1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RegAllocGreedy.h" 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "RegAllocEvictionAdvisor.h" 20 #include "SpillPlacement.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IndexedMap.h" 26 #include "llvm/ADT/MapVector.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/CodeGen/CalcSpillWeights.h" 36 #include "llvm/CodeGen/EdgeBundles.h" 37 #include "llvm/CodeGen/LiveInterval.h" 38 #include "llvm/CodeGen/LiveIntervalUnion.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveRangeEdit.h" 41 #include "llvm/CodeGen/LiveRegMatrix.h" 42 #include "llvm/CodeGen/LiveStacks.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 45 #include "llvm/CodeGen/MachineDominators.h" 46 #include "llvm/CodeGen/MachineFrameInfo.h" 47 #include "llvm/CodeGen/MachineFunction.h" 48 #include "llvm/CodeGen/MachineFunctionPass.h" 49 #include "llvm/CodeGen/MachineInstr.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RegAllocRegistry.h" 55 #include "llvm/CodeGen/RegisterClassInfo.h" 56 #include "llvm/CodeGen/SlotIndexes.h" 57 #include "llvm/CodeGen/Spiller.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetRegisterInfo.h" 60 #include "llvm/CodeGen/TargetSubtargetInfo.h" 61 #include "llvm/CodeGen/VirtRegMap.h" 62 #include "llvm/IR/DebugInfoMetadata.h" 63 #include "llvm/IR/Function.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/Pass.h" 67 #include "llvm/Support/BlockFrequency.h" 68 #include "llvm/Support/BranchProbability.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/Timer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstdint> 78 #include <utility> 79 80 using namespace llvm; 81 82 #define DEBUG_TYPE "regalloc" 83 84 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 85 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 86 STATISTIC(NumEvicted, "Number of interferences evicted"); 87 88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 89 "split-spill-mode", cl::Hidden, 90 cl::desc("Spill mode for splitting live ranges"), 91 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 92 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 93 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 94 cl::init(SplitEditor::SM_Speed)); 95 96 static cl::opt<unsigned> 97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 98 cl::desc("Last chance recoloring max depth"), 99 cl::init(5)); 100 101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 102 "lcr-max-interf", cl::Hidden, 103 cl::desc("Last chance recoloring maximum number of considered" 104 " interference at a time"), 105 cl::init(8)); 106 107 static cl::opt<bool> ExhaustiveSearch( 108 "exhaustive-register-search", cl::NotHidden, 109 cl::desc("Exhaustive Search for registers bypassing the depth " 110 "and interference cutoffs of last chance recoloring"), 111 cl::Hidden); 112 113 static cl::opt<bool> EnableDeferredSpilling( 114 "enable-deferred-spilling", cl::Hidden, 115 cl::desc("Instead of spilling a variable right away, defer the actual " 116 "code insertion to the end of the allocation. That way the " 117 "allocator might still find a suitable coloring for this " 118 "variable because of other evicted variables."), 119 cl::init(false)); 120 121 // FIXME: Find a good default for this flag and remove the flag. 122 static cl::opt<unsigned> 123 CSRFirstTimeCost("regalloc-csr-first-time-cost", 124 cl::desc("Cost for first time use of callee-saved register."), 125 cl::init(0), cl::Hidden); 126 127 static cl::opt<long> GrowRegionComplexityBudget( 128 "grow-region-complexity-budget", 129 cl::desc("growRegion() does not scale with the number of BB edges, so " 130 "limit its budget and bail out once we reach the limit."), 131 cl::init(10000), cl::Hidden); 132 133 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 134 createGreedyRegisterAllocator); 135 136 char RAGreedy::ID = 0; 137 char &llvm::RAGreedyID = RAGreedy::ID; 138 139 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 140 "Greedy Register Allocator", false, false) 141 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 142 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 143 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 144 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 145 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 146 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 147 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 148 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 149 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 150 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 151 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 152 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 153 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 154 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis) 155 INITIALIZE_PASS_END(RAGreedy, "greedy", 156 "Greedy Register Allocator", false, false) 157 158 #ifndef NDEBUG 159 const char *const RAGreedy::StageName[] = { 160 "RS_New", 161 "RS_Assign", 162 "RS_Split", 163 "RS_Split2", 164 "RS_Spill", 165 "RS_Memory", 166 "RS_Done" 167 }; 168 #endif 169 170 // Hysteresis to use when comparing floats. 171 // This helps stabilize decisions based on float comparisons. 172 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 173 174 FunctionPass* llvm::createGreedyRegisterAllocator() { 175 return new RAGreedy(); 176 } 177 178 namespace llvm { 179 FunctionPass* createGreedyRegisterAllocator( 180 std::function<bool(const TargetRegisterInfo &TRI, 181 const TargetRegisterClass &RC)> Ftor); 182 183 } 184 185 FunctionPass* llvm::createGreedyRegisterAllocator( 186 std::function<bool(const TargetRegisterInfo &TRI, 187 const TargetRegisterClass &RC)> Ftor) { 188 return new RAGreedy(Ftor); 189 } 190 191 RAGreedy::RAGreedy(RegClassFilterFunc F): 192 MachineFunctionPass(ID), 193 RegAllocBase(F) { 194 } 195 196 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 197 AU.setPreservesCFG(); 198 AU.addRequired<MachineBlockFrequencyInfo>(); 199 AU.addPreserved<MachineBlockFrequencyInfo>(); 200 AU.addRequired<AAResultsWrapperPass>(); 201 AU.addPreserved<AAResultsWrapperPass>(); 202 AU.addRequired<LiveIntervals>(); 203 AU.addPreserved<LiveIntervals>(); 204 AU.addRequired<SlotIndexes>(); 205 AU.addPreserved<SlotIndexes>(); 206 AU.addRequired<LiveDebugVariables>(); 207 AU.addPreserved<LiveDebugVariables>(); 208 AU.addRequired<LiveStacks>(); 209 AU.addPreserved<LiveStacks>(); 210 AU.addRequired<MachineDominatorTree>(); 211 AU.addPreserved<MachineDominatorTree>(); 212 AU.addRequired<MachineLoopInfo>(); 213 AU.addPreserved<MachineLoopInfo>(); 214 AU.addRequired<VirtRegMap>(); 215 AU.addPreserved<VirtRegMap>(); 216 AU.addRequired<LiveRegMatrix>(); 217 AU.addPreserved<LiveRegMatrix>(); 218 AU.addRequired<EdgeBundles>(); 219 AU.addRequired<SpillPlacement>(); 220 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 221 AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); 222 MachineFunctionPass::getAnalysisUsage(AU); 223 } 224 225 //===----------------------------------------------------------------------===// 226 // LiveRangeEdit delegate methods 227 //===----------------------------------------------------------------------===// 228 229 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 230 LiveInterval &LI = LIS->getInterval(VirtReg); 231 if (VRM->hasPhys(VirtReg)) { 232 Matrix->unassign(LI); 233 aboutToRemoveInterval(LI); 234 return true; 235 } 236 // Unassigned virtreg is probably in the priority queue. 237 // RegAllocBase will erase it after dequeueing. 238 // Nonetheless, clear the live-range so that the debug 239 // dump will show the right state for that VirtReg. 240 LI.clear(); 241 return false; 242 } 243 244 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 245 if (!VRM->hasPhys(VirtReg)) 246 return; 247 248 // Register is assigned, put it back on the queue for reassignment. 249 LiveInterval &LI = LIS->getInterval(VirtReg); 250 Matrix->unassign(LI); 251 RegAllocBase::enqueue(&LI); 252 } 253 254 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 255 ExtraInfo->LRE_DidCloneVirtReg(New, Old); 256 } 257 258 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) { 259 // Cloning a register we haven't even heard about yet? Just ignore it. 260 if (!Info.inBounds(Old)) 261 return; 262 263 // LRE may clone a virtual register because dead code elimination causes it to 264 // be split into connected components. The new components are much smaller 265 // than the original, so they should get a new chance at being assigned. 266 // same stage as the parent. 267 Info[Old].Stage = RS_Assign; 268 Info.grow(New.id()); 269 Info[New] = Info[Old]; 270 } 271 272 void RAGreedy::releaseMemory() { 273 SpillerInstance.reset(); 274 GlobalCand.clear(); 275 } 276 277 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); } 278 279 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) { 280 // Prioritize live ranges by size, assigning larger ranges first. 281 // The queue holds (size, reg) pairs. 282 const unsigned Size = LI->getSize(); 283 const Register Reg = LI->reg(); 284 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 285 unsigned Prio; 286 287 auto Stage = ExtraInfo->getOrInitStage(Reg); 288 if (Stage == RS_New) { 289 Stage = RS_Assign; 290 ExtraInfo->setStage(Reg, Stage); 291 } 292 if (Stage == RS_Split) { 293 // Unsplit ranges that couldn't be allocated immediately are deferred until 294 // everything else has been allocated. 295 Prio = Size; 296 } else if (Stage == RS_Memory) { 297 // Memory operand should be considered last. 298 // Change the priority such that Memory operand are assigned in 299 // the reverse order that they came in. 300 // TODO: Make this a member variable and probably do something about hints. 301 static unsigned MemOp = 0; 302 Prio = MemOp++; 303 } else { 304 // Giant live ranges fall back to the global assignment heuristic, which 305 // prevents excessive spilling in pathological cases. 306 bool ReverseLocal = TRI->reverseLocalAssignment(); 307 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 308 bool ForceGlobal = !ReverseLocal && 309 (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC)); 310 311 if (Stage == RS_Assign && !ForceGlobal && !LI->empty() && 312 LIS->intervalIsInOneMBB(*LI)) { 313 // Allocate original local ranges in linear instruction order. Since they 314 // are singly defined, this produces optimal coloring in the absence of 315 // global interference and other constraints. 316 if (!ReverseLocal) 317 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 318 else { 319 // Allocating bottom up may allow many short LRGs to be assigned first 320 // to one of the cheap registers. This could be much faster for very 321 // large blocks on targets with many physical registers. 322 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 323 } 324 Prio |= RC.AllocationPriority << 24; 325 } else { 326 // Allocate global and split ranges in long->short order. Long ranges that 327 // don't fit should be spilled (or split) ASAP so they don't create 328 // interference. Mark a bit to prioritize global above local ranges. 329 Prio = (1u << 29) + Size; 330 331 Prio |= RC.AllocationPriority << 24; 332 } 333 // Mark a higher bit to prioritize global and local above RS_Split. 334 Prio |= (1u << 31); 335 336 // Boost ranges that have a physical register hint. 337 if (VRM->hasKnownPreference(Reg)) 338 Prio |= (1u << 30); 339 } 340 // The virtual register number is a tie breaker for same-sized ranges. 341 // Give lower vreg numbers higher priority to assign them first. 342 CurQueue.push(std::make_pair(Prio, ~Reg)); 343 } 344 345 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 346 347 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 348 if (CurQueue.empty()) 349 return nullptr; 350 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 351 CurQueue.pop(); 352 return LI; 353 } 354 355 //===----------------------------------------------------------------------===// 356 // Direct Assignment 357 //===----------------------------------------------------------------------===// 358 359 /// tryAssign - Try to assign VirtReg to an available register. 360 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg, 361 AllocationOrder &Order, 362 SmallVectorImpl<Register> &NewVRegs, 363 const SmallVirtRegSet &FixedRegisters) { 364 MCRegister PhysReg; 365 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 366 assert(*I); 367 if (!Matrix->checkInterference(VirtReg, *I)) { 368 if (I.isHint()) 369 return *I; 370 else 371 PhysReg = *I; 372 } 373 } 374 if (!PhysReg.isValid()) 375 return PhysReg; 376 377 // PhysReg is available, but there may be a better choice. 378 379 // If we missed a simple hint, try to cheaply evict interference from the 380 // preferred register. 381 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 382 if (Order.isHint(Hint)) { 383 MCRegister PhysHint = Hint.asMCReg(); 384 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 385 386 if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint, 387 FixedRegisters)) { 388 evictInterference(VirtReg, PhysHint, NewVRegs); 389 return PhysHint; 390 } 391 // Record the missed hint, we may be able to recover 392 // at the end if the surrounding allocation changed. 393 SetOfBrokenHints.insert(&VirtReg); 394 } 395 396 // Try to evict interference from a cheaper alternative. 397 uint8_t Cost = RegCosts[PhysReg]; 398 399 // Most registers have 0 additional cost. 400 if (!Cost) 401 return PhysReg; 402 403 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 404 << (unsigned)Cost << '\n'); 405 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 406 return CheapReg ? CheapReg : PhysReg; 407 } 408 409 //===----------------------------------------------------------------------===// 410 // Interference eviction 411 //===----------------------------------------------------------------------===// 412 413 Register RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg, 414 Register PrevReg) const { 415 auto Order = 416 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 417 MCRegister PhysReg; 418 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 419 if ((*I).id() == PrevReg.id()) 420 continue; 421 422 MCRegUnitIterator Units(*I, TRI); 423 for (; Units.isValid(); ++Units) { 424 // Instantiate a "subquery", not to be confused with the Queries array. 425 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 426 if (subQ.checkInterference()) 427 break; 428 } 429 // If no units have interference, break out with the current PhysReg. 430 if (!Units.isValid()) 431 PhysReg = *I; 432 } 433 if (PhysReg) 434 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 435 << printReg(PrevReg, TRI) << " to " 436 << printReg(PhysReg, TRI) << '\n'); 437 return PhysReg; 438 } 439 440 /// Return true if all interferences between VirtReg and PhysReg between 441 /// Start and End can be evicted. 442 /// 443 /// \param VirtReg Live range that is about to be assigned. 444 /// \param PhysReg Desired register for assignment. 445 /// \param Start Start of range to look for interferences. 446 /// \param End End of range to look for interferences. 447 /// \param MaxCost Only look for cheaper candidates and update with new cost 448 /// when returning true. 449 /// \return True when interference can be evicted cheaper than MaxCost. 450 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg, 451 MCRegister PhysReg, SlotIndex Start, 452 SlotIndex End, 453 EvictionCost &MaxCost) const { 454 EvictionCost Cost; 455 456 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 457 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 458 459 // Check if any interfering live range is heavier than MaxWeight. 460 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 461 // Check if interference overlast the segment in interest. 462 if (!Intf->overlaps(Start, End)) 463 continue; 464 465 // Cannot evict non virtual reg interference. 466 if (!Register::isVirtualRegister(Intf->reg())) 467 return false; 468 // Never evict spill products. They cannot split or spill. 469 if (ExtraInfo->getStage(*Intf) == RS_Done) 470 return false; 471 472 // Would this break a satisfied hint? 473 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 474 // Update eviction cost. 475 Cost.BrokenHints += BreaksHint; 476 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 477 // Abort if this would be too expensive. 478 if (!(Cost < MaxCost)) 479 return false; 480 } 481 } 482 483 if (Cost.MaxWeight == 0) 484 return false; 485 486 MaxCost = Cost; 487 return true; 488 } 489 490 /// Return the physical register that will be best 491 /// candidate for eviction by a local split interval that will be created 492 /// between Start and End. 493 /// 494 /// \param Order The allocation order 495 /// \param VirtReg Live range that is about to be assigned. 496 /// \param Start Start of range to look for interferences 497 /// \param End End of range to look for interferences 498 /// \param BestEvictweight The eviction cost of that eviction 499 /// \return The PhysReg which is the best candidate for eviction and the 500 /// eviction cost in BestEvictweight 501 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 502 const LiveInterval &VirtReg, 503 SlotIndex Start, SlotIndex End, 504 float *BestEvictweight) const { 505 EvictionCost BestEvictCost; 506 BestEvictCost.setMax(); 507 BestEvictCost.MaxWeight = VirtReg.weight(); 508 MCRegister BestEvicteePhys; 509 510 // Go over all physical registers and find the best candidate for eviction 511 for (MCRegister PhysReg : Order.getOrder()) { 512 513 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 514 BestEvictCost)) 515 continue; 516 517 // Best so far. 518 BestEvicteePhys = PhysReg; 519 } 520 *BestEvictweight = BestEvictCost.MaxWeight; 521 return BestEvicteePhys; 522 } 523 524 /// evictInterference - Evict any interferring registers that prevent VirtReg 525 /// from being assigned to Physreg. This assumes that canEvictInterference 526 /// returned true. 527 void RAGreedy::evictInterference(const LiveInterval &VirtReg, 528 MCRegister PhysReg, 529 SmallVectorImpl<Register> &NewVRegs) { 530 // Make sure that VirtReg has a cascade number, and assign that cascade 531 // number to every evicted register. These live ranges than then only be 532 // evicted by a newer cascade, preventing infinite loops. 533 unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg()); 534 535 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 536 << " interference: Cascade " << Cascade << '\n'); 537 538 // Collect all interfering virtregs first. 539 SmallVector<const LiveInterval *, 8> Intfs; 540 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 541 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 542 // We usually have the interfering VRegs cached so collectInterferingVRegs() 543 // should be fast, we may need to recalculate if when different physregs 544 // overlap the same register unit so we had different SubRanges queried 545 // against it. 546 ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs(); 547 Intfs.append(IVR.begin(), IVR.end()); 548 } 549 550 // Evict them second. This will invalidate the queries. 551 for (const LiveInterval *Intf : Intfs) { 552 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 553 if (!VRM->hasPhys(Intf->reg())) 554 continue; 555 556 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 557 558 Matrix->unassign(*Intf); 559 assert((ExtraInfo->getCascade(Intf->reg()) < Cascade || 560 VirtReg.isSpillable() < Intf->isSpillable()) && 561 "Cannot decrease cascade number, illegal eviction"); 562 ExtraInfo->setCascade(Intf->reg(), Cascade); 563 ++NumEvicted; 564 NewVRegs.push_back(Intf->reg()); 565 } 566 } 567 568 /// Returns true if the given \p PhysReg is a callee saved register and has not 569 /// been used for allocation yet. 570 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 571 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 572 if (!CSR) 573 return false; 574 575 return !Matrix->isPhysRegUsed(PhysReg); 576 } 577 578 Optional<unsigned> 579 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg, 580 const AllocationOrder &Order, 581 unsigned CostPerUseLimit) const { 582 unsigned OrderLimit = Order.getOrder().size(); 583 584 if (CostPerUseLimit < uint8_t(~0u)) { 585 // Check of any registers in RC are below CostPerUseLimit. 586 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 587 uint8_t MinCost = RegClassInfo.getMinCost(RC); 588 if (MinCost >= CostPerUseLimit) { 589 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 590 << MinCost << ", no cheaper registers to be found.\n"); 591 return None; 592 } 593 594 // It is normal for register classes to have a long tail of registers with 595 // the same cost. We don't need to look at them if they're too expensive. 596 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 597 OrderLimit = RegClassInfo.getLastCostChange(RC); 598 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 599 << " regs.\n"); 600 } 601 } 602 return OrderLimit; 603 } 604 605 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit, 606 MCRegister PhysReg) const { 607 if (RegCosts[PhysReg] >= CostPerUseLimit) 608 return false; 609 // The first use of a callee-saved register in a function has cost 1. 610 // Don't start using a CSR when the CostPerUseLimit is low. 611 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 612 LLVM_DEBUG( 613 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 614 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 615 << '\n'); 616 return false; 617 } 618 return true; 619 } 620 621 /// tryEvict - Try to evict all interferences for a physreg. 622 /// @param VirtReg Currently unassigned virtual register. 623 /// @param Order Physregs to try. 624 /// @return Physreg to assign VirtReg, or 0. 625 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg, 626 AllocationOrder &Order, 627 SmallVectorImpl<Register> &NewVRegs, 628 uint8_t CostPerUseLimit, 629 const SmallVirtRegSet &FixedRegisters) { 630 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 631 TimePassesIsEnabled); 632 633 MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate( 634 VirtReg, Order, CostPerUseLimit, FixedRegisters); 635 if (BestPhys.isValid()) 636 evictInterference(VirtReg, BestPhys, NewVRegs); 637 return BestPhys; 638 } 639 640 //===----------------------------------------------------------------------===// 641 // Region Splitting 642 //===----------------------------------------------------------------------===// 643 644 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 645 /// interference pattern in Physreg and its aliases. Add the constraints to 646 /// SpillPlacement and return the static cost of this split in Cost, assuming 647 /// that all preferences in SplitConstraints are met. 648 /// Return false if there are no bundles with positive bias. 649 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 650 BlockFrequency &Cost) { 651 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 652 653 // Reset interference dependent info. 654 SplitConstraints.resize(UseBlocks.size()); 655 BlockFrequency StaticCost = 0; 656 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 657 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 658 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 659 660 BC.Number = BI.MBB->getNumber(); 661 Intf.moveToBlock(BC.Number); 662 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 663 BC.Exit = (BI.LiveOut && 664 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 665 ? SpillPlacement::PrefReg 666 : SpillPlacement::DontCare; 667 BC.ChangesValue = BI.FirstDef.isValid(); 668 669 if (!Intf.hasInterference()) 670 continue; 671 672 // Number of spill code instructions to insert. 673 unsigned Ins = 0; 674 675 // Interference for the live-in value. 676 if (BI.LiveIn) { 677 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 678 BC.Entry = SpillPlacement::MustSpill; 679 ++Ins; 680 } else if (Intf.first() < BI.FirstInstr) { 681 BC.Entry = SpillPlacement::PrefSpill; 682 ++Ins; 683 } else if (Intf.first() < BI.LastInstr) { 684 ++Ins; 685 } 686 687 // Abort if the spill cannot be inserted at the MBB' start 688 if (((BC.Entry == SpillPlacement::MustSpill) || 689 (BC.Entry == SpillPlacement::PrefSpill)) && 690 SlotIndex::isEarlierInstr(BI.FirstInstr, 691 SA->getFirstSplitPoint(BC.Number))) 692 return false; 693 } 694 695 // Interference for the live-out value. 696 if (BI.LiveOut) { 697 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 698 BC.Exit = SpillPlacement::MustSpill; 699 ++Ins; 700 } else if (Intf.last() > BI.LastInstr) { 701 BC.Exit = SpillPlacement::PrefSpill; 702 ++Ins; 703 } else if (Intf.last() > BI.FirstInstr) { 704 ++Ins; 705 } 706 } 707 708 // Accumulate the total frequency of inserted spill code. 709 while (Ins--) 710 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 711 } 712 Cost = StaticCost; 713 714 // Add constraints for use-blocks. Note that these are the only constraints 715 // that may add a positive bias, it is downhill from here. 716 SpillPlacer->addConstraints(SplitConstraints); 717 return SpillPlacer->scanActiveBundles(); 718 } 719 720 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 721 /// live-through blocks in Blocks. 722 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 723 ArrayRef<unsigned> Blocks) { 724 const unsigned GroupSize = 8; 725 SpillPlacement::BlockConstraint BCS[GroupSize]; 726 unsigned TBS[GroupSize]; 727 unsigned B = 0, T = 0; 728 729 for (unsigned Number : Blocks) { 730 Intf.moveToBlock(Number); 731 732 if (!Intf.hasInterference()) { 733 assert(T < GroupSize && "Array overflow"); 734 TBS[T] = Number; 735 if (++T == GroupSize) { 736 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 737 T = 0; 738 } 739 continue; 740 } 741 742 assert(B < GroupSize && "Array overflow"); 743 BCS[B].Number = Number; 744 745 // Abort if the spill cannot be inserted at the MBB' start 746 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 747 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 748 if (FirstNonDebugInstr != MBB->end() && 749 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 750 SA->getFirstSplitPoint(Number))) 751 return false; 752 // Interference for the live-in value. 753 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 754 BCS[B].Entry = SpillPlacement::MustSpill; 755 else 756 BCS[B].Entry = SpillPlacement::PrefSpill; 757 758 // Interference for the live-out value. 759 if (Intf.last() >= SA->getLastSplitPoint(Number)) 760 BCS[B].Exit = SpillPlacement::MustSpill; 761 else 762 BCS[B].Exit = SpillPlacement::PrefSpill; 763 764 if (++B == GroupSize) { 765 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 766 B = 0; 767 } 768 } 769 770 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 771 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 772 return true; 773 } 774 775 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 776 // Keep track of through blocks that have not been added to SpillPlacer. 777 BitVector Todo = SA->getThroughBlocks(); 778 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 779 unsigned AddedTo = 0; 780 #ifndef NDEBUG 781 unsigned Visited = 0; 782 #endif 783 784 long Budget = GrowRegionComplexityBudget; 785 while (true) { 786 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 787 // Find new through blocks in the periphery of PrefRegBundles. 788 for (unsigned Bundle : NewBundles) { 789 // Look at all blocks connected to Bundle in the full graph. 790 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 791 for (unsigned Block : Blocks) { 792 // Limit compilation time by bailing out after we use all our budget. 793 if (Budget-- == 0) 794 return false; 795 if (!Todo.test(Block)) 796 continue; 797 Todo.reset(Block); 798 // This is a new through block. Add it to SpillPlacer later. 799 ActiveBlocks.push_back(Block); 800 #ifndef NDEBUG 801 ++Visited; 802 #endif 803 } 804 } 805 // Any new blocks to add? 806 if (ActiveBlocks.size() == AddedTo) 807 break; 808 809 // Compute through constraints from the interference, or assume that all 810 // through blocks prefer spilling when forming compact regions. 811 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 812 if (Cand.PhysReg) { 813 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 814 return false; 815 } else 816 // Provide a strong negative bias on through blocks to prevent unwanted 817 // liveness on loop backedges. 818 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 819 AddedTo = ActiveBlocks.size(); 820 821 // Perhaps iterating can enable more bundles? 822 SpillPlacer->iterate(); 823 } 824 LLVM_DEBUG(dbgs() << ", v=" << Visited); 825 return true; 826 } 827 828 /// calcCompactRegion - Compute the set of edge bundles that should be live 829 /// when splitting the current live range into compact regions. Compact 830 /// regions can be computed without looking at interference. They are the 831 /// regions formed by removing all the live-through blocks from the live range. 832 /// 833 /// Returns false if the current live range is already compact, or if the 834 /// compact regions would form single block regions anyway. 835 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 836 // Without any through blocks, the live range is already compact. 837 if (!SA->getNumThroughBlocks()) 838 return false; 839 840 // Compact regions don't correspond to any physreg. 841 Cand.reset(IntfCache, MCRegister::NoRegister); 842 843 LLVM_DEBUG(dbgs() << "Compact region bundles"); 844 845 // Use the spill placer to determine the live bundles. GrowRegion pretends 846 // that all the through blocks have interference when PhysReg is unset. 847 SpillPlacer->prepare(Cand.LiveBundles); 848 849 // The static split cost will be zero since Cand.Intf reports no interference. 850 BlockFrequency Cost; 851 if (!addSplitConstraints(Cand.Intf, Cost)) { 852 LLVM_DEBUG(dbgs() << ", none.\n"); 853 return false; 854 } 855 856 if (!growRegion(Cand)) { 857 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 858 return false; 859 } 860 861 SpillPlacer->finish(); 862 863 if (!Cand.LiveBundles.any()) { 864 LLVM_DEBUG(dbgs() << ", none.\n"); 865 return false; 866 } 867 868 LLVM_DEBUG({ 869 for (int I : Cand.LiveBundles.set_bits()) 870 dbgs() << " EB#" << I; 871 dbgs() << ".\n"; 872 }); 873 return true; 874 } 875 876 /// calcSpillCost - Compute how expensive it would be to split the live range in 877 /// SA around all use blocks instead of forming bundle regions. 878 BlockFrequency RAGreedy::calcSpillCost() { 879 BlockFrequency Cost = 0; 880 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 881 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 882 unsigned Number = BI.MBB->getNumber(); 883 // We normally only need one spill instruction - a load or a store. 884 Cost += SpillPlacer->getBlockFrequency(Number); 885 886 // Unless the value is redefined in the block. 887 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 888 Cost += SpillPlacer->getBlockFrequency(Number); 889 } 890 return Cost; 891 } 892 893 /// Check if splitting Evictee will create a local split interval in 894 /// basic block number BBNumber that may cause a bad eviction chain. This is 895 /// intended to prevent bad eviction sequences like: 896 /// movl %ebp, 8(%esp) # 4-byte Spill 897 /// movl %ecx, %ebp 898 /// movl %ebx, %ecx 899 /// movl %edi, %ebx 900 /// movl %edx, %edi 901 /// cltd 902 /// idivl %esi 903 /// movl %edi, %edx 904 /// movl %ebx, %edi 905 /// movl %ecx, %ebx 906 /// movl %ebp, %ecx 907 /// movl 16(%esp), %ebp # 4 - byte Reload 908 /// 909 /// Such sequences are created in 2 scenarios: 910 /// 911 /// Scenario #1: 912 /// %0 is evicted from physreg0 by %1. 913 /// Evictee %0 is intended for region splitting with split candidate 914 /// physreg0 (the reg %0 was evicted from). 915 /// Region splitting creates a local interval because of interference with the 916 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 917 /// and "by stack" intervals and local interval created when interference 918 /// occurs). 919 /// One of the split intervals ends up evicting %2 from physreg1. 920 /// Evictee %2 is intended for region splitting with split candidate 921 /// physreg1. 922 /// One of the split intervals ends up evicting %3 from physreg2, etc. 923 /// 924 /// Scenario #2 925 /// %0 is evicted from physreg0 by %1. 926 /// %2 is evicted from physreg2 by %3 etc. 927 /// Evictee %0 is intended for region splitting with split candidate 928 /// physreg1. 929 /// Region splitting creates a local interval because of interference with the 930 /// evictor %1. 931 /// One of the split intervals ends up evicting back original evictor %1 932 /// from physreg0 (the reg %0 was evicted from). 933 /// Another evictee %2 is intended for region splitting with split candidate 934 /// physreg1. 935 /// One of the split intervals ends up evicting %3 from physreg2, etc. 936 /// 937 /// \param Evictee The register considered to be split. 938 /// \param Cand The split candidate that determines the physical register 939 /// we are splitting for and the interferences. 940 /// \param BBNumber The number of a BB for which the region split process will 941 /// create a local split interval. 942 /// \param Order The physical registers that may get evicted by a split 943 /// artifact of Evictee. 944 /// \return True if splitting Evictee may cause a bad eviction chain, false 945 /// otherwise. 946 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 947 GlobalSplitCandidate &Cand, 948 unsigned BBNumber, 949 const AllocationOrder &Order) { 950 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 951 unsigned Evictor = VregEvictorInfo.first; 952 MCRegister PhysReg = VregEvictorInfo.second; 953 954 // No actual evictor. 955 if (!Evictor || !PhysReg) 956 return false; 957 958 float MaxWeight = 0; 959 MCRegister FutureEvictedPhysReg = 960 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 961 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 962 963 // The bad eviction chain occurs when either the split candidate is the 964 // evicting reg or one of the split artifact will evict the evicting reg. 965 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 966 return false; 967 968 Cand.Intf.moveToBlock(BBNumber); 969 970 // Check to see if the Evictor contains interference (with Evictee) in the 971 // given BB. If so, this interference caused the eviction of Evictee from 972 // PhysReg. This suggest that we will create a local interval during the 973 // region split to avoid this interference This local interval may cause a bad 974 // eviction chain. 975 if (!LIS->hasInterval(Evictor)) 976 return false; 977 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 978 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 979 return false; 980 981 // Now, check to see if the local interval we will create is going to be 982 // expensive enough to evict somebody If so, this may cause a bad eviction 983 // chain. 984 float splitArtifactWeight = 985 VRAI->futureWeight(LIS->getInterval(Evictee), 986 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 987 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 988 return false; 989 990 return true; 991 } 992 993 /// calcGlobalSplitCost - Return the global split cost of following the split 994 /// pattern in LiveBundles. This cost should be added to the local cost of the 995 /// interference pattern in SplitConstraints. 996 /// 997 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 998 const AllocationOrder &Order) { 999 BlockFrequency GlobalCost = 0; 1000 const BitVector &LiveBundles = Cand.LiveBundles; 1001 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1002 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1003 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1004 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1005 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1006 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1007 unsigned Ins = 0; 1008 1009 Cand.Intf.moveToBlock(BC.Number); 1010 1011 if (BI.LiveIn) 1012 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1013 if (BI.LiveOut) 1014 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1015 while (Ins--) 1016 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1017 } 1018 1019 for (unsigned Number : Cand.ActiveBlocks) { 1020 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1021 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1022 if (!RegIn && !RegOut) 1023 continue; 1024 if (RegIn && RegOut) { 1025 // We need double spill code if this block has interference. 1026 Cand.Intf.moveToBlock(Number); 1027 if (Cand.Intf.hasInterference()) { 1028 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1029 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1030 } 1031 continue; 1032 } 1033 // live-in / stack-out or stack-in live-out. 1034 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1035 } 1036 return GlobalCost; 1037 } 1038 1039 /// splitAroundRegion - Split the current live range around the regions 1040 /// determined by BundleCand and GlobalCand. 1041 /// 1042 /// Before calling this function, GlobalCand and BundleCand must be initialized 1043 /// so each bundle is assigned to a valid candidate, or NoCand for the 1044 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1045 /// objects must be initialized for the current live range, and intervals 1046 /// created for the used candidates. 1047 /// 1048 /// @param LREdit The LiveRangeEdit object handling the current split. 1049 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1050 /// must appear in this list. 1051 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1052 ArrayRef<unsigned> UsedCands) { 1053 // These are the intervals created for new global ranges. We may create more 1054 // intervals for local ranges. 1055 const unsigned NumGlobalIntvs = LREdit.size(); 1056 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1057 << " globals.\n"); 1058 assert(NumGlobalIntvs && "No global intervals configured"); 1059 1060 // Isolate even single instructions when dealing with a proper sub-class. 1061 // That guarantees register class inflation for the stack interval because it 1062 // is all copies. 1063 Register Reg = SA->getParent().reg(); 1064 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1065 1066 // First handle all the blocks with uses. 1067 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1068 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1069 unsigned Number = BI.MBB->getNumber(); 1070 unsigned IntvIn = 0, IntvOut = 0; 1071 SlotIndex IntfIn, IntfOut; 1072 if (BI.LiveIn) { 1073 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1074 if (CandIn != NoCand) { 1075 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1076 IntvIn = Cand.IntvIdx; 1077 Cand.Intf.moveToBlock(Number); 1078 IntfIn = Cand.Intf.first(); 1079 } 1080 } 1081 if (BI.LiveOut) { 1082 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1083 if (CandOut != NoCand) { 1084 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1085 IntvOut = Cand.IntvIdx; 1086 Cand.Intf.moveToBlock(Number); 1087 IntfOut = Cand.Intf.last(); 1088 } 1089 } 1090 1091 // Create separate intervals for isolated blocks with multiple uses. 1092 if (!IntvIn && !IntvOut) { 1093 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1094 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1095 SE->splitSingleBlock(BI); 1096 continue; 1097 } 1098 1099 if (IntvIn && IntvOut) 1100 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1101 else if (IntvIn) 1102 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1103 else 1104 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1105 } 1106 1107 // Handle live-through blocks. The relevant live-through blocks are stored in 1108 // the ActiveBlocks list with each candidate. We need to filter out 1109 // duplicates. 1110 BitVector Todo = SA->getThroughBlocks(); 1111 for (unsigned UsedCand : UsedCands) { 1112 ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks; 1113 for (unsigned Number : Blocks) { 1114 if (!Todo.test(Number)) 1115 continue; 1116 Todo.reset(Number); 1117 1118 unsigned IntvIn = 0, IntvOut = 0; 1119 SlotIndex IntfIn, IntfOut; 1120 1121 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1122 if (CandIn != NoCand) { 1123 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1124 IntvIn = Cand.IntvIdx; 1125 Cand.Intf.moveToBlock(Number); 1126 IntfIn = Cand.Intf.first(); 1127 } 1128 1129 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1130 if (CandOut != NoCand) { 1131 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1132 IntvOut = Cand.IntvIdx; 1133 Cand.Intf.moveToBlock(Number); 1134 IntfOut = Cand.Intf.last(); 1135 } 1136 if (!IntvIn && !IntvOut) 1137 continue; 1138 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1139 } 1140 } 1141 1142 ++NumGlobalSplits; 1143 1144 SmallVector<unsigned, 8> IntvMap; 1145 SE->finish(&IntvMap); 1146 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1147 1148 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1149 1150 // Sort out the new intervals created by splitting. We get four kinds: 1151 // - Remainder intervals should not be split again. 1152 // - Candidate intervals can be assigned to Cand.PhysReg. 1153 // - Block-local splits are candidates for local splitting. 1154 // - DCE leftovers should go back on the queue. 1155 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1156 const LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1157 1158 // Ignore old intervals from DCE. 1159 if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New) 1160 continue; 1161 1162 // Remainder interval. Don't try splitting again, spill if it doesn't 1163 // allocate. 1164 if (IntvMap[I] == 0) { 1165 ExtraInfo->setStage(Reg, RS_Spill); 1166 continue; 1167 } 1168 1169 // Global intervals. Allow repeated splitting as long as the number of live 1170 // blocks is strictly decreasing. 1171 if (IntvMap[I] < NumGlobalIntvs) { 1172 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1173 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1174 << " blocks as original.\n"); 1175 // Don't allow repeated splitting as a safe guard against looping. 1176 ExtraInfo->setStage(Reg, RS_Split2); 1177 } 1178 continue; 1179 } 1180 1181 // Other intervals are treated as new. This includes local intervals created 1182 // for blocks with multiple uses, and anything created by DCE. 1183 } 1184 1185 if (VerifyEnabled) 1186 MF->verify(this, "After splitting live range around region"); 1187 } 1188 1189 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg, 1190 AllocationOrder &Order, 1191 SmallVectorImpl<Register> &NewVRegs) { 1192 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1193 return MCRegister::NoRegister; 1194 unsigned NumCands = 0; 1195 BlockFrequency SpillCost = calcSpillCost(); 1196 BlockFrequency BestCost; 1197 1198 // Check if we can split this live range around a compact region. 1199 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1200 if (HasCompact) { 1201 // Yes, keep GlobalCand[0] as the compact region candidate. 1202 NumCands = 1; 1203 BestCost = BlockFrequency::getMaxFrequency(); 1204 } else { 1205 // No benefit from the compact region, our fallback will be per-block 1206 // splitting. Make sure we find a solution that is cheaper than spilling. 1207 BestCost = SpillCost; 1208 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1209 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1210 } 1211 1212 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 1213 NumCands, false /*IgnoreCSR*/); 1214 1215 // No solutions found, fall back to single block splitting. 1216 if (!HasCompact && BestCand == NoCand) 1217 return MCRegister::NoRegister; 1218 1219 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1220 } 1221 1222 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg, 1223 AllocationOrder &Order, 1224 BlockFrequency &BestCost, 1225 unsigned &NumCands, 1226 bool IgnoreCSR) { 1227 unsigned BestCand = NoCand; 1228 for (MCPhysReg PhysReg : Order) { 1229 assert(PhysReg); 1230 if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg)) 1231 continue; 1232 1233 // Discard bad candidates before we run out of interference cache cursors. 1234 // This will only affect register classes with a lot of registers (>32). 1235 if (NumCands == IntfCache.getMaxCursors()) { 1236 unsigned WorstCount = ~0u; 1237 unsigned Worst = 0; 1238 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1239 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1240 continue; 1241 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1242 if (Count < WorstCount) { 1243 Worst = CandIndex; 1244 WorstCount = Count; 1245 } 1246 } 1247 --NumCands; 1248 GlobalCand[Worst] = GlobalCand[NumCands]; 1249 if (BestCand == NumCands) 1250 BestCand = Worst; 1251 } 1252 1253 if (GlobalCand.size() <= NumCands) 1254 GlobalCand.resize(NumCands+1); 1255 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1256 Cand.reset(IntfCache, PhysReg); 1257 1258 SpillPlacer->prepare(Cand.LiveBundles); 1259 BlockFrequency Cost; 1260 if (!addSplitConstraints(Cand.Intf, Cost)) { 1261 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1262 continue; 1263 } 1264 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1265 MBFI->printBlockFreq(dbgs(), Cost)); 1266 if (Cost >= BestCost) { 1267 LLVM_DEBUG({ 1268 if (BestCand == NoCand) 1269 dbgs() << " worse than no bundles\n"; 1270 else 1271 dbgs() << " worse than " 1272 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1273 }); 1274 continue; 1275 } 1276 if (!growRegion(Cand)) { 1277 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1278 continue; 1279 } 1280 1281 SpillPlacer->finish(); 1282 1283 // No live bundles, defer to splitSingleBlocks(). 1284 if (!Cand.LiveBundles.any()) { 1285 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1286 continue; 1287 } 1288 1289 Cost += calcGlobalSplitCost(Cand, Order); 1290 LLVM_DEBUG({ 1291 dbgs() << ", total = "; 1292 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1293 for (int I : Cand.LiveBundles.set_bits()) 1294 dbgs() << " EB#" << I; 1295 dbgs() << ".\n"; 1296 }); 1297 if (Cost < BestCost) { 1298 BestCand = NumCands; 1299 BestCost = Cost; 1300 } 1301 ++NumCands; 1302 } 1303 1304 return BestCand; 1305 } 1306 1307 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand, 1308 bool HasCompact, 1309 SmallVectorImpl<Register> &NewVRegs) { 1310 SmallVector<unsigned, 8> UsedCands; 1311 // Prepare split editor. 1312 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1313 SE->reset(LREdit, SplitSpillMode); 1314 1315 // Assign all edge bundles to the preferred candidate, or NoCand. 1316 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1317 1318 // Assign bundles for the best candidate region. 1319 if (BestCand != NoCand) { 1320 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1321 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1322 UsedCands.push_back(BestCand); 1323 Cand.IntvIdx = SE->openIntv(); 1324 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1325 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1326 (void)B; 1327 } 1328 } 1329 1330 // Assign bundles for the compact region. 1331 if (HasCompact) { 1332 GlobalSplitCandidate &Cand = GlobalCand.front(); 1333 assert(!Cand.PhysReg && "Compact region has no physreg"); 1334 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1335 UsedCands.push_back(0); 1336 Cand.IntvIdx = SE->openIntv(); 1337 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1338 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1339 (void)B; 1340 } 1341 } 1342 1343 splitAroundRegion(LREdit, UsedCands); 1344 return 0; 1345 } 1346 1347 //===----------------------------------------------------------------------===// 1348 // Per-Block Splitting 1349 //===----------------------------------------------------------------------===// 1350 1351 /// tryBlockSplit - Split a global live range around every block with uses. This 1352 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1353 /// they don't allocate. 1354 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg, 1355 AllocationOrder &Order, 1356 SmallVectorImpl<Register> &NewVRegs) { 1357 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1358 Register Reg = VirtReg.reg(); 1359 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1360 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1361 SE->reset(LREdit, SplitSpillMode); 1362 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1363 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1364 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1365 SE->splitSingleBlock(BI); 1366 } 1367 // No blocks were split. 1368 if (LREdit.empty()) 1369 return 0; 1370 1371 // We did split for some blocks. 1372 SmallVector<unsigned, 8> IntvMap; 1373 SE->finish(&IntvMap); 1374 1375 // Tell LiveDebugVariables about the new ranges. 1376 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1377 1378 // Sort out the new intervals created by splitting. The remainder interval 1379 // goes straight to spilling, the new local ranges get to stay RS_New. 1380 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1381 const LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 1382 if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0) 1383 ExtraInfo->setStage(LI, RS_Spill); 1384 } 1385 1386 if (VerifyEnabled) 1387 MF->verify(this, "After splitting live range around basic blocks"); 1388 return 0; 1389 } 1390 1391 //===----------------------------------------------------------------------===// 1392 // Per-Instruction Splitting 1393 //===----------------------------------------------------------------------===// 1394 1395 /// Get the number of allocatable registers that match the constraints of \p Reg 1396 /// on \p MI and that are also in \p SuperRC. 1397 static unsigned getNumAllocatableRegsForConstraints( 1398 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 1399 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1400 const RegisterClassInfo &RCI) { 1401 assert(SuperRC && "Invalid register class"); 1402 1403 const TargetRegisterClass *ConstrainedRC = 1404 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1405 /* ExploreBundle */ true); 1406 if (!ConstrainedRC) 1407 return 0; 1408 return RCI.getNumAllocatableRegs(ConstrainedRC); 1409 } 1410 1411 /// tryInstructionSplit - Split a live range around individual instructions. 1412 /// This is normally not worthwhile since the spiller is doing essentially the 1413 /// same thing. However, when the live range is in a constrained register 1414 /// class, it may help to insert copies such that parts of the live range can 1415 /// be moved to a larger register class. 1416 /// 1417 /// This is similar to spilling to a larger register class. 1418 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg, 1419 AllocationOrder &Order, 1420 SmallVectorImpl<Register> &NewVRegs) { 1421 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1422 // There is no point to this if there are no larger sub-classes. 1423 if (!RegClassInfo.isProperSubClass(CurRC)) 1424 return 0; 1425 1426 // Always enable split spill mode, since we're effectively spilling to a 1427 // register. 1428 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1429 SE->reset(LREdit, SplitEditor::SM_Size); 1430 1431 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1432 if (Uses.size() <= 1) 1433 return 0; 1434 1435 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 1436 << " individual instrs.\n"); 1437 1438 const TargetRegisterClass *SuperRC = 1439 TRI->getLargestLegalSuperClass(CurRC, *MF); 1440 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 1441 // Split around every non-copy instruction if this split will relax 1442 // the constraints on the virtual register. 1443 // Otherwise, splitting just inserts uncoalescable copies that do not help 1444 // the allocation. 1445 for (const SlotIndex Use : Uses) { 1446 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 1447 if (MI->isFullCopy() || 1448 SuperRCNumAllocatableRegs == 1449 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 1450 TII, TRI, RCI)) { 1451 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 1452 continue; 1453 } 1454 SE->openIntv(); 1455 SlotIndex SegStart = SE->enterIntvBefore(Use); 1456 SlotIndex SegStop = SE->leaveIntvAfter(Use); 1457 SE->useIntv(SegStart, SegStop); 1458 } 1459 1460 if (LREdit.empty()) { 1461 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 1462 return 0; 1463 } 1464 1465 SmallVector<unsigned, 8> IntvMap; 1466 SE->finish(&IntvMap); 1467 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1468 // Assign all new registers to RS_Spill. This was the last chance. 1469 ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1470 return 0; 1471 } 1472 1473 //===----------------------------------------------------------------------===// 1474 // Local Splitting 1475 //===----------------------------------------------------------------------===// 1476 1477 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1478 /// in order to use PhysReg between two entries in SA->UseSlots. 1479 /// 1480 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 1481 /// 1482 void RAGreedy::calcGapWeights(MCRegister PhysReg, 1483 SmallVectorImpl<float> &GapWeight) { 1484 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1485 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1486 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1487 const unsigned NumGaps = Uses.size()-1; 1488 1489 // Start and end points for the interference check. 1490 SlotIndex StartIdx = 1491 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1492 SlotIndex StopIdx = 1493 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1494 1495 GapWeight.assign(NumGaps, 0.0f); 1496 1497 // Add interference from each overlapping register. 1498 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1499 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1500 .checkInterference()) 1501 continue; 1502 1503 // We know that VirtReg is a continuous interval from FirstInstr to 1504 // LastInstr, so we don't need InterferenceQuery. 1505 // 1506 // Interference that overlaps an instruction is counted in both gaps 1507 // surrounding the instruction. The exception is interference before 1508 // StartIdx and after StopIdx. 1509 // 1510 LiveIntervalUnion::SegmentIter IntI = 1511 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1512 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1513 // Skip the gaps before IntI. 1514 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1515 if (++Gap == NumGaps) 1516 break; 1517 if (Gap == NumGaps) 1518 break; 1519 1520 // Update the gaps covered by IntI. 1521 const float weight = IntI.value()->weight(); 1522 for (; Gap != NumGaps; ++Gap) { 1523 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1524 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1525 break; 1526 } 1527 if (Gap == NumGaps) 1528 break; 1529 } 1530 } 1531 1532 // Add fixed interference. 1533 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1534 const LiveRange &LR = LIS->getRegUnit(*Units); 1535 LiveRange::const_iterator I = LR.find(StartIdx); 1536 LiveRange::const_iterator E = LR.end(); 1537 1538 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1539 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1540 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1541 if (++Gap == NumGaps) 1542 break; 1543 if (Gap == NumGaps) 1544 break; 1545 1546 for (; Gap != NumGaps; ++Gap) { 1547 GapWeight[Gap] = huge_valf; 1548 if (Uses[Gap+1].getBaseIndex() >= I->end) 1549 break; 1550 } 1551 if (Gap == NumGaps) 1552 break; 1553 } 1554 } 1555 } 1556 1557 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1558 /// basic block. 1559 /// 1560 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg, 1561 AllocationOrder &Order, 1562 SmallVectorImpl<Register> &NewVRegs) { 1563 // TODO: the function currently only handles a single UseBlock; it should be 1564 // possible to generalize. 1565 if (SA->getUseBlocks().size() != 1) 1566 return 0; 1567 1568 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1569 1570 // Note that it is possible to have an interval that is live-in or live-out 1571 // while only covering a single block - A phi-def can use undef values from 1572 // predecessors, and the block could be a single-block loop. 1573 // We don't bother doing anything clever about such a case, we simply assume 1574 // that the interval is continuous from FirstInstr to LastInstr. We should 1575 // make sure that we don't do anything illegal to such an interval, though. 1576 1577 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1578 if (Uses.size() <= 2) 1579 return 0; 1580 const unsigned NumGaps = Uses.size()-1; 1581 1582 LLVM_DEBUG({ 1583 dbgs() << "tryLocalSplit: "; 1584 for (const auto &Use : Uses) 1585 dbgs() << ' ' << Use; 1586 dbgs() << '\n'; 1587 }); 1588 1589 // If VirtReg is live across any register mask operands, compute a list of 1590 // gaps with register masks. 1591 SmallVector<unsigned, 8> RegMaskGaps; 1592 if (Matrix->checkRegMaskInterference(VirtReg)) { 1593 // Get regmask slots for the whole block. 1594 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1595 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1596 // Constrain to VirtReg's live range. 1597 unsigned RI = 1598 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 1599 unsigned RE = RMS.size(); 1600 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 1601 // Look for Uses[I] <= RMS <= Uses[I + 1]. 1602 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 1603 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 1604 continue; 1605 // Skip a regmask on the same instruction as the last use. It doesn't 1606 // overlap the live range. 1607 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 1608 break; 1609 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 1610 << Uses[I + 1]); 1611 RegMaskGaps.push_back(I); 1612 // Advance ri to the next gap. A regmask on one of the uses counts in 1613 // both gaps. 1614 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 1615 ++RI; 1616 } 1617 LLVM_DEBUG(dbgs() << '\n'); 1618 } 1619 1620 // Since we allow local split results to be split again, there is a risk of 1621 // creating infinite loops. It is tempting to require that the new live 1622 // ranges have less instructions than the original. That would guarantee 1623 // convergence, but it is too strict. A live range with 3 instructions can be 1624 // split 2+3 (including the COPY), and we want to allow that. 1625 // 1626 // Instead we use these rules: 1627 // 1628 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1629 // noop split, of course). 1630 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1631 // the new ranges must have fewer instructions than before the split. 1632 // 3. New ranges with the same number of instructions are marked RS_Split2, 1633 // smaller ranges are marked RS_New. 1634 // 1635 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1636 // excessive splitting and infinite loops. 1637 // 1638 bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2; 1639 1640 // Best split candidate. 1641 unsigned BestBefore = NumGaps; 1642 unsigned BestAfter = 0; 1643 float BestDiff = 0; 1644 1645 const float blockFreq = 1646 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1647 (1.0f / MBFI->getEntryFreq()); 1648 SmallVector<float, 8> GapWeight; 1649 1650 for (MCPhysReg PhysReg : Order) { 1651 assert(PhysReg); 1652 // Keep track of the largest spill weight that would need to be evicted in 1653 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 1654 calcGapWeights(PhysReg, GapWeight); 1655 1656 // Remove any gaps with regmask clobbers. 1657 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1658 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 1659 GapWeight[RegMaskGaps[I]] = huge_valf; 1660 1661 // Try to find the best sequence of gaps to close. 1662 // The new spill weight must be larger than any gap interference. 1663 1664 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1665 unsigned SplitBefore = 0, SplitAfter = 1; 1666 1667 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1668 // It is the spill weight that needs to be evicted. 1669 float MaxGap = GapWeight[0]; 1670 1671 while (true) { 1672 // Live before/after split? 1673 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1674 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1675 1676 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 1677 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 1678 1679 // Stop before the interval gets so big we wouldn't be making progress. 1680 if (!LiveBefore && !LiveAfter) { 1681 LLVM_DEBUG(dbgs() << " all\n"); 1682 break; 1683 } 1684 // Should the interval be extended or shrunk? 1685 bool Shrink = true; 1686 1687 // How many gaps would the new range have? 1688 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1689 1690 // Legally, without causing looping? 1691 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1692 1693 if (Legal && MaxGap < huge_valf) { 1694 // Estimate the new spill weight. Each instruction reads or writes the 1695 // register. Conservatively assume there are no read-modify-write 1696 // instructions. 1697 // 1698 // Try to guess the size of the new interval. 1699 const float EstWeight = normalizeSpillWeight( 1700 blockFreq * (NewGaps + 1), 1701 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1702 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1703 1); 1704 // Would this split be possible to allocate? 1705 // Never allocate all gaps, we wouldn't be making progress. 1706 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 1707 if (EstWeight * Hysteresis >= MaxGap) { 1708 Shrink = false; 1709 float Diff = EstWeight - MaxGap; 1710 if (Diff > BestDiff) { 1711 LLVM_DEBUG(dbgs() << " (best)"); 1712 BestDiff = Hysteresis * Diff; 1713 BestBefore = SplitBefore; 1714 BestAfter = SplitAfter; 1715 } 1716 } 1717 } 1718 1719 // Try to shrink. 1720 if (Shrink) { 1721 if (++SplitBefore < SplitAfter) { 1722 LLVM_DEBUG(dbgs() << " shrink\n"); 1723 // Recompute the max when necessary. 1724 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1725 MaxGap = GapWeight[SplitBefore]; 1726 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 1727 MaxGap = std::max(MaxGap, GapWeight[I]); 1728 } 1729 continue; 1730 } 1731 MaxGap = 0; 1732 } 1733 1734 // Try to extend the interval. 1735 if (SplitAfter >= NumGaps) { 1736 LLVM_DEBUG(dbgs() << " end\n"); 1737 break; 1738 } 1739 1740 LLVM_DEBUG(dbgs() << " extend\n"); 1741 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1742 } 1743 } 1744 1745 // Didn't find any candidates? 1746 if (BestBefore == NumGaps) 1747 return 0; 1748 1749 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 1750 << Uses[BestAfter] << ", " << BestDiff << ", " 1751 << (BestAfter - BestBefore + 1) << " instrs\n"); 1752 1753 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1754 SE->reset(LREdit); 1755 1756 SE->openIntv(); 1757 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1758 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1759 SE->useIntv(SegStart, SegStop); 1760 SmallVector<unsigned, 8> IntvMap; 1761 SE->finish(&IntvMap); 1762 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1763 // If the new range has the same number of instructions as before, mark it as 1764 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1765 // leave the new intervals as RS_New so they can compete. 1766 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1767 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1768 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1769 if (NewGaps >= NumGaps) { 1770 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 1771 assert(!ProgressRequired && "Didn't make progress when it was required."); 1772 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 1773 if (IntvMap[I] == 1) { 1774 ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 1775 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 1776 } 1777 LLVM_DEBUG(dbgs() << '\n'); 1778 } 1779 ++NumLocalSplits; 1780 1781 return 0; 1782 } 1783 1784 //===----------------------------------------------------------------------===// 1785 // Live Range Splitting 1786 //===----------------------------------------------------------------------===// 1787 1788 /// trySplit - Try to split VirtReg or one of its interferences, making it 1789 /// assignable. 1790 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1791 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order, 1792 SmallVectorImpl<Register> &NewVRegs, 1793 const SmallVirtRegSet &FixedRegisters) { 1794 // Ranges must be Split2 or less. 1795 if (ExtraInfo->getStage(VirtReg) >= RS_Spill) 1796 return 0; 1797 1798 // Local intervals are handled separately. 1799 if (LIS->intervalIsInOneMBB(VirtReg)) { 1800 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 1801 TimerGroupDescription, TimePassesIsEnabled); 1802 SA->analyze(&VirtReg); 1803 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1804 if (PhysReg || !NewVRegs.empty()) 1805 return PhysReg; 1806 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1807 } 1808 1809 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 1810 TimerGroupDescription, TimePassesIsEnabled); 1811 1812 SA->analyze(&VirtReg); 1813 1814 // First try to split around a region spanning multiple blocks. RS_Split2 1815 // ranges already made dubious progress with region splitting, so they go 1816 // straight to single block splitting. 1817 if (ExtraInfo->getStage(VirtReg) < RS_Split2) { 1818 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1819 if (PhysReg || !NewVRegs.empty()) 1820 return PhysReg; 1821 } 1822 1823 // Then isolate blocks. 1824 return tryBlockSplit(VirtReg, Order, NewVRegs); 1825 } 1826 1827 //===----------------------------------------------------------------------===// 1828 // Last Chance Recoloring 1829 //===----------------------------------------------------------------------===// 1830 1831 /// Return true if \p reg has any tied def operand. 1832 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 1833 for (const MachineOperand &MO : MRI->def_operands(reg)) 1834 if (MO.isTied()) 1835 return true; 1836 1837 return false; 1838 } 1839 1840 /// mayRecolorAllInterferences - Check if the virtual registers that 1841 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 1842 /// recolored to free \p PhysReg. 1843 /// When true is returned, \p RecoloringCandidates has been augmented with all 1844 /// the live intervals that need to be recolored in order to free \p PhysReg 1845 /// for \p VirtReg. 1846 /// \p FixedRegisters contains all the virtual registers that cannot be 1847 /// recolored. 1848 bool RAGreedy::mayRecolorAllInterferences( 1849 MCRegister PhysReg, const LiveInterval &VirtReg, 1850 SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) { 1851 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1852 1853 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1854 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1855 // If there is LastChanceRecoloringMaxInterference or more interferences, 1856 // chances are one would not be recolorable. 1857 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= 1858 LastChanceRecoloringMaxInterference && 1859 !ExhaustiveSearch) { 1860 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 1861 CutOffInfo |= CO_Interf; 1862 return false; 1863 } 1864 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 1865 // If Intf is done and sit on the same register class as VirtReg, 1866 // it would not be recolorable as it is in the same state as VirtReg. 1867 // However, if VirtReg has tied defs and Intf doesn't, then 1868 // there is still a point in examining if it can be recolorable. 1869 // 1870 // Also, don't try to evict a register which is assigned to an overlapping 1871 // super register. 1872 // 1873 // TODO: Can we evict an interfering subset of the subregisters? 1874 if (((ExtraInfo->getStage(*Intf) == RS_Done && 1875 (MRI->getRegClass(Intf->reg()) == CurRC || 1876 TRI->regsOverlap(VRM->getPhys(Intf->reg()), PhysReg))) && 1877 !(hasTiedDef(MRI, VirtReg.reg()) && 1878 !hasTiedDef(MRI, Intf->reg()))) || 1879 FixedRegisters.count(Intf->reg())) { 1880 LLVM_DEBUG( 1881 dbgs() << "Early abort: the interference is not recolorable.\n"); 1882 return false; 1883 } 1884 RecoloringCandidates.insert(Intf); 1885 } 1886 } 1887 return true; 1888 } 1889 1890 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 1891 /// its interferences. 1892 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 1893 /// virtual register that was using it. The recoloring process may recursively 1894 /// use the last chance recoloring. Therefore, when a virtual register has been 1895 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 1896 /// be last-chance-recolored again during this recoloring "session". 1897 /// E.g., 1898 /// Let 1899 /// vA can use {R1, R2 } 1900 /// vB can use { R2, R3} 1901 /// vC can use {R1 } 1902 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 1903 /// instance) and they all interfere. 1904 /// 1905 /// vA is assigned R1 1906 /// vB is assigned R2 1907 /// vC tries to evict vA but vA is already done. 1908 /// Regular register allocation fails. 1909 /// 1910 /// Last chance recoloring kicks in: 1911 /// vC does as if vA was evicted => vC uses R1. 1912 /// vC is marked as fixed. 1913 /// vA needs to find a color. 1914 /// None are available. 1915 /// vA cannot evict vC: vC is a fixed virtual register now. 1916 /// vA does as if vB was evicted => vA uses R2. 1917 /// vB needs to find a color. 1918 /// R3 is available. 1919 /// Recoloring => vC = R1, vA = R2, vB = R3 1920 /// 1921 /// \p Order defines the preferred allocation order for \p VirtReg. 1922 /// \p NewRegs will contain any new virtual register that have been created 1923 /// (split, spill) during the process and that must be assigned. 1924 /// \p FixedRegisters contains all the virtual registers that cannot be 1925 /// recolored. 1926 /// \p Depth gives the current depth of the last chance recoloring. 1927 /// \return a physical register that can be used for VirtReg or ~0u if none 1928 /// exists. 1929 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg, 1930 AllocationOrder &Order, 1931 SmallVectorImpl<Register> &NewVRegs, 1932 SmallVirtRegSet &FixedRegisters, 1933 unsigned Depth) { 1934 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 1935 return ~0u; 1936 1937 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 1938 // Ranges must be Done. 1939 assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 1940 "Last chance recoloring should really be last chance"); 1941 // Set the max depth to LastChanceRecoloringMaxDepth. 1942 // We may want to reconsider that if we end up with a too large search space 1943 // for target with hundreds of registers. 1944 // Indeed, in that case we may want to cut the search space earlier. 1945 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 1946 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 1947 CutOffInfo |= CO_Depth; 1948 return ~0u; 1949 } 1950 1951 // Set of Live intervals that will need to be recolored. 1952 SmallLISet RecoloringCandidates; 1953 // Record the original mapping virtual register to physical register in case 1954 // the recoloring fails. 1955 DenseMap<Register, MCRegister> VirtRegToPhysReg; 1956 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 1957 // this recoloring "session". 1958 assert(!FixedRegisters.count(VirtReg.reg())); 1959 FixedRegisters.insert(VirtReg.reg()); 1960 SmallVector<Register, 4> CurrentNewVRegs; 1961 1962 for (MCRegister PhysReg : Order) { 1963 assert(PhysReg.isValid()); 1964 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 1965 << printReg(PhysReg, TRI) << '\n'); 1966 RecoloringCandidates.clear(); 1967 VirtRegToPhysReg.clear(); 1968 CurrentNewVRegs.clear(); 1969 1970 // It is only possible to recolor virtual register interference. 1971 if (Matrix->checkInterference(VirtReg, PhysReg) > 1972 LiveRegMatrix::IK_VirtReg) { 1973 LLVM_DEBUG( 1974 dbgs() << "Some interferences are not with virtual registers.\n"); 1975 1976 continue; 1977 } 1978 1979 // Early give up on this PhysReg if it is obvious we cannot recolor all 1980 // the interferences. 1981 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 1982 FixedRegisters)) { 1983 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 1984 continue; 1985 } 1986 1987 // RecoloringCandidates contains all the virtual registers that interfer 1988 // with VirtReg on PhysReg (or one of its aliases). 1989 // Enqueue them for recoloring and perform the actual recoloring. 1990 PQueue RecoloringQueue; 1991 for (const LiveInterval *RC : RecoloringCandidates) { 1992 Register ItVirtReg = RC->reg(); 1993 enqueue(RecoloringQueue, RC); 1994 assert(VRM->hasPhys(ItVirtReg) && 1995 "Interferences are supposed to be with allocated variables"); 1996 1997 // Record the current allocation. 1998 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 1999 // unset the related struct. 2000 Matrix->unassign(*RC); 2001 } 2002 2003 // Do as if VirtReg was assigned to PhysReg so that the underlying 2004 // recoloring has the right information about the interferes and 2005 // available colors. 2006 Matrix->assign(VirtReg, PhysReg); 2007 2008 // Save the current recoloring state. 2009 // If we cannot recolor all the interferences, we will have to start again 2010 // at this point for the next physical register. 2011 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2012 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2013 FixedRegisters, Depth)) { 2014 // Push the queued vregs into the main queue. 2015 for (Register NewVReg : CurrentNewVRegs) 2016 NewVRegs.push_back(NewVReg); 2017 // Do not mess up with the global assignment process. 2018 // I.e., VirtReg must be unassigned. 2019 Matrix->unassign(VirtReg); 2020 return PhysReg; 2021 } 2022 2023 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2024 << printReg(PhysReg, TRI) << '\n'); 2025 2026 // The recoloring attempt failed, undo the changes. 2027 FixedRegisters = SaveFixedRegisters; 2028 Matrix->unassign(VirtReg); 2029 2030 // For a newly created vreg which is also in RecoloringCandidates, 2031 // don't add it to NewVRegs because its physical register will be restored 2032 // below. Other vregs in CurrentNewVRegs are created by calling 2033 // selectOrSplit and should be added into NewVRegs. 2034 for (Register &R : CurrentNewVRegs) { 2035 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2036 continue; 2037 NewVRegs.push_back(R); 2038 } 2039 2040 for (const LiveInterval *RC : RecoloringCandidates) { 2041 Register ItVirtReg = RC->reg(); 2042 if (VRM->hasPhys(ItVirtReg)) 2043 Matrix->unassign(*RC); 2044 MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2045 Matrix->assign(*RC, ItPhysReg); 2046 } 2047 } 2048 2049 // Last chance recoloring did not worked either, give up. 2050 return ~0u; 2051 } 2052 2053 /// tryRecoloringCandidates - Try to assign a new color to every register 2054 /// in \RecoloringQueue. 2055 /// \p NewRegs will contain any new virtual register created during the 2056 /// recoloring process. 2057 /// \p FixedRegisters[in/out] contains all the registers that have been 2058 /// recolored. 2059 /// \return true if all virtual registers in RecoloringQueue were successfully 2060 /// recolored, false otherwise. 2061 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2062 SmallVectorImpl<Register> &NewVRegs, 2063 SmallVirtRegSet &FixedRegisters, 2064 unsigned Depth) { 2065 while (!RecoloringQueue.empty()) { 2066 const LiveInterval *LI = dequeue(RecoloringQueue); 2067 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2068 MCRegister PhysReg = 2069 selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2070 // When splitting happens, the live-range may actually be empty. 2071 // In that case, this is okay to continue the recoloring even 2072 // if we did not find an alternative color for it. Indeed, 2073 // there will not be anything to color for LI in the end. 2074 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2075 return false; 2076 2077 if (!PhysReg) { 2078 assert(LI->empty() && "Only empty live-range do not require a register"); 2079 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2080 << " succeeded. Empty LI.\n"); 2081 continue; 2082 } 2083 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2084 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2085 2086 Matrix->assign(*LI, PhysReg); 2087 FixedRegisters.insert(LI->reg()); 2088 } 2089 return true; 2090 } 2091 2092 //===----------------------------------------------------------------------===// 2093 // Main Entry Point 2094 //===----------------------------------------------------------------------===// 2095 2096 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg, 2097 SmallVectorImpl<Register> &NewVRegs) { 2098 CutOffInfo = CO_None; 2099 LLVMContext &Ctx = MF->getFunction().getContext(); 2100 SmallVirtRegSet FixedRegisters; 2101 MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2102 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2103 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2104 if (CutOffEncountered == CO_Depth) 2105 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2106 "reached. Use -fexhaustive-register-search to skip " 2107 "cutoffs"); 2108 else if (CutOffEncountered == CO_Interf) 2109 Ctx.emitError("register allocation failed: maximum interference for " 2110 "recoloring reached. Use -fexhaustive-register-search " 2111 "to skip cutoffs"); 2112 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2113 Ctx.emitError("register allocation failed: maximum interference and " 2114 "depth for recoloring reached. Use " 2115 "-fexhaustive-register-search to skip cutoffs"); 2116 } 2117 return Reg; 2118 } 2119 2120 /// Using a CSR for the first time has a cost because it causes push|pop 2121 /// to be added to prologue|epilogue. Splitting a cold section of the live 2122 /// range can have lower cost than using the CSR for the first time; 2123 /// Spilling a live range in the cold path can have lower cost than using 2124 /// the CSR for the first time. Returns the physical register if we decide 2125 /// to use the CSR; otherwise return 0. 2126 MCRegister RAGreedy::tryAssignCSRFirstTime( 2127 const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg, 2128 uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) { 2129 if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2130 // We choose spill over using the CSR for the first time if the spill cost 2131 // is lower than CSRCost. 2132 SA->analyze(&VirtReg); 2133 if (calcSpillCost() >= CSRCost) 2134 return PhysReg; 2135 2136 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2137 // we will not use a callee-saved register in tryEvict. 2138 CostPerUseLimit = 1; 2139 return 0; 2140 } 2141 if (ExtraInfo->getStage(VirtReg) < RS_Split) { 2142 // We choose pre-splitting over using the CSR for the first time if 2143 // the cost of splitting is lower than CSRCost. 2144 SA->analyze(&VirtReg); 2145 unsigned NumCands = 0; 2146 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2147 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2148 NumCands, true /*IgnoreCSR*/); 2149 if (BestCand == NoCand) 2150 // Use the CSR if we can't find a region split below CSRCost. 2151 return PhysReg; 2152 2153 // Perform the actual pre-splitting. 2154 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2155 return 0; 2156 } 2157 return PhysReg; 2158 } 2159 2160 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) { 2161 // Do not keep invalid information around. 2162 SetOfBrokenHints.remove(&LI); 2163 } 2164 2165 void RAGreedy::initializeCSRCost() { 2166 // We use the larger one out of the command-line option and the value report 2167 // by TRI. 2168 CSRCost = BlockFrequency( 2169 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2170 if (!CSRCost.getFrequency()) 2171 return; 2172 2173 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2174 uint64_t ActualEntry = MBFI->getEntryFreq(); 2175 if (!ActualEntry) { 2176 CSRCost = 0; 2177 return; 2178 } 2179 uint64_t FixedEntry = 1 << 14; 2180 if (ActualEntry < FixedEntry) 2181 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2182 else if (ActualEntry <= UINT32_MAX) 2183 // Invert the fraction and divide. 2184 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2185 else 2186 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2187 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2188 } 2189 2190 /// Collect the hint info for \p Reg. 2191 /// The results are stored into \p Out. 2192 /// \p Out is not cleared before being populated. 2193 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2194 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2195 if (!Instr.isFullCopy()) 2196 continue; 2197 // Look for the other end of the copy. 2198 Register OtherReg = Instr.getOperand(0).getReg(); 2199 if (OtherReg == Reg) { 2200 OtherReg = Instr.getOperand(1).getReg(); 2201 if (OtherReg == Reg) 2202 continue; 2203 } 2204 // Get the current assignment. 2205 MCRegister OtherPhysReg = 2206 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2207 // Push the collected information. 2208 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2209 OtherPhysReg)); 2210 } 2211 } 2212 2213 /// Using the given \p List, compute the cost of the broken hints if 2214 /// \p PhysReg was used. 2215 /// \return The cost of \p List for \p PhysReg. 2216 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2217 MCRegister PhysReg) { 2218 BlockFrequency Cost = 0; 2219 for (const HintInfo &Info : List) { 2220 if (Info.PhysReg != PhysReg) 2221 Cost += Info.Freq; 2222 } 2223 return Cost; 2224 } 2225 2226 /// Using the register assigned to \p VirtReg, try to recolor 2227 /// all the live ranges that are copy-related with \p VirtReg. 2228 /// The recoloring is then propagated to all the live-ranges that have 2229 /// been recolored and so on, until no more copies can be coalesced or 2230 /// it is not profitable. 2231 /// For a given live range, profitability is determined by the sum of the 2232 /// frequencies of the non-identity copies it would introduce with the old 2233 /// and new register. 2234 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) { 2235 // We have a broken hint, check if it is possible to fix it by 2236 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2237 // some register and PhysReg may be available for the other live-ranges. 2238 SmallSet<Register, 4> Visited; 2239 SmallVector<unsigned, 2> RecoloringCandidates; 2240 HintsInfo Info; 2241 Register Reg = VirtReg.reg(); 2242 MCRegister PhysReg = VRM->getPhys(Reg); 2243 // Start the recoloring algorithm from the input live-interval, then 2244 // it will propagate to the ones that are copy-related with it. 2245 Visited.insert(Reg); 2246 RecoloringCandidates.push_back(Reg); 2247 2248 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2249 << '(' << printReg(PhysReg, TRI) << ")\n"); 2250 2251 do { 2252 Reg = RecoloringCandidates.pop_back_val(); 2253 2254 // We cannot recolor physical register. 2255 if (Register::isPhysicalRegister(Reg)) 2256 continue; 2257 2258 // This may be a skipped class 2259 if (!VRM->hasPhys(Reg)) { 2260 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2261 "We have an unallocated variable which should have been handled"); 2262 continue; 2263 } 2264 2265 // Get the live interval mapped with this virtual register to be able 2266 // to check for the interference with the new color. 2267 LiveInterval &LI = LIS->getInterval(Reg); 2268 MCRegister CurrPhys = VRM->getPhys(Reg); 2269 // Check that the new color matches the register class constraints and 2270 // that it is free for this live range. 2271 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2272 Matrix->checkInterference(LI, PhysReg))) 2273 continue; 2274 2275 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2276 << ") is recolorable.\n"); 2277 2278 // Gather the hint info. 2279 Info.clear(); 2280 collectHintInfo(Reg, Info); 2281 // Check if recoloring the live-range will increase the cost of the 2282 // non-identity copies. 2283 if (CurrPhys != PhysReg) { 2284 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2285 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2286 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2287 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2288 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2289 << '\n'); 2290 if (OldCopiesCost < NewCopiesCost) { 2291 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2292 continue; 2293 } 2294 // At this point, the cost is either cheaper or equal. If it is 2295 // equal, we consider this is profitable because it may expose 2296 // more recoloring opportunities. 2297 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2298 // Recolor the live-range. 2299 Matrix->unassign(LI); 2300 Matrix->assign(LI, PhysReg); 2301 } 2302 // Push all copy-related live-ranges to keep reconciling the broken 2303 // hints. 2304 for (const HintInfo &HI : Info) { 2305 if (Visited.insert(HI.Reg).second) 2306 RecoloringCandidates.push_back(HI.Reg); 2307 } 2308 } while (!RecoloringCandidates.empty()); 2309 } 2310 2311 /// Try to recolor broken hints. 2312 /// Broken hints may be repaired by recoloring when an evicted variable 2313 /// freed up a register for a larger live-range. 2314 /// Consider the following example: 2315 /// BB1: 2316 /// a = 2317 /// b = 2318 /// BB2: 2319 /// ... 2320 /// = b 2321 /// = a 2322 /// Let us assume b gets split: 2323 /// BB1: 2324 /// a = 2325 /// b = 2326 /// BB2: 2327 /// c = b 2328 /// ... 2329 /// d = c 2330 /// = d 2331 /// = a 2332 /// Because of how the allocation work, b, c, and d may be assigned different 2333 /// colors. Now, if a gets evicted later: 2334 /// BB1: 2335 /// a = 2336 /// st a, SpillSlot 2337 /// b = 2338 /// BB2: 2339 /// c = b 2340 /// ... 2341 /// d = c 2342 /// = d 2343 /// e = ld SpillSlot 2344 /// = e 2345 /// This is likely that we can assign the same register for b, c, and d, 2346 /// getting rid of 2 copies. 2347 void RAGreedy::tryHintsRecoloring() { 2348 for (const LiveInterval *LI : SetOfBrokenHints) { 2349 assert(Register::isVirtualRegister(LI->reg()) && 2350 "Recoloring is possible only for virtual registers"); 2351 // Some dead defs may be around (e.g., because of debug uses). 2352 // Ignore those. 2353 if (!VRM->hasPhys(LI->reg())) 2354 continue; 2355 tryHintRecoloring(*LI); 2356 } 2357 } 2358 2359 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg, 2360 SmallVectorImpl<Register> &NewVRegs, 2361 SmallVirtRegSet &FixedRegisters, 2362 unsigned Depth) { 2363 uint8_t CostPerUseLimit = uint8_t(~0u); 2364 // First try assigning a free register. 2365 auto Order = 2366 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 2367 if (MCRegister PhysReg = 2368 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 2369 // If VirtReg got an assignment, the eviction info is no longer relevant. 2370 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2371 // When NewVRegs is not empty, we may have made decisions such as evicting 2372 // a virtual register, go with the earlier decisions and use the physical 2373 // register. 2374 if (CSRCost.getFrequency() && 2375 EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) { 2376 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2377 CostPerUseLimit, NewVRegs); 2378 if (CSRReg || !NewVRegs.empty()) 2379 // Return now if we decide to use a CSR or create new vregs due to 2380 // pre-splitting. 2381 return CSRReg; 2382 } else 2383 return PhysReg; 2384 } 2385 2386 LiveRangeStage Stage = ExtraInfo->getStage(VirtReg); 2387 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 2388 << ExtraInfo->getCascade(VirtReg.reg()) << '\n'); 2389 2390 // Try to evict a less worthy live range, but only for ranges from the primary 2391 // queue. The RS_Split ranges already failed to do this, and they should not 2392 // get a second chance until they have been split. 2393 if (Stage != RS_Split) 2394 if (Register PhysReg = 2395 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 2396 FixedRegisters)) { 2397 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 2398 // If VirtReg has a hint and that hint is broken record this 2399 // virtual register as a recoloring candidate for broken hint. 2400 // Indeed, since we evicted a variable in its neighborhood it is 2401 // likely we can at least partially recolor some of the 2402 // copy-related live-ranges. 2403 if (Hint && Hint != PhysReg) 2404 SetOfBrokenHints.insert(&VirtReg); 2405 // If VirtReg eviction someone, the eviction info for it as an evictee is 2406 // no longer relevant. 2407 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2408 return PhysReg; 2409 } 2410 2411 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2412 2413 // The first time we see a live range, don't try to split or spill. 2414 // Wait until the second time, when all smaller ranges have been allocated. 2415 // This gives a better picture of the interference to split around. 2416 if (Stage < RS_Split) { 2417 ExtraInfo->setStage(VirtReg, RS_Split); 2418 LLVM_DEBUG(dbgs() << "wait for second round\n"); 2419 NewVRegs.push_back(VirtReg.reg()); 2420 return 0; 2421 } 2422 2423 if (Stage < RS_Spill) { 2424 // Try splitting VirtReg or interferences. 2425 unsigned NewVRegSizeBefore = NewVRegs.size(); 2426 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 2427 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 2428 // If VirtReg got split, the eviction info is no longer relevant. 2429 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2430 return PhysReg; 2431 } 2432 } 2433 2434 // If we couldn't allocate a register from spilling, there is probably some 2435 // invalid inline assembly. The base class will report it. 2436 if (Stage >= RS_Done || !VirtReg.isSpillable()) 2437 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2438 Depth); 2439 2440 // Finally spill VirtReg itself. 2441 if ((EnableDeferredSpilling || 2442 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 2443 ExtraInfo->getStage(VirtReg) < RS_Memory) { 2444 // TODO: This is experimental and in particular, we do not model 2445 // the live range splitting done by spilling correctly. 2446 // We would need a deep integration with the spiller to do the 2447 // right thing here. Anyway, that is still good for early testing. 2448 ExtraInfo->setStage(VirtReg, RS_Memory); 2449 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 2450 NewVRegs.push_back(VirtReg.reg()); 2451 } else { 2452 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2453 TimerGroupDescription, TimePassesIsEnabled); 2454 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2455 spiller().spill(LRE); 2456 ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2457 2458 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 2459 // the new regs are kept in LDV (still mapping to the old register), until 2460 // we rewrite spilled locations in LDV at a later stage. 2461 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 2462 2463 if (VerifyEnabled) 2464 MF->verify(this, "After spilling"); 2465 } 2466 2467 // The live virtual register requesting allocation was spilled, so tell 2468 // the caller not to allocate anything during this round. 2469 return 0; 2470 } 2471 2472 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 2473 using namespace ore; 2474 if (Spills) { 2475 R << NV("NumSpills", Spills) << " spills "; 2476 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 2477 } 2478 if (FoldedSpills) { 2479 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 2480 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 2481 << " total folded spills cost "; 2482 } 2483 if (Reloads) { 2484 R << NV("NumReloads", Reloads) << " reloads "; 2485 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 2486 } 2487 if (FoldedReloads) { 2488 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 2489 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 2490 << " total folded reloads cost "; 2491 } 2492 if (ZeroCostFoldedReloads) 2493 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 2494 << " zero cost folded reloads "; 2495 if (Copies) { 2496 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 2497 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 2498 } 2499 } 2500 2501 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 2502 RAGreedyStats Stats; 2503 const MachineFrameInfo &MFI = MF->getFrameInfo(); 2504 int FI; 2505 2506 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 2507 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 2508 A->getPseudoValue())->getFrameIndex()); 2509 }; 2510 auto isPatchpointInstr = [](const MachineInstr &MI) { 2511 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 2512 MI.getOpcode() == TargetOpcode::STACKMAP || 2513 MI.getOpcode() == TargetOpcode::STATEPOINT; 2514 }; 2515 for (MachineInstr &MI : MBB) { 2516 if (MI.isCopy()) { 2517 MachineOperand &Dest = MI.getOperand(0); 2518 MachineOperand &Src = MI.getOperand(1); 2519 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 2520 Src.getReg().isVirtual()) 2521 ++Stats.Copies; 2522 continue; 2523 } 2524 2525 SmallVector<const MachineMemOperand *, 2> Accesses; 2526 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2527 ++Stats.Reloads; 2528 continue; 2529 } 2530 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2531 ++Stats.Spills; 2532 continue; 2533 } 2534 if (TII->hasLoadFromStackSlot(MI, Accesses) && 2535 llvm::any_of(Accesses, isSpillSlotAccess)) { 2536 if (!isPatchpointInstr(MI)) { 2537 Stats.FoldedReloads += Accesses.size(); 2538 continue; 2539 } 2540 // For statepoint there may be folded and zero cost folded stack reloads. 2541 std::pair<unsigned, unsigned> NonZeroCostRange = 2542 TII->getPatchpointUnfoldableRange(MI); 2543 SmallSet<unsigned, 16> FoldedReloads; 2544 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 2545 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 2546 MachineOperand &MO = MI.getOperand(Idx); 2547 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 2548 continue; 2549 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 2550 FoldedReloads.insert(MO.getIndex()); 2551 else 2552 ZeroCostFoldedReloads.insert(MO.getIndex()); 2553 } 2554 // If stack slot is used in folded reload it is not zero cost then. 2555 for (unsigned Slot : FoldedReloads) 2556 ZeroCostFoldedReloads.erase(Slot); 2557 Stats.FoldedReloads += FoldedReloads.size(); 2558 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 2559 continue; 2560 } 2561 Accesses.clear(); 2562 if (TII->hasStoreToStackSlot(MI, Accesses) && 2563 llvm::any_of(Accesses, isSpillSlotAccess)) { 2564 Stats.FoldedSpills += Accesses.size(); 2565 } 2566 } 2567 // Set cost of collected statistic by multiplication to relative frequency of 2568 // this basic block. 2569 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 2570 Stats.ReloadsCost = RelFreq * Stats.Reloads; 2571 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 2572 Stats.SpillsCost = RelFreq * Stats.Spills; 2573 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 2574 Stats.CopiesCost = RelFreq * Stats.Copies; 2575 return Stats; 2576 } 2577 2578 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 2579 RAGreedyStats Stats; 2580 2581 // Sum up the spill and reloads in subloops. 2582 for (MachineLoop *SubLoop : *L) 2583 Stats.add(reportStats(SubLoop)); 2584 2585 for (MachineBasicBlock *MBB : L->getBlocks()) 2586 // Handle blocks that were not included in subloops. 2587 if (Loops->getLoopFor(MBB) == L) 2588 Stats.add(computeStats(*MBB)); 2589 2590 if (!Stats.isEmpty()) { 2591 using namespace ore; 2592 2593 ORE->emit([&]() { 2594 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 2595 L->getStartLoc(), L->getHeader()); 2596 Stats.report(R); 2597 R << "generated in loop"; 2598 return R; 2599 }); 2600 } 2601 return Stats; 2602 } 2603 2604 void RAGreedy::reportStats() { 2605 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 2606 return; 2607 RAGreedyStats Stats; 2608 for (MachineLoop *L : *Loops) 2609 Stats.add(reportStats(L)); 2610 // Process non-loop blocks. 2611 for (MachineBasicBlock &MBB : *MF) 2612 if (!Loops->getLoopFor(&MBB)) 2613 Stats.add(computeStats(MBB)); 2614 if (!Stats.isEmpty()) { 2615 using namespace ore; 2616 2617 ORE->emit([&]() { 2618 DebugLoc Loc; 2619 if (auto *SP = MF->getFunction().getSubprogram()) 2620 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 2621 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 2622 &MF->front()); 2623 Stats.report(R); 2624 R << "generated in function"; 2625 return R; 2626 }); 2627 } 2628 } 2629 2630 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2631 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2632 << "********** Function: " << mf.getName() << '\n'); 2633 2634 MF = &mf; 2635 TRI = MF->getSubtarget().getRegisterInfo(); 2636 TII = MF->getSubtarget().getInstrInfo(); 2637 RCI.runOnMachineFunction(mf); 2638 2639 if (VerifyEnabled) 2640 MF->verify(this, "Before greedy register allocator"); 2641 2642 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2643 getAnalysis<LiveIntervals>(), 2644 getAnalysis<LiveRegMatrix>()); 2645 Indexes = &getAnalysis<SlotIndexes>(); 2646 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2647 DomTree = &getAnalysis<MachineDominatorTree>(); 2648 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2649 Loops = &getAnalysis<MachineLoopInfo>(); 2650 Bundles = &getAnalysis<EdgeBundles>(); 2651 SpillPlacer = &getAnalysis<SpillPlacement>(); 2652 DebugVars = &getAnalysis<LiveDebugVariables>(); 2653 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2654 2655 initializeCSRCost(); 2656 2657 RegCosts = TRI->getRegisterCosts(*MF); 2658 2659 ExtraInfo.emplace(); 2660 EvictAdvisor = 2661 getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this); 2662 2663 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 2664 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 2665 2666 VRAI->calculateSpillWeightsAndHints(); 2667 2668 LLVM_DEBUG(LIS->dump()); 2669 2670 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2671 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 2672 2673 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2674 GlobalCand.resize(32); // This will grow as needed. 2675 SetOfBrokenHints.clear(); 2676 LastEvicted.clear(); 2677 2678 allocatePhysRegs(); 2679 tryHintsRecoloring(); 2680 2681 if (VerifyEnabled) 2682 MF->verify(this, "Before post optimization"); 2683 postOptimization(); 2684 reportStats(); 2685 2686 releaseMemory(); 2687 return true; 2688 } 2689