1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "RegAllocEvictionAdvisor.h" 19 #include "SpillPlacement.h" 20 #include "SplitKit.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/BitVector.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IndexedMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/CodeGen/CalcSpillWeights.h" 35 #include "llvm/CodeGen/EdgeBundles.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalUnion.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveRangeEdit.h" 40 #include "llvm/CodeGen/LiveRegMatrix.h" 41 #include "llvm/CodeGen/LiveStacks.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RegAllocRegistry.h" 54 #include "llvm/CodeGen/RegisterClassInfo.h" 55 #include "llvm/CodeGen/SlotIndexes.h" 56 #include "llvm/CodeGen/Spiller.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/VirtRegMap.h" 61 #include "llvm/IR/DebugInfoMetadata.h" 62 #include "llvm/IR/Function.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/MC/MCRegisterInfo.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/BlockFrequency.h" 67 #include "llvm/Support/BranchProbability.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/Timer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstdint> 77 #include <memory> 78 #include <queue> 79 #include <tuple> 80 #include <utility> 81 82 using namespace llvm; 83 84 #define DEBUG_TYPE "regalloc" 85 86 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 87 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 88 STATISTIC(NumEvicted, "Number of interferences evicted"); 89 90 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 91 "split-spill-mode", cl::Hidden, 92 cl::desc("Spill mode for splitting live ranges"), 93 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 94 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 95 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 96 cl::init(SplitEditor::SM_Speed)); 97 98 static cl::opt<unsigned> 99 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 100 cl::desc("Last chance recoloring max depth"), 101 cl::init(5)); 102 103 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 104 "lcr-max-interf", cl::Hidden, 105 cl::desc("Last chance recoloring maximum number of considered" 106 " interference at a time"), 107 cl::init(8)); 108 109 static cl::opt<bool> ExhaustiveSearch( 110 "exhaustive-register-search", cl::NotHidden, 111 cl::desc("Exhaustive Search for registers bypassing the depth " 112 "and interference cutoffs of last chance recoloring"), 113 cl::Hidden); 114 115 static cl::opt<bool> EnableLocalReassignment( 116 "enable-local-reassign", cl::Hidden, 117 cl::desc("Local reassignment can yield better allocation decisions, but " 118 "may be compile time intensive"), 119 cl::init(false)); 120 121 static cl::opt<bool> EnableDeferredSpilling( 122 "enable-deferred-spilling", cl::Hidden, 123 cl::desc("Instead of spilling a variable right away, defer the actual " 124 "code insertion to the end of the allocation. That way the " 125 "allocator might still find a suitable coloring for this " 126 "variable because of other evicted variables."), 127 cl::init(false)); 128 129 // FIXME: Find a good default for this flag and remove the flag. 130 static cl::opt<unsigned> 131 CSRFirstTimeCost("regalloc-csr-first-time-cost", 132 cl::desc("Cost for first time use of callee-saved register."), 133 cl::init(0), cl::Hidden); 134 135 static cl::opt<bool> ConsiderLocalIntervalCost( 136 "consider-local-interval-cost", cl::Hidden, 137 cl::desc("Consider the cost of local intervals created by a split " 138 "candidate when choosing the best split candidate."), 139 cl::init(false)); 140 141 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 142 createGreedyRegisterAllocator); 143 144 namespace { 145 146 class RAGreedy : public MachineFunctionPass, 147 public RegAllocBase, 148 private LiveRangeEdit::Delegate { 149 // Convenient shortcuts. 150 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 151 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 152 153 // context 154 MachineFunction *MF; 155 156 // Shortcuts to some useful interface. 157 const TargetInstrInfo *TII; 158 const TargetRegisterInfo *TRI; 159 RegisterClassInfo RCI; 160 161 // analyses 162 SlotIndexes *Indexes; 163 MachineBlockFrequencyInfo *MBFI; 164 MachineDominatorTree *DomTree; 165 MachineLoopInfo *Loops; 166 MachineOptimizationRemarkEmitter *ORE; 167 EdgeBundles *Bundles; 168 SpillPlacement *SpillPlacer; 169 LiveDebugVariables *DebugVars; 170 AliasAnalysis *AA; 171 172 // state 173 std::unique_ptr<Spiller> SpillerInstance; 174 PQueue Queue; 175 unsigned NextCascade; 176 std::unique_ptr<VirtRegAuxInfo> VRAI; 177 178 // Enum CutOffStage to keep a track whether the register allocation failed 179 // because of the cutoffs encountered in last chance recoloring. 180 // Note: This is used as bitmask. New value should be next power of 2. 181 enum CutOffStage { 182 // No cutoffs encountered 183 CO_None = 0, 184 185 // lcr-max-depth cutoff encountered 186 CO_Depth = 1, 187 188 // lcr-max-interf cutoff encountered 189 CO_Interf = 2 190 }; 191 192 uint8_t CutOffInfo; 193 194 #ifndef NDEBUG 195 static const char *const StageName[]; 196 #endif 197 198 // RegInfo - Keep additional information about each live range. 199 struct RegInfo { 200 LiveRangeStage Stage = RS_New; 201 202 // Cascade - Eviction loop prevention. See 203 // canEvictInterferenceBasedOnCost(). 204 unsigned Cascade = 0; 205 206 RegInfo() = default; 207 }; 208 209 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 210 211 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 212 return ExtraRegInfo[VirtReg.reg()].Stage; 213 } 214 215 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 216 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 217 ExtraRegInfo[VirtReg.reg()].Stage = Stage; 218 } 219 220 template<typename Iterator> 221 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 222 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 223 for (;Begin != End; ++Begin) { 224 Register Reg = *Begin; 225 if (ExtraRegInfo[Reg].Stage == RS_New) 226 ExtraRegInfo[Reg].Stage = NewStage; 227 } 228 } 229 230 /// EvictionTrack - Keeps track of past evictions in order to optimize region 231 /// split decision. 232 class EvictionTrack { 233 234 public: 235 using EvictorInfo = 236 std::pair<Register /* evictor */, MCRegister /* physreg */>; 237 using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>; 238 239 private: 240 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 241 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 242 EvicteeInfo Evictees; 243 244 public: 245 /// Clear all eviction information. 246 void clear() { Evictees.clear(); } 247 248 /// Clear eviction information for the given evictee Vreg. 249 /// E.g. when Vreg get's a new allocation, the old eviction info is no 250 /// longer relevant. 251 /// \param Evictee The evictee Vreg for whom we want to clear collected 252 /// eviction info. 253 void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); } 254 255 /// Track new eviction. 256 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 257 /// \param PhysReg The physical register Evictee was evicted from. 258 /// \param Evictor The evictor Vreg that evicted Evictee. 259 /// \param Evictee The evictee Vreg. 260 void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) { 261 Evictees[Evictee].first = Evictor; 262 Evictees[Evictee].second = PhysReg; 263 } 264 265 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 266 /// \param Evictee The evictee vreg. 267 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 268 /// nobody has evicted Evictee from PhysReg. 269 EvictorInfo getEvictor(Register Evictee) { 270 if (Evictees.count(Evictee)) { 271 return Evictees[Evictee]; 272 } 273 274 return EvictorInfo(0, 0); 275 } 276 }; 277 278 // Keeps track of past evictions in order to optimize region split decision. 279 EvictionTrack LastEvicted; 280 281 // splitting state. 282 std::unique_ptr<SplitAnalysis> SA; 283 std::unique_ptr<SplitEditor> SE; 284 285 /// Cached per-block interference maps 286 InterferenceCache IntfCache; 287 288 /// All basic blocks where the current register has uses. 289 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 290 291 /// Global live range splitting candidate info. 292 struct GlobalSplitCandidate { 293 // Register intended for assignment, or 0. 294 MCRegister PhysReg; 295 296 // SplitKit interval index for this candidate. 297 unsigned IntvIdx; 298 299 // Interference for PhysReg. 300 InterferenceCache::Cursor Intf; 301 302 // Bundles where this candidate should be live. 303 BitVector LiveBundles; 304 SmallVector<unsigned, 8> ActiveBlocks; 305 306 void reset(InterferenceCache &Cache, MCRegister Reg) { 307 PhysReg = Reg; 308 IntvIdx = 0; 309 Intf.setPhysReg(Cache, Reg); 310 LiveBundles.clear(); 311 ActiveBlocks.clear(); 312 } 313 314 // Set B[I] = C for every live bundle where B[I] was NoCand. 315 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 316 unsigned Count = 0; 317 for (unsigned I : LiveBundles.set_bits()) 318 if (B[I] == NoCand) { 319 B[I] = C; 320 Count++; 321 } 322 return Count; 323 } 324 }; 325 326 /// Candidate info for each PhysReg in AllocationOrder. 327 /// This vector never shrinks, but grows to the size of the largest register 328 /// class. 329 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 330 331 enum : unsigned { NoCand = ~0u }; 332 333 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 334 /// NoCand which indicates the stack interval. 335 SmallVector<unsigned, 32> BundleCand; 336 337 /// Callee-save register cost, calculated once per machine function. 338 BlockFrequency CSRCost; 339 340 /// Run or not the local reassignment heuristic. This information is 341 /// obtained from the TargetSubtargetInfo. 342 bool EnableLocalReassign; 343 344 /// Enable or not the consideration of the cost of local intervals created 345 /// by a split candidate when choosing the best split candidate. 346 bool EnableAdvancedRASplitCost; 347 348 /// Set of broken hints that may be reconciled later because of eviction. 349 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 350 351 /// The register cost values. This list will be recreated for each Machine 352 /// Function 353 ArrayRef<uint8_t> RegCosts; 354 355 public: 356 RAGreedy(const RegClassFilterFunc F = allocateAllRegClasses); 357 358 /// Return the pass name. 359 StringRef getPassName() const override { return "Greedy Register Allocator"; } 360 361 /// RAGreedy analysis usage. 362 void getAnalysisUsage(AnalysisUsage &AU) const override; 363 void releaseMemory() override; 364 Spiller &spiller() override { return *SpillerInstance; } 365 void enqueueImpl(LiveInterval *LI) override; 366 LiveInterval *dequeue() override; 367 MCRegister selectOrSplit(LiveInterval &, 368 SmallVectorImpl<Register> &) override; 369 void aboutToRemoveInterval(LiveInterval &) override; 370 371 /// Perform register allocation. 372 bool runOnMachineFunction(MachineFunction &mf) override; 373 374 MachineFunctionProperties getRequiredProperties() const override { 375 return MachineFunctionProperties().set( 376 MachineFunctionProperties::Property::NoPHIs); 377 } 378 379 MachineFunctionProperties getClearedProperties() const override { 380 return MachineFunctionProperties().set( 381 MachineFunctionProperties::Property::IsSSA); 382 } 383 384 static char ID; 385 386 private: 387 MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &, 388 SmallVirtRegSet &, unsigned = 0); 389 390 bool LRE_CanEraseVirtReg(Register) override; 391 void LRE_WillShrinkVirtReg(Register) override; 392 void LRE_DidCloneVirtReg(Register, Register) override; 393 void enqueue(PQueue &CurQueue, LiveInterval *LI); 394 LiveInterval *dequeue(PQueue &CurQueue); 395 396 BlockFrequency calcSpillCost(); 397 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 398 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 399 bool growRegion(GlobalSplitCandidate &Cand); 400 bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand, 401 unsigned BBNumber, 402 const AllocationOrder &Order); 403 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 404 GlobalSplitCandidate &Cand, unsigned BBNumber, 405 const AllocationOrder &Order); 406 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 407 const AllocationOrder &Order, 408 bool *CanCauseEvictionChain); 409 bool calcCompactRegion(GlobalSplitCandidate&); 410 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 411 void calcGapWeights(MCRegister, SmallVectorImpl<float> &); 412 Register canReassign(LiveInterval &VirtReg, Register PrevReg) const; 413 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const; 414 bool canEvictInterferenceBasedOnCost(LiveInterval &, MCRegister, bool, 415 EvictionCost &, 416 const SmallVirtRegSet &) const; 417 bool canEvictHintInterference(LiveInterval &, MCRegister, 418 const SmallVirtRegSet &) const; 419 bool canEvictInterferenceInRange(const LiveInterval &VirtReg, 420 MCRegister PhysReg, SlotIndex Start, 421 SlotIndex End, EvictionCost &MaxCost) const; 422 MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order, 423 const LiveInterval &VirtReg, 424 SlotIndex Start, SlotIndex End, 425 float *BestEvictWeight) const; 426 void evictInterference(LiveInterval &, MCRegister, 427 SmallVectorImpl<Register> &); 428 bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg, 429 SmallLISet &RecoloringCandidates, 430 const SmallVirtRegSet &FixedRegisters); 431 432 MCRegister tryAssign(LiveInterval&, AllocationOrder&, 433 SmallVectorImpl<Register>&, 434 const SmallVirtRegSet&); 435 MCRegister tryFindEvictionCandidate(LiveInterval &, const AllocationOrder &, 436 uint8_t, const SmallVirtRegSet &) const; 437 MCRegister tryEvict(LiveInterval &, AllocationOrder &, 438 SmallVectorImpl<Register> &, uint8_t, 439 const SmallVirtRegSet &); 440 MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &, 441 SmallVectorImpl<Register> &); 442 /// Calculate cost of region splitting. 443 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 444 AllocationOrder &Order, 445 BlockFrequency &BestCost, 446 unsigned &NumCands, bool IgnoreCSR, 447 bool *CanCauseEvictionChain = nullptr); 448 /// Perform region splitting. 449 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 450 bool HasCompact, 451 SmallVectorImpl<Register> &NewVRegs); 452 /// Check other options before using a callee-saved register for the first 453 /// time. 454 MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg, 455 AllocationOrder &Order, MCRegister PhysReg, 456 uint8_t &CostPerUseLimit, 457 SmallVectorImpl<Register> &NewVRegs); 458 void initializeCSRCost(); 459 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 460 SmallVectorImpl<Register>&); 461 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 462 SmallVectorImpl<Register>&); 463 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 464 SmallVectorImpl<Register>&); 465 unsigned trySplit(LiveInterval&, AllocationOrder&, 466 SmallVectorImpl<Register>&, 467 const SmallVirtRegSet&); 468 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 469 SmallVectorImpl<Register> &, 470 SmallVirtRegSet &, unsigned); 471 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &, 472 SmallVirtRegSet &, unsigned); 473 void tryHintRecoloring(LiveInterval &); 474 void tryHintsRecoloring(); 475 476 /// Model the information carried by one end of a copy. 477 struct HintInfo { 478 /// The frequency of the copy. 479 BlockFrequency Freq; 480 /// The virtual register or physical register. 481 Register Reg; 482 /// Its currently assigned register. 483 /// In case of a physical register Reg == PhysReg. 484 MCRegister PhysReg; 485 486 HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg) 487 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 488 }; 489 using HintsInfo = SmallVector<HintInfo, 4>; 490 491 BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister); 492 void collectHintInfo(Register, HintsInfo &); 493 494 bool isUnusedCalleeSavedReg(MCRegister PhysReg) const; 495 496 /// Greedy RA statistic to remark. 497 struct RAGreedyStats { 498 unsigned Reloads = 0; 499 unsigned FoldedReloads = 0; 500 unsigned ZeroCostFoldedReloads = 0; 501 unsigned Spills = 0; 502 unsigned FoldedSpills = 0; 503 unsigned Copies = 0; 504 float ReloadsCost = 0.0f; 505 float FoldedReloadsCost = 0.0f; 506 float SpillsCost = 0.0f; 507 float FoldedSpillsCost = 0.0f; 508 float CopiesCost = 0.0f; 509 510 bool isEmpty() { 511 return !(Reloads || FoldedReloads || Spills || FoldedSpills || 512 ZeroCostFoldedReloads || Copies); 513 } 514 515 void add(RAGreedyStats other) { 516 Reloads += other.Reloads; 517 FoldedReloads += other.FoldedReloads; 518 ZeroCostFoldedReloads += other.ZeroCostFoldedReloads; 519 Spills += other.Spills; 520 FoldedSpills += other.FoldedSpills; 521 Copies += other.Copies; 522 ReloadsCost += other.ReloadsCost; 523 FoldedReloadsCost += other.FoldedReloadsCost; 524 SpillsCost += other.SpillsCost; 525 FoldedSpillsCost += other.FoldedSpillsCost; 526 CopiesCost += other.CopiesCost; 527 } 528 529 void report(MachineOptimizationRemarkMissed &R); 530 }; 531 532 /// Compute statistic for a basic block. 533 RAGreedyStats computeStats(MachineBasicBlock &MBB); 534 535 /// Compute and report statistic through a remark. 536 RAGreedyStats reportStats(MachineLoop *L); 537 538 /// Report the statistic for each loop. 539 void reportStats(); 540 }; 541 542 } // end anonymous namespace 543 544 char RAGreedy::ID = 0; 545 char &llvm::RAGreedyID = RAGreedy::ID; 546 547 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 548 "Greedy Register Allocator", false, false) 549 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 550 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 551 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 552 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 553 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 554 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 555 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 556 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 557 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 558 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 559 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 560 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 561 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 562 INITIALIZE_PASS_END(RAGreedy, "greedy", 563 "Greedy Register Allocator", false, false) 564 565 #ifndef NDEBUG 566 const char *const RAGreedy::StageName[] = { 567 "RS_New", 568 "RS_Assign", 569 "RS_Split", 570 "RS_Split2", 571 "RS_Spill", 572 "RS_Memory", 573 "RS_Done" 574 }; 575 #endif 576 577 // Hysteresis to use when comparing floats. 578 // This helps stabilize decisions based on float comparisons. 579 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 580 581 FunctionPass* llvm::createGreedyRegisterAllocator() { 582 return new RAGreedy(); 583 } 584 585 namespace llvm { 586 FunctionPass* createGreedyRegisterAllocator( 587 std::function<bool(const TargetRegisterInfo &TRI, 588 const TargetRegisterClass &RC)> Ftor); 589 590 } 591 592 FunctionPass* llvm::createGreedyRegisterAllocator( 593 std::function<bool(const TargetRegisterInfo &TRI, 594 const TargetRegisterClass &RC)> Ftor) { 595 return new RAGreedy(Ftor); 596 } 597 598 RAGreedy::RAGreedy(RegClassFilterFunc F): 599 MachineFunctionPass(ID), 600 RegAllocBase(F) { 601 } 602 603 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 604 AU.setPreservesCFG(); 605 AU.addRequired<MachineBlockFrequencyInfo>(); 606 AU.addPreserved<MachineBlockFrequencyInfo>(); 607 AU.addRequired<AAResultsWrapperPass>(); 608 AU.addPreserved<AAResultsWrapperPass>(); 609 AU.addRequired<LiveIntervals>(); 610 AU.addPreserved<LiveIntervals>(); 611 AU.addRequired<SlotIndexes>(); 612 AU.addPreserved<SlotIndexes>(); 613 AU.addRequired<LiveDebugVariables>(); 614 AU.addPreserved<LiveDebugVariables>(); 615 AU.addRequired<LiveStacks>(); 616 AU.addPreserved<LiveStacks>(); 617 AU.addRequired<MachineDominatorTree>(); 618 AU.addPreserved<MachineDominatorTree>(); 619 AU.addRequired<MachineLoopInfo>(); 620 AU.addPreserved<MachineLoopInfo>(); 621 AU.addRequired<VirtRegMap>(); 622 AU.addPreserved<VirtRegMap>(); 623 AU.addRequired<LiveRegMatrix>(); 624 AU.addPreserved<LiveRegMatrix>(); 625 AU.addRequired<EdgeBundles>(); 626 AU.addRequired<SpillPlacement>(); 627 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 628 MachineFunctionPass::getAnalysisUsage(AU); 629 } 630 631 //===----------------------------------------------------------------------===// 632 // LiveRangeEdit delegate methods 633 //===----------------------------------------------------------------------===// 634 635 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 636 LiveInterval &LI = LIS->getInterval(VirtReg); 637 if (VRM->hasPhys(VirtReg)) { 638 Matrix->unassign(LI); 639 aboutToRemoveInterval(LI); 640 return true; 641 } 642 // Unassigned virtreg is probably in the priority queue. 643 // RegAllocBase will erase it after dequeueing. 644 // Nonetheless, clear the live-range so that the debug 645 // dump will show the right state for that VirtReg. 646 LI.clear(); 647 return false; 648 } 649 650 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 651 if (!VRM->hasPhys(VirtReg)) 652 return; 653 654 // Register is assigned, put it back on the queue for reassignment. 655 LiveInterval &LI = LIS->getInterval(VirtReg); 656 Matrix->unassign(LI); 657 RegAllocBase::enqueue(&LI); 658 } 659 660 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 661 // Cloning a register we haven't even heard about yet? Just ignore it. 662 if (!ExtraRegInfo.inBounds(Old)) 663 return; 664 665 // LRE may clone a virtual register because dead code elimination causes it to 666 // be split into connected components. The new components are much smaller 667 // than the original, so they should get a new chance at being assigned. 668 // same stage as the parent. 669 ExtraRegInfo[Old].Stage = RS_Assign; 670 ExtraRegInfo.grow(New); 671 ExtraRegInfo[New] = ExtraRegInfo[Old]; 672 } 673 674 void RAGreedy::releaseMemory() { 675 SpillerInstance.reset(); 676 ExtraRegInfo.clear(); 677 GlobalCand.clear(); 678 } 679 680 void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); } 681 682 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 683 // Prioritize live ranges by size, assigning larger ranges first. 684 // The queue holds (size, reg) pairs. 685 const unsigned Size = LI->getSize(); 686 const Register Reg = LI->reg(); 687 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 688 unsigned Prio; 689 690 ExtraRegInfo.grow(Reg); 691 if (ExtraRegInfo[Reg].Stage == RS_New) 692 ExtraRegInfo[Reg].Stage = RS_Assign; 693 694 if (ExtraRegInfo[Reg].Stage == RS_Split) { 695 // Unsplit ranges that couldn't be allocated immediately are deferred until 696 // everything else has been allocated. 697 Prio = Size; 698 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 699 // Memory operand should be considered last. 700 // Change the priority such that Memory operand are assigned in 701 // the reverse order that they came in. 702 // TODO: Make this a member variable and probably do something about hints. 703 static unsigned MemOp = 0; 704 Prio = MemOp++; 705 } else { 706 // Giant live ranges fall back to the global assignment heuristic, which 707 // prevents excessive spilling in pathological cases. 708 bool ReverseLocal = TRI->reverseLocalAssignment(); 709 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 710 bool ForceGlobal = !ReverseLocal && 711 (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC)); 712 713 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 714 LIS->intervalIsInOneMBB(*LI)) { 715 // Allocate original local ranges in linear instruction order. Since they 716 // are singly defined, this produces optimal coloring in the absence of 717 // global interference and other constraints. 718 if (!ReverseLocal) 719 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 720 else { 721 // Allocating bottom up may allow many short LRGs to be assigned first 722 // to one of the cheap registers. This could be much faster for very 723 // large blocks on targets with many physical registers. 724 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 725 } 726 Prio |= RC.AllocationPriority << 24; 727 } else { 728 // Allocate global and split ranges in long->short order. Long ranges that 729 // don't fit should be spilled (or split) ASAP so they don't create 730 // interference. Mark a bit to prioritize global above local ranges. 731 Prio = (1u << 29) + Size; 732 733 Prio |= RC.AllocationPriority << 24; 734 } 735 // Mark a higher bit to prioritize global and local above RS_Split. 736 Prio |= (1u << 31); 737 738 // Boost ranges that have a physical register hint. 739 if (VRM->hasKnownPreference(Reg)) 740 Prio |= (1u << 30); 741 } 742 // The virtual register number is a tie breaker for same-sized ranges. 743 // Give lower vreg numbers higher priority to assign them first. 744 CurQueue.push(std::make_pair(Prio, ~Reg)); 745 } 746 747 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 748 749 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 750 if (CurQueue.empty()) 751 return nullptr; 752 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 753 CurQueue.pop(); 754 return LI; 755 } 756 757 //===----------------------------------------------------------------------===// 758 // Direct Assignment 759 //===----------------------------------------------------------------------===// 760 761 /// tryAssign - Try to assign VirtReg to an available register. 762 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg, 763 AllocationOrder &Order, 764 SmallVectorImpl<Register> &NewVRegs, 765 const SmallVirtRegSet &FixedRegisters) { 766 MCRegister PhysReg; 767 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 768 assert(*I); 769 if (!Matrix->checkInterference(VirtReg, *I)) { 770 if (I.isHint()) 771 return *I; 772 else 773 PhysReg = *I; 774 } 775 } 776 if (!PhysReg.isValid()) 777 return PhysReg; 778 779 // PhysReg is available, but there may be a better choice. 780 781 // If we missed a simple hint, try to cheaply evict interference from the 782 // preferred register. 783 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 784 if (Order.isHint(Hint)) { 785 MCRegister PhysHint = Hint.asMCReg(); 786 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 787 788 if (canEvictHintInterference(VirtReg, PhysHint, FixedRegisters)) { 789 evictInterference(VirtReg, PhysHint, NewVRegs); 790 return PhysHint; 791 } 792 // Record the missed hint, we may be able to recover 793 // at the end if the surrounding allocation changed. 794 SetOfBrokenHints.insert(&VirtReg); 795 } 796 797 // Try to evict interference from a cheaper alternative. 798 uint8_t Cost = RegCosts[PhysReg]; 799 800 // Most registers have 0 additional cost. 801 if (!Cost) 802 return PhysReg; 803 804 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 805 << (unsigned)Cost << '\n'); 806 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 807 return CheapReg ? CheapReg : PhysReg; 808 } 809 810 //===----------------------------------------------------------------------===// 811 // Interference eviction 812 //===----------------------------------------------------------------------===// 813 814 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const { 815 auto Order = 816 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 817 MCRegister PhysReg; 818 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 819 if ((*I).id() == PrevReg.id()) 820 continue; 821 822 MCRegUnitIterator Units(*I, TRI); 823 for (; Units.isValid(); ++Units) { 824 // Instantiate a "subquery", not to be confused with the Queries array. 825 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 826 if (subQ.checkInterference()) 827 break; 828 } 829 // If no units have interference, break out with the current PhysReg. 830 if (!Units.isValid()) 831 PhysReg = *I; 832 } 833 if (PhysReg) 834 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 835 << printReg(PrevReg, TRI) << " to " 836 << printReg(PhysReg, TRI) << '\n'); 837 return PhysReg; 838 } 839 840 /// shouldEvict - determine if A should evict the assigned live range B. The 841 /// eviction policy defined by this function together with the allocation order 842 /// defined by enqueue() decides which registers ultimately end up being split 843 /// and spilled. 844 /// 845 /// Cascade numbers are used to prevent infinite loops if this function is a 846 /// cyclic relation. 847 /// 848 /// @param A The live range to be assigned. 849 /// @param IsHint True when A is about to be assigned to its preferred 850 /// register. 851 /// @param B The live range to be evicted. 852 /// @param BreaksHint True when B is already assigned to its preferred register. 853 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 854 LiveInterval &B, bool BreaksHint) const { 855 bool CanSplit = getStage(B) < RS_Spill; 856 857 // Be fairly aggressive about following hints as long as the evictee can be 858 // split. 859 if (CanSplit && IsHint && !BreaksHint) 860 return true; 861 862 if (A.weight() > B.weight()) { 863 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n'); 864 return true; 865 } 866 return false; 867 } 868 869 /// canEvictHintInterference - return true if the interference for VirtReg 870 /// on the PhysReg, which is VirtReg's hint, can be evicted in favor of VirtReg. 871 bool RAGreedy::canEvictHintInterference( 872 LiveInterval &VirtReg, MCRegister PhysReg, 873 const SmallVirtRegSet &FixedRegisters) const { 874 EvictionCost MaxCost; 875 MaxCost.setBrokenHints(1); 876 return canEvictInterferenceBasedOnCost(VirtReg, PhysReg, true, MaxCost, 877 FixedRegisters); 878 } 879 880 /// canEvictInterferenceBasedOnCost - Return true if all interferences between 881 /// VirtReg and PhysReg can be evicted. 882 /// 883 /// @param VirtReg Live range that is about to be assigned. 884 /// @param PhysReg Desired register for assignment. 885 /// @param IsHint True when PhysReg is VirtReg's preferred register. 886 /// @param MaxCost Only look for cheaper candidates and update with new cost 887 /// when returning true. 888 /// @returns True when interference can be evicted cheaper than MaxCost. 889 bool RAGreedy::canEvictInterferenceBasedOnCost( 890 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 891 EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const { 892 // It is only possible to evict virtual register interference. 893 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 894 return false; 895 896 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 897 898 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 899 // involved in an eviction before. If a cascade number was assigned, deny 900 // evicting anything with the same or a newer cascade number. This prevents 901 // infinite eviction loops. 902 // 903 // This works out so a register without a cascade number is allowed to evict 904 // anything, and it can be evicted by anything. 905 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 906 if (!Cascade) 907 Cascade = NextCascade; 908 909 EvictionCost Cost; 910 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 911 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 912 // If there is 10 or more interferences, chances are one is heavier. 913 const auto &Interferences = Q.interferingVRegs(10); 914 if (Interferences.size() >= 10) 915 return false; 916 917 // Check if any interfering live range is heavier than MaxWeight. 918 for (LiveInterval *Intf : reverse(Interferences)) { 919 assert(Register::isVirtualRegister(Intf->reg()) && 920 "Only expecting virtual register interference from query"); 921 922 // Do not allow eviction of a virtual register if we are in the middle 923 // of last-chance recoloring and this virtual register is one that we 924 // have scavenged a physical register for. 925 if (FixedRegisters.count(Intf->reg())) 926 return false; 927 928 // Never evict spill products. They cannot split or spill. 929 if (getStage(*Intf) == RS_Done) 930 return false; 931 // Once a live range becomes small enough, it is urgent that we find a 932 // register for it. This is indicated by an infinite spill weight. These 933 // urgent live ranges get to evict almost anything. 934 // 935 // Also allow urgent evictions of unspillable ranges from a strictly 936 // larger allocation order. 937 bool Urgent = 938 !VirtReg.isSpillable() && 939 (Intf->isSpillable() || 940 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 941 RegClassInfo.getNumAllocatableRegs( 942 MRI->getRegClass(Intf->reg()))); 943 // Only evict older cascades or live ranges without a cascade. 944 unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade; 945 if (Cascade <= IntfCascade) { 946 if (!Urgent) 947 return false; 948 // We permit breaking cascades for urgent evictions. It should be the 949 // last resort, though, so make it really expensive. 950 Cost.BrokenHints += 10; 951 } 952 // Would this break a satisfied hint? 953 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 954 // Update eviction cost. 955 Cost.BrokenHints += BreaksHint; 956 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 957 // Abort if this would be too expensive. 958 if (!(Cost < MaxCost)) 959 return false; 960 if (Urgent) 961 continue; 962 // Apply the eviction policy for non-urgent evictions. 963 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 964 return false; 965 // If !MaxCost.isMax(), then we're just looking for a cheap register. 966 // Evicting another local live range in this case could lead to suboptimal 967 // coloring. 968 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 969 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 970 return false; 971 } 972 } 973 } 974 MaxCost = Cost; 975 return true; 976 } 977 978 /// Return true if all interferences between VirtReg and PhysReg between 979 /// Start and End can be evicted. 980 /// 981 /// \param VirtReg Live range that is about to be assigned. 982 /// \param PhysReg Desired register for assignment. 983 /// \param Start Start of range to look for interferences. 984 /// \param End End of range to look for interferences. 985 /// \param MaxCost Only look for cheaper candidates and update with new cost 986 /// when returning true. 987 /// \return True when interference can be evicted cheaper than MaxCost. 988 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg, 989 MCRegister PhysReg, SlotIndex Start, 990 SlotIndex End, 991 EvictionCost &MaxCost) const { 992 EvictionCost Cost; 993 994 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 995 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 996 997 // Check if any interfering live range is heavier than MaxWeight. 998 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 999 // Check if interference overlast the segment in interest. 1000 if (!Intf->overlaps(Start, End)) 1001 continue; 1002 1003 // Cannot evict non virtual reg interference. 1004 if (!Register::isVirtualRegister(Intf->reg())) 1005 return false; 1006 // Never evict spill products. They cannot split or spill. 1007 if (getStage(*Intf) == RS_Done) 1008 return false; 1009 1010 // Would this break a satisfied hint? 1011 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 1012 // Update eviction cost. 1013 Cost.BrokenHints += BreaksHint; 1014 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 1015 // Abort if this would be too expensive. 1016 if (!(Cost < MaxCost)) 1017 return false; 1018 } 1019 } 1020 1021 if (Cost.MaxWeight == 0) 1022 return false; 1023 1024 MaxCost = Cost; 1025 return true; 1026 } 1027 1028 /// Return the physical register that will be best 1029 /// candidate for eviction by a local split interval that will be created 1030 /// between Start and End. 1031 /// 1032 /// \param Order The allocation order 1033 /// \param VirtReg Live range that is about to be assigned. 1034 /// \param Start Start of range to look for interferences 1035 /// \param End End of range to look for interferences 1036 /// \param BestEvictweight The eviction cost of that eviction 1037 /// \return The PhysReg which is the best candidate for eviction and the 1038 /// eviction cost in BestEvictweight 1039 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1040 const LiveInterval &VirtReg, 1041 SlotIndex Start, SlotIndex End, 1042 float *BestEvictweight) const { 1043 EvictionCost BestEvictCost; 1044 BestEvictCost.setMax(); 1045 BestEvictCost.MaxWeight = VirtReg.weight(); 1046 MCRegister BestEvicteePhys; 1047 1048 // Go over all physical registers and find the best candidate for eviction 1049 for (MCRegister PhysReg : Order.getOrder()) { 1050 1051 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1052 BestEvictCost)) 1053 continue; 1054 1055 // Best so far. 1056 BestEvicteePhys = PhysReg; 1057 } 1058 *BestEvictweight = BestEvictCost.MaxWeight; 1059 return BestEvicteePhys; 1060 } 1061 1062 /// evictInterference - Evict any interferring registers that prevent VirtReg 1063 /// from being assigned to Physreg. This assumes that canEvictInterference 1064 /// returned true. 1065 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg, 1066 SmallVectorImpl<Register> &NewVRegs) { 1067 // Make sure that VirtReg has a cascade number, and assign that cascade 1068 // number to every evicted register. These live ranges than then only be 1069 // evicted by a newer cascade, preventing infinite loops. 1070 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 1071 if (!Cascade) 1072 Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++; 1073 1074 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1075 << " interference: Cascade " << Cascade << '\n'); 1076 1077 // Collect all interfering virtregs first. 1078 SmallVector<LiveInterval*, 8> Intfs; 1079 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1080 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1081 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1082 // should be fast, we may need to recalculate if when different physregs 1083 // overlap the same register unit so we had different SubRanges queried 1084 // against it. 1085 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1086 Intfs.append(IVR.begin(), IVR.end()); 1087 } 1088 1089 // Evict them second. This will invalidate the queries. 1090 for (LiveInterval *Intf : Intfs) { 1091 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1092 if (!VRM->hasPhys(Intf->reg())) 1093 continue; 1094 1095 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 1096 1097 Matrix->unassign(*Intf); 1098 assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade || 1099 VirtReg.isSpillable() < Intf->isSpillable()) && 1100 "Cannot decrease cascade number, illegal eviction"); 1101 ExtraRegInfo[Intf->reg()].Cascade = Cascade; 1102 ++NumEvicted; 1103 NewVRegs.push_back(Intf->reg()); 1104 } 1105 } 1106 1107 /// Returns true if the given \p PhysReg is a callee saved register and has not 1108 /// been used for allocation yet. 1109 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 1110 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1111 if (!CSR) 1112 return false; 1113 1114 return !Matrix->isPhysRegUsed(PhysReg); 1115 } 1116 1117 MCRegister RAGreedy::tryFindEvictionCandidate( 1118 LiveInterval &VirtReg, const AllocationOrder &Order, 1119 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { 1120 // Keep track of the cheapest interference seen so far. 1121 EvictionCost BestCost; 1122 BestCost.setMax(); 1123 MCRegister BestPhys; 1124 unsigned OrderLimit = Order.getOrder().size(); 1125 1126 // When we are just looking for a reduced cost per use, don't break any 1127 // hints, and only evict smaller spill weights. 1128 if (CostPerUseLimit < uint8_t(~0u)) { 1129 BestCost.BrokenHints = 0; 1130 BestCost.MaxWeight = VirtReg.weight(); 1131 1132 // Check of any registers in RC are below CostPerUseLimit. 1133 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 1134 uint8_t MinCost = RegClassInfo.getMinCost(RC); 1135 if (MinCost >= CostPerUseLimit) { 1136 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1137 << MinCost << ", no cheaper registers to be found.\n"); 1138 return 0; 1139 } 1140 1141 // It is normal for register classes to have a long tail of registers with 1142 // the same cost. We don't need to look at them if they're too expensive. 1143 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 1144 OrderLimit = RegClassInfo.getLastCostChange(RC); 1145 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1146 << " regs.\n"); 1147 } 1148 } 1149 1150 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 1151 ++I) { 1152 MCRegister PhysReg = *I; 1153 assert(PhysReg); 1154 if (RegCosts[PhysReg] >= CostPerUseLimit) 1155 continue; 1156 // The first use of a callee-saved register in a function has cost 1. 1157 // Don't start using a CSR when the CostPerUseLimit is low. 1158 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1159 LLVM_DEBUG( 1160 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1161 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1162 << '\n'); 1163 continue; 1164 } 1165 1166 if (!canEvictInterferenceBasedOnCost(VirtReg, PhysReg, false, BestCost, 1167 FixedRegisters)) 1168 continue; 1169 1170 // Best so far. 1171 BestPhys = PhysReg; 1172 1173 // Stop if the hint can be used. 1174 if (I.isHint()) 1175 break; 1176 } 1177 return BestPhys; 1178 } 1179 1180 /// tryEvict - Try to evict all interferences for a physreg. 1181 /// @param VirtReg Currently unassigned virtual register. 1182 /// @param Order Physregs to try. 1183 /// @return Physreg to assign VirtReg, or 0. 1184 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order, 1185 SmallVectorImpl<Register> &NewVRegs, 1186 uint8_t CostPerUseLimit, 1187 const SmallVirtRegSet &FixedRegisters) { 1188 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1189 TimePassesIsEnabled); 1190 1191 MCRegister BestPhys = 1192 tryFindEvictionCandidate(VirtReg, Order, CostPerUseLimit, FixedRegisters); 1193 if (BestPhys.isValid()) 1194 evictInterference(VirtReg, BestPhys, NewVRegs); 1195 return BestPhys; 1196 } 1197 1198 //===----------------------------------------------------------------------===// 1199 // Region Splitting 1200 //===----------------------------------------------------------------------===// 1201 1202 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1203 /// interference pattern in Physreg and its aliases. Add the constraints to 1204 /// SpillPlacement and return the static cost of this split in Cost, assuming 1205 /// that all preferences in SplitConstraints are met. 1206 /// Return false if there are no bundles with positive bias. 1207 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1208 BlockFrequency &Cost) { 1209 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1210 1211 // Reset interference dependent info. 1212 SplitConstraints.resize(UseBlocks.size()); 1213 BlockFrequency StaticCost = 0; 1214 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1215 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1216 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1217 1218 BC.Number = BI.MBB->getNumber(); 1219 Intf.moveToBlock(BC.Number); 1220 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1221 BC.Exit = (BI.LiveOut && 1222 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1223 ? SpillPlacement::PrefReg 1224 : SpillPlacement::DontCare; 1225 BC.ChangesValue = BI.FirstDef.isValid(); 1226 1227 if (!Intf.hasInterference()) 1228 continue; 1229 1230 // Number of spill code instructions to insert. 1231 unsigned Ins = 0; 1232 1233 // Interference for the live-in value. 1234 if (BI.LiveIn) { 1235 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1236 BC.Entry = SpillPlacement::MustSpill; 1237 ++Ins; 1238 } else if (Intf.first() < BI.FirstInstr) { 1239 BC.Entry = SpillPlacement::PrefSpill; 1240 ++Ins; 1241 } else if (Intf.first() < BI.LastInstr) { 1242 ++Ins; 1243 } 1244 1245 // Abort if the spill cannot be inserted at the MBB' start 1246 if (((BC.Entry == SpillPlacement::MustSpill) || 1247 (BC.Entry == SpillPlacement::PrefSpill)) && 1248 SlotIndex::isEarlierInstr(BI.FirstInstr, 1249 SA->getFirstSplitPoint(BC.Number))) 1250 return false; 1251 } 1252 1253 // Interference for the live-out value. 1254 if (BI.LiveOut) { 1255 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1256 BC.Exit = SpillPlacement::MustSpill; 1257 ++Ins; 1258 } else if (Intf.last() > BI.LastInstr) { 1259 BC.Exit = SpillPlacement::PrefSpill; 1260 ++Ins; 1261 } else if (Intf.last() > BI.FirstInstr) { 1262 ++Ins; 1263 } 1264 } 1265 1266 // Accumulate the total frequency of inserted spill code. 1267 while (Ins--) 1268 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1269 } 1270 Cost = StaticCost; 1271 1272 // Add constraints for use-blocks. Note that these are the only constraints 1273 // that may add a positive bias, it is downhill from here. 1274 SpillPlacer->addConstraints(SplitConstraints); 1275 return SpillPlacer->scanActiveBundles(); 1276 } 1277 1278 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1279 /// live-through blocks in Blocks. 1280 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1281 ArrayRef<unsigned> Blocks) { 1282 const unsigned GroupSize = 8; 1283 SpillPlacement::BlockConstraint BCS[GroupSize]; 1284 unsigned TBS[GroupSize]; 1285 unsigned B = 0, T = 0; 1286 1287 for (unsigned Number : Blocks) { 1288 Intf.moveToBlock(Number); 1289 1290 if (!Intf.hasInterference()) { 1291 assert(T < GroupSize && "Array overflow"); 1292 TBS[T] = Number; 1293 if (++T == GroupSize) { 1294 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1295 T = 0; 1296 } 1297 continue; 1298 } 1299 1300 assert(B < GroupSize && "Array overflow"); 1301 BCS[B].Number = Number; 1302 1303 // Abort if the spill cannot be inserted at the MBB' start 1304 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1305 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 1306 if (FirstNonDebugInstr != MBB->end() && 1307 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 1308 SA->getFirstSplitPoint(Number))) 1309 return false; 1310 // Interference for the live-in value. 1311 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1312 BCS[B].Entry = SpillPlacement::MustSpill; 1313 else 1314 BCS[B].Entry = SpillPlacement::PrefSpill; 1315 1316 // Interference for the live-out value. 1317 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1318 BCS[B].Exit = SpillPlacement::MustSpill; 1319 else 1320 BCS[B].Exit = SpillPlacement::PrefSpill; 1321 1322 if (++B == GroupSize) { 1323 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1324 B = 0; 1325 } 1326 } 1327 1328 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1329 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1330 return true; 1331 } 1332 1333 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1334 // Keep track of through blocks that have not been added to SpillPlacer. 1335 BitVector Todo = SA->getThroughBlocks(); 1336 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1337 unsigned AddedTo = 0; 1338 #ifndef NDEBUG 1339 unsigned Visited = 0; 1340 #endif 1341 1342 while (true) { 1343 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1344 // Find new through blocks in the periphery of PrefRegBundles. 1345 for (unsigned Bundle : NewBundles) { 1346 // Look at all blocks connected to Bundle in the full graph. 1347 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1348 for (unsigned Block : Blocks) { 1349 if (!Todo.test(Block)) 1350 continue; 1351 Todo.reset(Block); 1352 // This is a new through block. Add it to SpillPlacer later. 1353 ActiveBlocks.push_back(Block); 1354 #ifndef NDEBUG 1355 ++Visited; 1356 #endif 1357 } 1358 } 1359 // Any new blocks to add? 1360 if (ActiveBlocks.size() == AddedTo) 1361 break; 1362 1363 // Compute through constraints from the interference, or assume that all 1364 // through blocks prefer spilling when forming compact regions. 1365 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1366 if (Cand.PhysReg) { 1367 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1368 return false; 1369 } else 1370 // Provide a strong negative bias on through blocks to prevent unwanted 1371 // liveness on loop backedges. 1372 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1373 AddedTo = ActiveBlocks.size(); 1374 1375 // Perhaps iterating can enable more bundles? 1376 SpillPlacer->iterate(); 1377 } 1378 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1379 return true; 1380 } 1381 1382 /// calcCompactRegion - Compute the set of edge bundles that should be live 1383 /// when splitting the current live range into compact regions. Compact 1384 /// regions can be computed without looking at interference. They are the 1385 /// regions formed by removing all the live-through blocks from the live range. 1386 /// 1387 /// Returns false if the current live range is already compact, or if the 1388 /// compact regions would form single block regions anyway. 1389 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1390 // Without any through blocks, the live range is already compact. 1391 if (!SA->getNumThroughBlocks()) 1392 return false; 1393 1394 // Compact regions don't correspond to any physreg. 1395 Cand.reset(IntfCache, MCRegister::NoRegister); 1396 1397 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1398 1399 // Use the spill placer to determine the live bundles. GrowRegion pretends 1400 // that all the through blocks have interference when PhysReg is unset. 1401 SpillPlacer->prepare(Cand.LiveBundles); 1402 1403 // The static split cost will be zero since Cand.Intf reports no interference. 1404 BlockFrequency Cost; 1405 if (!addSplitConstraints(Cand.Intf, Cost)) { 1406 LLVM_DEBUG(dbgs() << ", none.\n"); 1407 return false; 1408 } 1409 1410 if (!growRegion(Cand)) { 1411 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1412 return false; 1413 } 1414 1415 SpillPlacer->finish(); 1416 1417 if (!Cand.LiveBundles.any()) { 1418 LLVM_DEBUG(dbgs() << ", none.\n"); 1419 return false; 1420 } 1421 1422 LLVM_DEBUG({ 1423 for (int I : Cand.LiveBundles.set_bits()) 1424 dbgs() << " EB#" << I; 1425 dbgs() << ".\n"; 1426 }); 1427 return true; 1428 } 1429 1430 /// calcSpillCost - Compute how expensive it would be to split the live range in 1431 /// SA around all use blocks instead of forming bundle regions. 1432 BlockFrequency RAGreedy::calcSpillCost() { 1433 BlockFrequency Cost = 0; 1434 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1435 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1436 unsigned Number = BI.MBB->getNumber(); 1437 // We normally only need one spill instruction - a load or a store. 1438 Cost += SpillPlacer->getBlockFrequency(Number); 1439 1440 // Unless the value is redefined in the block. 1441 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1442 Cost += SpillPlacer->getBlockFrequency(Number); 1443 } 1444 return Cost; 1445 } 1446 1447 /// Check if splitting Evictee will create a local split interval in 1448 /// basic block number BBNumber that may cause a bad eviction chain. This is 1449 /// intended to prevent bad eviction sequences like: 1450 /// movl %ebp, 8(%esp) # 4-byte Spill 1451 /// movl %ecx, %ebp 1452 /// movl %ebx, %ecx 1453 /// movl %edi, %ebx 1454 /// movl %edx, %edi 1455 /// cltd 1456 /// idivl %esi 1457 /// movl %edi, %edx 1458 /// movl %ebx, %edi 1459 /// movl %ecx, %ebx 1460 /// movl %ebp, %ecx 1461 /// movl 16(%esp), %ebp # 4 - byte Reload 1462 /// 1463 /// Such sequences are created in 2 scenarios: 1464 /// 1465 /// Scenario #1: 1466 /// %0 is evicted from physreg0 by %1. 1467 /// Evictee %0 is intended for region splitting with split candidate 1468 /// physreg0 (the reg %0 was evicted from). 1469 /// Region splitting creates a local interval because of interference with the 1470 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1471 /// and "by stack" intervals and local interval created when interference 1472 /// occurs). 1473 /// One of the split intervals ends up evicting %2 from physreg1. 1474 /// Evictee %2 is intended for region splitting with split candidate 1475 /// physreg1. 1476 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1477 /// 1478 /// Scenario #2 1479 /// %0 is evicted from physreg0 by %1. 1480 /// %2 is evicted from physreg2 by %3 etc. 1481 /// Evictee %0 is intended for region splitting with split candidate 1482 /// physreg1. 1483 /// Region splitting creates a local interval because of interference with the 1484 /// evictor %1. 1485 /// One of the split intervals ends up evicting back original evictor %1 1486 /// from physreg0 (the reg %0 was evicted from). 1487 /// Another evictee %2 is intended for region splitting with split candidate 1488 /// physreg1. 1489 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1490 /// 1491 /// \param Evictee The register considered to be split. 1492 /// \param Cand The split candidate that determines the physical register 1493 /// we are splitting for and the interferences. 1494 /// \param BBNumber The number of a BB for which the region split process will 1495 /// create a local split interval. 1496 /// \param Order The physical registers that may get evicted by a split 1497 /// artifact of Evictee. 1498 /// \return True if splitting Evictee may cause a bad eviction chain, false 1499 /// otherwise. 1500 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 1501 GlobalSplitCandidate &Cand, 1502 unsigned BBNumber, 1503 const AllocationOrder &Order) { 1504 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1505 unsigned Evictor = VregEvictorInfo.first; 1506 MCRegister PhysReg = VregEvictorInfo.second; 1507 1508 // No actual evictor. 1509 if (!Evictor || !PhysReg) 1510 return false; 1511 1512 float MaxWeight = 0; 1513 MCRegister FutureEvictedPhysReg = 1514 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1515 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1516 1517 // The bad eviction chain occurs when either the split candidate is the 1518 // evicting reg or one of the split artifact will evict the evicting reg. 1519 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1520 return false; 1521 1522 Cand.Intf.moveToBlock(BBNumber); 1523 1524 // Check to see if the Evictor contains interference (with Evictee) in the 1525 // given BB. If so, this interference caused the eviction of Evictee from 1526 // PhysReg. This suggest that we will create a local interval during the 1527 // region split to avoid this interference This local interval may cause a bad 1528 // eviction chain. 1529 if (!LIS->hasInterval(Evictor)) 1530 return false; 1531 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1532 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1533 return false; 1534 1535 // Now, check to see if the local interval we will create is going to be 1536 // expensive enough to evict somebody If so, this may cause a bad eviction 1537 // chain. 1538 float splitArtifactWeight = 1539 VRAI->futureWeight(LIS->getInterval(Evictee), 1540 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1541 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1542 return false; 1543 1544 return true; 1545 } 1546 1547 /// Check if splitting VirtRegToSplit will create a local split interval 1548 /// in basic block number BBNumber that may cause a spill. 1549 /// 1550 /// \param VirtRegToSplit The register considered to be split. 1551 /// \param Cand The split candidate that determines the physical 1552 /// register we are splitting for and the interferences. 1553 /// \param BBNumber The number of a BB for which the region split process 1554 /// will create a local split interval. 1555 /// \param Order The physical registers that may get evicted by a 1556 /// split artifact of VirtRegToSplit. 1557 /// \return True if splitting VirtRegToSplit may cause a spill, false 1558 /// otherwise. 1559 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1560 GlobalSplitCandidate &Cand, 1561 unsigned BBNumber, 1562 const AllocationOrder &Order) { 1563 Cand.Intf.moveToBlock(BBNumber); 1564 1565 // Check if the local interval will find a non interfereing assignment. 1566 for (auto PhysReg : Order.getOrder()) { 1567 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1568 Cand.Intf.last(), PhysReg)) 1569 return false; 1570 } 1571 1572 // The local interval is not able to find non interferencing assignment 1573 // and not able to evict a less worthy interval, therfore, it can cause a 1574 // spill. 1575 return true; 1576 } 1577 1578 /// calcGlobalSplitCost - Return the global split cost of following the split 1579 /// pattern in LiveBundles. This cost should be added to the local cost of the 1580 /// interference pattern in SplitConstraints. 1581 /// 1582 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1583 const AllocationOrder &Order, 1584 bool *CanCauseEvictionChain) { 1585 BlockFrequency GlobalCost = 0; 1586 const BitVector &LiveBundles = Cand.LiveBundles; 1587 Register VirtRegToSplit = SA->getParent().reg(); 1588 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1589 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1590 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1591 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1592 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1593 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1594 unsigned Ins = 0; 1595 1596 Cand.Intf.moveToBlock(BC.Number); 1597 // Check wheather a local interval is going to be created during the region 1598 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1599 // is enabled. 1600 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1601 BI.LiveOut && RegIn && RegOut) { 1602 1603 if (CanCauseEvictionChain && 1604 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1605 // This interference causes our eviction from this assignment, we might 1606 // evict somebody else and eventually someone will spill, add that cost. 1607 // See splitCanCauseEvictionChain for detailed description of scenarios. 1608 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1609 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1610 1611 *CanCauseEvictionChain = true; 1612 1613 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1614 Order)) { 1615 // This interference causes local interval to spill, add that cost. 1616 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1617 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1618 } 1619 } 1620 1621 if (BI.LiveIn) 1622 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1623 if (BI.LiveOut) 1624 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1625 while (Ins--) 1626 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1627 } 1628 1629 for (unsigned Number : Cand.ActiveBlocks) { 1630 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1631 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1632 if (!RegIn && !RegOut) 1633 continue; 1634 if (RegIn && RegOut) { 1635 // We need double spill code if this block has interference. 1636 Cand.Intf.moveToBlock(Number); 1637 if (Cand.Intf.hasInterference()) { 1638 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1639 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1640 1641 // Check wheather a local interval is going to be created during the 1642 // region split. 1643 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1644 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1645 // This interference cause our eviction from this assignment, we might 1646 // evict somebody else, add that cost. 1647 // See splitCanCauseEvictionChain for detailed description of 1648 // scenarios. 1649 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1650 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1651 1652 *CanCauseEvictionChain = true; 1653 } 1654 } 1655 continue; 1656 } 1657 // live-in / stack-out or stack-in live-out. 1658 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1659 } 1660 return GlobalCost; 1661 } 1662 1663 /// splitAroundRegion - Split the current live range around the regions 1664 /// determined by BundleCand and GlobalCand. 1665 /// 1666 /// Before calling this function, GlobalCand and BundleCand must be initialized 1667 /// so each bundle is assigned to a valid candidate, or NoCand for the 1668 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1669 /// objects must be initialized for the current live range, and intervals 1670 /// created for the used candidates. 1671 /// 1672 /// @param LREdit The LiveRangeEdit object handling the current split. 1673 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1674 /// must appear in this list. 1675 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1676 ArrayRef<unsigned> UsedCands) { 1677 // These are the intervals created for new global ranges. We may create more 1678 // intervals for local ranges. 1679 const unsigned NumGlobalIntvs = LREdit.size(); 1680 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1681 << " globals.\n"); 1682 assert(NumGlobalIntvs && "No global intervals configured"); 1683 1684 // Isolate even single instructions when dealing with a proper sub-class. 1685 // That guarantees register class inflation for the stack interval because it 1686 // is all copies. 1687 Register Reg = SA->getParent().reg(); 1688 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1689 1690 // First handle all the blocks with uses. 1691 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1692 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1693 unsigned Number = BI.MBB->getNumber(); 1694 unsigned IntvIn = 0, IntvOut = 0; 1695 SlotIndex IntfIn, IntfOut; 1696 if (BI.LiveIn) { 1697 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1698 if (CandIn != NoCand) { 1699 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1700 IntvIn = Cand.IntvIdx; 1701 Cand.Intf.moveToBlock(Number); 1702 IntfIn = Cand.Intf.first(); 1703 } 1704 } 1705 if (BI.LiveOut) { 1706 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1707 if (CandOut != NoCand) { 1708 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1709 IntvOut = Cand.IntvIdx; 1710 Cand.Intf.moveToBlock(Number); 1711 IntfOut = Cand.Intf.last(); 1712 } 1713 } 1714 1715 // Create separate intervals for isolated blocks with multiple uses. 1716 if (!IntvIn && !IntvOut) { 1717 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1718 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1719 SE->splitSingleBlock(BI); 1720 continue; 1721 } 1722 1723 if (IntvIn && IntvOut) 1724 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1725 else if (IntvIn) 1726 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1727 else 1728 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1729 } 1730 1731 // Handle live-through blocks. The relevant live-through blocks are stored in 1732 // the ActiveBlocks list with each candidate. We need to filter out 1733 // duplicates. 1734 BitVector Todo = SA->getThroughBlocks(); 1735 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1736 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1737 for (unsigned Number : Blocks) { 1738 if (!Todo.test(Number)) 1739 continue; 1740 Todo.reset(Number); 1741 1742 unsigned IntvIn = 0, IntvOut = 0; 1743 SlotIndex IntfIn, IntfOut; 1744 1745 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1746 if (CandIn != NoCand) { 1747 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1748 IntvIn = Cand.IntvIdx; 1749 Cand.Intf.moveToBlock(Number); 1750 IntfIn = Cand.Intf.first(); 1751 } 1752 1753 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1754 if (CandOut != NoCand) { 1755 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1756 IntvOut = Cand.IntvIdx; 1757 Cand.Intf.moveToBlock(Number); 1758 IntfOut = Cand.Intf.last(); 1759 } 1760 if (!IntvIn && !IntvOut) 1761 continue; 1762 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1763 } 1764 } 1765 1766 ++NumGlobalSplits; 1767 1768 SmallVector<unsigned, 8> IntvMap; 1769 SE->finish(&IntvMap); 1770 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1771 1772 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1773 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1774 1775 // Sort out the new intervals created by splitting. We get four kinds: 1776 // - Remainder intervals should not be split again. 1777 // - Candidate intervals can be assigned to Cand.PhysReg. 1778 // - Block-local splits are candidates for local splitting. 1779 // - DCE leftovers should go back on the queue. 1780 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1781 LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1782 1783 // Ignore old intervals from DCE. 1784 if (getStage(Reg) != RS_New) 1785 continue; 1786 1787 // Remainder interval. Don't try splitting again, spill if it doesn't 1788 // allocate. 1789 if (IntvMap[I] == 0) { 1790 setStage(Reg, RS_Spill); 1791 continue; 1792 } 1793 1794 // Global intervals. Allow repeated splitting as long as the number of live 1795 // blocks is strictly decreasing. 1796 if (IntvMap[I] < NumGlobalIntvs) { 1797 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1798 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1799 << " blocks as original.\n"); 1800 // Don't allow repeated splitting as a safe guard against looping. 1801 setStage(Reg, RS_Split2); 1802 } 1803 continue; 1804 } 1805 1806 // Other intervals are treated as new. This includes local intervals created 1807 // for blocks with multiple uses, and anything created by DCE. 1808 } 1809 1810 if (VerifyEnabled) 1811 MF->verify(this, "After splitting live range around region"); 1812 } 1813 1814 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg, 1815 AllocationOrder &Order, 1816 SmallVectorImpl<Register> &NewVRegs) { 1817 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1818 return MCRegister::NoRegister; 1819 unsigned NumCands = 0; 1820 BlockFrequency SpillCost = calcSpillCost(); 1821 BlockFrequency BestCost; 1822 1823 // Check if we can split this live range around a compact region. 1824 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1825 if (HasCompact) { 1826 // Yes, keep GlobalCand[0] as the compact region candidate. 1827 NumCands = 1; 1828 BestCost = BlockFrequency::getMaxFrequency(); 1829 } else { 1830 // No benefit from the compact region, our fallback will be per-block 1831 // splitting. Make sure we find a solution that is cheaper than spilling. 1832 BestCost = SpillCost; 1833 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1834 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1835 } 1836 1837 bool CanCauseEvictionChain = false; 1838 unsigned BestCand = 1839 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1840 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1841 1842 // Split candidates with compact regions can cause a bad eviction sequence. 1843 // See splitCanCauseEvictionChain for detailed description of scenarios. 1844 // To avoid it, we need to comapre the cost with the spill cost and not the 1845 // current max frequency. 1846 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1847 CanCauseEvictionChain) { 1848 return MCRegister::NoRegister; 1849 } 1850 1851 // No solutions found, fall back to single block splitting. 1852 if (!HasCompact && BestCand == NoCand) 1853 return MCRegister::NoRegister; 1854 1855 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1856 } 1857 1858 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1859 AllocationOrder &Order, 1860 BlockFrequency &BestCost, 1861 unsigned &NumCands, bool IgnoreCSR, 1862 bool *CanCauseEvictionChain) { 1863 unsigned BestCand = NoCand; 1864 for (MCPhysReg PhysReg : Order) { 1865 assert(PhysReg); 1866 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1867 continue; 1868 1869 // Discard bad candidates before we run out of interference cache cursors. 1870 // This will only affect register classes with a lot of registers (>32). 1871 if (NumCands == IntfCache.getMaxCursors()) { 1872 unsigned WorstCount = ~0u; 1873 unsigned Worst = 0; 1874 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1875 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1876 continue; 1877 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1878 if (Count < WorstCount) { 1879 Worst = CandIndex; 1880 WorstCount = Count; 1881 } 1882 } 1883 --NumCands; 1884 GlobalCand[Worst] = GlobalCand[NumCands]; 1885 if (BestCand == NumCands) 1886 BestCand = Worst; 1887 } 1888 1889 if (GlobalCand.size() <= NumCands) 1890 GlobalCand.resize(NumCands+1); 1891 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1892 Cand.reset(IntfCache, PhysReg); 1893 1894 SpillPlacer->prepare(Cand.LiveBundles); 1895 BlockFrequency Cost; 1896 if (!addSplitConstraints(Cand.Intf, Cost)) { 1897 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1898 continue; 1899 } 1900 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1901 MBFI->printBlockFreq(dbgs(), Cost)); 1902 if (Cost >= BestCost) { 1903 LLVM_DEBUG({ 1904 if (BestCand == NoCand) 1905 dbgs() << " worse than no bundles\n"; 1906 else 1907 dbgs() << " worse than " 1908 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1909 }); 1910 continue; 1911 } 1912 if (!growRegion(Cand)) { 1913 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1914 continue; 1915 } 1916 1917 SpillPlacer->finish(); 1918 1919 // No live bundles, defer to splitSingleBlocks(). 1920 if (!Cand.LiveBundles.any()) { 1921 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1922 continue; 1923 } 1924 1925 bool HasEvictionChain = false; 1926 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1927 LLVM_DEBUG({ 1928 dbgs() << ", total = "; 1929 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1930 for (int I : Cand.LiveBundles.set_bits()) 1931 dbgs() << " EB#" << I; 1932 dbgs() << ".\n"; 1933 }); 1934 if (Cost < BestCost) { 1935 BestCand = NumCands; 1936 BestCost = Cost; 1937 // See splitCanCauseEvictionChain for detailed description of bad 1938 // eviction chain scenarios. 1939 if (CanCauseEvictionChain) 1940 *CanCauseEvictionChain = HasEvictionChain; 1941 } 1942 ++NumCands; 1943 } 1944 1945 if (CanCauseEvictionChain && BestCand != NoCand) { 1946 // See splitCanCauseEvictionChain for detailed description of bad 1947 // eviction chain scenarios. 1948 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1949 << printReg(VirtReg.reg(), TRI) << " may "); 1950 if (!(*CanCauseEvictionChain)) 1951 LLVM_DEBUG(dbgs() << "not "); 1952 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1953 } 1954 1955 return BestCand; 1956 } 1957 1958 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1959 bool HasCompact, 1960 SmallVectorImpl<Register> &NewVRegs) { 1961 SmallVector<unsigned, 8> UsedCands; 1962 // Prepare split editor. 1963 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1964 SE->reset(LREdit, SplitSpillMode); 1965 1966 // Assign all edge bundles to the preferred candidate, or NoCand. 1967 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1968 1969 // Assign bundles for the best candidate region. 1970 if (BestCand != NoCand) { 1971 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1972 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1973 UsedCands.push_back(BestCand); 1974 Cand.IntvIdx = SE->openIntv(); 1975 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1976 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1977 (void)B; 1978 } 1979 } 1980 1981 // Assign bundles for the compact region. 1982 if (HasCompact) { 1983 GlobalSplitCandidate &Cand = GlobalCand.front(); 1984 assert(!Cand.PhysReg && "Compact region has no physreg"); 1985 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1986 UsedCands.push_back(0); 1987 Cand.IntvIdx = SE->openIntv(); 1988 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1989 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1990 (void)B; 1991 } 1992 } 1993 1994 splitAroundRegion(LREdit, UsedCands); 1995 return 0; 1996 } 1997 1998 //===----------------------------------------------------------------------===// 1999 // Per-Block Splitting 2000 //===----------------------------------------------------------------------===// 2001 2002 /// tryBlockSplit - Split a global live range around every block with uses. This 2003 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 2004 /// they don't allocate. 2005 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2006 SmallVectorImpl<Register> &NewVRegs) { 2007 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 2008 Register Reg = VirtReg.reg(); 2009 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 2010 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2011 SE->reset(LREdit, SplitSpillMode); 2012 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 2013 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 2014 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 2015 SE->splitSingleBlock(BI); 2016 } 2017 // No blocks were split. 2018 if (LREdit.empty()) 2019 return 0; 2020 2021 // We did split for some blocks. 2022 SmallVector<unsigned, 8> IntvMap; 2023 SE->finish(&IntvMap); 2024 2025 // Tell LiveDebugVariables about the new ranges. 2026 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2027 2028 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2029 2030 // Sort out the new intervals created by splitting. The remainder interval 2031 // goes straight to spilling, the new local ranges get to stay RS_New. 2032 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 2033 LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 2034 if (getStage(LI) == RS_New && IntvMap[I] == 0) 2035 setStage(LI, RS_Spill); 2036 } 2037 2038 if (VerifyEnabled) 2039 MF->verify(this, "After splitting live range around basic blocks"); 2040 return 0; 2041 } 2042 2043 //===----------------------------------------------------------------------===// 2044 // Per-Instruction Splitting 2045 //===----------------------------------------------------------------------===// 2046 2047 /// Get the number of allocatable registers that match the constraints of \p Reg 2048 /// on \p MI and that are also in \p SuperRC. 2049 static unsigned getNumAllocatableRegsForConstraints( 2050 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 2051 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2052 const RegisterClassInfo &RCI) { 2053 assert(SuperRC && "Invalid register class"); 2054 2055 const TargetRegisterClass *ConstrainedRC = 2056 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2057 /* ExploreBundle */ true); 2058 if (!ConstrainedRC) 2059 return 0; 2060 return RCI.getNumAllocatableRegs(ConstrainedRC); 2061 } 2062 2063 /// tryInstructionSplit - Split a live range around individual instructions. 2064 /// This is normally not worthwhile since the spiller is doing essentially the 2065 /// same thing. However, when the live range is in a constrained register 2066 /// class, it may help to insert copies such that parts of the live range can 2067 /// be moved to a larger register class. 2068 /// 2069 /// This is similar to spilling to a larger register class. 2070 unsigned 2071 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2072 SmallVectorImpl<Register> &NewVRegs) { 2073 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2074 // There is no point to this if there are no larger sub-classes. 2075 if (!RegClassInfo.isProperSubClass(CurRC)) 2076 return 0; 2077 2078 // Always enable split spill mode, since we're effectively spilling to a 2079 // register. 2080 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2081 SE->reset(LREdit, SplitEditor::SM_Size); 2082 2083 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2084 if (Uses.size() <= 1) 2085 return 0; 2086 2087 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2088 << " individual instrs.\n"); 2089 2090 const TargetRegisterClass *SuperRC = 2091 TRI->getLargestLegalSuperClass(CurRC, *MF); 2092 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2093 // Split around every non-copy instruction if this split will relax 2094 // the constraints on the virtual register. 2095 // Otherwise, splitting just inserts uncoalescable copies that do not help 2096 // the allocation. 2097 for (const SlotIndex Use : Uses) { 2098 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 2099 if (MI->isFullCopy() || 2100 SuperRCNumAllocatableRegs == 2101 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 2102 TII, TRI, RCI)) { 2103 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 2104 continue; 2105 } 2106 SE->openIntv(); 2107 SlotIndex SegStart = SE->enterIntvBefore(Use); 2108 SlotIndex SegStop = SE->leaveIntvAfter(Use); 2109 SE->useIntv(SegStart, SegStop); 2110 } 2111 2112 if (LREdit.empty()) { 2113 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2114 return 0; 2115 } 2116 2117 SmallVector<unsigned, 8> IntvMap; 2118 SE->finish(&IntvMap); 2119 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2120 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2121 2122 // Assign all new registers to RS_Spill. This was the last chance. 2123 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2124 return 0; 2125 } 2126 2127 //===----------------------------------------------------------------------===// 2128 // Local Splitting 2129 //===----------------------------------------------------------------------===// 2130 2131 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2132 /// in order to use PhysReg between two entries in SA->UseSlots. 2133 /// 2134 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 2135 /// 2136 void RAGreedy::calcGapWeights(MCRegister PhysReg, 2137 SmallVectorImpl<float> &GapWeight) { 2138 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2139 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2140 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2141 const unsigned NumGaps = Uses.size()-1; 2142 2143 // Start and end points for the interference check. 2144 SlotIndex StartIdx = 2145 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2146 SlotIndex StopIdx = 2147 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2148 2149 GapWeight.assign(NumGaps, 0.0f); 2150 2151 // Add interference from each overlapping register. 2152 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2153 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2154 .checkInterference()) 2155 continue; 2156 2157 // We know that VirtReg is a continuous interval from FirstInstr to 2158 // LastInstr, so we don't need InterferenceQuery. 2159 // 2160 // Interference that overlaps an instruction is counted in both gaps 2161 // surrounding the instruction. The exception is interference before 2162 // StartIdx and after StopIdx. 2163 // 2164 LiveIntervalUnion::SegmentIter IntI = 2165 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2166 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2167 // Skip the gaps before IntI. 2168 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2169 if (++Gap == NumGaps) 2170 break; 2171 if (Gap == NumGaps) 2172 break; 2173 2174 // Update the gaps covered by IntI. 2175 const float weight = IntI.value()->weight(); 2176 for (; Gap != NumGaps; ++Gap) { 2177 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2178 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2179 break; 2180 } 2181 if (Gap == NumGaps) 2182 break; 2183 } 2184 } 2185 2186 // Add fixed interference. 2187 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2188 const LiveRange &LR = LIS->getRegUnit(*Units); 2189 LiveRange::const_iterator I = LR.find(StartIdx); 2190 LiveRange::const_iterator E = LR.end(); 2191 2192 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2193 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2194 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2195 if (++Gap == NumGaps) 2196 break; 2197 if (Gap == NumGaps) 2198 break; 2199 2200 for (; Gap != NumGaps; ++Gap) { 2201 GapWeight[Gap] = huge_valf; 2202 if (Uses[Gap+1].getBaseIndex() >= I->end) 2203 break; 2204 } 2205 if (Gap == NumGaps) 2206 break; 2207 } 2208 } 2209 } 2210 2211 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2212 /// basic block. 2213 /// 2214 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2215 SmallVectorImpl<Register> &NewVRegs) { 2216 // TODO: the function currently only handles a single UseBlock; it should be 2217 // possible to generalize. 2218 if (SA->getUseBlocks().size() != 1) 2219 return 0; 2220 2221 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2222 2223 // Note that it is possible to have an interval that is live-in or live-out 2224 // while only covering a single block - A phi-def can use undef values from 2225 // predecessors, and the block could be a single-block loop. 2226 // We don't bother doing anything clever about such a case, we simply assume 2227 // that the interval is continuous from FirstInstr to LastInstr. We should 2228 // make sure that we don't do anything illegal to such an interval, though. 2229 2230 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2231 if (Uses.size() <= 2) 2232 return 0; 2233 const unsigned NumGaps = Uses.size()-1; 2234 2235 LLVM_DEBUG({ 2236 dbgs() << "tryLocalSplit: "; 2237 for (const auto &Use : Uses) 2238 dbgs() << ' ' << Use; 2239 dbgs() << '\n'; 2240 }); 2241 2242 // If VirtReg is live across any register mask operands, compute a list of 2243 // gaps with register masks. 2244 SmallVector<unsigned, 8> RegMaskGaps; 2245 if (Matrix->checkRegMaskInterference(VirtReg)) { 2246 // Get regmask slots for the whole block. 2247 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2248 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2249 // Constrain to VirtReg's live range. 2250 unsigned RI = 2251 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 2252 unsigned RE = RMS.size(); 2253 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 2254 // Look for Uses[I] <= RMS <= Uses[I + 1]. 2255 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 2256 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 2257 continue; 2258 // Skip a regmask on the same instruction as the last use. It doesn't 2259 // overlap the live range. 2260 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 2261 break; 2262 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 2263 << Uses[I + 1]); 2264 RegMaskGaps.push_back(I); 2265 // Advance ri to the next gap. A regmask on one of the uses counts in 2266 // both gaps. 2267 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 2268 ++RI; 2269 } 2270 LLVM_DEBUG(dbgs() << '\n'); 2271 } 2272 2273 // Since we allow local split results to be split again, there is a risk of 2274 // creating infinite loops. It is tempting to require that the new live 2275 // ranges have less instructions than the original. That would guarantee 2276 // convergence, but it is too strict. A live range with 3 instructions can be 2277 // split 2+3 (including the COPY), and we want to allow that. 2278 // 2279 // Instead we use these rules: 2280 // 2281 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2282 // noop split, of course). 2283 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2284 // the new ranges must have fewer instructions than before the split. 2285 // 3. New ranges with the same number of instructions are marked RS_Split2, 2286 // smaller ranges are marked RS_New. 2287 // 2288 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2289 // excessive splitting and infinite loops. 2290 // 2291 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2292 2293 // Best split candidate. 2294 unsigned BestBefore = NumGaps; 2295 unsigned BestAfter = 0; 2296 float BestDiff = 0; 2297 2298 const float blockFreq = 2299 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2300 (1.0f / MBFI->getEntryFreq()); 2301 SmallVector<float, 8> GapWeight; 2302 2303 for (MCPhysReg PhysReg : Order) { 2304 assert(PhysReg); 2305 // Keep track of the largest spill weight that would need to be evicted in 2306 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 2307 calcGapWeights(PhysReg, GapWeight); 2308 2309 // Remove any gaps with regmask clobbers. 2310 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2311 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 2312 GapWeight[RegMaskGaps[I]] = huge_valf; 2313 2314 // Try to find the best sequence of gaps to close. 2315 // The new spill weight must be larger than any gap interference. 2316 2317 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2318 unsigned SplitBefore = 0, SplitAfter = 1; 2319 2320 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2321 // It is the spill weight that needs to be evicted. 2322 float MaxGap = GapWeight[0]; 2323 2324 while (true) { 2325 // Live before/after split? 2326 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2327 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2328 2329 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2330 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 2331 2332 // Stop before the interval gets so big we wouldn't be making progress. 2333 if (!LiveBefore && !LiveAfter) { 2334 LLVM_DEBUG(dbgs() << " all\n"); 2335 break; 2336 } 2337 // Should the interval be extended or shrunk? 2338 bool Shrink = true; 2339 2340 // How many gaps would the new range have? 2341 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2342 2343 // Legally, without causing looping? 2344 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2345 2346 if (Legal && MaxGap < huge_valf) { 2347 // Estimate the new spill weight. Each instruction reads or writes the 2348 // register. Conservatively assume there are no read-modify-write 2349 // instructions. 2350 // 2351 // Try to guess the size of the new interval. 2352 const float EstWeight = normalizeSpillWeight( 2353 blockFreq * (NewGaps + 1), 2354 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2355 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2356 1); 2357 // Would this split be possible to allocate? 2358 // Never allocate all gaps, we wouldn't be making progress. 2359 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2360 if (EstWeight * Hysteresis >= MaxGap) { 2361 Shrink = false; 2362 float Diff = EstWeight - MaxGap; 2363 if (Diff > BestDiff) { 2364 LLVM_DEBUG(dbgs() << " (best)"); 2365 BestDiff = Hysteresis * Diff; 2366 BestBefore = SplitBefore; 2367 BestAfter = SplitAfter; 2368 } 2369 } 2370 } 2371 2372 // Try to shrink. 2373 if (Shrink) { 2374 if (++SplitBefore < SplitAfter) { 2375 LLVM_DEBUG(dbgs() << " shrink\n"); 2376 // Recompute the max when necessary. 2377 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2378 MaxGap = GapWeight[SplitBefore]; 2379 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 2380 MaxGap = std::max(MaxGap, GapWeight[I]); 2381 } 2382 continue; 2383 } 2384 MaxGap = 0; 2385 } 2386 2387 // Try to extend the interval. 2388 if (SplitAfter >= NumGaps) { 2389 LLVM_DEBUG(dbgs() << " end\n"); 2390 break; 2391 } 2392 2393 LLVM_DEBUG(dbgs() << " extend\n"); 2394 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2395 } 2396 } 2397 2398 // Didn't find any candidates? 2399 if (BestBefore == NumGaps) 2400 return 0; 2401 2402 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2403 << Uses[BestAfter] << ", " << BestDiff << ", " 2404 << (BestAfter - BestBefore + 1) << " instrs\n"); 2405 2406 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2407 SE->reset(LREdit); 2408 2409 SE->openIntv(); 2410 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2411 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2412 SE->useIntv(SegStart, SegStop); 2413 SmallVector<unsigned, 8> IntvMap; 2414 SE->finish(&IntvMap); 2415 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2416 2417 // If the new range has the same number of instructions as before, mark it as 2418 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2419 // leave the new intervals as RS_New so they can compete. 2420 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2421 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2422 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2423 if (NewGaps >= NumGaps) { 2424 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 2425 assert(!ProgressRequired && "Didn't make progress when it was required."); 2426 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 2427 if (IntvMap[I] == 1) { 2428 setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 2429 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 2430 } 2431 LLVM_DEBUG(dbgs() << '\n'); 2432 } 2433 ++NumLocalSplits; 2434 2435 return 0; 2436 } 2437 2438 //===----------------------------------------------------------------------===// 2439 // Live Range Splitting 2440 //===----------------------------------------------------------------------===// 2441 2442 /// trySplit - Try to split VirtReg or one of its interferences, making it 2443 /// assignable. 2444 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2445 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2446 SmallVectorImpl<Register> &NewVRegs, 2447 const SmallVirtRegSet &FixedRegisters) { 2448 // Ranges must be Split2 or less. 2449 if (getStage(VirtReg) >= RS_Spill) 2450 return 0; 2451 2452 // Local intervals are handled separately. 2453 if (LIS->intervalIsInOneMBB(VirtReg)) { 2454 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2455 TimerGroupDescription, TimePassesIsEnabled); 2456 SA->analyze(&VirtReg); 2457 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2458 if (PhysReg || !NewVRegs.empty()) 2459 return PhysReg; 2460 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2461 } 2462 2463 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2464 TimerGroupDescription, TimePassesIsEnabled); 2465 2466 SA->analyze(&VirtReg); 2467 2468 // First try to split around a region spanning multiple blocks. RS_Split2 2469 // ranges already made dubious progress with region splitting, so they go 2470 // straight to single block splitting. 2471 if (getStage(VirtReg) < RS_Split2) { 2472 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2473 if (PhysReg || !NewVRegs.empty()) 2474 return PhysReg; 2475 } 2476 2477 // Then isolate blocks. 2478 return tryBlockSplit(VirtReg, Order, NewVRegs); 2479 } 2480 2481 //===----------------------------------------------------------------------===// 2482 // Last Chance Recoloring 2483 //===----------------------------------------------------------------------===// 2484 2485 /// Return true if \p reg has any tied def operand. 2486 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2487 for (const MachineOperand &MO : MRI->def_operands(reg)) 2488 if (MO.isTied()) 2489 return true; 2490 2491 return false; 2492 } 2493 2494 /// mayRecolorAllInterferences - Check if the virtual registers that 2495 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2496 /// recolored to free \p PhysReg. 2497 /// When true is returned, \p RecoloringCandidates has been augmented with all 2498 /// the live intervals that need to be recolored in order to free \p PhysReg 2499 /// for \p VirtReg. 2500 /// \p FixedRegisters contains all the virtual registers that cannot be 2501 /// recolored. 2502 bool RAGreedy::mayRecolorAllInterferences( 2503 MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates, 2504 const SmallVirtRegSet &FixedRegisters) { 2505 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2506 2507 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2508 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2509 // If there is LastChanceRecoloringMaxInterference or more interferences, 2510 // chances are one would not be recolorable. 2511 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= 2512 LastChanceRecoloringMaxInterference && 2513 !ExhaustiveSearch) { 2514 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2515 CutOffInfo |= CO_Interf; 2516 return false; 2517 } 2518 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 2519 // If Intf is done and sit on the same register class as VirtReg, 2520 // it would not be recolorable as it is in the same state as VirtReg. 2521 // However, if VirtReg has tied defs and Intf doesn't, then 2522 // there is still a point in examining if it can be recolorable. 2523 if (((getStage(*Intf) == RS_Done && 2524 MRI->getRegClass(Intf->reg()) == CurRC) && 2525 !(hasTiedDef(MRI, VirtReg.reg()) && 2526 !hasTiedDef(MRI, Intf->reg()))) || 2527 FixedRegisters.count(Intf->reg())) { 2528 LLVM_DEBUG( 2529 dbgs() << "Early abort: the interference is not recolorable.\n"); 2530 return false; 2531 } 2532 RecoloringCandidates.insert(Intf); 2533 } 2534 } 2535 return true; 2536 } 2537 2538 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2539 /// its interferences. 2540 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2541 /// virtual register that was using it. The recoloring process may recursively 2542 /// use the last chance recoloring. Therefore, when a virtual register has been 2543 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2544 /// be last-chance-recolored again during this recoloring "session". 2545 /// E.g., 2546 /// Let 2547 /// vA can use {R1, R2 } 2548 /// vB can use { R2, R3} 2549 /// vC can use {R1 } 2550 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2551 /// instance) and they all interfere. 2552 /// 2553 /// vA is assigned R1 2554 /// vB is assigned R2 2555 /// vC tries to evict vA but vA is already done. 2556 /// Regular register allocation fails. 2557 /// 2558 /// Last chance recoloring kicks in: 2559 /// vC does as if vA was evicted => vC uses R1. 2560 /// vC is marked as fixed. 2561 /// vA needs to find a color. 2562 /// None are available. 2563 /// vA cannot evict vC: vC is a fixed virtual register now. 2564 /// vA does as if vB was evicted => vA uses R2. 2565 /// vB needs to find a color. 2566 /// R3 is available. 2567 /// Recoloring => vC = R1, vA = R2, vB = R3 2568 /// 2569 /// \p Order defines the preferred allocation order for \p VirtReg. 2570 /// \p NewRegs will contain any new virtual register that have been created 2571 /// (split, spill) during the process and that must be assigned. 2572 /// \p FixedRegisters contains all the virtual registers that cannot be 2573 /// recolored. 2574 /// \p Depth gives the current depth of the last chance recoloring. 2575 /// \return a physical register that can be used for VirtReg or ~0u if none 2576 /// exists. 2577 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2578 AllocationOrder &Order, 2579 SmallVectorImpl<Register> &NewVRegs, 2580 SmallVirtRegSet &FixedRegisters, 2581 unsigned Depth) { 2582 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 2583 return ~0u; 2584 2585 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2586 // Ranges must be Done. 2587 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2588 "Last chance recoloring should really be last chance"); 2589 // Set the max depth to LastChanceRecoloringMaxDepth. 2590 // We may want to reconsider that if we end up with a too large search space 2591 // for target with hundreds of registers. 2592 // Indeed, in that case we may want to cut the search space earlier. 2593 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2594 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2595 CutOffInfo |= CO_Depth; 2596 return ~0u; 2597 } 2598 2599 // Set of Live intervals that will need to be recolored. 2600 SmallLISet RecoloringCandidates; 2601 // Record the original mapping virtual register to physical register in case 2602 // the recoloring fails. 2603 DenseMap<Register, MCRegister> VirtRegToPhysReg; 2604 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2605 // this recoloring "session". 2606 assert(!FixedRegisters.count(VirtReg.reg())); 2607 FixedRegisters.insert(VirtReg.reg()); 2608 SmallVector<Register, 4> CurrentNewVRegs; 2609 2610 for (MCRegister PhysReg : Order) { 2611 assert(PhysReg.isValid()); 2612 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2613 << printReg(PhysReg, TRI) << '\n'); 2614 RecoloringCandidates.clear(); 2615 VirtRegToPhysReg.clear(); 2616 CurrentNewVRegs.clear(); 2617 2618 // It is only possible to recolor virtual register interference. 2619 if (Matrix->checkInterference(VirtReg, PhysReg) > 2620 LiveRegMatrix::IK_VirtReg) { 2621 LLVM_DEBUG( 2622 dbgs() << "Some interferences are not with virtual registers.\n"); 2623 2624 continue; 2625 } 2626 2627 // Early give up on this PhysReg if it is obvious we cannot recolor all 2628 // the interferences. 2629 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2630 FixedRegisters)) { 2631 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2632 continue; 2633 } 2634 2635 // RecoloringCandidates contains all the virtual registers that interfer 2636 // with VirtReg on PhysReg (or one of its aliases). 2637 // Enqueue them for recoloring and perform the actual recoloring. 2638 PQueue RecoloringQueue; 2639 for (LiveInterval *RC : RecoloringCandidates) { 2640 Register ItVirtReg = RC->reg(); 2641 enqueue(RecoloringQueue, RC); 2642 assert(VRM->hasPhys(ItVirtReg) && 2643 "Interferences are supposed to be with allocated variables"); 2644 2645 // Record the current allocation. 2646 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2647 // unset the related struct. 2648 Matrix->unassign(*RC); 2649 } 2650 2651 // Do as if VirtReg was assigned to PhysReg so that the underlying 2652 // recoloring has the right information about the interferes and 2653 // available colors. 2654 Matrix->assign(VirtReg, PhysReg); 2655 2656 // Save the current recoloring state. 2657 // If we cannot recolor all the interferences, we will have to start again 2658 // at this point for the next physical register. 2659 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2660 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2661 FixedRegisters, Depth)) { 2662 // Push the queued vregs into the main queue. 2663 for (Register NewVReg : CurrentNewVRegs) 2664 NewVRegs.push_back(NewVReg); 2665 // Do not mess up with the global assignment process. 2666 // I.e., VirtReg must be unassigned. 2667 Matrix->unassign(VirtReg); 2668 return PhysReg; 2669 } 2670 2671 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2672 << printReg(PhysReg, TRI) << '\n'); 2673 2674 // The recoloring attempt failed, undo the changes. 2675 FixedRegisters = SaveFixedRegisters; 2676 Matrix->unassign(VirtReg); 2677 2678 // For a newly created vreg which is also in RecoloringCandidates, 2679 // don't add it to NewVRegs because its physical register will be restored 2680 // below. Other vregs in CurrentNewVRegs are created by calling 2681 // selectOrSplit and should be added into NewVRegs. 2682 for (Register &R : CurrentNewVRegs) { 2683 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2684 continue; 2685 NewVRegs.push_back(R); 2686 } 2687 2688 for (LiveInterval *RC : RecoloringCandidates) { 2689 Register ItVirtReg = RC->reg(); 2690 if (VRM->hasPhys(ItVirtReg)) 2691 Matrix->unassign(*RC); 2692 MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2693 Matrix->assign(*RC, ItPhysReg); 2694 } 2695 } 2696 2697 // Last chance recoloring did not worked either, give up. 2698 return ~0u; 2699 } 2700 2701 /// tryRecoloringCandidates - Try to assign a new color to every register 2702 /// in \RecoloringQueue. 2703 /// \p NewRegs will contain any new virtual register created during the 2704 /// recoloring process. 2705 /// \p FixedRegisters[in/out] contains all the registers that have been 2706 /// recolored. 2707 /// \return true if all virtual registers in RecoloringQueue were successfully 2708 /// recolored, false otherwise. 2709 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2710 SmallVectorImpl<Register> &NewVRegs, 2711 SmallVirtRegSet &FixedRegisters, 2712 unsigned Depth) { 2713 while (!RecoloringQueue.empty()) { 2714 LiveInterval *LI = dequeue(RecoloringQueue); 2715 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2716 MCRegister PhysReg = 2717 selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2718 // When splitting happens, the live-range may actually be empty. 2719 // In that case, this is okay to continue the recoloring even 2720 // if we did not find an alternative color for it. Indeed, 2721 // there will not be anything to color for LI in the end. 2722 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2723 return false; 2724 2725 if (!PhysReg) { 2726 assert(LI->empty() && "Only empty live-range do not require a register"); 2727 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2728 << " succeeded. Empty LI.\n"); 2729 continue; 2730 } 2731 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2732 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2733 2734 Matrix->assign(*LI, PhysReg); 2735 FixedRegisters.insert(LI->reg()); 2736 } 2737 return true; 2738 } 2739 2740 //===----------------------------------------------------------------------===// 2741 // Main Entry Point 2742 //===----------------------------------------------------------------------===// 2743 2744 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2745 SmallVectorImpl<Register> &NewVRegs) { 2746 CutOffInfo = CO_None; 2747 LLVMContext &Ctx = MF->getFunction().getContext(); 2748 SmallVirtRegSet FixedRegisters; 2749 MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2750 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2751 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2752 if (CutOffEncountered == CO_Depth) 2753 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2754 "reached. Use -fexhaustive-register-search to skip " 2755 "cutoffs"); 2756 else if (CutOffEncountered == CO_Interf) 2757 Ctx.emitError("register allocation failed: maximum interference for " 2758 "recoloring reached. Use -fexhaustive-register-search " 2759 "to skip cutoffs"); 2760 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2761 Ctx.emitError("register allocation failed: maximum interference and " 2762 "depth for recoloring reached. Use " 2763 "-fexhaustive-register-search to skip cutoffs"); 2764 } 2765 return Reg; 2766 } 2767 2768 /// Using a CSR for the first time has a cost because it causes push|pop 2769 /// to be added to prologue|epilogue. Splitting a cold section of the live 2770 /// range can have lower cost than using the CSR for the first time; 2771 /// Spilling a live range in the cold path can have lower cost than using 2772 /// the CSR for the first time. Returns the physical register if we decide 2773 /// to use the CSR; otherwise return 0. 2774 MCRegister 2775 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 2776 MCRegister PhysReg, uint8_t &CostPerUseLimit, 2777 SmallVectorImpl<Register> &NewVRegs) { 2778 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2779 // We choose spill over using the CSR for the first time if the spill cost 2780 // is lower than CSRCost. 2781 SA->analyze(&VirtReg); 2782 if (calcSpillCost() >= CSRCost) 2783 return PhysReg; 2784 2785 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2786 // we will not use a callee-saved register in tryEvict. 2787 CostPerUseLimit = 1; 2788 return 0; 2789 } 2790 if (getStage(VirtReg) < RS_Split) { 2791 // We choose pre-splitting over using the CSR for the first time if 2792 // the cost of splitting is lower than CSRCost. 2793 SA->analyze(&VirtReg); 2794 unsigned NumCands = 0; 2795 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2796 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2797 NumCands, true /*IgnoreCSR*/); 2798 if (BestCand == NoCand) 2799 // Use the CSR if we can't find a region split below CSRCost. 2800 return PhysReg; 2801 2802 // Perform the actual pre-splitting. 2803 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2804 return 0; 2805 } 2806 return PhysReg; 2807 } 2808 2809 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2810 // Do not keep invalid information around. 2811 SetOfBrokenHints.remove(&LI); 2812 } 2813 2814 void RAGreedy::initializeCSRCost() { 2815 // We use the larger one out of the command-line option and the value report 2816 // by TRI. 2817 CSRCost = BlockFrequency( 2818 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2819 if (!CSRCost.getFrequency()) 2820 return; 2821 2822 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2823 uint64_t ActualEntry = MBFI->getEntryFreq(); 2824 if (!ActualEntry) { 2825 CSRCost = 0; 2826 return; 2827 } 2828 uint64_t FixedEntry = 1 << 14; 2829 if (ActualEntry < FixedEntry) 2830 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2831 else if (ActualEntry <= UINT32_MAX) 2832 // Invert the fraction and divide. 2833 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2834 else 2835 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2836 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2837 } 2838 2839 /// Collect the hint info for \p Reg. 2840 /// The results are stored into \p Out. 2841 /// \p Out is not cleared before being populated. 2842 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2843 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2844 if (!Instr.isFullCopy()) 2845 continue; 2846 // Look for the other end of the copy. 2847 Register OtherReg = Instr.getOperand(0).getReg(); 2848 if (OtherReg == Reg) { 2849 OtherReg = Instr.getOperand(1).getReg(); 2850 if (OtherReg == Reg) 2851 continue; 2852 } 2853 // Get the current assignment. 2854 MCRegister OtherPhysReg = 2855 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2856 // Push the collected information. 2857 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2858 OtherPhysReg)); 2859 } 2860 } 2861 2862 /// Using the given \p List, compute the cost of the broken hints if 2863 /// \p PhysReg was used. 2864 /// \return The cost of \p List for \p PhysReg. 2865 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2866 MCRegister PhysReg) { 2867 BlockFrequency Cost = 0; 2868 for (const HintInfo &Info : List) { 2869 if (Info.PhysReg != PhysReg) 2870 Cost += Info.Freq; 2871 } 2872 return Cost; 2873 } 2874 2875 /// Using the register assigned to \p VirtReg, try to recolor 2876 /// all the live ranges that are copy-related with \p VirtReg. 2877 /// The recoloring is then propagated to all the live-ranges that have 2878 /// been recolored and so on, until no more copies can be coalesced or 2879 /// it is not profitable. 2880 /// For a given live range, profitability is determined by the sum of the 2881 /// frequencies of the non-identity copies it would introduce with the old 2882 /// and new register. 2883 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2884 // We have a broken hint, check if it is possible to fix it by 2885 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2886 // some register and PhysReg may be available for the other live-ranges. 2887 SmallSet<Register, 4> Visited; 2888 SmallVector<unsigned, 2> RecoloringCandidates; 2889 HintsInfo Info; 2890 Register Reg = VirtReg.reg(); 2891 MCRegister PhysReg = VRM->getPhys(Reg); 2892 // Start the recoloring algorithm from the input live-interval, then 2893 // it will propagate to the ones that are copy-related with it. 2894 Visited.insert(Reg); 2895 RecoloringCandidates.push_back(Reg); 2896 2897 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2898 << '(' << printReg(PhysReg, TRI) << ")\n"); 2899 2900 do { 2901 Reg = RecoloringCandidates.pop_back_val(); 2902 2903 // We cannot recolor physical register. 2904 if (Register::isPhysicalRegister(Reg)) 2905 continue; 2906 2907 // This may be a skipped class 2908 if (!VRM->hasPhys(Reg)) { 2909 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2910 "We have an unallocated variable which should have been handled"); 2911 continue; 2912 } 2913 2914 // Get the live interval mapped with this virtual register to be able 2915 // to check for the interference with the new color. 2916 LiveInterval &LI = LIS->getInterval(Reg); 2917 MCRegister CurrPhys = VRM->getPhys(Reg); 2918 // Check that the new color matches the register class constraints and 2919 // that it is free for this live range. 2920 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2921 Matrix->checkInterference(LI, PhysReg))) 2922 continue; 2923 2924 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2925 << ") is recolorable.\n"); 2926 2927 // Gather the hint info. 2928 Info.clear(); 2929 collectHintInfo(Reg, Info); 2930 // Check if recoloring the live-range will increase the cost of the 2931 // non-identity copies. 2932 if (CurrPhys != PhysReg) { 2933 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2934 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2935 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2936 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2937 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2938 << '\n'); 2939 if (OldCopiesCost < NewCopiesCost) { 2940 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2941 continue; 2942 } 2943 // At this point, the cost is either cheaper or equal. If it is 2944 // equal, we consider this is profitable because it may expose 2945 // more recoloring opportunities. 2946 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2947 // Recolor the live-range. 2948 Matrix->unassign(LI); 2949 Matrix->assign(LI, PhysReg); 2950 } 2951 // Push all copy-related live-ranges to keep reconciling the broken 2952 // hints. 2953 for (const HintInfo &HI : Info) { 2954 if (Visited.insert(HI.Reg).second) 2955 RecoloringCandidates.push_back(HI.Reg); 2956 } 2957 } while (!RecoloringCandidates.empty()); 2958 } 2959 2960 /// Try to recolor broken hints. 2961 /// Broken hints may be repaired by recoloring when an evicted variable 2962 /// freed up a register for a larger live-range. 2963 /// Consider the following example: 2964 /// BB1: 2965 /// a = 2966 /// b = 2967 /// BB2: 2968 /// ... 2969 /// = b 2970 /// = a 2971 /// Let us assume b gets split: 2972 /// BB1: 2973 /// a = 2974 /// b = 2975 /// BB2: 2976 /// c = b 2977 /// ... 2978 /// d = c 2979 /// = d 2980 /// = a 2981 /// Because of how the allocation work, b, c, and d may be assigned different 2982 /// colors. Now, if a gets evicted later: 2983 /// BB1: 2984 /// a = 2985 /// st a, SpillSlot 2986 /// b = 2987 /// BB2: 2988 /// c = b 2989 /// ... 2990 /// d = c 2991 /// = d 2992 /// e = ld SpillSlot 2993 /// = e 2994 /// This is likely that we can assign the same register for b, c, and d, 2995 /// getting rid of 2 copies. 2996 void RAGreedy::tryHintsRecoloring() { 2997 for (LiveInterval *LI : SetOfBrokenHints) { 2998 assert(Register::isVirtualRegister(LI->reg()) && 2999 "Recoloring is possible only for virtual registers"); 3000 // Some dead defs may be around (e.g., because of debug uses). 3001 // Ignore those. 3002 if (!VRM->hasPhys(LI->reg())) 3003 continue; 3004 tryHintRecoloring(*LI); 3005 } 3006 } 3007 3008 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 3009 SmallVectorImpl<Register> &NewVRegs, 3010 SmallVirtRegSet &FixedRegisters, 3011 unsigned Depth) { 3012 uint8_t CostPerUseLimit = uint8_t(~0u); 3013 // First try assigning a free register. 3014 auto Order = 3015 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 3016 if (MCRegister PhysReg = 3017 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 3018 // If VirtReg got an assignment, the eviction info is no longer relevant. 3019 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3020 // When NewVRegs is not empty, we may have made decisions such as evicting 3021 // a virtual register, go with the earlier decisions and use the physical 3022 // register. 3023 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3024 NewVRegs.empty()) { 3025 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3026 CostPerUseLimit, NewVRegs); 3027 if (CSRReg || !NewVRegs.empty()) 3028 // Return now if we decide to use a CSR or create new vregs due to 3029 // pre-splitting. 3030 return CSRReg; 3031 } else 3032 return PhysReg; 3033 } 3034 3035 LiveRangeStage Stage = getStage(VirtReg); 3036 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3037 << ExtraRegInfo[VirtReg.reg()].Cascade << '\n'); 3038 3039 // Try to evict a less worthy live range, but only for ranges from the primary 3040 // queue. The RS_Split ranges already failed to do this, and they should not 3041 // get a second chance until they have been split. 3042 if (Stage != RS_Split) 3043 if (Register PhysReg = 3044 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 3045 FixedRegisters)) { 3046 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 3047 // If VirtReg has a hint and that hint is broken record this 3048 // virtual register as a recoloring candidate for broken hint. 3049 // Indeed, since we evicted a variable in its neighborhood it is 3050 // likely we can at least partially recolor some of the 3051 // copy-related live-ranges. 3052 if (Hint && Hint != PhysReg) 3053 SetOfBrokenHints.insert(&VirtReg); 3054 // If VirtReg eviction someone, the eviction info for it as an evictee is 3055 // no longer relevant. 3056 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3057 return PhysReg; 3058 } 3059 3060 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3061 3062 // The first time we see a live range, don't try to split or spill. 3063 // Wait until the second time, when all smaller ranges have been allocated. 3064 // This gives a better picture of the interference to split around. 3065 if (Stage < RS_Split) { 3066 setStage(VirtReg, RS_Split); 3067 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3068 NewVRegs.push_back(VirtReg.reg()); 3069 return 0; 3070 } 3071 3072 if (Stage < RS_Spill) { 3073 // Try splitting VirtReg or interferences. 3074 unsigned NewVRegSizeBefore = NewVRegs.size(); 3075 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 3076 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3077 // If VirtReg got split, the eviction info is no longer relevant. 3078 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3079 return PhysReg; 3080 } 3081 } 3082 3083 // If we couldn't allocate a register from spilling, there is probably some 3084 // invalid inline assembly. The base class will report it. 3085 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3086 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3087 Depth); 3088 3089 // Finally spill VirtReg itself. 3090 if ((EnableDeferredSpilling || 3091 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 3092 getStage(VirtReg) < RS_Memory) { 3093 // TODO: This is experimental and in particular, we do not model 3094 // the live range splitting done by spilling correctly. 3095 // We would need a deep integration with the spiller to do the 3096 // right thing here. Anyway, that is still good for early testing. 3097 setStage(VirtReg, RS_Memory); 3098 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3099 NewVRegs.push_back(VirtReg.reg()); 3100 } else { 3101 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3102 TimerGroupDescription, TimePassesIsEnabled); 3103 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3104 spiller().spill(LRE); 3105 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3106 3107 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 3108 // the new regs are kept in LDV (still mapping to the old register), until 3109 // we rewrite spilled locations in LDV at a later stage. 3110 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 3111 3112 if (VerifyEnabled) 3113 MF->verify(this, "After spilling"); 3114 } 3115 3116 // The live virtual register requesting allocation was spilled, so tell 3117 // the caller not to allocate anything during this round. 3118 return 0; 3119 } 3120 3121 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 3122 using namespace ore; 3123 if (Spills) { 3124 R << NV("NumSpills", Spills) << " spills "; 3125 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 3126 } 3127 if (FoldedSpills) { 3128 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3129 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 3130 << " total folded spills cost "; 3131 } 3132 if (Reloads) { 3133 R << NV("NumReloads", Reloads) << " reloads "; 3134 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 3135 } 3136 if (FoldedReloads) { 3137 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3138 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 3139 << " total folded reloads cost "; 3140 } 3141 if (ZeroCostFoldedReloads) 3142 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 3143 << " zero cost folded reloads "; 3144 if (Copies) { 3145 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 3146 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 3147 } 3148 } 3149 3150 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 3151 RAGreedyStats Stats; 3152 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3153 int FI; 3154 3155 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3156 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 3157 A->getPseudoValue())->getFrameIndex()); 3158 }; 3159 auto isPatchpointInstr = [](const MachineInstr &MI) { 3160 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 3161 MI.getOpcode() == TargetOpcode::STACKMAP || 3162 MI.getOpcode() == TargetOpcode::STATEPOINT; 3163 }; 3164 for (MachineInstr &MI : MBB) { 3165 if (MI.isCopy()) { 3166 MachineOperand &Dest = MI.getOperand(0); 3167 MachineOperand &Src = MI.getOperand(1); 3168 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 3169 Src.getReg().isVirtual()) 3170 ++Stats.Copies; 3171 continue; 3172 } 3173 3174 SmallVector<const MachineMemOperand *, 2> Accesses; 3175 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3176 ++Stats.Reloads; 3177 continue; 3178 } 3179 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3180 ++Stats.Spills; 3181 continue; 3182 } 3183 if (TII->hasLoadFromStackSlot(MI, Accesses) && 3184 llvm::any_of(Accesses, isSpillSlotAccess)) { 3185 if (!isPatchpointInstr(MI)) { 3186 Stats.FoldedReloads += Accesses.size(); 3187 continue; 3188 } 3189 // For statepoint there may be folded and zero cost folded stack reloads. 3190 std::pair<unsigned, unsigned> NonZeroCostRange = 3191 TII->getPatchpointUnfoldableRange(MI); 3192 SmallSet<unsigned, 16> FoldedReloads; 3193 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 3194 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 3195 MachineOperand &MO = MI.getOperand(Idx); 3196 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 3197 continue; 3198 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 3199 FoldedReloads.insert(MO.getIndex()); 3200 else 3201 ZeroCostFoldedReloads.insert(MO.getIndex()); 3202 } 3203 // If stack slot is used in folded reload it is not zero cost then. 3204 for (unsigned Slot : FoldedReloads) 3205 ZeroCostFoldedReloads.erase(Slot); 3206 Stats.FoldedReloads += FoldedReloads.size(); 3207 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 3208 continue; 3209 } 3210 Accesses.clear(); 3211 if (TII->hasStoreToStackSlot(MI, Accesses) && 3212 llvm::any_of(Accesses, isSpillSlotAccess)) { 3213 Stats.FoldedSpills += Accesses.size(); 3214 } 3215 } 3216 // Set cost of collected statistic by multiplication to relative frequency of 3217 // this basic block. 3218 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 3219 Stats.ReloadsCost = RelFreq * Stats.Reloads; 3220 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 3221 Stats.SpillsCost = RelFreq * Stats.Spills; 3222 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 3223 Stats.CopiesCost = RelFreq * Stats.Copies; 3224 return Stats; 3225 } 3226 3227 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 3228 RAGreedyStats Stats; 3229 3230 // Sum up the spill and reloads in subloops. 3231 for (MachineLoop *SubLoop : *L) 3232 Stats.add(reportStats(SubLoop)); 3233 3234 for (MachineBasicBlock *MBB : L->getBlocks()) 3235 // Handle blocks that were not included in subloops. 3236 if (Loops->getLoopFor(MBB) == L) 3237 Stats.add(computeStats(*MBB)); 3238 3239 if (!Stats.isEmpty()) { 3240 using namespace ore; 3241 3242 ORE->emit([&]() { 3243 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 3244 L->getStartLoc(), L->getHeader()); 3245 Stats.report(R); 3246 R << "generated in loop"; 3247 return R; 3248 }); 3249 } 3250 return Stats; 3251 } 3252 3253 void RAGreedy::reportStats() { 3254 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 3255 return; 3256 RAGreedyStats Stats; 3257 for (MachineLoop *L : *Loops) 3258 Stats.add(reportStats(L)); 3259 // Process non-loop blocks. 3260 for (MachineBasicBlock &MBB : *MF) 3261 if (!Loops->getLoopFor(&MBB)) 3262 Stats.add(computeStats(MBB)); 3263 if (!Stats.isEmpty()) { 3264 using namespace ore; 3265 3266 ORE->emit([&]() { 3267 DebugLoc Loc; 3268 if (auto *SP = MF->getFunction().getSubprogram()) 3269 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 3270 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 3271 &MF->front()); 3272 Stats.report(R); 3273 R << "generated in function"; 3274 return R; 3275 }); 3276 } 3277 } 3278 3279 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3280 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3281 << "********** Function: " << mf.getName() << '\n'); 3282 3283 MF = &mf; 3284 TRI = MF->getSubtarget().getRegisterInfo(); 3285 TII = MF->getSubtarget().getInstrInfo(); 3286 RCI.runOnMachineFunction(mf); 3287 3288 EnableLocalReassign = EnableLocalReassignment || 3289 MF->getSubtarget().enableRALocalReassignment( 3290 MF->getTarget().getOptLevel()); 3291 3292 EnableAdvancedRASplitCost = 3293 ConsiderLocalIntervalCost.getNumOccurrences() 3294 ? ConsiderLocalIntervalCost 3295 : MF->getSubtarget().enableAdvancedRASplitCost(); 3296 3297 if (VerifyEnabled) 3298 MF->verify(this, "Before greedy register allocator"); 3299 3300 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3301 getAnalysis<LiveIntervals>(), 3302 getAnalysis<LiveRegMatrix>()); 3303 Indexes = &getAnalysis<SlotIndexes>(); 3304 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3305 DomTree = &getAnalysis<MachineDominatorTree>(); 3306 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3307 Loops = &getAnalysis<MachineLoopInfo>(); 3308 Bundles = &getAnalysis<EdgeBundles>(); 3309 SpillPlacer = &getAnalysis<SpillPlacement>(); 3310 DebugVars = &getAnalysis<LiveDebugVariables>(); 3311 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3312 3313 initializeCSRCost(); 3314 3315 RegCosts = TRI->getRegisterCosts(*MF); 3316 3317 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 3318 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 3319 3320 VRAI->calculateSpillWeightsAndHints(); 3321 3322 LLVM_DEBUG(LIS->dump()); 3323 3324 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3325 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 3326 ExtraRegInfo.clear(); 3327 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3328 NextCascade = 1; 3329 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3330 GlobalCand.resize(32); // This will grow as needed. 3331 SetOfBrokenHints.clear(); 3332 LastEvicted.clear(); 3333 3334 allocatePhysRegs(); 3335 tryHintsRecoloring(); 3336 3337 if (VerifyEnabled) 3338 MF->verify(this, "Before post optimization"); 3339 postOptimization(); 3340 reportStats(); 3341 3342 releaseMemory(); 3343 return true; 3344 } 3345