // Advance ri to the next gap. A regmask on one of the uses counts in
2217       // both gaps.
2218       while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
2219         ++ri;
2220     }
2221     LLVM_DEBUG(dbgs() << '\n');
2222   }
2223 
2224   // Since we allow local split results to be split again, there is a risk of
2225   // creating infinite loops. It is tempting to require that the new live
2226   // ranges have less instructions than the original. That would guarantee
2227   // convergence, but it is too strict. A live range with 3 instructions can be
2228   // split 2+3 (including the COPY), and we want to allow that.
2229   //
2230   // Instead we use these rules:
2231   //
2232   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2233   //    noop split, of course).
2234   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2235   //    the new ranges must have fewer instructions than before the split.
2236   // 3. New ranges with the same number of instructions are marked RS_Split2,
2237   //    smaller ranges are marked RS_New.
2238   //
2239   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2240   // excessive splitting and infinite loops.
2241   //
2242   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2243 
2244   // Best split candidate.
2245   unsigned BestBefore = NumGaps;
2246   unsigned BestAfter = 0;
2247   float BestDiff = 0;
2248 
2249   const float blockFreq =
2250     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2251     (1.0f / MBFI->getEntryFreq());
2252   SmallVector<float, 8> GapWeight;
2253 
2254   Order.rewind();
2255   while (unsigned PhysReg = Order.next()) {
2256     // Keep track of the largest spill weight that would need to be evicted in
2257     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
2258     calcGapWeights(PhysReg, GapWeight);
2259 
2260     // Remove any gaps with regmask clobbers.
2261     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2262       for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
2263         GapWeight[RegMaskGaps[i]] = huge_valf;
2264 
2265     // Try to find the best sequence of gaps to close.
2266     // The new spill weight must be larger than any gap interference.
2267 
2268     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2269     unsigned SplitBefore = 0, SplitAfter = 1;
2270 
2271     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2272     // It is the spill weight that needs to be evicted.
2273     float MaxGap = GapWeight[0];
2274 
2275     while (true) {
2276       // Live before/after split?
2277       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2278       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2279 
2280       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2281                         << '-' << Uses[SplitAfter] << " i=" << MaxGap);
2282 
2283       // Stop before the interval gets so big we wouldn't be making progress.
2284       if (!LiveBefore && !LiveAfter) {
2285         LLVM_DEBUG(dbgs() << " all\n");
2286         break;
2287       }
2288       // Should the interval be extended or shrunk?
2289       bool Shrink = true;
2290 
2291       // How many gaps would the new range have?
2292       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2293 
2294       // Legally, without causing looping?
2295       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2296 
2297       if (Legal && MaxGap < huge_valf) {
2298         // Estimate the new spill weight. Each instruction reads or writes the
2299         // register. Conservatively assume there are no read-modify-write
2300         // instructions.
2301         //
2302         // Try to guess the size of the new interval.
2303         const float EstWeight = normalizeSpillWeight(
2304             blockFreq * (NewGaps + 1),
2305             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2306                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2307             1);
2308         // Would this split be possible to allocate?
2309         // Never allocate all gaps, we wouldn't be making progress.
2310         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2311         if (EstWeight * Hysteresis >= MaxGap) {
2312           Shrink = false;
2313           float Diff = EstWeight - MaxGap;
2314           if (Diff > BestDiff) {
2315             LLVM_DEBUG(dbgs() << " (best)");
2316             BestDiff = Hysteresis * Diff;
2317             BestBefore = SplitBefore;
2318             BestAfter = SplitAfter;
2319           }
2320         }
2321       }
2322 
2323       // Try to shrink.
2324       if (Shrink) {
2325         if (++SplitBefore < SplitAfter) {
2326           LLVM_DEBUG(dbgs() << " shrink\n");
2327           // Recompute the max when necessary.
2328           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2329             MaxGap = GapWeight[SplitBefore];
2330             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
2331               MaxGap = std::max(MaxGap, GapWeight[i]);
2332           }
2333           continue;
2334         }
2335         MaxGap = 0;
2336       }
2337 
2338       // Try to extend the interval.
2339       if (SplitAfter >= NumGaps) {
2340         LLVM_DEBUG(dbgs() << " end\n");
2341         break;
2342       }
2343 
2344       LLVM_DEBUG(dbgs() << " extend\n");
2345       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2346     }
2347   }
2348 
2349   // Didn't find any candidates?
2350   if (BestBefore == NumGaps)
2351     return 0;
2352 
2353   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2354                     << Uses[BestAfter] << ", " << BestDiff << ", "
2355                     << (BestAfter - BestBefore + 1) << " instrs\n");
2356 
2357   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2358   SE->reset(LREdit);
2359 
2360   SE->openIntv();
2361   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2362   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2363   SE->useIntv(SegStart, SegStop);
2364   SmallVector<unsigned, 8> IntvMap;
2365   SE->finish(&IntvMap);
2366   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2367 
2368   // If the new range has the same number of instructions as before, mark it as
2369   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2370   // leave the new intervals as RS_New so they can compete.
2371   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2372   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2373   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2374   if (NewGaps >= NumGaps) {
2375     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2376     assert(!ProgressRequired && "Didn't make progress when it was required.");
2377     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
2378       if (IntvMap[i] == 1) {
2379         setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
2380         LLVM_DEBUG(dbgs() << printReg(LREdit.get(i)));
2381       }
2382     LLVM_DEBUG(dbgs() << '\n');
2383   }
2384   ++NumLocalSplits;
2385 
2386   return 0;
2387 }
2388 
2389 //===----------------------------------------------------------------------===//
2390 //                          Live Range Splitting
2391 //===----------------------------------------------------------------------===//
2392 
2393 /// trySplit - Try to split VirtReg or one of its interferences, making it
2394 /// assignable.
2395 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2396 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2397                             SmallVectorImpl<unsigned>&NewVRegs) {
2398   // Ranges must be Split2 or less.
2399   if (getStage(VirtReg) >= RS_Spill)
2400     return 0;
2401 
2402   // Local intervals are handled separately.
2403   if (LIS->intervalIsInOneMBB(VirtReg)) {
2404     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2405                        TimerGroupDescription, TimePassesIsEnabled);
2406     SA->analyze(&VirtReg);
2407     unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2408     if (PhysReg || !NewVRegs.empty())
2409       return PhysReg;
2410     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2411   }
2412 
2413   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2414                      TimerGroupDescription, TimePassesIsEnabled);
2415 
2416   SA->analyze(&VirtReg);
2417 
2418   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2419   // coalescer. That may cause the range to become allocatable which means that
2420   // tryRegionSplit won't be making progress. This check should be replaced with
2421   // an assertion when the coalescer is fixed.
2422   if (SA->didRepairRange()) {
2423     // VirtReg has changed, so all cached queries are invalid.
2424     Matrix->invalidateVirtRegs();
2425     if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
2426       return PhysReg;
2427   }
2428 
2429   // First try to split around a region spanning multiple blocks. RS_Split2
2430   // ranges already made dubious progress with region splitting, so they go
2431   // straight to single block splitting.
2432   if (getStage(VirtReg) < RS_Split2) {
2433     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2434     if (PhysReg || !NewVRegs.empty())
2435       return PhysReg;
2436   }
2437 
2438   // Then isolate blocks.
2439   return tryBlockSplit(VirtReg, Order, NewVRegs);
2440 }
2441 
2442 //===----------------------------------------------------------------------===//
2443 //                          Last Chance Recoloring
2444 //===----------------------------------------------------------------------===//
2445 
2446 /// Return true if \p reg has any tied def operand.
2447 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2448   for (const MachineOperand &MO : MRI->def_operands(reg))
2449     if (MO.isTied())
2450       return true;
2451 
2452   return false;
2453 }
2454 
2455 /// mayRecolorAllInterferences - Check if the virtual registers that
2456 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2457 /// recolored to free \p PhysReg.
2458 /// When true is returned, \p RecoloringCandidates has been augmented with all
2459 /// the live intervals that need to be recolored in order to free \p PhysReg
2460 /// for \p VirtReg.
2461 /// \p FixedRegisters contains all the virtual registers that cannot be
2462 /// recolored.
2463 bool
2464 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2465                                      SmallLISet &RecoloringCandidates,
2466                                      const SmallVirtRegSet &FixedRegisters) {
2467   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2468 
2469   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2470     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2471     // If there is LastChanceRecoloringMaxInterference or more interferences,
2472     // chances are one would not be recolorable.
2473     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2474         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2475       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2476       CutOffInfo |= CO_Interf;
2477       return false;
2478     }
2479     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2480       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2481       // If Intf is done and sit on the same register class as VirtReg,
2482       // it would not be recolorable as it is in the same state as VirtReg.
2483       // However, if VirtReg has tied defs and Intf doesn't, then
2484       // there is still a point in examining if it can be recolorable.
2485       if (((getStage(*Intf) == RS_Done &&
2486             MRI->getRegClass(Intf->reg) == CurRC) &&
2487            !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) ||
2488           FixedRegisters.count(Intf->reg)) {
2489         LLVM_DEBUG(
2490             dbgs() << "Early abort: the interference is not recolorable.\n");
2491         return false;
2492       }
2493       RecoloringCandidates.insert(Intf);
2494     }
2495   }
2496   return true;
2497 }
2498 
2499 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2500 /// its interferences.
2501 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2502 /// virtual register that was using it. The recoloring process may recursively
2503 /// use the last chance recoloring. Therefore, when a virtual register has been
2504 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2505 /// be last-chance-recolored again during this recoloring "session".
2506 /// E.g.,
2507 /// Let
2508 /// vA can use {R1, R2    }
2509 /// vB can use {    R2, R3}
2510 /// vC can use {R1        }
2511 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2512 /// instance) and they all interfere.
2513 ///
2514 /// vA is assigned R1
2515 /// vB is assigned R2
2516 /// vC tries to evict vA but vA is already done.
2517 /// Regular register allocation fails.
2518 ///
2519 /// Last chance recoloring kicks in:
2520 /// vC does as if vA was evicted => vC uses R1.
2521 /// vC is marked as fixed.
2522 /// vA needs to find a color.
2523 /// None are available.
2524 /// vA cannot evict vC: vC is a fixed virtual register now.
2525 /// vA does as if vB was evicted => vA uses R2.
2526 /// vB needs to find a color.
2527 /// R3 is available.
2528 /// Recoloring => vC = R1, vA = R2, vB = R3
2529 ///
2530 /// \p Order defines the preferred allocation order for \p VirtReg.
2531 /// \p NewRegs will contain any new virtual register that have been created
2532 /// (split, spill) during the process and that must be assigned.
2533 /// \p FixedRegisters contains all the virtual registers that cannot be
2534 /// recolored.
2535 /// \p Depth gives the current depth of the last chance recoloring.
2536 /// \return a physical register that can be used for VirtReg or ~0u if none
2537 /// exists.
2538 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2539                                            AllocationOrder &Order,
2540                                            SmallVectorImpl<unsigned> &NewVRegs,
2541                                            SmallVirtRegSet &FixedRegisters,
2542                                            unsigned Depth) {
2543   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2544   // Ranges must be Done.
2545   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2546          "Last chance recoloring should really be last chance");
2547   // Set the max depth to LastChanceRecoloringMaxDepth.
2548   // We may want to reconsider that if we end up with a too large search space
2549   // for target with hundreds of registers.
2550   // Indeed, in that case we may want to cut the search space earlier.
2551   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2552     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2553     CutOffInfo |= CO_Depth;
2554     return ~0u;
2555   }
2556 
2557   // Set of Live intervals that will need to be recolored.
2558   SmallLISet RecoloringCandidates;
2559   // Record the original mapping virtual register to physical register in case
2560   // the recoloring fails.
2561   DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2562   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2563   // this recoloring "session".
2564   FixedRegisters.insert(VirtReg.reg);
2565   SmallVector<unsigned, 4> CurrentNewVRegs;
2566 
2567   Order.rewind();
2568   while (unsigned PhysReg = Order.next()) {
2569     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2570                       << printReg(PhysReg, TRI) << '\n');
2571     RecoloringCandidates.clear();
2572     VirtRegToPhysReg.clear();
2573     CurrentNewVRegs.clear();
2574 
2575     // It is only possible to recolor virtual register interference.
2576     if (Matrix->checkInterference(VirtReg, PhysReg) >
2577         LiveRegMatrix::IK_VirtReg) {
2578       LLVM_DEBUG(
2579           dbgs() << "Some interferences are not with virtual registers.\n");
2580 
2581       continue;
2582     }
2583 
2584     // Early give up on this PhysReg if it is obvious we cannot recolor all
2585     // the interferences.
2586     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2587                                     FixedRegisters)) {
2588       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2589       continue;
2590     }
2591 
2592     // RecoloringCandidates contains all the virtual registers that interfer
2593     // with VirtReg on PhysReg (or one of its aliases).
2594     // Enqueue them for recoloring and perform the actual recoloring.
2595     PQueue RecoloringQueue;
2596     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2597                               EndIt = RecoloringCandidates.end();
2598          It != EndIt; ++It) {
2599       unsigned ItVirtReg = (*It)->reg;
2600       enqueue(RecoloringQueue, *It);
2601       assert(VRM->hasPhys(ItVirtReg) &&
2602              "Interferences are supposed to be with allocated vairables");
2603 
2604       // Record the current allocation.
2605       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2606       // unset the related struct.
2607       Matrix->unassign(**It);
2608     }
2609 
2610     // Do as if VirtReg was assigned to PhysReg so that the underlying
2611     // recoloring has the right information about the interferes and
2612     // available colors.
2613     Matrix->assign(VirtReg, PhysReg);
2614 
2615     // Save the current recoloring state.
2616     // If we cannot recolor all the interferences, we will have to start again
2617     // at this point for the next physical register.
2618     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2619     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2620                                 FixedRegisters, Depth)) {
2621       // Push the queued vregs into the main queue.
2622       for (unsigned NewVReg : CurrentNewVRegs)
2623         NewVRegs.push_back(NewVReg);
2624       // Do not mess up with the global assignment process.
2625       // I.e., VirtReg must be unassigned.
2626       Matrix->unassign(VirtReg);
2627       return PhysReg;
2628     }
2629 
2630     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2631                       << printReg(PhysReg, TRI) << '\n');
2632 
2633     // The recoloring attempt failed, undo the changes.
2634     FixedRegisters = SaveFixedRegisters;
2635     Matrix->unassign(VirtReg);
2636 
2637     // For a newly created vreg which is also in RecoloringCandidates,
2638     // don't add it to NewVRegs because its physical register will be restored
2639     // below. Other vregs in CurrentNewVRegs are created by calling
2640     // selectOrSplit and should be added into NewVRegs.
2641     for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(),
2642                                              End = CurrentNewVRegs.end();
2643          Next != End; ++Next) {
2644       if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2645         continue;
2646       NewVRegs.push_back(*Next);
2647     }
2648 
2649     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2650                               EndIt = RecoloringCandidates.end();
2651          It != EndIt; ++It) {
2652       unsigned ItVirtReg = (*It)->reg;
2653       if (VRM->hasPhys(ItVirtReg))
2654         Matrix->unassign(**It);
2655       unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2656       Matrix->assign(**It, ItPhysReg);
2657     }
2658   }
2659 
2660   // Last chance recoloring did not worked either, give up.
2661   return ~0u;
2662 }
2663 
2664 /// tryRecoloringCandidates - Try to assign a new color to every register
2665 /// in \RecoloringQueue.
2666 /// \p NewRegs will contain any new virtual register created during the
2667 /// recoloring process.
2668 /// \p FixedRegisters[in/out] contains all the registers that have been
2669 /// recolored.
2670 /// \return true if all virtual registers in RecoloringQueue were successfully
2671 /// recolored, false otherwise.
2672 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2673                                        SmallVectorImpl<unsigned> &NewVRegs,
2674                                        SmallVirtRegSet &FixedRegisters,
2675                                        unsigned Depth) {
2676   while (!RecoloringQueue.empty()) {
2677     LiveInterval *LI = dequeue(RecoloringQueue);
2678     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2679     unsigned PhysReg;
2680     PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2681     // When splitting happens, the live-range may actually be empty.
2682     // In that case, this is okay to continue the recoloring even
2683     // if we did not find an alternative color for it. Indeed,
2684     // there will not be anything to color for LI in the end.
2685     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2686       return false;
2687 
2688     if (!PhysReg) {
2689       assert(LI->empty() && "Only empty live-range do not require a register");
2690       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2691                         << " succeeded. Empty LI.\n");
2692       continue;
2693     }
2694     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2695                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2696 
2697     Matrix->assign(*LI, PhysReg);
2698     FixedRegisters.insert(LI->reg);
2699   }
2700   return true;
2701 }
2702 
2703 //===----------------------------------------------------------------------===//
2704 //                            Main Entry Point
2705 //===----------------------------------------------------------------------===//
2706 
2707 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2708                                  SmallVectorImpl<unsigned> &NewVRegs) {
2709   CutOffInfo = CO_None;
2710   LLVMContext &Ctx = MF->getFunction().getContext();
2711   SmallVirtRegSet FixedRegisters;
2712   unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2713   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2714     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2715     if (CutOffEncountered == CO_Depth)
2716       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2717                     "reached. Use -fexhaustive-register-search to skip "
2718                     "cutoffs");
2719     else if (CutOffEncountered == CO_Interf)
2720       Ctx.emitError("register allocation failed: maximum interference for "
2721                     "recoloring reached. Use -fexhaustive-register-search "
2722                     "to skip cutoffs");
2723     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2724       Ctx.emitError("register allocation failed: maximum interference and "
2725                     "depth for recoloring reached. Use "
2726                     "-fexhaustive-register-search to skip cutoffs");
2727   }
2728   return Reg;
2729 }
2730 
2731 /// Using a CSR for the first time has a cost because it causes push|pop
2732 /// to be added to prologue|epilogue. Splitting a cold section of the live
2733 /// range can have lower cost than using the CSR for the first time;
2734 /// Spilling a live range in the cold path can have lower cost than using
2735 /// the CSR for the first time. Returns the physical register if we decide
2736 /// to use the CSR; otherwise return 0.
2737 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2738                                          AllocationOrder &Order,
2739                                          unsigned PhysReg,
2740                                          unsigned &CostPerUseLimit,
2741                                          SmallVectorImpl<unsigned> &NewVRegs) {
2742   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2743     // We choose spill over using the CSR for the first time if the spill cost
2744     // is lower than CSRCost.
2745     SA->analyze(&VirtReg);
2746     if (calcSpillCost() >= CSRCost)
2747       return PhysReg;
2748 
2749     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2750     // we will not use a callee-saved register in tryEvict.
2751     CostPerUseLimit = 1;
2752     return 0;
2753   }
2754   if (getStage(VirtReg) < RS_Split) {
2755     // We choose pre-splitting over using the CSR for the first time if
2756     // the cost of splitting is lower than CSRCost.
2757     SA->analyze(&VirtReg);
2758     unsigned NumCands = 0;
2759     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2760     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2761                                                  NumCands, true /*IgnoreCSR*/);
2762     if (BestCand == NoCand)
2763       // Use the CSR if we can't find a region split below CSRCost.
2764       return PhysReg;
2765 
2766     // Perform the actual pre-splitting.
2767     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2768     return 0;
2769   }
2770   return PhysReg;
2771 }
2772 
2773 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2774   // Do not keep invalid information around.
2775   SetOfBrokenHints.remove(&LI);
2776 }
2777 
2778 void RAGreedy::initializeCSRCost() {
2779   // We use the larger one out of the command-line option and the value report
2780   // by TRI.
2781   CSRCost = BlockFrequency(
2782       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2783   if (!CSRCost.getFrequency())
2784     return;
2785 
2786   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2787   uint64_t ActualEntry = MBFI->getEntryFreq();
2788   if (!ActualEntry) {
2789     CSRCost = 0;
2790     return;
2791   }
2792   uint64_t FixedEntry = 1 << 14;
2793   if (ActualEntry < FixedEntry)
2794     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2795   else if (ActualEntry <= UINT32_MAX)
2796     // Invert the fraction and divide.
2797     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2798   else
2799     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2800     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2801 }
2802 
2803 /// Collect the hint info for \p Reg.
2804 /// The results are stored into \p Out.
2805 /// \p Out is not cleared before being populated.
2806 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2807   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2808     if (!Instr.isFullCopy())
2809       continue;
2810     // Look for the other end of the copy.
2811     unsigned OtherReg = Instr.getOperand(0).getReg();
2812     if (OtherReg == Reg) {
2813       OtherReg = Instr.getOperand(1).getReg();
2814       if (OtherReg == Reg)
2815         continue;
2816     }
2817     // Get the current assignment.
2818     unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
2819                                 ? OtherReg
2820                                 : VRM->getPhys(OtherReg);
2821     // Push the collected information.
2822     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2823                            OtherPhysReg));
2824   }
2825 }
2826 
2827 /// Using the given \p List, compute the cost of the broken hints if
2828 /// \p PhysReg was used.
2829 /// \return The cost of \p List for \p PhysReg.
2830 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2831                                            unsigned PhysReg) {
2832   BlockFrequency Cost = 0;
2833   for (const HintInfo &Info : List) {
2834     if (Info.PhysReg != PhysReg)
2835       Cost += Info.Freq;
2836   }
2837   return Cost;
2838 }
2839 
2840 /// Using the register assigned to \p VirtReg, try to recolor
2841 /// all the live ranges that are copy-related with \p VirtReg.
2842 /// The recoloring is then propagated to all the live-ranges that have
2843 /// been recolored and so on, until no more copies can be coalesced or
2844 /// it is not profitable.
2845 /// For a given live range, profitability is determined by the sum of the
2846 /// frequencies of the non-identity copies it would introduce with the old
2847 /// and new register.
2848 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2849   // We have a broken hint, check if it is possible to fix it by
2850   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2851   // some register and PhysReg may be available for the other live-ranges.
2852   SmallSet<unsigned, 4> Visited;
2853   SmallVector<unsigned, 2> RecoloringCandidates;
2854   HintsInfo Info;
2855   unsigned Reg = VirtReg.reg;
2856   unsigned PhysReg = VRM->getPhys(Reg);
2857   // Start the recoloring algorithm from the input live-interval, then
2858   // it will propagate to the ones that are copy-related with it.
2859   Visited.insert(Reg);
2860   RecoloringCandidates.push_back(Reg);
2861 
2862   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2863                     << '(' << printReg(PhysReg, TRI) << ")\n");
2864 
2865   do {
2866     Reg = RecoloringCandidates.pop_back_val();
2867 
2868     // We cannot recolor physical register.
2869     if (TargetRegisterInfo::isPhysicalRegister(Reg))
2870       continue;
2871 
2872     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2873 
2874     // Get the live interval mapped with this virtual register to be able
2875     // to check for the interference with the new color.
2876     LiveInterval &LI = LIS->getInterval(Reg);
2877     unsigned CurrPhys = VRM->getPhys(Reg);
2878     // Check that the new color matches the register class constraints and
2879     // that it is free for this live range.
2880     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2881                                 Matrix->checkInterference(LI, PhysReg)))
2882       continue;
2883 
2884     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2885                       << ") is recolorable.\n");
2886 
2887     // Gather the hint info.
2888     Info.clear();
2889     collectHintInfo(Reg, Info);
2890     // Check if recoloring the live-range will increase the cost of the
2891     // non-identity copies.
2892     if (CurrPhys != PhysReg) {
2893       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2894       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2895       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2896       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2897                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2898                         << '\n');
2899       if (OldCopiesCost < NewCopiesCost) {
2900         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2901         continue;
2902       }
2903       // At this point, the cost is either cheaper or equal. If it is
2904       // equal, we consider this is profitable because it may expose
2905       // more recoloring opportunities.
2906       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2907       // Recolor the live-range.
2908       Matrix->unassign(LI);
2909       Matrix->assign(LI, PhysReg);
2910     }
2911     // Push all copy-related live-ranges to keep reconciling the broken
2912     // hints.
2913     for (const HintInfo &HI : Info) {
2914       if (Visited.insert(HI.Reg).second)
2915         RecoloringCandidates.push_back(HI.Reg);
2916     }
2917   } while (!RecoloringCandidates.empty());
2918 }
2919 
2920 /// Try to recolor broken hints.
2921 /// Broken hints may be repaired by recoloring when an evicted variable
2922 /// freed up a register for a larger live-range.
2923 /// Consider the following example:
2924 /// BB1:
2925 ///   a =
2926 ///   b =
2927 /// BB2:
2928 ///   ...
2929 ///   = b
2930 ///   = a
2931 /// Let us assume b gets split:
2932 /// BB1:
2933 ///   a =
2934 ///   b =
2935 /// BB2:
2936 ///   c = b
2937 ///   ...
2938 ///   d = c
2939 ///   = d
2940 ///   = a
2941 /// Because of how the allocation work, b, c, and d may be assigned different
2942 /// colors. Now, if a gets evicted later:
2943 /// BB1:
2944 ///   a =
2945 ///   st a, SpillSlot
2946 ///   b =
2947 /// BB2:
2948 ///   c = b
2949 ///   ...
2950 ///   d = c
2951 ///   = d
2952 ///   e = ld SpillSlot
2953 ///   = e
2954 /// This is likely that we can assign the same register for b, c, and d,
2955 /// getting rid of 2 copies.
2956 void RAGreedy::tryHintsRecoloring() {
2957   for (LiveInterval *LI : SetOfBrokenHints) {
2958     assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
2959            "Recoloring is possible only for virtual registers");
2960     // Some dead defs may be around (e.g., because of debug uses).
2961     // Ignore those.
2962     if (!VRM->hasPhys(LI->reg))
2963       continue;
2964     tryHintRecoloring(*LI);
2965   }
2966 }
2967 
2968 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
2969                                      SmallVectorImpl<unsigned> &NewVRegs,
2970                                      SmallVirtRegSet &FixedRegisters,
2971                                      unsigned Depth) {
2972   unsigned CostPerUseLimit = ~0u;
2973   // First try assigning a free register.
2974   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
2975   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
2976     // If VirtReg got an assignment, the eviction info is no longre relevant.
2977     LastEvicted.clearEvicteeInfo(VirtReg.reg);
2978     // When NewVRegs is not empty, we may have made decisions such as evicting
2979     // a virtual register, go with the earlier decisions and use the physical
2980     // register.
2981     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
2982         NewVRegs.empty()) {
2983       unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2984                                               CostPerUseLimit, NewVRegs);
2985       if (CSRReg || !NewVRegs.empty())
2986         // Return now if we decide to use a CSR or create new vregs due to
2987         // pre-splitting.
2988         return CSRReg;
2989     } else
2990       return PhysReg;
2991   }
2992 
2993   LiveRangeStage Stage = getStage(VirtReg);
2994   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2995                     << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
2996 
2997   // Try to evict a less worthy live range, but only for ranges from the primary
2998   // queue. The RS_Split ranges already failed to do this, and they should not
2999   // get a second chance until they have been split.
3000   if (Stage != RS_Split)
3001     if (unsigned PhysReg =
3002             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) {
3003       unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
3004       // If VirtReg has a hint and that hint is broken record this
3005       // virtual register as a recoloring candidate for broken hint.
3006       // Indeed, since we evicted a variable in its neighborhood it is
3007       // likely we can at least partially recolor some of the
3008       // copy-related live-ranges.
3009       if (Hint && Hint != PhysReg)
3010         SetOfBrokenHints.insert(&VirtReg);
3011       // If VirtReg eviction someone, the eviction info for it as an evictee is
3012       // no longre relevant.
3013       LastEvicted.clearEvicteeInfo(VirtReg.reg);
3014       return PhysReg;
3015     }
3016 
3017   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3018 
3019   // The first time we see a live range, don't try to split or spill.
3020   // Wait until the second time, when all smaller ranges have been allocated.
3021   // This gives a better picture of the interference to split around.
3022   if (Stage < RS_Split) {
3023     setStage(VirtReg, RS_Split);
3024     LLVM_DEBUG(dbgs() << "wait for second round\n");
3025     NewVRegs.push_back(VirtReg.reg);
3026     return 0;
3027   }
3028 
3029   if (Stage < RS_Spill) {
3030     // Try splitting VirtReg or interferences.
3031     unsigned NewVRegSizeBefore = NewVRegs.size();
3032     unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
3033     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3034       // If VirtReg got split, the eviction info is no longre relevant.
3035       LastEvicted.clearEvicteeInfo(VirtReg.reg);
3036       return PhysReg;
3037     }
3038   }
3039 
3040   // If we couldn't allocate a register from spilling, there is probably some
3041   // invalid inline assembly. The base class will report it.
3042   if (Stage >= RS_Done || !VirtReg.isSpillable())
3043     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3044                                    Depth);
3045 
3046   // Finally spill VirtReg itself.
3047   if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
3048     // TODO: This is experimental and in particular, we do not model
3049     // the live range splitting done by spilling correctly.
3050     // We would need a deep integration with the spiller to do the
3051     // right thing here. Anyway, that is still good for early testing.
3052     setStage(VirtReg, RS_Memory);
3053     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3054     NewVRegs.push_back(VirtReg.reg);
3055   } else {
3056     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3057                        TimerGroupDescription, TimePassesIsEnabled);
3058     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3059     spiller().spill(LRE);
3060     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3061 
3062     if (VerifyEnabled)
3063       MF->verify(this, "After spilling");
3064   }
3065 
3066   // The live virtual register requesting allocation was spilled, so tell
3067   // the caller not to allocate anything during this round.
3068   return 0;
3069 }
3070 
3071 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3072                                             unsigned &FoldedReloads,
3073                                             unsigned &Spills,
3074                                             unsigned &FoldedSpills) {
3075   Reloads = 0;
3076   FoldedReloads = 0;
3077   Spills = 0;
3078   FoldedSpills = 0;
3079 
3080   // Sum up the spill and reloads in subloops.
3081   for (MachineLoop *SubLoop : *L) {
3082     unsigned SubReloads;
3083     unsigned SubFoldedReloads;
3084     unsigned SubSpills;
3085     unsigned SubFoldedSpills;
3086 
3087     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3088                                  SubSpills, SubFoldedSpills);
3089     Reloads += SubReloads;
3090     FoldedReloads += SubFoldedReloads;
3091     Spills += SubSpills;
3092     FoldedSpills += SubFoldedSpills;
3093   }
3094 
3095   const MachineFrameInfo &MFI = MF->getFrameInfo();
3096   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
3097   int FI;
3098 
3099   for (MachineBasicBlock *MBB : L->getBlocks())
3100     // Handle blocks that were not included in subloops.
3101     if (Loops->getLoopFor(MBB) == L)
3102       for (MachineInstr &MI : *MBB) {
3103         const MachineMemOperand *MMO;
3104 
3105         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3106           ++Reloads;
3107         else if (TII->hasLoadFromStackSlot(MI, MMO, FI) &&
3108                  MFI.isSpillSlotObjectIndex(FI))
3109           ++FoldedReloads;
3110         else if (TII->isStoreToStackSlot(MI, FI) &&
3111                  MFI.isSpillSlotObjectIndex(FI))
3112           ++Spills;
3113         else if (TII->hasStoreToStackSlot(MI, MMO, FI) &&
3114                  MFI.isSpillSlotObjectIndex(FI))
3115           ++FoldedSpills;
3116       }
3117 
3118   if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3119     using namespace ore;
3120 
3121     ORE->emit([&]() {
3122       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3123                                         L->getStartLoc(), L->getHeader());
3124       if (Spills)
3125         R << NV("NumSpills", Spills) << " spills ";
3126       if (FoldedSpills)
3127         R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3128       if (Reloads)
3129         R << NV("NumReloads", Reloads) << " reloads ";
3130       if (FoldedReloads)
3131         R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3132       R << "generated in loop";
3133       return R;
3134     });
3135   }
3136 }
3137 
3138 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3139   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3140                     << "********** Function: " << mf.getName() << '\n');
3141 
3142   MF = &mf;
3143   TRI = MF->getSubtarget().getRegisterInfo();
3144   TII = MF->getSubtarget().getInstrInfo();
3145   RCI.runOnMachineFunction(mf);
3146 
3147   EnableLocalReassign = EnableLocalReassignment ||
3148                         MF->getSubtarget().enableRALocalReassignment(
3149                             MF->getTarget().getOptLevel());
3150 
3151   EnableAdvancedRASplitCost = ConsiderLocalIntervalCost ||
3152                               MF->getSubtarget().enableAdvancedRASplitCost();
3153 
3154   if (VerifyEnabled)
3155     MF->verify(this, "Before greedy register allocator");
3156 
3157   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3158                      getAnalysis<LiveIntervals>(),
3159                      getAnalysis<LiveRegMatrix>());
3160   Indexes = &getAnalysis<SlotIndexes>();
3161   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3162   DomTree = &getAnalysis<MachineDominatorTree>();
3163   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3164   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3165   Loops = &getAnalysis<MachineLoopInfo>();
3166   Bundles = &getAnalysis<EdgeBundles>();
3167   SpillPlacer = &getAnalysis<SpillPlacement>();
3168   DebugVars = &getAnalysis<LiveDebugVariables>();
3169   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3170 
3171   initializeCSRCost();
3172 
3173   calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
3174 
3175   LLVM_DEBUG(LIS->dump());
3176 
3177   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3178   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3179   ExtraRegInfo.clear();
3180   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3181   NextCascade = 1;
3182   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3183   GlobalCand.resize(32);  // This will grow as needed.
3184   SetOfBrokenHints.clear();
3185   LastEvicted.clear();
3186 
3187   allocatePhysRegs();
3188   tryHintsRecoloring();
3189   postOptimization();
3190   reportNumberOfSplillsReloads();
3191 
3192   releaseMemory();
3193   return true;
3194 }
3195