1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "AllocationOrder.h" 17 #include "InterferenceCache.h" 18 #include "LiveDebugVariables.h" 19 #include "LiveRangeEdit.h" 20 #include "RegAllocBase.h" 21 #include "Spiller.h" 22 #include "SpillPlacement.h" 23 #include "SplitKit.h" 24 #include "VirtRegMap.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Function.h" 28 #include "llvm/PassAnalysisSupport.h" 29 #include "llvm/CodeGen/CalcSpillWeights.h" 30 #include "llvm/CodeGen/EdgeBundles.h" 31 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 32 #include "llvm/CodeGen/LiveStackAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineLoopInfo.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/Passes.h" 38 #include "llvm/CodeGen/RegAllocRegistry.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Support/Timer.h" 45 46 #include <queue> 47 48 using namespace llvm; 49 50 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 51 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 52 STATISTIC(NumEvicted, "Number of interferences evicted"); 53 54 static cl::opt<SplitEditor::ComplementSpillMode> 55 SplitSpillMode("split-spill-mode", cl::Hidden, 56 cl::desc("Spill mode for splitting live ranges"), 57 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 58 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 59 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"), 60 clEnumValEnd), 61 cl::init(SplitEditor::SM_Partition)); 62 63 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 64 createGreedyRegisterAllocator); 65 66 namespace { 67 class RAGreedy : public MachineFunctionPass, 68 public RegAllocBase, 69 private LiveRangeEdit::Delegate { 70 71 // context 72 MachineFunction *MF; 73 74 // analyses 75 SlotIndexes *Indexes; 76 LiveStacks *LS; 77 MachineDominatorTree *DomTree; 78 MachineLoopInfo *Loops; 79 EdgeBundles *Bundles; 80 SpillPlacement *SpillPlacer; 81 LiveDebugVariables *DebugVars; 82 83 // state 84 std::auto_ptr<Spiller> SpillerInstance; 85 std::priority_queue<std::pair<unsigned, unsigned> > Queue; 86 unsigned NextCascade; 87 88 // Live ranges pass through a number of stages as we try to allocate them. 89 // Some of the stages may also create new live ranges: 90 // 91 // - Region splitting. 92 // - Per-block splitting. 93 // - Local splitting. 94 // - Spilling. 95 // 96 // Ranges produced by one of the stages skip the previous stages when they are 97 // dequeued. This improves performance because we can skip interference checks 98 // that are unlikely to give any results. It also guarantees that the live 99 // range splitting algorithm terminates, something that is otherwise hard to 100 // ensure. 101 enum LiveRangeStage { 102 /// Newly created live range that has never been queued. 103 RS_New, 104 105 /// Only attempt assignment and eviction. Then requeue as RS_Split. 106 RS_Assign, 107 108 /// Attempt live range splitting if assignment is impossible. 109 RS_Split, 110 111 /// Attempt more aggressive live range splitting that is guaranteed to make 112 /// progress. This is used for split products that may not be making 113 /// progress. 114 RS_Split2, 115 116 /// Live range will be spilled. No more splitting will be attempted. 117 RS_Spill, 118 119 /// There is nothing more we can do to this live range. Abort compilation 120 /// if it can't be assigned. 121 RS_Done 122 }; 123 124 static const char *const StageName[]; 125 126 // RegInfo - Keep additional information about each live range. 127 struct RegInfo { 128 LiveRangeStage Stage; 129 130 // Cascade - Eviction loop prevention. See canEvictInterference(). 131 unsigned Cascade; 132 133 RegInfo() : Stage(RS_New), Cascade(0) {} 134 }; 135 136 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 137 138 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 139 return ExtraRegInfo[VirtReg.reg].Stage; 140 } 141 142 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 143 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 144 ExtraRegInfo[VirtReg.reg].Stage = Stage; 145 } 146 147 template<typename Iterator> 148 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 149 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 150 for (;Begin != End; ++Begin) { 151 unsigned Reg = (*Begin)->reg; 152 if (ExtraRegInfo[Reg].Stage == RS_New) 153 ExtraRegInfo[Reg].Stage = NewStage; 154 } 155 } 156 157 /// Cost of evicting interference. 158 struct EvictionCost { 159 unsigned BrokenHints; ///< Total number of broken hints. 160 float MaxWeight; ///< Maximum spill weight evicted. 161 162 EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {} 163 164 bool operator<(const EvictionCost &O) const { 165 if (BrokenHints != O.BrokenHints) 166 return BrokenHints < O.BrokenHints; 167 return MaxWeight < O.MaxWeight; 168 } 169 }; 170 171 // splitting state. 172 std::auto_ptr<SplitAnalysis> SA; 173 std::auto_ptr<SplitEditor> SE; 174 175 /// Cached per-block interference maps 176 InterferenceCache IntfCache; 177 178 /// All basic blocks where the current register has uses. 179 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 180 181 /// Global live range splitting candidate info. 182 struct GlobalSplitCandidate { 183 // Register intended for assignment, or 0. 184 unsigned PhysReg; 185 186 // SplitKit interval index for this candidate. 187 unsigned IntvIdx; 188 189 // Interference for PhysReg. 190 InterferenceCache::Cursor Intf; 191 192 // Bundles where this candidate should be live. 193 BitVector LiveBundles; 194 SmallVector<unsigned, 8> ActiveBlocks; 195 196 void reset(InterferenceCache &Cache, unsigned Reg) { 197 PhysReg = Reg; 198 IntvIdx = 0; 199 Intf.setPhysReg(Cache, Reg); 200 LiveBundles.clear(); 201 ActiveBlocks.clear(); 202 } 203 204 // Set B[i] = C for every live bundle where B[i] was NoCand. 205 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 206 unsigned Count = 0; 207 for (int i = LiveBundles.find_first(); i >= 0; 208 i = LiveBundles.find_next(i)) 209 if (B[i] == NoCand) { 210 B[i] = C; 211 Count++; 212 } 213 return Count; 214 } 215 }; 216 217 /// Candidate info for for each PhysReg in AllocationOrder. 218 /// This vector never shrinks, but grows to the size of the largest register 219 /// class. 220 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 221 222 enum { NoCand = ~0u }; 223 224 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 225 /// NoCand which indicates the stack interval. 226 SmallVector<unsigned, 32> BundleCand; 227 228 public: 229 RAGreedy(); 230 231 /// Return the pass name. 232 virtual const char* getPassName() const { 233 return "Greedy Register Allocator"; 234 } 235 236 /// RAGreedy analysis usage. 237 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 238 virtual void releaseMemory(); 239 virtual Spiller &spiller() { return *SpillerInstance; } 240 virtual void enqueue(LiveInterval *LI); 241 virtual LiveInterval *dequeue(); 242 virtual unsigned selectOrSplit(LiveInterval&, 243 SmallVectorImpl<LiveInterval*>&); 244 245 /// Perform register allocation. 246 virtual bool runOnMachineFunction(MachineFunction &mf); 247 248 static char ID; 249 250 private: 251 bool LRE_CanEraseVirtReg(unsigned); 252 void LRE_WillShrinkVirtReg(unsigned); 253 void LRE_DidCloneVirtReg(unsigned, unsigned); 254 255 float calcSpillCost(); 256 bool addSplitConstraints(InterferenceCache::Cursor, float&); 257 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 258 void growRegion(GlobalSplitCandidate &Cand); 259 float calcGlobalSplitCost(GlobalSplitCandidate&); 260 bool calcCompactRegion(GlobalSplitCandidate&); 261 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 262 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 263 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 264 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 265 void evictInterference(LiveInterval&, unsigned, 266 SmallVectorImpl<LiveInterval*>&); 267 268 unsigned tryAssign(LiveInterval&, AllocationOrder&, 269 SmallVectorImpl<LiveInterval*>&); 270 unsigned tryEvict(LiveInterval&, AllocationOrder&, 271 SmallVectorImpl<LiveInterval*>&, unsigned = ~0u); 272 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 273 SmallVectorImpl<LiveInterval*>&); 274 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 275 SmallVectorImpl<LiveInterval*>&); 276 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 277 SmallVectorImpl<LiveInterval*>&); 278 unsigned trySplit(LiveInterval&, AllocationOrder&, 279 SmallVectorImpl<LiveInterval*>&); 280 }; 281 } // end anonymous namespace 282 283 char RAGreedy::ID = 0; 284 285 #ifndef NDEBUG 286 const char *const RAGreedy::StageName[] = { 287 "RS_New", 288 "RS_Assign", 289 "RS_Split", 290 "RS_Split2", 291 "RS_Spill", 292 "RS_Done" 293 }; 294 #endif 295 296 // Hysteresis to use when comparing floats. 297 // This helps stabilize decisions based on float comparisons. 298 const float Hysteresis = 0.98f; 299 300 301 FunctionPass* llvm::createGreedyRegisterAllocator() { 302 return new RAGreedy(); 303 } 304 305 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 306 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 307 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 308 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 309 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 310 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); 311 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 312 initializeMachineSchedulerPassPass(*PassRegistry::getPassRegistry()); 313 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); 314 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 315 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); 316 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); 317 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 318 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); 319 initializeSpillPlacementPass(*PassRegistry::getPassRegistry()); 320 } 321 322 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 323 AU.setPreservesCFG(); 324 AU.addRequired<AliasAnalysis>(); 325 AU.addPreserved<AliasAnalysis>(); 326 AU.addRequired<LiveIntervals>(); 327 AU.addRequired<SlotIndexes>(); 328 AU.addPreserved<SlotIndexes>(); 329 AU.addRequired<LiveDebugVariables>(); 330 AU.addPreserved<LiveDebugVariables>(); 331 if (StrongPHIElim) 332 AU.addRequiredID(StrongPHIEliminationID); 333 AU.addRequiredTransitiveID(RegisterCoalescerPassID); 334 if (EnableMachineSched) 335 AU.addRequiredID(MachineSchedulerPassID); 336 AU.addRequired<CalculateSpillWeights>(); 337 AU.addRequired<LiveStacks>(); 338 AU.addPreserved<LiveStacks>(); 339 AU.addRequired<MachineDominatorTree>(); 340 AU.addPreserved<MachineDominatorTree>(); 341 AU.addRequired<MachineLoopInfo>(); 342 AU.addPreserved<MachineLoopInfo>(); 343 AU.addRequired<VirtRegMap>(); 344 AU.addPreserved<VirtRegMap>(); 345 AU.addRequired<EdgeBundles>(); 346 AU.addRequired<SpillPlacement>(); 347 MachineFunctionPass::getAnalysisUsage(AU); 348 } 349 350 351 //===----------------------------------------------------------------------===// 352 // LiveRangeEdit delegate methods 353 //===----------------------------------------------------------------------===// 354 355 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 356 if (unsigned PhysReg = VRM->getPhys(VirtReg)) { 357 unassign(LIS->getInterval(VirtReg), PhysReg); 358 return true; 359 } 360 // Unassigned virtreg is probably in the priority queue. 361 // RegAllocBase will erase it after dequeueing. 362 return false; 363 } 364 365 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 366 unsigned PhysReg = VRM->getPhys(VirtReg); 367 if (!PhysReg) 368 return; 369 370 // Register is assigned, put it back on the queue for reassignment. 371 LiveInterval &LI = LIS->getInterval(VirtReg); 372 unassign(LI, PhysReg); 373 enqueue(&LI); 374 } 375 376 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 377 // Cloning a register we haven't even heard about yet? Just ignore it. 378 if (!ExtraRegInfo.inBounds(Old)) 379 return; 380 381 // LRE may clone a virtual register because dead code elimination causes it to 382 // be split into connected components. The new components are much smaller 383 // than the original, so they should get a new chance at being assigned. 384 // same stage as the parent. 385 ExtraRegInfo[Old].Stage = RS_Assign; 386 ExtraRegInfo.grow(New); 387 ExtraRegInfo[New] = ExtraRegInfo[Old]; 388 } 389 390 void RAGreedy::releaseMemory() { 391 SpillerInstance.reset(0); 392 ExtraRegInfo.clear(); 393 GlobalCand.clear(); 394 RegAllocBase::releaseMemory(); 395 } 396 397 void RAGreedy::enqueue(LiveInterval *LI) { 398 // Prioritize live ranges by size, assigning larger ranges first. 399 // The queue holds (size, reg) pairs. 400 const unsigned Size = LI->getSize(); 401 const unsigned Reg = LI->reg; 402 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 403 "Can only enqueue virtual registers"); 404 unsigned Prio; 405 406 ExtraRegInfo.grow(Reg); 407 if (ExtraRegInfo[Reg].Stage == RS_New) 408 ExtraRegInfo[Reg].Stage = RS_Assign; 409 410 if (ExtraRegInfo[Reg].Stage == RS_Split) { 411 // Unsplit ranges that couldn't be allocated immediately are deferred until 412 // everything else has been allocated. 413 Prio = Size; 414 } else { 415 // Everything is allocated in long->short order. Long ranges that don't fit 416 // should be spilled (or split) ASAP so they don't create interference. 417 Prio = (1u << 31) + Size; 418 419 // Boost ranges that have a physical register hint. 420 if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg))) 421 Prio |= (1u << 30); 422 } 423 424 Queue.push(std::make_pair(Prio, Reg)); 425 } 426 427 LiveInterval *RAGreedy::dequeue() { 428 if (Queue.empty()) 429 return 0; 430 LiveInterval *LI = &LIS->getInterval(Queue.top().second); 431 Queue.pop(); 432 return LI; 433 } 434 435 436 //===----------------------------------------------------------------------===// 437 // Direct Assignment 438 //===----------------------------------------------------------------------===// 439 440 /// tryAssign - Try to assign VirtReg to an available register. 441 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 442 AllocationOrder &Order, 443 SmallVectorImpl<LiveInterval*> &NewVRegs) { 444 Order.rewind(); 445 unsigned PhysReg; 446 while ((PhysReg = Order.next())) 447 if (!checkPhysRegInterference(VirtReg, PhysReg)) 448 break; 449 if (!PhysReg || Order.isHint(PhysReg)) 450 return PhysReg; 451 452 // PhysReg is available, but there may be a better choice. 453 454 // If we missed a simple hint, try to cheaply evict interference from the 455 // preferred register. 456 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 457 if (Order.isHint(Hint)) { 458 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); 459 EvictionCost MaxCost(1); 460 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 461 evictInterference(VirtReg, Hint, NewVRegs); 462 return Hint; 463 } 464 } 465 466 // Try to evict interference from a cheaper alternative. 467 unsigned Cost = TRI->getCostPerUse(PhysReg); 468 469 // Most registers have 0 additional cost. 470 if (!Cost) 471 return PhysReg; 472 473 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost 474 << '\n'); 475 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 476 return CheapReg ? CheapReg : PhysReg; 477 } 478 479 480 //===----------------------------------------------------------------------===// 481 // Interference eviction 482 //===----------------------------------------------------------------------===// 483 484 /// shouldEvict - determine if A should evict the assigned live range B. The 485 /// eviction policy defined by this function together with the allocation order 486 /// defined by enqueue() decides which registers ultimately end up being split 487 /// and spilled. 488 /// 489 /// Cascade numbers are used to prevent infinite loops if this function is a 490 /// cyclic relation. 491 /// 492 /// @param A The live range to be assigned. 493 /// @param IsHint True when A is about to be assigned to its preferred 494 /// register. 495 /// @param B The live range to be evicted. 496 /// @param BreaksHint True when B is already assigned to its preferred register. 497 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 498 LiveInterval &B, bool BreaksHint) { 499 bool CanSplit = getStage(B) < RS_Spill; 500 501 // Be fairly aggressive about following hints as long as the evictee can be 502 // split. 503 if (CanSplit && IsHint && !BreaksHint) 504 return true; 505 506 return A.weight > B.weight; 507 } 508 509 /// canEvictInterference - Return true if all interferences between VirtReg and 510 /// PhysReg can be evicted. When OnlyCheap is set, don't do anything 511 /// 512 /// @param VirtReg Live range that is about to be assigned. 513 /// @param PhysReg Desired register for assignment. 514 /// @prarm IsHint True when PhysReg is VirtReg's preferred register. 515 /// @param MaxCost Only look for cheaper candidates and update with new cost 516 /// when returning true. 517 /// @returns True when interference can be evicted cheaper than MaxCost. 518 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 519 bool IsHint, EvictionCost &MaxCost) { 520 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 521 // involved in an eviction before. If a cascade number was assigned, deny 522 // evicting anything with the same or a newer cascade number. This prevents 523 // infinite eviction loops. 524 // 525 // This works out so a register without a cascade number is allowed to evict 526 // anything, and it can be evicted by anything. 527 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 528 if (!Cascade) 529 Cascade = NextCascade; 530 531 EvictionCost Cost; 532 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { 533 LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); 534 // If there is 10 or more interferences, chances are one is heavier. 535 if (Q.collectInterferingVRegs(10) >= 10) 536 return false; 537 538 // Check if any interfering live range is heavier than MaxWeight. 539 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 540 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 541 if (TargetRegisterInfo::isPhysicalRegister(Intf->reg)) 542 return false; 543 // Never evict spill products. They cannot split or spill. 544 if (getStage(*Intf) == RS_Done) 545 return false; 546 // Once a live range becomes small enough, it is urgent that we find a 547 // register for it. This is indicated by an infinite spill weight. These 548 // urgent live ranges get to evict almost anything. 549 bool Urgent = !VirtReg.isSpillable() && Intf->isSpillable(); 550 // Only evict older cascades or live ranges without a cascade. 551 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 552 if (Cascade <= IntfCascade) { 553 if (!Urgent) 554 return false; 555 // We permit breaking cascades for urgent evictions. It should be the 556 // last resort, though, so make it really expensive. 557 Cost.BrokenHints += 10; 558 } 559 // Would this break a satisfied hint? 560 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 561 // Update eviction cost. 562 Cost.BrokenHints += BreaksHint; 563 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 564 // Abort if this would be too expensive. 565 if (!(Cost < MaxCost)) 566 return false; 567 // Finally, apply the eviction policy for non-urgent evictions. 568 if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 569 return false; 570 } 571 } 572 MaxCost = Cost; 573 return true; 574 } 575 576 /// evictInterference - Evict any interferring registers that prevent VirtReg 577 /// from being assigned to Physreg. This assumes that canEvictInterference 578 /// returned true. 579 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 580 SmallVectorImpl<LiveInterval*> &NewVRegs) { 581 // Make sure that VirtReg has a cascade number, and assign that cascade 582 // number to every evicted register. These live ranges than then only be 583 // evicted by a newer cascade, preventing infinite loops. 584 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 585 if (!Cascade) 586 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 587 588 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) 589 << " interference: Cascade " << Cascade << '\n'); 590 for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { 591 LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); 592 assert(Q.seenAllInterferences() && "Didn't check all interfererences."); 593 for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) { 594 LiveInterval *Intf = Q.interferingVRegs()[i]; 595 unassign(*Intf, VRM->getPhys(Intf->reg)); 596 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 597 VirtReg.isSpillable() < Intf->isSpillable()) && 598 "Cannot decrease cascade number, illegal eviction"); 599 ExtraRegInfo[Intf->reg].Cascade = Cascade; 600 ++NumEvicted; 601 NewVRegs.push_back(Intf); 602 } 603 } 604 } 605 606 /// tryEvict - Try to evict all interferences for a physreg. 607 /// @param VirtReg Currently unassigned virtual register. 608 /// @param Order Physregs to try. 609 /// @return Physreg to assign VirtReg, or 0. 610 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 611 AllocationOrder &Order, 612 SmallVectorImpl<LiveInterval*> &NewVRegs, 613 unsigned CostPerUseLimit) { 614 NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled); 615 616 // Keep track of the cheapest interference seen so far. 617 EvictionCost BestCost(~0u); 618 unsigned BestPhys = 0; 619 620 // When we are just looking for a reduced cost per use, don't break any 621 // hints, and only evict smaller spill weights. 622 if (CostPerUseLimit < ~0u) { 623 BestCost.BrokenHints = 0; 624 BestCost.MaxWeight = VirtReg.weight; 625 } 626 627 Order.rewind(); 628 while (unsigned PhysReg = Order.next()) { 629 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 630 continue; 631 // The first use of a callee-saved register in a function has cost 1. 632 // Don't start using a CSR when the CostPerUseLimit is low. 633 if (CostPerUseLimit == 1) 634 if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg)) 635 if (!MRI->isPhysRegUsed(CSR)) { 636 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " 637 << PrintReg(CSR, TRI) << '\n'); 638 continue; 639 } 640 641 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 642 continue; 643 644 // Best so far. 645 BestPhys = PhysReg; 646 647 // Stop if the hint can be used. 648 if (Order.isHint(PhysReg)) 649 break; 650 } 651 652 if (!BestPhys) 653 return 0; 654 655 evictInterference(VirtReg, BestPhys, NewVRegs); 656 return BestPhys; 657 } 658 659 660 //===----------------------------------------------------------------------===// 661 // Region Splitting 662 //===----------------------------------------------------------------------===// 663 664 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 665 /// interference pattern in Physreg and its aliases. Add the constraints to 666 /// SpillPlacement and return the static cost of this split in Cost, assuming 667 /// that all preferences in SplitConstraints are met. 668 /// Return false if there are no bundles with positive bias. 669 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 670 float &Cost) { 671 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 672 673 // Reset interference dependent info. 674 SplitConstraints.resize(UseBlocks.size()); 675 float StaticCost = 0; 676 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 677 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 678 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 679 680 BC.Number = BI.MBB->getNumber(); 681 Intf.moveToBlock(BC.Number); 682 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 683 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 684 BC.ChangesValue = BI.FirstDef; 685 686 if (!Intf.hasInterference()) 687 continue; 688 689 // Number of spill code instructions to insert. 690 unsigned Ins = 0; 691 692 // Interference for the live-in value. 693 if (BI.LiveIn) { 694 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) 695 BC.Entry = SpillPlacement::MustSpill, ++Ins; 696 else if (Intf.first() < BI.FirstInstr) 697 BC.Entry = SpillPlacement::PrefSpill, ++Ins; 698 else if (Intf.first() < BI.LastInstr) 699 ++Ins; 700 } 701 702 // Interference for the live-out value. 703 if (BI.LiveOut) { 704 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) 705 BC.Exit = SpillPlacement::MustSpill, ++Ins; 706 else if (Intf.last() > BI.LastInstr) 707 BC.Exit = SpillPlacement::PrefSpill, ++Ins; 708 else if (Intf.last() > BI.FirstInstr) 709 ++Ins; 710 } 711 712 // Accumulate the total frequency of inserted spill code. 713 if (Ins) 714 StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number); 715 } 716 Cost = StaticCost; 717 718 // Add constraints for use-blocks. Note that these are the only constraints 719 // that may add a positive bias, it is downhill from here. 720 SpillPlacer->addConstraints(SplitConstraints); 721 return SpillPlacer->scanActiveBundles(); 722 } 723 724 725 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 726 /// live-through blocks in Blocks. 727 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 728 ArrayRef<unsigned> Blocks) { 729 const unsigned GroupSize = 8; 730 SpillPlacement::BlockConstraint BCS[GroupSize]; 731 unsigned TBS[GroupSize]; 732 unsigned B = 0, T = 0; 733 734 for (unsigned i = 0; i != Blocks.size(); ++i) { 735 unsigned Number = Blocks[i]; 736 Intf.moveToBlock(Number); 737 738 if (!Intf.hasInterference()) { 739 assert(T < GroupSize && "Array overflow"); 740 TBS[T] = Number; 741 if (++T == GroupSize) { 742 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 743 T = 0; 744 } 745 continue; 746 } 747 748 assert(B < GroupSize && "Array overflow"); 749 BCS[B].Number = Number; 750 751 // Interference for the live-in value. 752 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 753 BCS[B].Entry = SpillPlacement::MustSpill; 754 else 755 BCS[B].Entry = SpillPlacement::PrefSpill; 756 757 // Interference for the live-out value. 758 if (Intf.last() >= SA->getLastSplitPoint(Number)) 759 BCS[B].Exit = SpillPlacement::MustSpill; 760 else 761 BCS[B].Exit = SpillPlacement::PrefSpill; 762 763 if (++B == GroupSize) { 764 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B); 765 SpillPlacer->addConstraints(Array); 766 B = 0; 767 } 768 } 769 770 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B); 771 SpillPlacer->addConstraints(Array); 772 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 773 } 774 775 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 776 // Keep track of through blocks that have not been added to SpillPlacer. 777 BitVector Todo = SA->getThroughBlocks(); 778 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 779 unsigned AddedTo = 0; 780 #ifndef NDEBUG 781 unsigned Visited = 0; 782 #endif 783 784 for (;;) { 785 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 786 // Find new through blocks in the periphery of PrefRegBundles. 787 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 788 unsigned Bundle = NewBundles[i]; 789 // Look at all blocks connected to Bundle in the full graph. 790 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 791 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 792 I != E; ++I) { 793 unsigned Block = *I; 794 if (!Todo.test(Block)) 795 continue; 796 Todo.reset(Block); 797 // This is a new through block. Add it to SpillPlacer later. 798 ActiveBlocks.push_back(Block); 799 #ifndef NDEBUG 800 ++Visited; 801 #endif 802 } 803 } 804 // Any new blocks to add? 805 if (ActiveBlocks.size() == AddedTo) 806 break; 807 808 // Compute through constraints from the interference, or assume that all 809 // through blocks prefer spilling when forming compact regions. 810 ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 811 if (Cand.PhysReg) 812 addThroughConstraints(Cand.Intf, NewBlocks); 813 else 814 // Provide a strong negative bias on through blocks to prevent unwanted 815 // liveness on loop backedges. 816 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 817 AddedTo = ActiveBlocks.size(); 818 819 // Perhaps iterating can enable more bundles? 820 SpillPlacer->iterate(); 821 } 822 DEBUG(dbgs() << ", v=" << Visited); 823 } 824 825 /// calcCompactRegion - Compute the set of edge bundles that should be live 826 /// when splitting the current live range into compact regions. Compact 827 /// regions can be computed without looking at interference. They are the 828 /// regions formed by removing all the live-through blocks from the live range. 829 /// 830 /// Returns false if the current live range is already compact, or if the 831 /// compact regions would form single block regions anyway. 832 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 833 // Without any through blocks, the live range is already compact. 834 if (!SA->getNumThroughBlocks()) 835 return false; 836 837 // Compact regions don't correspond to any physreg. 838 Cand.reset(IntfCache, 0); 839 840 DEBUG(dbgs() << "Compact region bundles"); 841 842 // Use the spill placer to determine the live bundles. GrowRegion pretends 843 // that all the through blocks have interference when PhysReg is unset. 844 SpillPlacer->prepare(Cand.LiveBundles); 845 846 // The static split cost will be zero since Cand.Intf reports no interference. 847 float Cost; 848 if (!addSplitConstraints(Cand.Intf, Cost)) { 849 DEBUG(dbgs() << ", none.\n"); 850 return false; 851 } 852 853 growRegion(Cand); 854 SpillPlacer->finish(); 855 856 if (!Cand.LiveBundles.any()) { 857 DEBUG(dbgs() << ", none.\n"); 858 return false; 859 } 860 861 DEBUG({ 862 for (int i = Cand.LiveBundles.find_first(); i>=0; 863 i = Cand.LiveBundles.find_next(i)) 864 dbgs() << " EB#" << i; 865 dbgs() << ".\n"; 866 }); 867 return true; 868 } 869 870 /// calcSpillCost - Compute how expensive it would be to split the live range in 871 /// SA around all use blocks instead of forming bundle regions. 872 float RAGreedy::calcSpillCost() { 873 float Cost = 0; 874 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 875 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 876 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 877 unsigned Number = BI.MBB->getNumber(); 878 // We normally only need one spill instruction - a load or a store. 879 Cost += SpillPlacer->getBlockFrequency(Number); 880 881 // Unless the value is redefined in the block. 882 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 883 Cost += SpillPlacer->getBlockFrequency(Number); 884 } 885 return Cost; 886 } 887 888 /// calcGlobalSplitCost - Return the global split cost of following the split 889 /// pattern in LiveBundles. This cost should be added to the local cost of the 890 /// interference pattern in SplitConstraints. 891 /// 892 float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) { 893 float GlobalCost = 0; 894 const BitVector &LiveBundles = Cand.LiveBundles; 895 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 896 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 897 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 898 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 899 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)]; 900 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)]; 901 unsigned Ins = 0; 902 903 if (BI.LiveIn) 904 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 905 if (BI.LiveOut) 906 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 907 if (Ins) 908 GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number); 909 } 910 911 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 912 unsigned Number = Cand.ActiveBlocks[i]; 913 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)]; 914 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)]; 915 if (!RegIn && !RegOut) 916 continue; 917 if (RegIn && RegOut) { 918 // We need double spill code if this block has interference. 919 Cand.Intf.moveToBlock(Number); 920 if (Cand.Intf.hasInterference()) 921 GlobalCost += 2*SpillPlacer->getBlockFrequency(Number); 922 continue; 923 } 924 // live-in / stack-out or stack-in live-out. 925 GlobalCost += SpillPlacer->getBlockFrequency(Number); 926 } 927 return GlobalCost; 928 } 929 930 /// splitAroundRegion - Split the current live range around the regions 931 /// determined by BundleCand and GlobalCand. 932 /// 933 /// Before calling this function, GlobalCand and BundleCand must be initialized 934 /// so each bundle is assigned to a valid candidate, or NoCand for the 935 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 936 /// objects must be initialized for the current live range, and intervals 937 /// created for the used candidates. 938 /// 939 /// @param LREdit The LiveRangeEdit object handling the current split. 940 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 941 /// must appear in this list. 942 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 943 ArrayRef<unsigned> UsedCands) { 944 // These are the intervals created for new global ranges. We may create more 945 // intervals for local ranges. 946 const unsigned NumGlobalIntvs = LREdit.size(); 947 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 948 assert(NumGlobalIntvs && "No global intervals configured"); 949 950 // Isolate even single instructions when dealing with a proper sub-class. 951 // That guarantees register class inflation for the stack interval because it 952 // is all copies. 953 unsigned Reg = SA->getParent().reg; 954 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 955 956 // First handle all the blocks with uses. 957 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 958 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 959 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 960 unsigned Number = BI.MBB->getNumber(); 961 unsigned IntvIn = 0, IntvOut = 0; 962 SlotIndex IntfIn, IntfOut; 963 if (BI.LiveIn) { 964 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 965 if (CandIn != NoCand) { 966 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 967 IntvIn = Cand.IntvIdx; 968 Cand.Intf.moveToBlock(Number); 969 IntfIn = Cand.Intf.first(); 970 } 971 } 972 if (BI.LiveOut) { 973 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 974 if (CandOut != NoCand) { 975 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 976 IntvOut = Cand.IntvIdx; 977 Cand.Intf.moveToBlock(Number); 978 IntfOut = Cand.Intf.last(); 979 } 980 } 981 982 // Create separate intervals for isolated blocks with multiple uses. 983 if (!IntvIn && !IntvOut) { 984 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); 985 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 986 SE->splitSingleBlock(BI); 987 continue; 988 } 989 990 if (IntvIn && IntvOut) 991 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 992 else if (IntvIn) 993 SE->splitRegInBlock(BI, IntvIn, IntfIn); 994 else 995 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 996 } 997 998 // Handle live-through blocks. The relevant live-through blocks are stored in 999 // the ActiveBlocks list with each candidate. We need to filter out 1000 // duplicates. 1001 BitVector Todo = SA->getThroughBlocks(); 1002 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1003 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1004 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1005 unsigned Number = Blocks[i]; 1006 if (!Todo.test(Number)) 1007 continue; 1008 Todo.reset(Number); 1009 1010 unsigned IntvIn = 0, IntvOut = 0; 1011 SlotIndex IntfIn, IntfOut; 1012 1013 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1014 if (CandIn != NoCand) { 1015 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1016 IntvIn = Cand.IntvIdx; 1017 Cand.Intf.moveToBlock(Number); 1018 IntfIn = Cand.Intf.first(); 1019 } 1020 1021 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1022 if (CandOut != NoCand) { 1023 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1024 IntvOut = Cand.IntvIdx; 1025 Cand.Intf.moveToBlock(Number); 1026 IntfOut = Cand.Intf.last(); 1027 } 1028 if (!IntvIn && !IntvOut) 1029 continue; 1030 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1031 } 1032 } 1033 1034 ++NumGlobalSplits; 1035 1036 SmallVector<unsigned, 8> IntvMap; 1037 SE->finish(&IntvMap); 1038 DebugVars->splitRegister(Reg, LREdit.regs()); 1039 1040 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1041 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1042 1043 // Sort out the new intervals created by splitting. We get four kinds: 1044 // - Remainder intervals should not be split again. 1045 // - Candidate intervals can be assigned to Cand.PhysReg. 1046 // - Block-local splits are candidates for local splitting. 1047 // - DCE leftovers should go back on the queue. 1048 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1049 LiveInterval &Reg = *LREdit.get(i); 1050 1051 // Ignore old intervals from DCE. 1052 if (getStage(Reg) != RS_New) 1053 continue; 1054 1055 // Remainder interval. Don't try splitting again, spill if it doesn't 1056 // allocate. 1057 if (IntvMap[i] == 0) { 1058 setStage(Reg, RS_Spill); 1059 continue; 1060 } 1061 1062 // Global intervals. Allow repeated splitting as long as the number of live 1063 // blocks is strictly decreasing. 1064 if (IntvMap[i] < NumGlobalIntvs) { 1065 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1066 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1067 << " blocks as original.\n"); 1068 // Don't allow repeated splitting as a safe guard against looping. 1069 setStage(Reg, RS_Split2); 1070 } 1071 continue; 1072 } 1073 1074 // Other intervals are treated as new. This includes local intervals created 1075 // for blocks with multiple uses, and anything created by DCE. 1076 } 1077 1078 if (VerifyEnabled) 1079 MF->verify(this, "After splitting live range around region"); 1080 } 1081 1082 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1083 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1084 unsigned NumCands = 0; 1085 unsigned BestCand = NoCand; 1086 float BestCost; 1087 SmallVector<unsigned, 8> UsedCands; 1088 1089 // Check if we can split this live range around a compact region. 1090 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1091 if (HasCompact) { 1092 // Yes, keep GlobalCand[0] as the compact region candidate. 1093 NumCands = 1; 1094 BestCost = HUGE_VALF; 1095 } else { 1096 // No benefit from the compact region, our fallback will be per-block 1097 // splitting. Make sure we find a solution that is cheaper than spilling. 1098 BestCost = Hysteresis * calcSpillCost(); 1099 DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n'); 1100 } 1101 1102 Order.rewind(); 1103 while (unsigned PhysReg = Order.next()) { 1104 // Discard bad candidates before we run out of interference cache cursors. 1105 // This will only affect register classes with a lot of registers (>32). 1106 if (NumCands == IntfCache.getMaxCursors()) { 1107 unsigned WorstCount = ~0u; 1108 unsigned Worst = 0; 1109 for (unsigned i = 0; i != NumCands; ++i) { 1110 if (i == BestCand || !GlobalCand[i].PhysReg) 1111 continue; 1112 unsigned Count = GlobalCand[i].LiveBundles.count(); 1113 if (Count < WorstCount) 1114 Worst = i, WorstCount = Count; 1115 } 1116 --NumCands; 1117 GlobalCand[Worst] = GlobalCand[NumCands]; 1118 if (BestCand == NumCands) 1119 BestCand = Worst; 1120 } 1121 1122 if (GlobalCand.size() <= NumCands) 1123 GlobalCand.resize(NumCands+1); 1124 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1125 Cand.reset(IntfCache, PhysReg); 1126 1127 SpillPlacer->prepare(Cand.LiveBundles); 1128 float Cost; 1129 if (!addSplitConstraints(Cand.Intf, Cost)) { 1130 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); 1131 continue; 1132 } 1133 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost); 1134 if (Cost >= BestCost) { 1135 DEBUG({ 1136 if (BestCand == NoCand) 1137 dbgs() << " worse than no bundles\n"; 1138 else 1139 dbgs() << " worse than " 1140 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1141 }); 1142 continue; 1143 } 1144 growRegion(Cand); 1145 1146 SpillPlacer->finish(); 1147 1148 // No live bundles, defer to splitSingleBlocks(). 1149 if (!Cand.LiveBundles.any()) { 1150 DEBUG(dbgs() << " no bundles.\n"); 1151 continue; 1152 } 1153 1154 Cost += calcGlobalSplitCost(Cand); 1155 DEBUG({ 1156 dbgs() << ", total = " << Cost << " with bundles"; 1157 for (int i = Cand.LiveBundles.find_first(); i>=0; 1158 i = Cand.LiveBundles.find_next(i)) 1159 dbgs() << " EB#" << i; 1160 dbgs() << ".\n"; 1161 }); 1162 if (Cost < BestCost) { 1163 BestCand = NumCands; 1164 BestCost = Hysteresis * Cost; // Prevent rounding effects. 1165 } 1166 ++NumCands; 1167 } 1168 1169 // No solutions found, fall back to single block splitting. 1170 if (!HasCompact && BestCand == NoCand) 1171 return 0; 1172 1173 // Prepare split editor. 1174 LiveRangeEdit LREdit(VirtReg, NewVRegs, this); 1175 SE->reset(LREdit, SplitSpillMode); 1176 1177 // Assign all edge bundles to the preferred candidate, or NoCand. 1178 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1179 1180 // Assign bundles for the best candidate region. 1181 if (BestCand != NoCand) { 1182 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1183 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1184 UsedCands.push_back(BestCand); 1185 Cand.IntvIdx = SE->openIntv(); 1186 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in " 1187 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1188 (void)B; 1189 } 1190 } 1191 1192 // Assign bundles for the compact region. 1193 if (HasCompact) { 1194 GlobalSplitCandidate &Cand = GlobalCand.front(); 1195 assert(!Cand.PhysReg && "Compact region has no physreg"); 1196 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1197 UsedCands.push_back(0); 1198 Cand.IntvIdx = SE->openIntv(); 1199 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1200 << Cand.IntvIdx << ".\n"); 1201 (void)B; 1202 } 1203 } 1204 1205 splitAroundRegion(LREdit, UsedCands); 1206 return 0; 1207 } 1208 1209 1210 //===----------------------------------------------------------------------===// 1211 // Per-Block Splitting 1212 //===----------------------------------------------------------------------===// 1213 1214 /// tryBlockSplit - Split a global live range around every block with uses. This 1215 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1216 /// they don't allocate. 1217 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1218 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1219 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1220 unsigned Reg = VirtReg.reg; 1221 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1222 LiveRangeEdit LREdit(VirtReg, NewVRegs, this); 1223 SE->reset(LREdit, SplitSpillMode); 1224 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1225 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1226 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1227 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1228 SE->splitSingleBlock(BI); 1229 } 1230 // No blocks were split. 1231 if (LREdit.empty()) 1232 return 0; 1233 1234 // We did split for some blocks. 1235 SmallVector<unsigned, 8> IntvMap; 1236 SE->finish(&IntvMap); 1237 1238 // Tell LiveDebugVariables about the new ranges. 1239 DebugVars->splitRegister(Reg, LREdit.regs()); 1240 1241 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1242 1243 // Sort out the new intervals created by splitting. The remainder interval 1244 // goes straight to spilling, the new local ranges get to stay RS_New. 1245 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1246 LiveInterval &LI = *LREdit.get(i); 1247 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1248 setStage(LI, RS_Spill); 1249 } 1250 1251 if (VerifyEnabled) 1252 MF->verify(this, "After splitting live range around basic blocks"); 1253 return 0; 1254 } 1255 1256 //===----------------------------------------------------------------------===// 1257 // Local Splitting 1258 //===----------------------------------------------------------------------===// 1259 1260 1261 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1262 /// in order to use PhysReg between two entries in SA->UseSlots. 1263 /// 1264 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 1265 /// 1266 void RAGreedy::calcGapWeights(unsigned PhysReg, 1267 SmallVectorImpl<float> &GapWeight) { 1268 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1269 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1270 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1271 const unsigned NumGaps = Uses.size()-1; 1272 1273 // Start and end points for the interference check. 1274 SlotIndex StartIdx = 1275 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1276 SlotIndex StopIdx = 1277 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1278 1279 GapWeight.assign(NumGaps, 0.0f); 1280 1281 // Add interference from each overlapping register. 1282 for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) { 1283 if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI) 1284 .checkInterference()) 1285 continue; 1286 1287 // We know that VirtReg is a continuous interval from FirstInstr to 1288 // LastInstr, so we don't need InterferenceQuery. 1289 // 1290 // Interference that overlaps an instruction is counted in both gaps 1291 // surrounding the instruction. The exception is interference before 1292 // StartIdx and after StopIdx. 1293 // 1294 LiveIntervalUnion::SegmentIter IntI = getLiveUnion(*AI).find(StartIdx); 1295 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1296 // Skip the gaps before IntI. 1297 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1298 if (++Gap == NumGaps) 1299 break; 1300 if (Gap == NumGaps) 1301 break; 1302 1303 // Update the gaps covered by IntI. 1304 const float weight = IntI.value()->weight; 1305 for (; Gap != NumGaps; ++Gap) { 1306 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1307 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1308 break; 1309 } 1310 if (Gap == NumGaps) 1311 break; 1312 } 1313 } 1314 } 1315 1316 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1317 /// basic block. 1318 /// 1319 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1320 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1321 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1322 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1323 1324 // Note that it is possible to have an interval that is live-in or live-out 1325 // while only covering a single block - A phi-def can use undef values from 1326 // predecessors, and the block could be a single-block loop. 1327 // We don't bother doing anything clever about such a case, we simply assume 1328 // that the interval is continuous from FirstInstr to LastInstr. We should 1329 // make sure that we don't do anything illegal to such an interval, though. 1330 1331 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1332 if (Uses.size() <= 2) 1333 return 0; 1334 const unsigned NumGaps = Uses.size()-1; 1335 1336 DEBUG({ 1337 dbgs() << "tryLocalSplit: "; 1338 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 1339 dbgs() << ' ' << Uses[i]; 1340 dbgs() << '\n'; 1341 }); 1342 1343 // Since we allow local split results to be split again, there is a risk of 1344 // creating infinite loops. It is tempting to require that the new live 1345 // ranges have less instructions than the original. That would guarantee 1346 // convergence, but it is too strict. A live range with 3 instructions can be 1347 // split 2+3 (including the COPY), and we want to allow that. 1348 // 1349 // Instead we use these rules: 1350 // 1351 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1352 // noop split, of course). 1353 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1354 // the new ranges must have fewer instructions than before the split. 1355 // 3. New ranges with the same number of instructions are marked RS_Split2, 1356 // smaller ranges are marked RS_New. 1357 // 1358 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1359 // excessive splitting and infinite loops. 1360 // 1361 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 1362 1363 // Best split candidate. 1364 unsigned BestBefore = NumGaps; 1365 unsigned BestAfter = 0; 1366 float BestDiff = 0; 1367 1368 const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber()); 1369 SmallVector<float, 8> GapWeight; 1370 1371 Order.rewind(); 1372 while (unsigned PhysReg = Order.next()) { 1373 // Keep track of the largest spill weight that would need to be evicted in 1374 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 1375 calcGapWeights(PhysReg, GapWeight); 1376 1377 // Try to find the best sequence of gaps to close. 1378 // The new spill weight must be larger than any gap interference. 1379 1380 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1381 unsigned SplitBefore = 0, SplitAfter = 1; 1382 1383 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1384 // It is the spill weight that needs to be evicted. 1385 float MaxGap = GapWeight[0]; 1386 1387 for (;;) { 1388 // Live before/after split? 1389 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1390 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1391 1392 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' 1393 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 1394 << " i=" << MaxGap); 1395 1396 // Stop before the interval gets so big we wouldn't be making progress. 1397 if (!LiveBefore && !LiveAfter) { 1398 DEBUG(dbgs() << " all\n"); 1399 break; 1400 } 1401 // Should the interval be extended or shrunk? 1402 bool Shrink = true; 1403 1404 // How many gaps would the new range have? 1405 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1406 1407 // Legally, without causing looping? 1408 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1409 1410 if (Legal && MaxGap < HUGE_VALF) { 1411 // Estimate the new spill weight. Each instruction reads or writes the 1412 // register. Conservatively assume there are no read-modify-write 1413 // instructions. 1414 // 1415 // Try to guess the size of the new interval. 1416 const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1), 1417 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1418 (LiveBefore + LiveAfter)*SlotIndex::InstrDist); 1419 // Would this split be possible to allocate? 1420 // Never allocate all gaps, we wouldn't be making progress. 1421 DEBUG(dbgs() << " w=" << EstWeight); 1422 if (EstWeight * Hysteresis >= MaxGap) { 1423 Shrink = false; 1424 float Diff = EstWeight - MaxGap; 1425 if (Diff > BestDiff) { 1426 DEBUG(dbgs() << " (best)"); 1427 BestDiff = Hysteresis * Diff; 1428 BestBefore = SplitBefore; 1429 BestAfter = SplitAfter; 1430 } 1431 } 1432 } 1433 1434 // Try to shrink. 1435 if (Shrink) { 1436 if (++SplitBefore < SplitAfter) { 1437 DEBUG(dbgs() << " shrink\n"); 1438 // Recompute the max when necessary. 1439 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1440 MaxGap = GapWeight[SplitBefore]; 1441 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 1442 MaxGap = std::max(MaxGap, GapWeight[i]); 1443 } 1444 continue; 1445 } 1446 MaxGap = 0; 1447 } 1448 1449 // Try to extend the interval. 1450 if (SplitAfter >= NumGaps) { 1451 DEBUG(dbgs() << " end\n"); 1452 break; 1453 } 1454 1455 DEBUG(dbgs() << " extend\n"); 1456 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1457 } 1458 } 1459 1460 // Didn't find any candidates? 1461 if (BestBefore == NumGaps) 1462 return 0; 1463 1464 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 1465 << '-' << Uses[BestAfter] << ", " << BestDiff 1466 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 1467 1468 LiveRangeEdit LREdit(VirtReg, NewVRegs, this); 1469 SE->reset(LREdit); 1470 1471 SE->openIntv(); 1472 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1473 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1474 SE->useIntv(SegStart, SegStop); 1475 SmallVector<unsigned, 8> IntvMap; 1476 SE->finish(&IntvMap); 1477 DebugVars->splitRegister(VirtReg.reg, LREdit.regs()); 1478 1479 // If the new range has the same number of instructions as before, mark it as 1480 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1481 // leave the new intervals as RS_New so they can compete. 1482 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1483 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1484 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1485 if (NewGaps >= NumGaps) { 1486 DEBUG(dbgs() << "Tagging non-progress ranges: "); 1487 assert(!ProgressRequired && "Didn't make progress when it was required."); 1488 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 1489 if (IntvMap[i] == 1) { 1490 setStage(*LREdit.get(i), RS_Split2); 1491 DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg)); 1492 } 1493 DEBUG(dbgs() << '\n'); 1494 } 1495 ++NumLocalSplits; 1496 1497 return 0; 1498 } 1499 1500 //===----------------------------------------------------------------------===// 1501 // Live Range Splitting 1502 //===----------------------------------------------------------------------===// 1503 1504 /// trySplit - Try to split VirtReg or one of its interferences, making it 1505 /// assignable. 1506 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1507 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 1508 SmallVectorImpl<LiveInterval*>&NewVRegs) { 1509 // Ranges must be Split2 or less. 1510 if (getStage(VirtReg) >= RS_Spill) 1511 return 0; 1512 1513 // Local intervals are handled separately. 1514 if (LIS->intervalIsInOneMBB(VirtReg)) { 1515 NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled); 1516 SA->analyze(&VirtReg); 1517 return tryLocalSplit(VirtReg, Order, NewVRegs); 1518 } 1519 1520 NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled); 1521 1522 SA->analyze(&VirtReg); 1523 1524 // FIXME: SplitAnalysis may repair broken live ranges coming from the 1525 // coalescer. That may cause the range to become allocatable which means that 1526 // tryRegionSplit won't be making progress. This check should be replaced with 1527 // an assertion when the coalescer is fixed. 1528 if (SA->didRepairRange()) { 1529 // VirtReg has changed, so all cached queries are invalid. 1530 invalidateVirtRegs(); 1531 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1532 return PhysReg; 1533 } 1534 1535 // First try to split around a region spanning multiple blocks. RS_Split2 1536 // ranges already made dubious progress with region splitting, so they go 1537 // straight to single block splitting. 1538 if (getStage(VirtReg) < RS_Split2) { 1539 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1540 if (PhysReg || !NewVRegs.empty()) 1541 return PhysReg; 1542 } 1543 1544 // Then isolate blocks. 1545 return tryBlockSplit(VirtReg, Order, NewVRegs); 1546 } 1547 1548 1549 //===----------------------------------------------------------------------===// 1550 // Main Entry Point 1551 //===----------------------------------------------------------------------===// 1552 1553 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 1554 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1555 // First try assigning a free register. 1556 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo); 1557 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1558 return PhysReg; 1559 1560 LiveRangeStage Stage = getStage(VirtReg); 1561 DEBUG(dbgs() << StageName[Stage] 1562 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 1563 1564 // Try to evict a less worthy live range, but only for ranges from the primary 1565 // queue. The RS_Split ranges already failed to do this, and they should not 1566 // get a second chance until they have been split. 1567 if (Stage != RS_Split) 1568 if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs)) 1569 return PhysReg; 1570 1571 assert(NewVRegs.empty() && "Cannot append to existing NewVRegs"); 1572 1573 // The first time we see a live range, don't try to split or spill. 1574 // Wait until the second time, when all smaller ranges have been allocated. 1575 // This gives a better picture of the interference to split around. 1576 if (Stage < RS_Split) { 1577 setStage(VirtReg, RS_Split); 1578 DEBUG(dbgs() << "wait for second round\n"); 1579 NewVRegs.push_back(&VirtReg); 1580 return 0; 1581 } 1582 1583 // If we couldn't allocate a register from spilling, there is probably some 1584 // invalid inline assembly. The base class wil report it. 1585 if (Stage >= RS_Done || !VirtReg.isSpillable()) 1586 return ~0u; 1587 1588 // Try splitting VirtReg or interferences. 1589 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 1590 if (PhysReg || !NewVRegs.empty()) 1591 return PhysReg; 1592 1593 // Finally spill VirtReg itself. 1594 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled); 1595 LiveRangeEdit LRE(VirtReg, NewVRegs, this); 1596 spiller().spill(LRE); 1597 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 1598 1599 if (VerifyEnabled) 1600 MF->verify(this, "After spilling"); 1601 1602 // The live virtual register requesting allocation was spilled, so tell 1603 // the caller not to allocate anything during this round. 1604 return 0; 1605 } 1606 1607 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 1608 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 1609 << "********** Function: " 1610 << ((Value*)mf.getFunction())->getName() << '\n'); 1611 1612 MF = &mf; 1613 if (VerifyEnabled) 1614 MF->verify(this, "Before greedy register allocator"); 1615 1616 RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>()); 1617 Indexes = &getAnalysis<SlotIndexes>(); 1618 DomTree = &getAnalysis<MachineDominatorTree>(); 1619 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 1620 Loops = &getAnalysis<MachineLoopInfo>(); 1621 Bundles = &getAnalysis<EdgeBundles>(); 1622 SpillPlacer = &getAnalysis<SpillPlacement>(); 1623 DebugVars = &getAnalysis<LiveDebugVariables>(); 1624 1625 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 1626 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree)); 1627 ExtraRegInfo.clear(); 1628 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1629 NextCascade = 1; 1630 IntfCache.init(MF, &getLiveUnion(0), Indexes, TRI); 1631 GlobalCand.resize(32); // This will grow as needed. 1632 1633 allocatePhysRegs(); 1634 addMBBLiveIns(MF); 1635 LIS->addKillFlags(); 1636 1637 // Run rewriter 1638 { 1639 NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled); 1640 VRM->rewrite(Indexes); 1641 } 1642 1643 // Write out new DBG_VALUE instructions. 1644 { 1645 NamedRegionTimer T("Emit Debug Info", TimerGroupName, TimePassesIsEnabled); 1646 DebugVars->emitDebugValues(VRM); 1647 } 1648 1649 // The pass output is in VirtRegMap. Release all the transient data. 1650 releaseMemory(); 1651 1652 return true; 1653 } 1654