1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "SplitKit.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <queue>
77 #include <tuple>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "regalloc"
83 
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
86 STATISTIC(NumEvicted,      "Number of interferences evicted");
87 
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89     "split-spill-mode", cl::Hidden,
90     cl::desc("Spill mode for splitting live ranges"),
91     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94     cl::init(SplitEditor::SM_Speed));
95 
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98                              cl::desc("Last chance recoloring max depth"),
99                              cl::init(5));
100 
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102     "lcr-max-interf", cl::Hidden,
103     cl::desc("Last chance recoloring maximum number of considered"
104              " interference at a time"),
105     cl::init(8));
106 
107 static cl::opt<bool> ExhaustiveSearch(
108     "exhaustive-register-search", cl::NotHidden,
109     cl::desc("Exhaustive Search for registers bypassing the depth "
110              "and interference cutoffs of last chance recoloring"),
111     cl::Hidden);
112 
113 static cl::opt<bool> EnableLocalReassignment(
114     "enable-local-reassign", cl::Hidden,
115     cl::desc("Local reassignment can yield better allocation decisions, but "
116              "may be compile time intensive"),
117     cl::init(false));
118 
119 static cl::opt<bool> EnableDeferredSpilling(
120     "enable-deferred-spilling", cl::Hidden,
121     cl::desc("Instead of spilling a variable right away, defer the actual "
122              "code insertion to the end of the allocation. That way the "
123              "allocator might still find a suitable coloring for this "
124              "variable because of other evicted variables."),
125     cl::init(false));
126 
127 // FIXME: Find a good default for this flag and remove the flag.
128 static cl::opt<unsigned>
129 CSRFirstTimeCost("regalloc-csr-first-time-cost",
130               cl::desc("Cost for first time use of callee-saved register."),
131               cl::init(0), cl::Hidden);
132 
133 static cl::opt<bool> ConsiderLocalIntervalCost(
134     "consider-local-interval-cost", cl::Hidden,
135     cl::desc("Consider the cost of local intervals created by a split "
136              "candidate when choosing the best split candidate."),
137     cl::init(false));
138 
139 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
140                                        createGreedyRegisterAllocator);
141 
142 namespace {
143 
144 class RAGreedy : public MachineFunctionPass,
145                  public RegAllocBase,
146                  private LiveRangeEdit::Delegate {
147   // Convenient shortcuts.
148   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
149   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
150   using SmallVirtRegSet = SmallSet<unsigned, 16>;
151 
152   // context
153   MachineFunction *MF;
154 
155   // Shortcuts to some useful interface.
156   const TargetInstrInfo *TII;
157   const TargetRegisterInfo *TRI;
158   RegisterClassInfo RCI;
159 
160   // analyses
161   SlotIndexes *Indexes;
162   MachineBlockFrequencyInfo *MBFI;
163   MachineDominatorTree *DomTree;
164   MachineLoopInfo *Loops;
165   MachineOptimizationRemarkEmitter *ORE;
166   EdgeBundles *Bundles;
167   SpillPlacement *SpillPlacer;
168   LiveDebugVariables *DebugVars;
169   AliasAnalysis *AA;
170 
171   // state
172   std::unique_ptr<Spiller> SpillerInstance;
173   PQueue Queue;
174   unsigned NextCascade;
175   std::unique_ptr<VirtRegAuxInfo> VRAI;
176 
177   // Live ranges pass through a number of stages as we try to allocate them.
178   // Some of the stages may also create new live ranges:
179   //
180   // - Region splitting.
181   // - Per-block splitting.
182   // - Local splitting.
183   // - Spilling.
184   //
185   // Ranges produced by one of the stages skip the previous stages when they are
186   // dequeued. This improves performance because we can skip interference checks
187   // that are unlikely to give any results. It also guarantees that the live
188   // range splitting algorithm terminates, something that is otherwise hard to
189   // ensure.
190   enum LiveRangeStage {
191     /// Newly created live range that has never been queued.
192     RS_New,
193 
194     /// Only attempt assignment and eviction. Then requeue as RS_Split.
195     RS_Assign,
196 
197     /// Attempt live range splitting if assignment is impossible.
198     RS_Split,
199 
200     /// Attempt more aggressive live range splitting that is guaranteed to make
201     /// progress.  This is used for split products that may not be making
202     /// progress.
203     RS_Split2,
204 
205     /// Live range will be spilled.  No more splitting will be attempted.
206     RS_Spill,
207 
208 
209     /// Live range is in memory. Because of other evictions, it might get moved
210     /// in a register in the end.
211     RS_Memory,
212 
213     /// There is nothing more we can do to this live range.  Abort compilation
214     /// if it can't be assigned.
215     RS_Done
216   };
217 
218   // Enum CutOffStage to keep a track whether the register allocation failed
219   // because of the cutoffs encountered in last chance recoloring.
220   // Note: This is used as bitmask. New value should be next power of 2.
221   enum CutOffStage {
222     // No cutoffs encountered
223     CO_None = 0,
224 
225     // lcr-max-depth cutoff encountered
226     CO_Depth = 1,
227 
228     // lcr-max-interf cutoff encountered
229     CO_Interf = 2
230   };
231 
232   uint8_t CutOffInfo;
233 
234 #ifndef NDEBUG
235   static const char *const StageName[];
236 #endif
237 
238   // RegInfo - Keep additional information about each live range.
239   struct RegInfo {
240     LiveRangeStage Stage = RS_New;
241 
242     // Cascade - Eviction loop prevention. See canEvictInterference().
243     unsigned Cascade = 0;
244 
245     RegInfo() = default;
246   };
247 
248   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
249 
250   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
251     return ExtraRegInfo[VirtReg.reg()].Stage;
252   }
253 
254   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
255     ExtraRegInfo.resize(MRI->getNumVirtRegs());
256     ExtraRegInfo[VirtReg.reg()].Stage = Stage;
257   }
258 
259   template<typename Iterator>
260   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
261     ExtraRegInfo.resize(MRI->getNumVirtRegs());
262     for (;Begin != End; ++Begin) {
263       unsigned Reg = *Begin;
264       if (ExtraRegInfo[Reg].Stage == RS_New)
265         ExtraRegInfo[Reg].Stage = NewStage;
266     }
267   }
268 
269   /// Cost of evicting interference.
270   struct EvictionCost {
271     unsigned BrokenHints = 0; ///< Total number of broken hints.
272     float MaxWeight = 0;      ///< Maximum spill weight evicted.
273 
274     EvictionCost() = default;
275 
276     bool isMax() const { return BrokenHints == ~0u; }
277 
278     void setMax() { BrokenHints = ~0u; }
279 
280     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
281 
282     bool operator<(const EvictionCost &O) const {
283       return std::tie(BrokenHints, MaxWeight) <
284              std::tie(O.BrokenHints, O.MaxWeight);
285     }
286   };
287 
288   /// EvictionTrack - Keeps track of past evictions in order to optimize region
289   /// split decision.
290   class EvictionTrack {
291 
292   public:
293     using EvictorInfo =
294         std::pair<unsigned /* evictor */, unsigned /* physreg */>;
295     using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>;
296 
297   private:
298     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
299     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
300     EvicteeInfo Evictees;
301 
302   public:
303     /// Clear all eviction information.
304     void clear() { Evictees.clear(); }
305 
306     ///  Clear eviction information for the given evictee Vreg.
307     /// E.g. when Vreg get's a new allocation, the old eviction info is no
308     /// longer relevant.
309     /// \param Evictee The evictee Vreg for whom we want to clear collected
310     /// eviction info.
311     void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); }
312 
313     /// Track new eviction.
314     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
315     /// \param PhysReg The physical register Evictee was evicted from.
316     /// \param Evictor The evictor Vreg that evicted Evictee.
317     /// \param Evictee The evictee Vreg.
318     void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) {
319       Evictees[Evictee].first = Evictor;
320       Evictees[Evictee].second = PhysReg;
321     }
322 
323     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
324     /// \param Evictee The evictee vreg.
325     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
326     /// nobody has evicted Evictee from PhysReg.
327     EvictorInfo getEvictor(unsigned Evictee) {
328       if (Evictees.count(Evictee)) {
329         return Evictees[Evictee];
330       }
331 
332       return EvictorInfo(0, 0);
333     }
334   };
335 
336   // Keeps track of past evictions in order to optimize region split decision.
337   EvictionTrack LastEvicted;
338 
339   // splitting state.
340   std::unique_ptr<SplitAnalysis> SA;
341   std::unique_ptr<SplitEditor> SE;
342 
343   /// Cached per-block interference maps
344   InterferenceCache IntfCache;
345 
346   /// All basic blocks where the current register has uses.
347   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
348 
349   /// Global live range splitting candidate info.
350   struct GlobalSplitCandidate {
351     // Register intended for assignment, or 0.
352     unsigned PhysReg;
353 
354     // SplitKit interval index for this candidate.
355     unsigned IntvIdx;
356 
357     // Interference for PhysReg.
358     InterferenceCache::Cursor Intf;
359 
360     // Bundles where this candidate should be live.
361     BitVector LiveBundles;
362     SmallVector<unsigned, 8> ActiveBlocks;
363 
364     void reset(InterferenceCache &Cache, MCRegister Reg) {
365       PhysReg = Reg;
366       IntvIdx = 0;
367       Intf.setPhysReg(Cache, Reg);
368       LiveBundles.clear();
369       ActiveBlocks.clear();
370     }
371 
372     // Set B[I] = C for every live bundle where B[I] was NoCand.
373     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
374       unsigned Count = 0;
375       for (unsigned I : LiveBundles.set_bits())
376         if (B[I] == NoCand) {
377           B[I] = C;
378           Count++;
379         }
380       return Count;
381     }
382   };
383 
384   /// Candidate info for each PhysReg in AllocationOrder.
385   /// This vector never shrinks, but grows to the size of the largest register
386   /// class.
387   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
388 
389   enum : unsigned { NoCand = ~0u };
390 
391   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
392   /// NoCand which indicates the stack interval.
393   SmallVector<unsigned, 32> BundleCand;
394 
395   /// Callee-save register cost, calculated once per machine function.
396   BlockFrequency CSRCost;
397 
398   /// Run or not the local reassignment heuristic. This information is
399   /// obtained from the TargetSubtargetInfo.
400   bool EnableLocalReassign;
401 
402   /// Enable or not the consideration of the cost of local intervals created
403   /// by a split candidate when choosing the best split candidate.
404   bool EnableAdvancedRASplitCost;
405 
406   /// Set of broken hints that may be reconciled later because of eviction.
407   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
408 
409 public:
410   RAGreedy();
411 
412   /// Return the pass name.
413   StringRef getPassName() const override { return "Greedy Register Allocator"; }
414 
415   /// RAGreedy analysis usage.
416   void getAnalysisUsage(AnalysisUsage &AU) const override;
417   void releaseMemory() override;
418   Spiller &spiller() override { return *SpillerInstance; }
419   void enqueue(LiveInterval *LI) override;
420   LiveInterval *dequeue() override;
421   Register selectOrSplit(LiveInterval&, SmallVectorImpl<Register>&) override;
422   void aboutToRemoveInterval(LiveInterval &) override;
423 
424   /// Perform register allocation.
425   bool runOnMachineFunction(MachineFunction &mf) override;
426 
427   MachineFunctionProperties getRequiredProperties() const override {
428     return MachineFunctionProperties().set(
429         MachineFunctionProperties::Property::NoPHIs);
430   }
431 
432   static char ID;
433 
434 private:
435   Register selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &,
436                              SmallVirtRegSet &, unsigned = 0);
437 
438   bool LRE_CanEraseVirtReg(unsigned) override;
439   void LRE_WillShrinkVirtReg(unsigned) override;
440   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
441   void enqueue(PQueue &CurQueue, LiveInterval *LI);
442   LiveInterval *dequeue(PQueue &CurQueue);
443 
444   BlockFrequency calcSpillCost();
445   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
446   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
447   bool growRegion(GlobalSplitCandidate &Cand);
448   bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand,
449                                   unsigned BBNumber,
450                                   const AllocationOrder &Order);
451   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
452                                GlobalSplitCandidate &Cand, unsigned BBNumber,
453                                const AllocationOrder &Order);
454   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
455                                      const AllocationOrder &Order,
456                                      bool *CanCauseEvictionChain);
457   bool calcCompactRegion(GlobalSplitCandidate&);
458   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
459   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
460   Register canReassign(LiveInterval &VirtReg, Register PrevReg);
461   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
462   bool canEvictInterference(LiveInterval&, Register, bool, EvictionCost&,
463                             const SmallVirtRegSet&);
464   bool canEvictInterferenceInRange(LiveInterval &VirtReg, Register oPhysReg,
465                                    SlotIndex Start, SlotIndex End,
466                                    EvictionCost &MaxCost);
467   unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
468                                     LiveInterval &VirtReg, SlotIndex Start,
469                                     SlotIndex End, float *BestEvictWeight);
470   void evictInterference(LiveInterval&, Register,
471                          SmallVectorImpl<Register>&);
472   bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
473                                   SmallLISet &RecoloringCandidates,
474                                   const SmallVirtRegSet &FixedRegisters);
475 
476   Register tryAssign(LiveInterval&, AllocationOrder&,
477                      SmallVectorImpl<Register>&,
478                      const SmallVirtRegSet&);
479   unsigned tryEvict(LiveInterval&, AllocationOrder&,
480                     SmallVectorImpl<Register>&, unsigned,
481                     const SmallVirtRegSet&);
482   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
483                           SmallVectorImpl<Register>&);
484   /// Calculate cost of region splitting.
485   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
486                                     AllocationOrder &Order,
487                                     BlockFrequency &BestCost,
488                                     unsigned &NumCands, bool IgnoreCSR,
489                                     bool *CanCauseEvictionChain = nullptr);
490   /// Perform region splitting.
491   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
492                          bool HasCompact,
493                          SmallVectorImpl<Register> &NewVRegs);
494   /// Check other options before using a callee-saved register for the first
495   /// time.
496   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
497                                  Register PhysReg, unsigned &CostPerUseLimit,
498                                  SmallVectorImpl<Register> &NewVRegs);
499   void initializeCSRCost();
500   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
501                          SmallVectorImpl<Register>&);
502   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
503                                SmallVectorImpl<Register>&);
504   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
505     SmallVectorImpl<Register>&);
506   unsigned trySplit(LiveInterval&, AllocationOrder&,
507                     SmallVectorImpl<Register>&,
508                     const SmallVirtRegSet&);
509   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
510                                    SmallVectorImpl<Register> &,
511                                    SmallVirtRegSet &, unsigned);
512   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &,
513                                SmallVirtRegSet &, unsigned);
514   void tryHintRecoloring(LiveInterval &);
515   void tryHintsRecoloring();
516 
517   /// Model the information carried by one end of a copy.
518   struct HintInfo {
519     /// The frequency of the copy.
520     BlockFrequency Freq;
521     /// The virtual register or physical register.
522     Register Reg;
523     /// Its currently assigned register.
524     /// In case of a physical register Reg == PhysReg.
525     MCRegister PhysReg;
526 
527     HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg)
528         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
529   };
530   using HintsInfo = SmallVector<HintInfo, 4>;
531 
532   BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
533   void collectHintInfo(unsigned, HintsInfo &);
534 
535   bool isUnusedCalleeSavedReg(MCRegister PhysReg) const;
536 
537   /// Compute and report the number of spills and reloads for a loop.
538   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
539                                     unsigned &FoldedReloads, unsigned &Spills,
540                                     unsigned &FoldedSpills);
541 
542   /// Report the number of spills and reloads for each loop.
543   void reportNumberOfSplillsReloads() {
544     for (MachineLoop *L : *Loops) {
545       unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
546       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
547                                    FoldedSpills);
548     }
549   }
550 };
551 
552 } // end anonymous namespace
553 
554 char RAGreedy::ID = 0;
555 char &llvm::RAGreedyID = RAGreedy::ID;
556 
557 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
558                 "Greedy Register Allocator", false, false)
559 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
560 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
561 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
562 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
563 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
564 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
565 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
566 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
567 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
568 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
569 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
570 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
571 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
572 INITIALIZE_PASS_END(RAGreedy, "greedy",
573                 "Greedy Register Allocator", false, false)
574 
575 #ifndef NDEBUG
576 const char *const RAGreedy::StageName[] = {
577     "RS_New",
578     "RS_Assign",
579     "RS_Split",
580     "RS_Split2",
581     "RS_Spill",
582     "RS_Memory",
583     "RS_Done"
584 };
585 #endif
586 
587 // Hysteresis to use when comparing floats.
588 // This helps stabilize decisions based on float comparisons.
589 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
590 
591 FunctionPass* llvm::createGreedyRegisterAllocator() {
592   return new RAGreedy();
593 }
594 
595 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
596 }
597 
598 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
599   AU.setPreservesCFG();
600   AU.addRequired<MachineBlockFrequencyInfo>();
601   AU.addPreserved<MachineBlockFrequencyInfo>();
602   AU.addRequired<AAResultsWrapperPass>();
603   AU.addPreserved<AAResultsWrapperPass>();
604   AU.addRequired<LiveIntervals>();
605   AU.addPreserved<LiveIntervals>();
606   AU.addRequired<SlotIndexes>();
607   AU.addPreserved<SlotIndexes>();
608   AU.addRequired<LiveDebugVariables>();
609   AU.addPreserved<LiveDebugVariables>();
610   AU.addRequired<LiveStacks>();
611   AU.addPreserved<LiveStacks>();
612   AU.addRequired<MachineDominatorTree>();
613   AU.addPreserved<MachineDominatorTree>();
614   AU.addRequired<MachineLoopInfo>();
615   AU.addPreserved<MachineLoopInfo>();
616   AU.addRequired<VirtRegMap>();
617   AU.addPreserved<VirtRegMap>();
618   AU.addRequired<LiveRegMatrix>();
619   AU.addPreserved<LiveRegMatrix>();
620   AU.addRequired<EdgeBundles>();
621   AU.addRequired<SpillPlacement>();
622   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
623   MachineFunctionPass::getAnalysisUsage(AU);
624 }
625 
626 //===----------------------------------------------------------------------===//
627 //                     LiveRangeEdit delegate methods
628 //===----------------------------------------------------------------------===//
629 
630 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
631   LiveInterval &LI = LIS->getInterval(VirtReg);
632   if (VRM->hasPhys(VirtReg)) {
633     Matrix->unassign(LI);
634     aboutToRemoveInterval(LI);
635     return true;
636   }
637   // Unassigned virtreg is probably in the priority queue.
638   // RegAllocBase will erase it after dequeueing.
639   // Nonetheless, clear the live-range so that the debug
640   // dump will show the right state for that VirtReg.
641   LI.clear();
642   return false;
643 }
644 
645 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
646   if (!VRM->hasPhys(VirtReg))
647     return;
648 
649   // Register is assigned, put it back on the queue for reassignment.
650   LiveInterval &LI = LIS->getInterval(VirtReg);
651   Matrix->unassign(LI);
652   enqueue(&LI);
653 }
654 
655 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
656   // Cloning a register we haven't even heard about yet?  Just ignore it.
657   if (!ExtraRegInfo.inBounds(Old))
658     return;
659 
660   // LRE may clone a virtual register because dead code elimination causes it to
661   // be split into connected components. The new components are much smaller
662   // than the original, so they should get a new chance at being assigned.
663   // same stage as the parent.
664   ExtraRegInfo[Old].Stage = RS_Assign;
665   ExtraRegInfo.grow(New);
666   ExtraRegInfo[New] = ExtraRegInfo[Old];
667 }
668 
669 void RAGreedy::releaseMemory() {
670   SpillerInstance.reset();
671   ExtraRegInfo.clear();
672   GlobalCand.clear();
673 }
674 
675 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
676 
677 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
678   // Prioritize live ranges by size, assigning larger ranges first.
679   // The queue holds (size, reg) pairs.
680   const unsigned Size = LI->getSize();
681   const unsigned Reg = LI->reg();
682   assert(Register::isVirtualRegister(Reg) &&
683          "Can only enqueue virtual registers");
684   unsigned Prio;
685 
686   ExtraRegInfo.grow(Reg);
687   if (ExtraRegInfo[Reg].Stage == RS_New)
688     ExtraRegInfo[Reg].Stage = RS_Assign;
689 
690   if (ExtraRegInfo[Reg].Stage == RS_Split) {
691     // Unsplit ranges that couldn't be allocated immediately are deferred until
692     // everything else has been allocated.
693     Prio = Size;
694   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
695     // Memory operand should be considered last.
696     // Change the priority such that Memory operand are assigned in
697     // the reverse order that they came in.
698     // TODO: Make this a member variable and probably do something about hints.
699     static unsigned MemOp = 0;
700     Prio = MemOp++;
701   } else {
702     // Giant live ranges fall back to the global assignment heuristic, which
703     // prevents excessive spilling in pathological cases.
704     bool ReverseLocal = TRI->reverseLocalAssignment();
705     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
706     bool ForceGlobal = !ReverseLocal &&
707       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
708 
709     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
710         LIS->intervalIsInOneMBB(*LI)) {
711       // Allocate original local ranges in linear instruction order. Since they
712       // are singly defined, this produces optimal coloring in the absence of
713       // global interference and other constraints.
714       if (!ReverseLocal)
715         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
716       else {
717         // Allocating bottom up may allow many short LRGs to be assigned first
718         // to one of the cheap registers. This could be much faster for very
719         // large blocks on targets with many physical registers.
720         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
721       }
722       Prio |= RC.AllocationPriority << 24;
723     } else {
724       // Allocate global and split ranges in long->short order. Long ranges that
725       // don't fit should be spilled (or split) ASAP so they don't create
726       // interference.  Mark a bit to prioritize global above local ranges.
727       Prio = (1u << 29) + Size;
728     }
729     // Mark a higher bit to prioritize global and local above RS_Split.
730     Prio |= (1u << 31);
731 
732     // Boost ranges that have a physical register hint.
733     if (VRM->hasKnownPreference(Reg))
734       Prio |= (1u << 30);
735   }
736   // The virtual register number is a tie breaker for same-sized ranges.
737   // Give lower vreg numbers higher priority to assign them first.
738   CurQueue.push(std::make_pair(Prio, ~Reg));
739 }
740 
741 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
742 
743 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
744   if (CurQueue.empty())
745     return nullptr;
746   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
747   CurQueue.pop();
748   return LI;
749 }
750 
751 //===----------------------------------------------------------------------===//
752 //                            Direct Assignment
753 //===----------------------------------------------------------------------===//
754 
755 /// tryAssign - Try to assign VirtReg to an available register.
756 Register RAGreedy::tryAssign(LiveInterval &VirtReg,
757                              AllocationOrder &Order,
758                              SmallVectorImpl<Register> &NewVRegs,
759                              const SmallVirtRegSet &FixedRegisters) {
760   Register PhysReg;
761   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
762     assert(*I);
763     if (!Matrix->checkInterference(VirtReg, *I)) {
764       if (I.isHint())
765         return *I;
766       else
767         PhysReg = *I;
768     }
769   }
770   if (!PhysReg.isValid())
771     return PhysReg;
772 
773   // PhysReg is available, but there may be a better choice.
774 
775   // If we missed a simple hint, try to cheaply evict interference from the
776   // preferred register.
777   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
778     if (Order.isHint(Hint)) {
779       LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n');
780       EvictionCost MaxCost;
781       MaxCost.setBrokenHints(1);
782       if (canEvictInterference(VirtReg, Hint, true, MaxCost, FixedRegisters)) {
783         evictInterference(VirtReg, Hint, NewVRegs);
784         return Hint;
785       }
786       // Record the missed hint, we may be able to recover
787       // at the end if the surrounding allocation changed.
788       SetOfBrokenHints.insert(&VirtReg);
789     }
790 
791   // Try to evict interference from a cheaper alternative.
792   unsigned Cost = TRI->getCostPerUse(PhysReg);
793 
794   // Most registers have 0 additional cost.
795   if (!Cost)
796     return PhysReg;
797 
798   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
799                     << Cost << '\n');
800   Register CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
801   return CheapReg ? CheapReg : PhysReg;
802 }
803 
804 //===----------------------------------------------------------------------===//
805 //                         Interference eviction
806 //===----------------------------------------------------------------------===//
807 
808 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) {
809   auto Order =
810       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
811   MCRegister PhysReg;
812   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
813     if ((*I).id() == PrevReg.id())
814       continue;
815 
816     MCRegUnitIterator Units(*I, TRI);
817     for (; Units.isValid(); ++Units) {
818       // Instantiate a "subquery", not to be confused with the Queries array.
819       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
820       if (subQ.checkInterference())
821         break;
822     }
823     // If no units have interference, break out with the current PhysReg.
824     if (!Units.isValid())
825       PhysReg = *I;
826   }
827   if (PhysReg)
828     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
829                       << printReg(PrevReg, TRI) << " to "
830                       << printReg(PhysReg, TRI) << '\n');
831   return PhysReg;
832 }
833 
834 /// shouldEvict - determine if A should evict the assigned live range B. The
835 /// eviction policy defined by this function together with the allocation order
836 /// defined by enqueue() decides which registers ultimately end up being split
837 /// and spilled.
838 ///
839 /// Cascade numbers are used to prevent infinite loops if this function is a
840 /// cyclic relation.
841 ///
842 /// @param A          The live range to be assigned.
843 /// @param IsHint     True when A is about to be assigned to its preferred
844 ///                   register.
845 /// @param B          The live range to be evicted.
846 /// @param BreaksHint True when B is already assigned to its preferred register.
847 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
848                            LiveInterval &B, bool BreaksHint) {
849   bool CanSplit = getStage(B) < RS_Spill;
850 
851   // Be fairly aggressive about following hints as long as the evictee can be
852   // split.
853   if (CanSplit && IsHint && !BreaksHint)
854     return true;
855 
856   if (A.weight() > B.weight()) {
857     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n');
858     return true;
859   }
860   return false;
861 }
862 
863 /// canEvictInterference - Return true if all interferences between VirtReg and
864 /// PhysReg can be evicted.
865 ///
866 /// @param VirtReg Live range that is about to be assigned.
867 /// @param PhysReg Desired register for assignment.
868 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
869 /// @param MaxCost Only look for cheaper candidates and update with new cost
870 ///                when returning true.
871 /// @returns True when interference can be evicted cheaper than MaxCost.
872 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, Register PhysReg,
873                                     bool IsHint, EvictionCost &MaxCost,
874                                     const SmallVirtRegSet &FixedRegisters) {
875   // It is only possible to evict virtual register interference.
876   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
877     return false;
878 
879   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
880 
881   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
882   // involved in an eviction before. If a cascade number was assigned, deny
883   // evicting anything with the same or a newer cascade number. This prevents
884   // infinite eviction loops.
885   //
886   // This works out so a register without a cascade number is allowed to evict
887   // anything, and it can be evicted by anything.
888   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
889   if (!Cascade)
890     Cascade = NextCascade;
891 
892   EvictionCost Cost;
893   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
894     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
895     // If there is 10 or more interferences, chances are one is heavier.
896     if (Q.collectInterferingVRegs(10) >= 10)
897       return false;
898 
899     // Check if any interfering live range is heavier than MaxWeight.
900     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
901       assert(Register::isVirtualRegister(Intf->reg()) &&
902              "Only expecting virtual register interference from query");
903 
904       // Do not allow eviction of a virtual register if we are in the middle
905       // of last-chance recoloring and this virtual register is one that we
906       // have scavenged a physical register for.
907       if (FixedRegisters.count(Intf->reg()))
908         return false;
909 
910       // Never evict spill products. They cannot split or spill.
911       if (getStage(*Intf) == RS_Done)
912         return false;
913       // Once a live range becomes small enough, it is urgent that we find a
914       // register for it. This is indicated by an infinite spill weight. These
915       // urgent live ranges get to evict almost anything.
916       //
917       // Also allow urgent evictions of unspillable ranges from a strictly
918       // larger allocation order.
919       bool Urgent =
920           !VirtReg.isSpillable() &&
921           (Intf->isSpillable() ||
922            RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
923                RegClassInfo.getNumAllocatableRegs(
924                    MRI->getRegClass(Intf->reg())));
925       // Only evict older cascades or live ranges without a cascade.
926       unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade;
927       if (Cascade <= IntfCascade) {
928         if (!Urgent)
929           return false;
930         // We permit breaking cascades for urgent evictions. It should be the
931         // last resort, though, so make it really expensive.
932         Cost.BrokenHints += 10;
933       }
934       // Would this break a satisfied hint?
935       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
936       // Update eviction cost.
937       Cost.BrokenHints += BreaksHint;
938       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
939       // Abort if this would be too expensive.
940       if (!(Cost < MaxCost))
941         return false;
942       if (Urgent)
943         continue;
944       // Apply the eviction policy for non-urgent evictions.
945       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
946         return false;
947       // If !MaxCost.isMax(), then we're just looking for a cheap register.
948       // Evicting another local live range in this case could lead to suboptimal
949       // coloring.
950       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
951           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
952         return false;
953       }
954     }
955   }
956   MaxCost = Cost;
957   return true;
958 }
959 
960 /// Return true if all interferences between VirtReg and PhysReg between
961 /// Start and End can be evicted.
962 ///
963 /// \param VirtReg Live range that is about to be assigned.
964 /// \param PhysReg Desired register for assignment.
965 /// \param Start   Start of range to look for interferences.
966 /// \param End     End of range to look for interferences.
967 /// \param MaxCost Only look for cheaper candidates and update with new cost
968 ///                when returning true.
969 /// \return True when interference can be evicted cheaper than MaxCost.
970 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
971                                            Register PhysReg, SlotIndex Start,
972                                            SlotIndex End,
973                                            EvictionCost &MaxCost) {
974   EvictionCost Cost;
975 
976   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
977     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
978 
979     // Check if any interfering live range is heavier than MaxWeight.
980     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
981       // Check if interference overlast the segment in interest.
982       if (!Intf->overlaps(Start, End))
983         continue;
984 
985       // Cannot evict non virtual reg interference.
986       if (!Register::isVirtualRegister(Intf->reg()))
987         return false;
988       // Never evict spill products. They cannot split or spill.
989       if (getStage(*Intf) == RS_Done)
990         return false;
991 
992       // Would this break a satisfied hint?
993       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
994       // Update eviction cost.
995       Cost.BrokenHints += BreaksHint;
996       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
997       // Abort if this would be too expensive.
998       if (!(Cost < MaxCost))
999         return false;
1000     }
1001   }
1002 
1003   if (Cost.MaxWeight == 0)
1004     return false;
1005 
1006   MaxCost = Cost;
1007   return true;
1008 }
1009 
1010 /// Return the physical register that will be best
1011 /// candidate for eviction by a local split interval that will be created
1012 /// between Start and End.
1013 ///
1014 /// \param Order            The allocation order
1015 /// \param VirtReg          Live range that is about to be assigned.
1016 /// \param Start            Start of range to look for interferences
1017 /// \param End              End of range to look for interferences
1018 /// \param BestEvictweight  The eviction cost of that eviction
1019 /// \return The PhysReg which is the best candidate for eviction and the
1020 /// eviction cost in BestEvictweight
1021 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1022                                             LiveInterval &VirtReg,
1023                                             SlotIndex Start, SlotIndex End,
1024                                             float *BestEvictweight) {
1025   EvictionCost BestEvictCost;
1026   BestEvictCost.setMax();
1027   BestEvictCost.MaxWeight = VirtReg.weight();
1028   unsigned BestEvicteePhys = 0;
1029 
1030   // Go over all physical registers and find the best candidate for eviction
1031   for (auto PhysReg : Order.getOrder()) {
1032 
1033     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1034                                      BestEvictCost))
1035       continue;
1036 
1037     // Best so far.
1038     BestEvicteePhys = PhysReg;
1039   }
1040   *BestEvictweight = BestEvictCost.MaxWeight;
1041   return BestEvicteePhys;
1042 }
1043 
1044 /// evictInterference - Evict any interferring registers that prevent VirtReg
1045 /// from being assigned to Physreg. This assumes that canEvictInterference
1046 /// returned true.
1047 void RAGreedy::evictInterference(LiveInterval &VirtReg, Register PhysReg,
1048                                  SmallVectorImpl<Register> &NewVRegs) {
1049   // Make sure that VirtReg has a cascade number, and assign that cascade
1050   // number to every evicted register. These live ranges than then only be
1051   // evicted by a newer cascade, preventing infinite loops.
1052   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
1053   if (!Cascade)
1054     Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++;
1055 
1056   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1057                     << " interference: Cascade " << Cascade << '\n');
1058 
1059   // Collect all interfering virtregs first.
1060   SmallVector<LiveInterval*, 8> Intfs;
1061   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1062     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1063     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1064     // should be fast, we may need to recalculate if when different physregs
1065     // overlap the same register unit so we had different SubRanges queried
1066     // against it.
1067     Q.collectInterferingVRegs();
1068     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1069     Intfs.append(IVR.begin(), IVR.end());
1070   }
1071 
1072   // Evict them second. This will invalidate the queries.
1073   for (LiveInterval *Intf : Intfs) {
1074     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1075     if (!VRM->hasPhys(Intf->reg()))
1076       continue;
1077 
1078     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
1079 
1080     Matrix->unassign(*Intf);
1081     assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade ||
1082             VirtReg.isSpillable() < Intf->isSpillable()) &&
1083            "Cannot decrease cascade number, illegal eviction");
1084     ExtraRegInfo[Intf->reg()].Cascade = Cascade;
1085     ++NumEvicted;
1086     NewVRegs.push_back(Intf->reg());
1087   }
1088 }
1089 
1090 /// Returns true if the given \p PhysReg is a callee saved register and has not
1091 /// been used for allocation yet.
1092 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
1093   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1094   if (!CSR)
1095     return false;
1096 
1097   return !Matrix->isPhysRegUsed(PhysReg);
1098 }
1099 
1100 /// tryEvict - Try to evict all interferences for a physreg.
1101 /// @param  VirtReg Currently unassigned virtual register.
1102 /// @param  Order   Physregs to try.
1103 /// @return         Physreg to assign VirtReg, or 0.
1104 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
1105                             AllocationOrder &Order,
1106                             SmallVectorImpl<Register> &NewVRegs,
1107                             unsigned CostPerUseLimit,
1108                             const SmallVirtRegSet &FixedRegisters) {
1109   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1110                      TimePassesIsEnabled);
1111 
1112   // Keep track of the cheapest interference seen so far.
1113   EvictionCost BestCost;
1114   BestCost.setMax();
1115   unsigned BestPhys = 0;
1116   unsigned OrderLimit = Order.getOrder().size();
1117 
1118   // When we are just looking for a reduced cost per use, don't break any
1119   // hints, and only evict smaller spill weights.
1120   if (CostPerUseLimit < ~0u) {
1121     BestCost.BrokenHints = 0;
1122     BestCost.MaxWeight = VirtReg.weight();
1123 
1124     // Check of any registers in RC are below CostPerUseLimit.
1125     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
1126     unsigned MinCost = RegClassInfo.getMinCost(RC);
1127     if (MinCost >= CostPerUseLimit) {
1128       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1129                         << MinCost << ", no cheaper registers to be found.\n");
1130       return 0;
1131     }
1132 
1133     // It is normal for register classes to have a long tail of registers with
1134     // the same cost. We don't need to look at them if they're too expensive.
1135     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
1136       OrderLimit = RegClassInfo.getLastCostChange(RC);
1137       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1138                         << " regs.\n");
1139     }
1140   }
1141 
1142   for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
1143        ++I) {
1144     MCRegister PhysReg = *I;
1145     assert(PhysReg);
1146     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
1147       continue;
1148     // The first use of a callee-saved register in a function has cost 1.
1149     // Don't start using a CSR when the CostPerUseLimit is low.
1150     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1151       LLVM_DEBUG(
1152           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1153                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1154                  << '\n');
1155       continue;
1156     }
1157 
1158     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1159                               FixedRegisters))
1160       continue;
1161 
1162     // Best so far.
1163     BestPhys = PhysReg;
1164 
1165     // Stop if the hint can be used.
1166     if (I.isHint())
1167       break;
1168   }
1169 
1170   if (!BestPhys)
1171     return 0;
1172 
1173   evictInterference(VirtReg, BestPhys, NewVRegs);
1174   return BestPhys;
1175 }
1176 
1177 //===----------------------------------------------------------------------===//
1178 //                              Region Splitting
1179 //===----------------------------------------------------------------------===//
1180 
1181 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1182 /// interference pattern in Physreg and its aliases. Add the constraints to
1183 /// SpillPlacement and return the static cost of this split in Cost, assuming
1184 /// that all preferences in SplitConstraints are met.
1185 /// Return false if there are no bundles with positive bias.
1186 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1187                                    BlockFrequency &Cost) {
1188   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1189 
1190   // Reset interference dependent info.
1191   SplitConstraints.resize(UseBlocks.size());
1192   BlockFrequency StaticCost = 0;
1193   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1194     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1195     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1196 
1197     BC.Number = BI.MBB->getNumber();
1198     Intf.moveToBlock(BC.Number);
1199     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1200     BC.Exit = (BI.LiveOut &&
1201                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1202                   ? SpillPlacement::PrefReg
1203                   : SpillPlacement::DontCare;
1204     BC.ChangesValue = BI.FirstDef.isValid();
1205 
1206     if (!Intf.hasInterference())
1207       continue;
1208 
1209     // Number of spill code instructions to insert.
1210     unsigned Ins = 0;
1211 
1212     // Interference for the live-in value.
1213     if (BI.LiveIn) {
1214       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1215         BC.Entry = SpillPlacement::MustSpill;
1216         ++Ins;
1217       } else if (Intf.first() < BI.FirstInstr) {
1218         BC.Entry = SpillPlacement::PrefSpill;
1219         ++Ins;
1220       } else if (Intf.first() < BI.LastInstr) {
1221         ++Ins;
1222       }
1223 
1224       // Abort if the spill cannot be inserted at the MBB' start
1225       if (((BC.Entry == SpillPlacement::MustSpill) ||
1226            (BC.Entry == SpillPlacement::PrefSpill)) &&
1227           SlotIndex::isEarlierInstr(BI.FirstInstr,
1228                                     SA->getFirstSplitPoint(BC.Number)))
1229         return false;
1230     }
1231 
1232     // Interference for the live-out value.
1233     if (BI.LiveOut) {
1234       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1235         BC.Exit = SpillPlacement::MustSpill;
1236         ++Ins;
1237       } else if (Intf.last() > BI.LastInstr) {
1238         BC.Exit = SpillPlacement::PrefSpill;
1239         ++Ins;
1240       } else if (Intf.last() > BI.FirstInstr) {
1241         ++Ins;
1242       }
1243     }
1244 
1245     // Accumulate the total frequency of inserted spill code.
1246     while (Ins--)
1247       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1248   }
1249   Cost = StaticCost;
1250 
1251   // Add constraints for use-blocks. Note that these are the only constraints
1252   // that may add a positive bias, it is downhill from here.
1253   SpillPlacer->addConstraints(SplitConstraints);
1254   return SpillPlacer->scanActiveBundles();
1255 }
1256 
1257 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1258 /// live-through blocks in Blocks.
1259 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1260                                      ArrayRef<unsigned> Blocks) {
1261   const unsigned GroupSize = 8;
1262   SpillPlacement::BlockConstraint BCS[GroupSize];
1263   unsigned TBS[GroupSize];
1264   unsigned B = 0, T = 0;
1265 
1266   for (unsigned Number : Blocks) {
1267     Intf.moveToBlock(Number);
1268 
1269     if (!Intf.hasInterference()) {
1270       assert(T < GroupSize && "Array overflow");
1271       TBS[T] = Number;
1272       if (++T == GroupSize) {
1273         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1274         T = 0;
1275       }
1276       continue;
1277     }
1278 
1279     assert(B < GroupSize && "Array overflow");
1280     BCS[B].Number = Number;
1281 
1282     // Abort if the spill cannot be inserted at the MBB' start
1283     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1284     if (!MBB->empty() &&
1285         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
1286                                   SA->getFirstSplitPoint(Number)))
1287       return false;
1288     // Interference for the live-in value.
1289     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1290       BCS[B].Entry = SpillPlacement::MustSpill;
1291     else
1292       BCS[B].Entry = SpillPlacement::PrefSpill;
1293 
1294     // Interference for the live-out value.
1295     if (Intf.last() >= SA->getLastSplitPoint(Number))
1296       BCS[B].Exit = SpillPlacement::MustSpill;
1297     else
1298       BCS[B].Exit = SpillPlacement::PrefSpill;
1299 
1300     if (++B == GroupSize) {
1301       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1302       B = 0;
1303     }
1304   }
1305 
1306   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1307   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1308   return true;
1309 }
1310 
1311 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1312   // Keep track of through blocks that have not been added to SpillPlacer.
1313   BitVector Todo = SA->getThroughBlocks();
1314   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1315   unsigned AddedTo = 0;
1316 #ifndef NDEBUG
1317   unsigned Visited = 0;
1318 #endif
1319 
1320   while (true) {
1321     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1322     // Find new through blocks in the periphery of PrefRegBundles.
1323     for (unsigned Bundle : NewBundles) {
1324       // Look at all blocks connected to Bundle in the full graph.
1325       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1326       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1327            I != E; ++I) {
1328         unsigned Block = *I;
1329         if (!Todo.test(Block))
1330           continue;
1331         Todo.reset(Block);
1332         // This is a new through block. Add it to SpillPlacer later.
1333         ActiveBlocks.push_back(Block);
1334 #ifndef NDEBUG
1335         ++Visited;
1336 #endif
1337       }
1338     }
1339     // Any new blocks to add?
1340     if (ActiveBlocks.size() == AddedTo)
1341       break;
1342 
1343     // Compute through constraints from the interference, or assume that all
1344     // through blocks prefer spilling when forming compact regions.
1345     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1346     if (Cand.PhysReg) {
1347       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1348         return false;
1349     } else
1350       // Provide a strong negative bias on through blocks to prevent unwanted
1351       // liveness on loop backedges.
1352       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1353     AddedTo = ActiveBlocks.size();
1354 
1355     // Perhaps iterating can enable more bundles?
1356     SpillPlacer->iterate();
1357   }
1358   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1359   return true;
1360 }
1361 
1362 /// calcCompactRegion - Compute the set of edge bundles that should be live
1363 /// when splitting the current live range into compact regions.  Compact
1364 /// regions can be computed without looking at interference.  They are the
1365 /// regions formed by removing all the live-through blocks from the live range.
1366 ///
1367 /// Returns false if the current live range is already compact, or if the
1368 /// compact regions would form single block regions anyway.
1369 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1370   // Without any through blocks, the live range is already compact.
1371   if (!SA->getNumThroughBlocks())
1372     return false;
1373 
1374   // Compact regions don't correspond to any physreg.
1375   Cand.reset(IntfCache, MCRegister::NoRegister);
1376 
1377   LLVM_DEBUG(dbgs() << "Compact region bundles");
1378 
1379   // Use the spill placer to determine the live bundles. GrowRegion pretends
1380   // that all the through blocks have interference when PhysReg is unset.
1381   SpillPlacer->prepare(Cand.LiveBundles);
1382 
1383   // The static split cost will be zero since Cand.Intf reports no interference.
1384   BlockFrequency Cost;
1385   if (!addSplitConstraints(Cand.Intf, Cost)) {
1386     LLVM_DEBUG(dbgs() << ", none.\n");
1387     return false;
1388   }
1389 
1390   if (!growRegion(Cand)) {
1391     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1392     return false;
1393   }
1394 
1395   SpillPlacer->finish();
1396 
1397   if (!Cand.LiveBundles.any()) {
1398     LLVM_DEBUG(dbgs() << ", none.\n");
1399     return false;
1400   }
1401 
1402   LLVM_DEBUG({
1403     for (int I : Cand.LiveBundles.set_bits())
1404       dbgs() << " EB#" << I;
1405     dbgs() << ".\n";
1406   });
1407   return true;
1408 }
1409 
1410 /// calcSpillCost - Compute how expensive it would be to split the live range in
1411 /// SA around all use blocks instead of forming bundle regions.
1412 BlockFrequency RAGreedy::calcSpillCost() {
1413   BlockFrequency Cost = 0;
1414   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1415   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1416     unsigned Number = BI.MBB->getNumber();
1417     // We normally only need one spill instruction - a load or a store.
1418     Cost += SpillPlacer->getBlockFrequency(Number);
1419 
1420     // Unless the value is redefined in the block.
1421     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1422       Cost += SpillPlacer->getBlockFrequency(Number);
1423   }
1424   return Cost;
1425 }
1426 
1427 /// Check if splitting Evictee will create a local split interval in
1428 /// basic block number BBNumber that may cause a bad eviction chain. This is
1429 /// intended to prevent bad eviction sequences like:
1430 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1431 /// movl	%ecx, %ebp
1432 /// movl	%ebx, %ecx
1433 /// movl	%edi, %ebx
1434 /// movl	%edx, %edi
1435 /// cltd
1436 /// idivl	%esi
1437 /// movl	%edi, %edx
1438 /// movl	%ebx, %edi
1439 /// movl	%ecx, %ebx
1440 /// movl	%ebp, %ecx
1441 /// movl	16(%esp), %ebp          # 4 - byte Reload
1442 ///
1443 /// Such sequences are created in 2 scenarios:
1444 ///
1445 /// Scenario #1:
1446 /// %0 is evicted from physreg0 by %1.
1447 /// Evictee %0 is intended for region splitting with split candidate
1448 /// physreg0 (the reg %0 was evicted from).
1449 /// Region splitting creates a local interval because of interference with the
1450 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1451 /// and "by stack" intervals and local interval created when interference
1452 /// occurs).
1453 /// One of the split intervals ends up evicting %2 from physreg1.
1454 /// Evictee %2 is intended for region splitting with split candidate
1455 /// physreg1.
1456 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1457 ///
1458 /// Scenario #2
1459 /// %0 is evicted from physreg0 by %1.
1460 /// %2 is evicted from physreg2 by %3 etc.
1461 /// Evictee %0 is intended for region splitting with split candidate
1462 /// physreg1.
1463 /// Region splitting creates a local interval because of interference with the
1464 /// evictor %1.
1465 /// One of the split intervals ends up evicting back original evictor %1
1466 /// from physreg0 (the reg %0 was evicted from).
1467 /// Another evictee %2 is intended for region splitting with split candidate
1468 /// physreg1.
1469 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1470 ///
1471 /// \param Evictee  The register considered to be split.
1472 /// \param Cand     The split candidate that determines the physical register
1473 ///                 we are splitting for and the interferences.
1474 /// \param BBNumber The number of a BB for which the region split process will
1475 ///                 create a local split interval.
1476 /// \param Order    The physical registers that may get evicted by a split
1477 ///                 artifact of Evictee.
1478 /// \return True if splitting Evictee may cause a bad eviction chain, false
1479 /// otherwise.
1480 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee,
1481                                           GlobalSplitCandidate &Cand,
1482                                           unsigned BBNumber,
1483                                           const AllocationOrder &Order) {
1484   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1485   unsigned Evictor = VregEvictorInfo.first;
1486   unsigned PhysReg = VregEvictorInfo.second;
1487 
1488   // No actual evictor.
1489   if (!Evictor || !PhysReg)
1490     return false;
1491 
1492   float MaxWeight = 0;
1493   unsigned FutureEvictedPhysReg =
1494       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1495                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1496 
1497   // The bad eviction chain occurs when either the split candidate is the
1498   // evicting reg or one of the split artifact will evict the evicting reg.
1499   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1500     return false;
1501 
1502   Cand.Intf.moveToBlock(BBNumber);
1503 
1504   // Check to see if the Evictor contains interference (with Evictee) in the
1505   // given BB. If so, this interference caused the eviction of Evictee from
1506   // PhysReg. This suggest that we will create a local interval during the
1507   // region split to avoid this interference This local interval may cause a bad
1508   // eviction chain.
1509   if (!LIS->hasInterval(Evictor))
1510     return false;
1511   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1512   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1513     return false;
1514 
1515   // Now, check to see if the local interval we will create is going to be
1516   // expensive enough to evict somebody If so, this may cause a bad eviction
1517   // chain.
1518   float splitArtifactWeight =
1519       VRAI->futureWeight(LIS->getInterval(Evictee),
1520                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1521   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1522     return false;
1523 
1524   return true;
1525 }
1526 
1527 /// Check if splitting VirtRegToSplit will create a local split interval
1528 /// in basic block number BBNumber that may cause a spill.
1529 ///
1530 /// \param VirtRegToSplit The register considered to be split.
1531 /// \param Cand           The split candidate that determines the physical
1532 ///                       register we are splitting for and the interferences.
1533 /// \param BBNumber       The number of a BB for which the region split process
1534 ///                       will create a local split interval.
1535 /// \param Order          The physical registers that may get evicted by a
1536 ///                       split artifact of VirtRegToSplit.
1537 /// \return True if splitting VirtRegToSplit may cause a spill, false
1538 /// otherwise.
1539 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1540                                        GlobalSplitCandidate &Cand,
1541                                        unsigned BBNumber,
1542                                        const AllocationOrder &Order) {
1543   Cand.Intf.moveToBlock(BBNumber);
1544 
1545   // Check if the local interval will find a non interfereing assignment.
1546   for (auto PhysReg : Order.getOrder()) {
1547     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1548                                    Cand.Intf.last(), PhysReg))
1549       return false;
1550   }
1551 
1552   // Check if the local interval will evict a cheaper interval.
1553   float CheapestEvictWeight = 0;
1554   unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
1555       Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1556       Cand.Intf.last(), &CheapestEvictWeight);
1557 
1558   // Have we found an interval that can be evicted?
1559   if (FutureEvictedPhysReg) {
1560     float splitArtifactWeight =
1561         VRAI->futureWeight(LIS->getInterval(VirtRegToSplit),
1562                            Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1563     // Will the weight of the local interval be higher than the cheapest evictee
1564     // weight? If so it will evict it and will not cause a spill.
1565     if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1566       return false;
1567   }
1568 
1569   // The local interval is not able to find non interferencing assignment and
1570   // not able to evict a less worthy interval, therfore, it can cause a spill.
1571   return true;
1572 }
1573 
1574 /// calcGlobalSplitCost - Return the global split cost of following the split
1575 /// pattern in LiveBundles. This cost should be added to the local cost of the
1576 /// interference pattern in SplitConstraints.
1577 ///
1578 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1579                                              const AllocationOrder &Order,
1580                                              bool *CanCauseEvictionChain) {
1581   BlockFrequency GlobalCost = 0;
1582   const BitVector &LiveBundles = Cand.LiveBundles;
1583   unsigned VirtRegToSplit = SA->getParent().reg();
1584   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1585   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1586     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1587     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1588     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1589     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1590     unsigned Ins = 0;
1591 
1592     Cand.Intf.moveToBlock(BC.Number);
1593     // Check wheather a local interval is going to be created during the region
1594     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1595     // is enabled.
1596     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1597         BI.LiveOut && RegIn && RegOut) {
1598 
1599       if (CanCauseEvictionChain &&
1600           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1601         // This interference causes our eviction from this assignment, we might
1602         // evict somebody else and eventually someone will spill, add that cost.
1603         // See splitCanCauseEvictionChain for detailed description of scenarios.
1604         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1605         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1606 
1607         *CanCauseEvictionChain = true;
1608 
1609       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1610                                          Order)) {
1611         // This interference causes local interval to spill, add that cost.
1612         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1613         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1614       }
1615     }
1616 
1617     if (BI.LiveIn)
1618       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1619     if (BI.LiveOut)
1620       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1621     while (Ins--)
1622       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1623   }
1624 
1625   for (unsigned Number : Cand.ActiveBlocks) {
1626     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1627     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1628     if (!RegIn && !RegOut)
1629       continue;
1630     if (RegIn && RegOut) {
1631       // We need double spill code if this block has interference.
1632       Cand.Intf.moveToBlock(Number);
1633       if (Cand.Intf.hasInterference()) {
1634         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1635         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1636 
1637         // Check wheather a local interval is going to be created during the
1638         // region split.
1639         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1640             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1641           // This interference cause our eviction from this assignment, we might
1642           // evict somebody else, add that cost.
1643           // See splitCanCauseEvictionChain for detailed description of
1644           // scenarios.
1645           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1646           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1647 
1648           *CanCauseEvictionChain = true;
1649         }
1650       }
1651       continue;
1652     }
1653     // live-in / stack-out or stack-in live-out.
1654     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1655   }
1656   return GlobalCost;
1657 }
1658 
1659 /// splitAroundRegion - Split the current live range around the regions
1660 /// determined by BundleCand and GlobalCand.
1661 ///
1662 /// Before calling this function, GlobalCand and BundleCand must be initialized
1663 /// so each bundle is assigned to a valid candidate, or NoCand for the
1664 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1665 /// objects must be initialized for the current live range, and intervals
1666 /// created for the used candidates.
1667 ///
1668 /// @param LREdit    The LiveRangeEdit object handling the current split.
1669 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1670 ///                  must appear in this list.
1671 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1672                                  ArrayRef<unsigned> UsedCands) {
1673   // These are the intervals created for new global ranges. We may create more
1674   // intervals for local ranges.
1675   const unsigned NumGlobalIntvs = LREdit.size();
1676   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1677                     << " globals.\n");
1678   assert(NumGlobalIntvs && "No global intervals configured");
1679 
1680   // Isolate even single instructions when dealing with a proper sub-class.
1681   // That guarantees register class inflation for the stack interval because it
1682   // is all copies.
1683   unsigned Reg = SA->getParent().reg();
1684   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1685 
1686   // First handle all the blocks with uses.
1687   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1688   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1689     unsigned Number = BI.MBB->getNumber();
1690     unsigned IntvIn = 0, IntvOut = 0;
1691     SlotIndex IntfIn, IntfOut;
1692     if (BI.LiveIn) {
1693       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1694       if (CandIn != NoCand) {
1695         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1696         IntvIn = Cand.IntvIdx;
1697         Cand.Intf.moveToBlock(Number);
1698         IntfIn = Cand.Intf.first();
1699       }
1700     }
1701     if (BI.LiveOut) {
1702       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1703       if (CandOut != NoCand) {
1704         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1705         IntvOut = Cand.IntvIdx;
1706         Cand.Intf.moveToBlock(Number);
1707         IntfOut = Cand.Intf.last();
1708       }
1709     }
1710 
1711     // Create separate intervals for isolated blocks with multiple uses.
1712     if (!IntvIn && !IntvOut) {
1713       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1714       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1715         SE->splitSingleBlock(BI);
1716       continue;
1717     }
1718 
1719     if (IntvIn && IntvOut)
1720       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1721     else if (IntvIn)
1722       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1723     else
1724       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1725   }
1726 
1727   // Handle live-through blocks. The relevant live-through blocks are stored in
1728   // the ActiveBlocks list with each candidate. We need to filter out
1729   // duplicates.
1730   BitVector Todo = SA->getThroughBlocks();
1731   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1732     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1733     for (unsigned Number : Blocks) {
1734       if (!Todo.test(Number))
1735         continue;
1736       Todo.reset(Number);
1737 
1738       unsigned IntvIn = 0, IntvOut = 0;
1739       SlotIndex IntfIn, IntfOut;
1740 
1741       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1742       if (CandIn != NoCand) {
1743         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1744         IntvIn = Cand.IntvIdx;
1745         Cand.Intf.moveToBlock(Number);
1746         IntfIn = Cand.Intf.first();
1747       }
1748 
1749       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1750       if (CandOut != NoCand) {
1751         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1752         IntvOut = Cand.IntvIdx;
1753         Cand.Intf.moveToBlock(Number);
1754         IntfOut = Cand.Intf.last();
1755       }
1756       if (!IntvIn && !IntvOut)
1757         continue;
1758       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1759     }
1760   }
1761 
1762   ++NumGlobalSplits;
1763 
1764   SmallVector<unsigned, 8> IntvMap;
1765   SE->finish(&IntvMap);
1766   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1767 
1768   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1769   unsigned OrigBlocks = SA->getNumLiveBlocks();
1770 
1771   // Sort out the new intervals created by splitting. We get four kinds:
1772   // - Remainder intervals should not be split again.
1773   // - Candidate intervals can be assigned to Cand.PhysReg.
1774   // - Block-local splits are candidates for local splitting.
1775   // - DCE leftovers should go back on the queue.
1776   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1777     LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1778 
1779     // Ignore old intervals from DCE.
1780     if (getStage(Reg) != RS_New)
1781       continue;
1782 
1783     // Remainder interval. Don't try splitting again, spill if it doesn't
1784     // allocate.
1785     if (IntvMap[I] == 0) {
1786       setStage(Reg, RS_Spill);
1787       continue;
1788     }
1789 
1790     // Global intervals. Allow repeated splitting as long as the number of live
1791     // blocks is strictly decreasing.
1792     if (IntvMap[I] < NumGlobalIntvs) {
1793       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1794         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1795                           << " blocks as original.\n");
1796         // Don't allow repeated splitting as a safe guard against looping.
1797         setStage(Reg, RS_Split2);
1798       }
1799       continue;
1800     }
1801 
1802     // Other intervals are treated as new. This includes local intervals created
1803     // for blocks with multiple uses, and anything created by DCE.
1804   }
1805 
1806   if (VerifyEnabled)
1807     MF->verify(this, "After splitting live range around region");
1808 }
1809 
1810 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1811                                   SmallVectorImpl<Register> &NewVRegs) {
1812   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1813     return 0;
1814   unsigned NumCands = 0;
1815   BlockFrequency SpillCost = calcSpillCost();
1816   BlockFrequency BestCost;
1817 
1818   // Check if we can split this live range around a compact region.
1819   bool HasCompact = calcCompactRegion(GlobalCand.front());
1820   if (HasCompact) {
1821     // Yes, keep GlobalCand[0] as the compact region candidate.
1822     NumCands = 1;
1823     BestCost = BlockFrequency::getMaxFrequency();
1824   } else {
1825     // No benefit from the compact region, our fallback will be per-block
1826     // splitting. Make sure we find a solution that is cheaper than spilling.
1827     BestCost = SpillCost;
1828     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1829                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1830   }
1831 
1832   bool CanCauseEvictionChain = false;
1833   unsigned BestCand =
1834       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1835                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1836 
1837   // Split candidates with compact regions can cause a bad eviction sequence.
1838   // See splitCanCauseEvictionChain for detailed description of scenarios.
1839   // To avoid it, we need to comapre the cost with the spill cost and not the
1840   // current max frequency.
1841   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1842     CanCauseEvictionChain) {
1843     return 0;
1844   }
1845 
1846   // No solutions found, fall back to single block splitting.
1847   if (!HasCompact && BestCand == NoCand)
1848     return 0;
1849 
1850   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1851 }
1852 
1853 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1854                                             AllocationOrder &Order,
1855                                             BlockFrequency &BestCost,
1856                                             unsigned &NumCands, bool IgnoreCSR,
1857                                             bool *CanCauseEvictionChain) {
1858   unsigned BestCand = NoCand;
1859   for (MCPhysReg PhysReg : Order) {
1860     assert(PhysReg);
1861     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1862       continue;
1863 
1864     // Discard bad candidates before we run out of interference cache cursors.
1865     // This will only affect register classes with a lot of registers (>32).
1866     if (NumCands == IntfCache.getMaxCursors()) {
1867       unsigned WorstCount = ~0u;
1868       unsigned Worst = 0;
1869       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1870         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1871           continue;
1872         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1873         if (Count < WorstCount) {
1874           Worst = CandIndex;
1875           WorstCount = Count;
1876         }
1877       }
1878       --NumCands;
1879       GlobalCand[Worst] = GlobalCand[NumCands];
1880       if (BestCand == NumCands)
1881         BestCand = Worst;
1882     }
1883 
1884     if (GlobalCand.size() <= NumCands)
1885       GlobalCand.resize(NumCands+1);
1886     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1887     Cand.reset(IntfCache, PhysReg);
1888 
1889     SpillPlacer->prepare(Cand.LiveBundles);
1890     BlockFrequency Cost;
1891     if (!addSplitConstraints(Cand.Intf, Cost)) {
1892       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1893       continue;
1894     }
1895     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1896                MBFI->printBlockFreq(dbgs(), Cost));
1897     if (Cost >= BestCost) {
1898       LLVM_DEBUG({
1899         if (BestCand == NoCand)
1900           dbgs() << " worse than no bundles\n";
1901         else
1902           dbgs() << " worse than "
1903                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1904       });
1905       continue;
1906     }
1907     if (!growRegion(Cand)) {
1908       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1909       continue;
1910     }
1911 
1912     SpillPlacer->finish();
1913 
1914     // No live bundles, defer to splitSingleBlocks().
1915     if (!Cand.LiveBundles.any()) {
1916       LLVM_DEBUG(dbgs() << " no bundles.\n");
1917       continue;
1918     }
1919 
1920     bool HasEvictionChain = false;
1921     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1922     LLVM_DEBUG({
1923       dbgs() << ", total = ";
1924       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1925       for (int I : Cand.LiveBundles.set_bits())
1926         dbgs() << " EB#" << I;
1927       dbgs() << ".\n";
1928     });
1929     if (Cost < BestCost) {
1930       BestCand = NumCands;
1931       BestCost = Cost;
1932       // See splitCanCauseEvictionChain for detailed description of bad
1933       // eviction chain scenarios.
1934       if (CanCauseEvictionChain)
1935         *CanCauseEvictionChain = HasEvictionChain;
1936     }
1937     ++NumCands;
1938   }
1939 
1940   if (CanCauseEvictionChain && BestCand != NoCand) {
1941     // See splitCanCauseEvictionChain for detailed description of bad
1942     // eviction chain scenarios.
1943     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1944                       << printReg(VirtReg.reg(), TRI) << "  may ");
1945     if (!(*CanCauseEvictionChain))
1946       LLVM_DEBUG(dbgs() << "not ");
1947     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1948   }
1949 
1950   return BestCand;
1951 }
1952 
1953 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1954                                  bool HasCompact,
1955                                  SmallVectorImpl<Register> &NewVRegs) {
1956   SmallVector<unsigned, 8> UsedCands;
1957   // Prepare split editor.
1958   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1959   SE->reset(LREdit, SplitSpillMode);
1960 
1961   // Assign all edge bundles to the preferred candidate, or NoCand.
1962   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1963 
1964   // Assign bundles for the best candidate region.
1965   if (BestCand != NoCand) {
1966     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1967     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1968       UsedCands.push_back(BestCand);
1969       Cand.IntvIdx = SE->openIntv();
1970       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1971                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1972       (void)B;
1973     }
1974   }
1975 
1976   // Assign bundles for the compact region.
1977   if (HasCompact) {
1978     GlobalSplitCandidate &Cand = GlobalCand.front();
1979     assert(!Cand.PhysReg && "Compact region has no physreg");
1980     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1981       UsedCands.push_back(0);
1982       Cand.IntvIdx = SE->openIntv();
1983       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1984                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1985       (void)B;
1986     }
1987   }
1988 
1989   splitAroundRegion(LREdit, UsedCands);
1990   return 0;
1991 }
1992 
1993 //===----------------------------------------------------------------------===//
1994 //                            Per-Block Splitting
1995 //===----------------------------------------------------------------------===//
1996 
1997 /// tryBlockSplit - Split a global live range around every block with uses. This
1998 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1999 /// they don't allocate.
2000 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2001                                  SmallVectorImpl<Register> &NewVRegs) {
2002   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2003   Register Reg = VirtReg.reg();
2004   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2005   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2006   SE->reset(LREdit, SplitSpillMode);
2007   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2008   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
2009     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2010       SE->splitSingleBlock(BI);
2011   }
2012   // No blocks were split.
2013   if (LREdit.empty())
2014     return 0;
2015 
2016   // We did split for some blocks.
2017   SmallVector<unsigned, 8> IntvMap;
2018   SE->finish(&IntvMap);
2019 
2020   // Tell LiveDebugVariables about the new ranges.
2021   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2022 
2023   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2024 
2025   // Sort out the new intervals created by splitting. The remainder interval
2026   // goes straight to spilling, the new local ranges get to stay RS_New.
2027   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
2028     LiveInterval &LI = LIS->getInterval(LREdit.get(I));
2029     if (getStage(LI) == RS_New && IntvMap[I] == 0)
2030       setStage(LI, RS_Spill);
2031   }
2032 
2033   if (VerifyEnabled)
2034     MF->verify(this, "After splitting live range around basic blocks");
2035   return 0;
2036 }
2037 
2038 //===----------------------------------------------------------------------===//
2039 //                         Per-Instruction Splitting
2040 //===----------------------------------------------------------------------===//
2041 
2042 /// Get the number of allocatable registers that match the constraints of \p Reg
2043 /// on \p MI and that are also in \p SuperRC.
2044 static unsigned getNumAllocatableRegsForConstraints(
2045     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
2046     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2047     const RegisterClassInfo &RCI) {
2048   assert(SuperRC && "Invalid register class");
2049 
2050   const TargetRegisterClass *ConstrainedRC =
2051       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2052                                              /* ExploreBundle */ true);
2053   if (!ConstrainedRC)
2054     return 0;
2055   return RCI.getNumAllocatableRegs(ConstrainedRC);
2056 }
2057 
2058 /// tryInstructionSplit - Split a live range around individual instructions.
2059 /// This is normally not worthwhile since the spiller is doing essentially the
2060 /// same thing. However, when the live range is in a constrained register
2061 /// class, it may help to insert copies such that parts of the live range can
2062 /// be moved to a larger register class.
2063 ///
2064 /// This is similar to spilling to a larger register class.
2065 unsigned
2066 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2067                               SmallVectorImpl<Register> &NewVRegs) {
2068   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2069   // There is no point to this if there are no larger sub-classes.
2070   if (!RegClassInfo.isProperSubClass(CurRC))
2071     return 0;
2072 
2073   // Always enable split spill mode, since we're effectively spilling to a
2074   // register.
2075   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2076   SE->reset(LREdit, SplitEditor::SM_Size);
2077 
2078   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2079   if (Uses.size() <= 1)
2080     return 0;
2081 
2082   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2083                     << " individual instrs.\n");
2084 
2085   const TargetRegisterClass *SuperRC =
2086       TRI->getLargestLegalSuperClass(CurRC, *MF);
2087   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2088   // Split around every non-copy instruction if this split will relax
2089   // the constraints on the virtual register.
2090   // Otherwise, splitting just inserts uncoalescable copies that do not help
2091   // the allocation.
2092   for (const auto &Use : Uses) {
2093     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
2094       if (MI->isFullCopy() ||
2095           SuperRCNumAllocatableRegs ==
2096               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
2097                                                   TII, TRI, RCI)) {
2098         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
2099         continue;
2100       }
2101     SE->openIntv();
2102     SlotIndex SegStart = SE->enterIntvBefore(Use);
2103     SlotIndex SegStop = SE->leaveIntvAfter(Use);
2104     SE->useIntv(SegStart, SegStop);
2105   }
2106 
2107   if (LREdit.empty()) {
2108     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2109     return 0;
2110   }
2111 
2112   SmallVector<unsigned, 8> IntvMap;
2113   SE->finish(&IntvMap);
2114   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2115   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2116 
2117   // Assign all new registers to RS_Spill. This was the last chance.
2118   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2119   return 0;
2120 }
2121 
2122 //===----------------------------------------------------------------------===//
2123 //                             Local Splitting
2124 //===----------------------------------------------------------------------===//
2125 
2126 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2127 /// in order to use PhysReg between two entries in SA->UseSlots.
2128 ///
2129 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
2130 ///
2131 void RAGreedy::calcGapWeights(unsigned PhysReg,
2132                               SmallVectorImpl<float> &GapWeight) {
2133   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2134   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2135   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2136   const unsigned NumGaps = Uses.size()-1;
2137 
2138   // Start and end points for the interference check.
2139   SlotIndex StartIdx =
2140     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2141   SlotIndex StopIdx =
2142     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2143 
2144   GapWeight.assign(NumGaps, 0.0f);
2145 
2146   // Add interference from each overlapping register.
2147   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2148     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2149           .checkInterference())
2150       continue;
2151 
2152     // We know that VirtReg is a continuous interval from FirstInstr to
2153     // LastInstr, so we don't need InterferenceQuery.
2154     //
2155     // Interference that overlaps an instruction is counted in both gaps
2156     // surrounding the instruction. The exception is interference before
2157     // StartIdx and after StopIdx.
2158     //
2159     LiveIntervalUnion::SegmentIter IntI =
2160       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2161     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2162       // Skip the gaps before IntI.
2163       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2164         if (++Gap == NumGaps)
2165           break;
2166       if (Gap == NumGaps)
2167         break;
2168 
2169       // Update the gaps covered by IntI.
2170       const float weight = IntI.value()->weight();
2171       for (; Gap != NumGaps; ++Gap) {
2172         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2173         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2174           break;
2175       }
2176       if (Gap == NumGaps)
2177         break;
2178     }
2179   }
2180 
2181   // Add fixed interference.
2182   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2183     const LiveRange &LR = LIS->getRegUnit(*Units);
2184     LiveRange::const_iterator I = LR.find(StartIdx);
2185     LiveRange::const_iterator E = LR.end();
2186 
2187     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2188     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2189       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2190         if (++Gap == NumGaps)
2191           break;
2192       if (Gap == NumGaps)
2193         break;
2194 
2195       for (; Gap != NumGaps; ++Gap) {
2196         GapWeight[Gap] = huge_valf;
2197         if (Uses[Gap+1].getBaseIndex() >= I->end)
2198           break;
2199       }
2200       if (Gap == NumGaps)
2201         break;
2202     }
2203   }
2204 }
2205 
2206 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2207 /// basic block.
2208 ///
2209 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2210                                  SmallVectorImpl<Register> &NewVRegs) {
2211   // TODO: the function currently only handles a single UseBlock; it should be
2212   // possible to generalize.
2213   if (SA->getUseBlocks().size() != 1)
2214     return 0;
2215 
2216   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2217 
2218   // Note that it is possible to have an interval that is live-in or live-out
2219   // while only covering a single block - A phi-def can use undef values from
2220   // predecessors, and the block could be a single-block loop.
2221   // We don't bother doing anything clever about such a case, we simply assume
2222   // that the interval is continuous from FirstInstr to LastInstr. We should
2223   // make sure that we don't do anything illegal to such an interval, though.
2224 
2225   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2226   if (Uses.size() <= 2)
2227     return 0;
2228   const unsigned NumGaps = Uses.size()-1;
2229 
2230   LLVM_DEBUG({
2231     dbgs() << "tryLocalSplit: ";
2232     for (const auto &Use : Uses)
2233       dbgs() << ' ' << Use;
2234     dbgs() << '\n';
2235   });
2236 
2237   // If VirtReg is live across any register mask operands, compute a list of
2238   // gaps with register masks.
2239   SmallVector<unsigned, 8> RegMaskGaps;
2240   if (Matrix->checkRegMaskInterference(VirtReg)) {
2241     // Get regmask slots for the whole block.
2242     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2243     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2244     // Constrain to VirtReg's live range.
2245     unsigned RI =
2246         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2247     unsigned RE = RMS.size();
2248     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
2249       // Look for Uses[I] <= RMS <= Uses[I + 1].
2250       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
2251       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
2252         continue;
2253       // Skip a regmask on the same instruction as the last use. It doesn't
2254       // overlap the live range.
2255       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
2256         break;
2257       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
2258                         << Uses[I + 1]);
2259       RegMaskGaps.push_back(I);
2260       // Advance ri to the next gap. A regmask on one of the uses counts in
2261       // both gaps.
2262       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
2263         ++RI;
2264     }
2265     LLVM_DEBUG(dbgs() << '\n');
2266   }
2267 
2268   // Since we allow local split results to be split again, there is a risk of
2269   // creating infinite loops. It is tempting to require that the new live
2270   // ranges have less instructions than the original. That would guarantee
2271   // convergence, but it is too strict. A live range with 3 instructions can be
2272   // split 2+3 (including the COPY), and we want to allow that.
2273   //
2274   // Instead we use these rules:
2275   //
2276   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2277   //    noop split, of course).
2278   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2279   //    the new ranges must have fewer instructions than before the split.
2280   // 3. New ranges with the same number of instructions are marked RS_Split2,
2281   //    smaller ranges are marked RS_New.
2282   //
2283   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2284   // excessive splitting and infinite loops.
2285   //
2286   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2287 
2288   // Best split candidate.
2289   unsigned BestBefore = NumGaps;
2290   unsigned BestAfter = 0;
2291   float BestDiff = 0;
2292 
2293   const float blockFreq =
2294     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2295     (1.0f / MBFI->getEntryFreq());
2296   SmallVector<float, 8> GapWeight;
2297 
2298   for (MCPhysReg PhysReg : Order) {
2299     assert(PhysReg);
2300     // Keep track of the largest spill weight that would need to be evicted in
2301     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
2302     calcGapWeights(PhysReg, GapWeight);
2303 
2304     // Remove any gaps with regmask clobbers.
2305     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2306       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
2307         GapWeight[RegMaskGaps[I]] = huge_valf;
2308 
2309     // Try to find the best sequence of gaps to close.
2310     // The new spill weight must be larger than any gap interference.
2311 
2312     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2313     unsigned SplitBefore = 0, SplitAfter = 1;
2314 
2315     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2316     // It is the spill weight that needs to be evicted.
2317     float MaxGap = GapWeight[0];
2318 
2319     while (true) {
2320       // Live before/after split?
2321       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2322       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2323 
2324       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2325                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
2326 
2327       // Stop before the interval gets so big we wouldn't be making progress.
2328       if (!LiveBefore && !LiveAfter) {
2329         LLVM_DEBUG(dbgs() << " all\n");
2330         break;
2331       }
2332       // Should the interval be extended or shrunk?
2333       bool Shrink = true;
2334 
2335       // How many gaps would the new range have?
2336       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2337 
2338       // Legally, without causing looping?
2339       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2340 
2341       if (Legal && MaxGap < huge_valf) {
2342         // Estimate the new spill weight. Each instruction reads or writes the
2343         // register. Conservatively assume there are no read-modify-write
2344         // instructions.
2345         //
2346         // Try to guess the size of the new interval.
2347         const float EstWeight = normalizeSpillWeight(
2348             blockFreq * (NewGaps + 1),
2349             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2350                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2351             1);
2352         // Would this split be possible to allocate?
2353         // Never allocate all gaps, we wouldn't be making progress.
2354         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2355         if (EstWeight * Hysteresis >= MaxGap) {
2356           Shrink = false;
2357           float Diff = EstWeight - MaxGap;
2358           if (Diff > BestDiff) {
2359             LLVM_DEBUG(dbgs() << " (best)");
2360             BestDiff = Hysteresis * Diff;
2361             BestBefore = SplitBefore;
2362             BestAfter = SplitAfter;
2363           }
2364         }
2365       }
2366 
2367       // Try to shrink.
2368       if (Shrink) {
2369         if (++SplitBefore < SplitAfter) {
2370           LLVM_DEBUG(dbgs() << " shrink\n");
2371           // Recompute the max when necessary.
2372           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2373             MaxGap = GapWeight[SplitBefore];
2374             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
2375               MaxGap = std::max(MaxGap, GapWeight[I]);
2376           }
2377           continue;
2378         }
2379         MaxGap = 0;
2380       }
2381 
2382       // Try to extend the interval.
2383       if (SplitAfter >= NumGaps) {
2384         LLVM_DEBUG(dbgs() << " end\n");
2385         break;
2386       }
2387 
2388       LLVM_DEBUG(dbgs() << " extend\n");
2389       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2390     }
2391   }
2392 
2393   // Didn't find any candidates?
2394   if (BestBefore == NumGaps)
2395     return 0;
2396 
2397   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2398                     << Uses[BestAfter] << ", " << BestDiff << ", "
2399                     << (BestAfter - BestBefore + 1) << " instrs\n");
2400 
2401   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2402   SE->reset(LREdit);
2403 
2404   SE->openIntv();
2405   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2406   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2407   SE->useIntv(SegStart, SegStop);
2408   SmallVector<unsigned, 8> IntvMap;
2409   SE->finish(&IntvMap);
2410   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2411 
2412   // If the new range has the same number of instructions as before, mark it as
2413   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2414   // leave the new intervals as RS_New so they can compete.
2415   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2416   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2417   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2418   if (NewGaps >= NumGaps) {
2419     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2420     assert(!ProgressRequired && "Didn't make progress when it was required.");
2421     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
2422       if (IntvMap[I] == 1) {
2423         setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
2424         LLVM_DEBUG(dbgs() << printReg(LREdit.get(I)));
2425       }
2426     LLVM_DEBUG(dbgs() << '\n');
2427   }
2428   ++NumLocalSplits;
2429 
2430   return 0;
2431 }
2432 
2433 //===----------------------------------------------------------------------===//
2434 //                          Live Range Splitting
2435 //===----------------------------------------------------------------------===//
2436 
2437 /// trySplit - Try to split VirtReg or one of its interferences, making it
2438 /// assignable.
2439 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2440 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2441                             SmallVectorImpl<Register> &NewVRegs,
2442                             const SmallVirtRegSet &FixedRegisters) {
2443   // Ranges must be Split2 or less.
2444   if (getStage(VirtReg) >= RS_Spill)
2445     return 0;
2446 
2447   // Local intervals are handled separately.
2448   if (LIS->intervalIsInOneMBB(VirtReg)) {
2449     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2450                        TimerGroupDescription, TimePassesIsEnabled);
2451     SA->analyze(&VirtReg);
2452     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2453     if (PhysReg || !NewVRegs.empty())
2454       return PhysReg;
2455     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2456   }
2457 
2458   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2459                      TimerGroupDescription, TimePassesIsEnabled);
2460 
2461   SA->analyze(&VirtReg);
2462 
2463   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2464   // coalescer. That may cause the range to become allocatable which means that
2465   // tryRegionSplit won't be making progress. This check should be replaced with
2466   // an assertion when the coalescer is fixed.
2467   if (SA->didRepairRange()) {
2468     // VirtReg has changed, so all cached queries are invalid.
2469     Matrix->invalidateVirtRegs();
2470     if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
2471       return PhysReg;
2472   }
2473 
2474   // First try to split around a region spanning multiple blocks. RS_Split2
2475   // ranges already made dubious progress with region splitting, so they go
2476   // straight to single block splitting.
2477   if (getStage(VirtReg) < RS_Split2) {
2478     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2479     if (PhysReg || !NewVRegs.empty())
2480       return PhysReg;
2481   }
2482 
2483   // Then isolate blocks.
2484   return tryBlockSplit(VirtReg, Order, NewVRegs);
2485 }
2486 
2487 //===----------------------------------------------------------------------===//
2488 //                          Last Chance Recoloring
2489 //===----------------------------------------------------------------------===//
2490 
2491 /// Return true if \p reg has any tied def operand.
2492 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2493   for (const MachineOperand &MO : MRI->def_operands(reg))
2494     if (MO.isTied())
2495       return true;
2496 
2497   return false;
2498 }
2499 
2500 /// mayRecolorAllInterferences - Check if the virtual registers that
2501 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2502 /// recolored to free \p PhysReg.
2503 /// When true is returned, \p RecoloringCandidates has been augmented with all
2504 /// the live intervals that need to be recolored in order to free \p PhysReg
2505 /// for \p VirtReg.
2506 /// \p FixedRegisters contains all the virtual registers that cannot be
2507 /// recolored.
2508 bool
2509 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2510                                      SmallLISet &RecoloringCandidates,
2511                                      const SmallVirtRegSet &FixedRegisters) {
2512   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2513 
2514   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2515     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2516     // If there is LastChanceRecoloringMaxInterference or more interferences,
2517     // chances are one would not be recolorable.
2518     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2519         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2520       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2521       CutOffInfo |= CO_Interf;
2522       return false;
2523     }
2524     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
2525       // If Intf is done and sit on the same register class as VirtReg,
2526       // it would not be recolorable as it is in the same state as VirtReg.
2527       // However, if VirtReg has tied defs and Intf doesn't, then
2528       // there is still a point in examining if it can be recolorable.
2529       if (((getStage(*Intf) == RS_Done &&
2530             MRI->getRegClass(Intf->reg()) == CurRC) &&
2531            !(hasTiedDef(MRI, VirtReg.reg()) &&
2532              !hasTiedDef(MRI, Intf->reg()))) ||
2533           FixedRegisters.count(Intf->reg())) {
2534         LLVM_DEBUG(
2535             dbgs() << "Early abort: the interference is not recolorable.\n");
2536         return false;
2537       }
2538       RecoloringCandidates.insert(Intf);
2539     }
2540   }
2541   return true;
2542 }
2543 
2544 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2545 /// its interferences.
2546 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2547 /// virtual register that was using it. The recoloring process may recursively
2548 /// use the last chance recoloring. Therefore, when a virtual register has been
2549 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2550 /// be last-chance-recolored again during this recoloring "session".
2551 /// E.g.,
2552 /// Let
2553 /// vA can use {R1, R2    }
2554 /// vB can use {    R2, R3}
2555 /// vC can use {R1        }
2556 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2557 /// instance) and they all interfere.
2558 ///
2559 /// vA is assigned R1
2560 /// vB is assigned R2
2561 /// vC tries to evict vA but vA is already done.
2562 /// Regular register allocation fails.
2563 ///
2564 /// Last chance recoloring kicks in:
2565 /// vC does as if vA was evicted => vC uses R1.
2566 /// vC is marked as fixed.
2567 /// vA needs to find a color.
2568 /// None are available.
2569 /// vA cannot evict vC: vC is a fixed virtual register now.
2570 /// vA does as if vB was evicted => vA uses R2.
2571 /// vB needs to find a color.
2572 /// R3 is available.
2573 /// Recoloring => vC = R1, vA = R2, vB = R3
2574 ///
2575 /// \p Order defines the preferred allocation order for \p VirtReg.
2576 /// \p NewRegs will contain any new virtual register that have been created
2577 /// (split, spill) during the process and that must be assigned.
2578 /// \p FixedRegisters contains all the virtual registers that cannot be
2579 /// recolored.
2580 /// \p Depth gives the current depth of the last chance recoloring.
2581 /// \return a physical register that can be used for VirtReg or ~0u if none
2582 /// exists.
2583 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2584                                            AllocationOrder &Order,
2585                                            SmallVectorImpl<Register> &NewVRegs,
2586                                            SmallVirtRegSet &FixedRegisters,
2587                                            unsigned Depth) {
2588   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2589     return ~0u;
2590 
2591   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2592   // Ranges must be Done.
2593   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2594          "Last chance recoloring should really be last chance");
2595   // Set the max depth to LastChanceRecoloringMaxDepth.
2596   // We may want to reconsider that if we end up with a too large search space
2597   // for target with hundreds of registers.
2598   // Indeed, in that case we may want to cut the search space earlier.
2599   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2600     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2601     CutOffInfo |= CO_Depth;
2602     return ~0u;
2603   }
2604 
2605   // Set of Live intervals that will need to be recolored.
2606   SmallLISet RecoloringCandidates;
2607   // Record the original mapping virtual register to physical register in case
2608   // the recoloring fails.
2609   DenseMap<Register, Register> VirtRegToPhysReg;
2610   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2611   // this recoloring "session".
2612   assert(!FixedRegisters.count(VirtReg.reg()));
2613   FixedRegisters.insert(VirtReg.reg());
2614   SmallVector<Register, 4> CurrentNewVRegs;
2615 
2616   for (MCRegister PhysReg : Order) {
2617     assert(PhysReg.isValid());
2618     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2619                       << printReg(PhysReg, TRI) << '\n');
2620     RecoloringCandidates.clear();
2621     VirtRegToPhysReg.clear();
2622     CurrentNewVRegs.clear();
2623 
2624     // It is only possible to recolor virtual register interference.
2625     if (Matrix->checkInterference(VirtReg, PhysReg) >
2626         LiveRegMatrix::IK_VirtReg) {
2627       LLVM_DEBUG(
2628           dbgs() << "Some interferences are not with virtual registers.\n");
2629 
2630       continue;
2631     }
2632 
2633     // Early give up on this PhysReg if it is obvious we cannot recolor all
2634     // the interferences.
2635     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2636                                     FixedRegisters)) {
2637       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2638       continue;
2639     }
2640 
2641     // RecoloringCandidates contains all the virtual registers that interfer
2642     // with VirtReg on PhysReg (or one of its aliases).
2643     // Enqueue them for recoloring and perform the actual recoloring.
2644     PQueue RecoloringQueue;
2645     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2646                               EndIt = RecoloringCandidates.end();
2647          It != EndIt; ++It) {
2648       Register ItVirtReg = (*It)->reg();
2649       enqueue(RecoloringQueue, *It);
2650       assert(VRM->hasPhys(ItVirtReg) &&
2651              "Interferences are supposed to be with allocated variables");
2652 
2653       // Record the current allocation.
2654       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2655       // unset the related struct.
2656       Matrix->unassign(**It);
2657     }
2658 
2659     // Do as if VirtReg was assigned to PhysReg so that the underlying
2660     // recoloring has the right information about the interferes and
2661     // available colors.
2662     Matrix->assign(VirtReg, PhysReg);
2663 
2664     // Save the current recoloring state.
2665     // If we cannot recolor all the interferences, we will have to start again
2666     // at this point for the next physical register.
2667     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2668     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2669                                 FixedRegisters, Depth)) {
2670       // Push the queued vregs into the main queue.
2671       for (Register NewVReg : CurrentNewVRegs)
2672         NewVRegs.push_back(NewVReg);
2673       // Do not mess up with the global assignment process.
2674       // I.e., VirtReg must be unassigned.
2675       Matrix->unassign(VirtReg);
2676       return PhysReg;
2677     }
2678 
2679     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2680                       << printReg(PhysReg, TRI) << '\n');
2681 
2682     // The recoloring attempt failed, undo the changes.
2683     FixedRegisters = SaveFixedRegisters;
2684     Matrix->unassign(VirtReg);
2685 
2686     // For a newly created vreg which is also in RecoloringCandidates,
2687     // don't add it to NewVRegs because its physical register will be restored
2688     // below. Other vregs in CurrentNewVRegs are created by calling
2689     // selectOrSplit and should be added into NewVRegs.
2690     for (SmallVectorImpl<Register>::iterator Next = CurrentNewVRegs.begin(),
2691                                              End = CurrentNewVRegs.end();
2692          Next != End; ++Next) {
2693       if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2694         continue;
2695       NewVRegs.push_back(*Next);
2696     }
2697 
2698     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2699                               EndIt = RecoloringCandidates.end();
2700          It != EndIt; ++It) {
2701       Register ItVirtReg = (*It)->reg();
2702       if (VRM->hasPhys(ItVirtReg))
2703         Matrix->unassign(**It);
2704       Register ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2705       Matrix->assign(**It, ItPhysReg);
2706     }
2707   }
2708 
2709   // Last chance recoloring did not worked either, give up.
2710   return ~0u;
2711 }
2712 
2713 /// tryRecoloringCandidates - Try to assign a new color to every register
2714 /// in \RecoloringQueue.
2715 /// \p NewRegs will contain any new virtual register created during the
2716 /// recoloring process.
2717 /// \p FixedRegisters[in/out] contains all the registers that have been
2718 /// recolored.
2719 /// \return true if all virtual registers in RecoloringQueue were successfully
2720 /// recolored, false otherwise.
2721 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2722                                        SmallVectorImpl<Register> &NewVRegs,
2723                                        SmallVirtRegSet &FixedRegisters,
2724                                        unsigned Depth) {
2725   while (!RecoloringQueue.empty()) {
2726     LiveInterval *LI = dequeue(RecoloringQueue);
2727     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2728     Register PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters,
2729                                          Depth + 1);
2730     // When splitting happens, the live-range may actually be empty.
2731     // In that case, this is okay to continue the recoloring even
2732     // if we did not find an alternative color for it. Indeed,
2733     // there will not be anything to color for LI in the end.
2734     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2735       return false;
2736 
2737     if (!PhysReg) {
2738       assert(LI->empty() && "Only empty live-range do not require a register");
2739       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2740                         << " succeeded. Empty LI.\n");
2741       continue;
2742     }
2743     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2744                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2745 
2746     Matrix->assign(*LI, PhysReg);
2747     FixedRegisters.insert(LI->reg());
2748   }
2749   return true;
2750 }
2751 
2752 //===----------------------------------------------------------------------===//
2753 //                            Main Entry Point
2754 //===----------------------------------------------------------------------===//
2755 
2756 Register RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2757                                  SmallVectorImpl<Register> &NewVRegs) {
2758   CutOffInfo = CO_None;
2759   LLVMContext &Ctx = MF->getFunction().getContext();
2760   SmallVirtRegSet FixedRegisters;
2761   Register Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2762   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2763     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2764     if (CutOffEncountered == CO_Depth)
2765       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2766                     "reached. Use -fexhaustive-register-search to skip "
2767                     "cutoffs");
2768     else if (CutOffEncountered == CO_Interf)
2769       Ctx.emitError("register allocation failed: maximum interference for "
2770                     "recoloring reached. Use -fexhaustive-register-search "
2771                     "to skip cutoffs");
2772     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2773       Ctx.emitError("register allocation failed: maximum interference and "
2774                     "depth for recoloring reached. Use "
2775                     "-fexhaustive-register-search to skip cutoffs");
2776   }
2777   return Reg;
2778 }
2779 
2780 /// Using a CSR for the first time has a cost because it causes push|pop
2781 /// to be added to prologue|epilogue. Splitting a cold section of the live
2782 /// range can have lower cost than using the CSR for the first time;
2783 /// Spilling a live range in the cold path can have lower cost than using
2784 /// the CSR for the first time. Returns the physical register if we decide
2785 /// to use the CSR; otherwise return 0.
2786 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2787                                          AllocationOrder &Order,
2788                                          Register PhysReg,
2789                                          unsigned &CostPerUseLimit,
2790                                          SmallVectorImpl<Register> &NewVRegs) {
2791   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2792     // We choose spill over using the CSR for the first time if the spill cost
2793     // is lower than CSRCost.
2794     SA->analyze(&VirtReg);
2795     if (calcSpillCost() >= CSRCost)
2796       return PhysReg;
2797 
2798     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2799     // we will not use a callee-saved register in tryEvict.
2800     CostPerUseLimit = 1;
2801     return 0;
2802   }
2803   if (getStage(VirtReg) < RS_Split) {
2804     // We choose pre-splitting over using the CSR for the first time if
2805     // the cost of splitting is lower than CSRCost.
2806     SA->analyze(&VirtReg);
2807     unsigned NumCands = 0;
2808     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2809     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2810                                                  NumCands, true /*IgnoreCSR*/);
2811     if (BestCand == NoCand)
2812       // Use the CSR if we can't find a region split below CSRCost.
2813       return PhysReg;
2814 
2815     // Perform the actual pre-splitting.
2816     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2817     return 0;
2818   }
2819   return PhysReg;
2820 }
2821 
2822 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2823   // Do not keep invalid information around.
2824   SetOfBrokenHints.remove(&LI);
2825 }
2826 
2827 void RAGreedy::initializeCSRCost() {
2828   // We use the larger one out of the command-line option and the value report
2829   // by TRI.
2830   CSRCost = BlockFrequency(
2831       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2832   if (!CSRCost.getFrequency())
2833     return;
2834 
2835   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2836   uint64_t ActualEntry = MBFI->getEntryFreq();
2837   if (!ActualEntry) {
2838     CSRCost = 0;
2839     return;
2840   }
2841   uint64_t FixedEntry = 1 << 14;
2842   if (ActualEntry < FixedEntry)
2843     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2844   else if (ActualEntry <= UINT32_MAX)
2845     // Invert the fraction and divide.
2846     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2847   else
2848     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2849     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2850 }
2851 
2852 /// Collect the hint info for \p Reg.
2853 /// The results are stored into \p Out.
2854 /// \p Out is not cleared before being populated.
2855 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2856   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2857     if (!Instr.isFullCopy())
2858       continue;
2859     // Look for the other end of the copy.
2860     Register OtherReg = Instr.getOperand(0).getReg();
2861     if (OtherReg == Reg) {
2862       OtherReg = Instr.getOperand(1).getReg();
2863       if (OtherReg == Reg)
2864         continue;
2865     }
2866     // Get the current assignment.
2867     Register OtherPhysReg = Register::isPhysicalRegister(OtherReg)
2868                                 ? OtherReg
2869                                 : VRM->getPhys(OtherReg);
2870     // Push the collected information.
2871     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2872                            OtherPhysReg));
2873   }
2874 }
2875 
2876 /// Using the given \p List, compute the cost of the broken hints if
2877 /// \p PhysReg was used.
2878 /// \return The cost of \p List for \p PhysReg.
2879 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2880                                            unsigned PhysReg) {
2881   BlockFrequency Cost = 0;
2882   for (const HintInfo &Info : List) {
2883     if (Info.PhysReg != PhysReg)
2884       Cost += Info.Freq;
2885   }
2886   return Cost;
2887 }
2888 
2889 /// Using the register assigned to \p VirtReg, try to recolor
2890 /// all the live ranges that are copy-related with \p VirtReg.
2891 /// The recoloring is then propagated to all the live-ranges that have
2892 /// been recolored and so on, until no more copies can be coalesced or
2893 /// it is not profitable.
2894 /// For a given live range, profitability is determined by the sum of the
2895 /// frequencies of the non-identity copies it would introduce with the old
2896 /// and new register.
2897 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2898   // We have a broken hint, check if it is possible to fix it by
2899   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2900   // some register and PhysReg may be available for the other live-ranges.
2901   SmallSet<unsigned, 4> Visited;
2902   SmallVector<unsigned, 2> RecoloringCandidates;
2903   HintsInfo Info;
2904   unsigned Reg = VirtReg.reg();
2905   Register PhysReg = VRM->getPhys(Reg);
2906   // Start the recoloring algorithm from the input live-interval, then
2907   // it will propagate to the ones that are copy-related with it.
2908   Visited.insert(Reg);
2909   RecoloringCandidates.push_back(Reg);
2910 
2911   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2912                     << '(' << printReg(PhysReg, TRI) << ")\n");
2913 
2914   do {
2915     Reg = RecoloringCandidates.pop_back_val();
2916 
2917     // We cannot recolor physical register.
2918     if (Register::isPhysicalRegister(Reg))
2919       continue;
2920 
2921     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2922 
2923     // Get the live interval mapped with this virtual register to be able
2924     // to check for the interference with the new color.
2925     LiveInterval &LI = LIS->getInterval(Reg);
2926     Register CurrPhys = VRM->getPhys(Reg);
2927     // Check that the new color matches the register class constraints and
2928     // that it is free for this live range.
2929     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2930                                 Matrix->checkInterference(LI, PhysReg)))
2931       continue;
2932 
2933     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2934                       << ") is recolorable.\n");
2935 
2936     // Gather the hint info.
2937     Info.clear();
2938     collectHintInfo(Reg, Info);
2939     // Check if recoloring the live-range will increase the cost of the
2940     // non-identity copies.
2941     if (CurrPhys != PhysReg) {
2942       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2943       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2944       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2945       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2946                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2947                         << '\n');
2948       if (OldCopiesCost < NewCopiesCost) {
2949         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2950         continue;
2951       }
2952       // At this point, the cost is either cheaper or equal. If it is
2953       // equal, we consider this is profitable because it may expose
2954       // more recoloring opportunities.
2955       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2956       // Recolor the live-range.
2957       Matrix->unassign(LI);
2958       Matrix->assign(LI, PhysReg);
2959     }
2960     // Push all copy-related live-ranges to keep reconciling the broken
2961     // hints.
2962     for (const HintInfo &HI : Info) {
2963       if (Visited.insert(HI.Reg).second)
2964         RecoloringCandidates.push_back(HI.Reg);
2965     }
2966   } while (!RecoloringCandidates.empty());
2967 }
2968 
2969 /// Try to recolor broken hints.
2970 /// Broken hints may be repaired by recoloring when an evicted variable
2971 /// freed up a register for a larger live-range.
2972 /// Consider the following example:
2973 /// BB1:
2974 ///   a =
2975 ///   b =
2976 /// BB2:
2977 ///   ...
2978 ///   = b
2979 ///   = a
2980 /// Let us assume b gets split:
2981 /// BB1:
2982 ///   a =
2983 ///   b =
2984 /// BB2:
2985 ///   c = b
2986 ///   ...
2987 ///   d = c
2988 ///   = d
2989 ///   = a
2990 /// Because of how the allocation work, b, c, and d may be assigned different
2991 /// colors. Now, if a gets evicted later:
2992 /// BB1:
2993 ///   a =
2994 ///   st a, SpillSlot
2995 ///   b =
2996 /// BB2:
2997 ///   c = b
2998 ///   ...
2999 ///   d = c
3000 ///   = d
3001 ///   e = ld SpillSlot
3002 ///   = e
3003 /// This is likely that we can assign the same register for b, c, and d,
3004 /// getting rid of 2 copies.
3005 void RAGreedy::tryHintsRecoloring() {
3006   for (LiveInterval *LI : SetOfBrokenHints) {
3007     assert(Register::isVirtualRegister(LI->reg()) &&
3008            "Recoloring is possible only for virtual registers");
3009     // Some dead defs may be around (e.g., because of debug uses).
3010     // Ignore those.
3011     if (!VRM->hasPhys(LI->reg()))
3012       continue;
3013     tryHintRecoloring(*LI);
3014   }
3015 }
3016 
3017 Register RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3018                                      SmallVectorImpl<Register> &NewVRegs,
3019                                      SmallVirtRegSet &FixedRegisters,
3020                                      unsigned Depth) {
3021   unsigned CostPerUseLimit = ~0u;
3022   // First try assigning a free register.
3023   auto Order =
3024       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
3025   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3026     // If VirtReg got an assignment, the eviction info is no longre relevant.
3027     LastEvicted.clearEvicteeInfo(VirtReg.reg());
3028     // When NewVRegs is not empty, we may have made decisions such as evicting
3029     // a virtual register, go with the earlier decisions and use the physical
3030     // register.
3031     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3032         NewVRegs.empty()) {
3033       Register CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3034                                               CostPerUseLimit, NewVRegs);
3035       if (CSRReg || !NewVRegs.empty())
3036         // Return now if we decide to use a CSR or create new vregs due to
3037         // pre-splitting.
3038         return CSRReg;
3039     } else
3040       return PhysReg;
3041   }
3042 
3043   LiveRangeStage Stage = getStage(VirtReg);
3044   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3045                     << ExtraRegInfo[VirtReg.reg()].Cascade << '\n');
3046 
3047   // Try to evict a less worthy live range, but only for ranges from the primary
3048   // queue. The RS_Split ranges already failed to do this, and they should not
3049   // get a second chance until they have been split.
3050   if (Stage != RS_Split)
3051     if (Register PhysReg =
3052             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3053                      FixedRegisters)) {
3054       Register Hint = MRI->getSimpleHint(VirtReg.reg());
3055       // If VirtReg has a hint and that hint is broken record this
3056       // virtual register as a recoloring candidate for broken hint.
3057       // Indeed, since we evicted a variable in its neighborhood it is
3058       // likely we can at least partially recolor some of the
3059       // copy-related live-ranges.
3060       if (Hint && Hint != PhysReg)
3061         SetOfBrokenHints.insert(&VirtReg);
3062       // If VirtReg eviction someone, the eviction info for it as an evictee is
3063       // no longre relevant.
3064       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3065       return PhysReg;
3066     }
3067 
3068   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3069 
3070   // The first time we see a live range, don't try to split or spill.
3071   // Wait until the second time, when all smaller ranges have been allocated.
3072   // This gives a better picture of the interference to split around.
3073   if (Stage < RS_Split) {
3074     setStage(VirtReg, RS_Split);
3075     LLVM_DEBUG(dbgs() << "wait for second round\n");
3076     NewVRegs.push_back(VirtReg.reg());
3077     return 0;
3078   }
3079 
3080   if (Stage < RS_Spill) {
3081     // Try splitting VirtReg or interferences.
3082     unsigned NewVRegSizeBefore = NewVRegs.size();
3083     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3084     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3085       // If VirtReg got split, the eviction info is no longer relevant.
3086       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3087       return PhysReg;
3088     }
3089   }
3090 
3091   // If we couldn't allocate a register from spilling, there is probably some
3092   // invalid inline assembly. The base class will report it.
3093   if (Stage >= RS_Done || !VirtReg.isSpillable())
3094     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3095                                    Depth);
3096 
3097   // Finally spill VirtReg itself.
3098   if ((EnableDeferredSpilling ||
3099        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
3100       getStage(VirtReg) < RS_Memory) {
3101     // TODO: This is experimental and in particular, we do not model
3102     // the live range splitting done by spilling correctly.
3103     // We would need a deep integration with the spiller to do the
3104     // right thing here. Anyway, that is still good for early testing.
3105     setStage(VirtReg, RS_Memory);
3106     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3107     NewVRegs.push_back(VirtReg.reg());
3108   } else {
3109     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3110                        TimerGroupDescription, TimePassesIsEnabled);
3111     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3112     spiller().spill(LRE);
3113     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3114 
3115     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3116     // the new regs are kept in LDV (still mapping to the old register), until
3117     // we rewrite spilled locations in LDV at a later stage.
3118     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
3119 
3120     if (VerifyEnabled)
3121       MF->verify(this, "After spilling");
3122   }
3123 
3124   // The live virtual register requesting allocation was spilled, so tell
3125   // the caller not to allocate anything during this round.
3126   return 0;
3127 }
3128 
3129 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3130                                             unsigned &FoldedReloads,
3131                                             unsigned &Spills,
3132                                             unsigned &FoldedSpills) {
3133   Reloads = 0;
3134   FoldedReloads = 0;
3135   Spills = 0;
3136   FoldedSpills = 0;
3137 
3138   // Sum up the spill and reloads in subloops.
3139   for (MachineLoop *SubLoop : *L) {
3140     unsigned SubReloads;
3141     unsigned SubFoldedReloads;
3142     unsigned SubSpills;
3143     unsigned SubFoldedSpills;
3144 
3145     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3146                                  SubSpills, SubFoldedSpills);
3147     Reloads += SubReloads;
3148     FoldedReloads += SubFoldedReloads;
3149     Spills += SubSpills;
3150     FoldedSpills += SubFoldedSpills;
3151   }
3152 
3153   const MachineFrameInfo &MFI = MF->getFrameInfo();
3154   int FI;
3155 
3156   for (MachineBasicBlock *MBB : L->getBlocks())
3157     // Handle blocks that were not included in subloops.
3158     if (Loops->getLoopFor(MBB) == L)
3159       for (MachineInstr &MI : *MBB) {
3160         SmallVector<const MachineMemOperand *, 2> Accesses;
3161         auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3162           return MFI.isSpillSlotObjectIndex(
3163               cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3164                   ->getFrameIndex());
3165         };
3166 
3167         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3168           ++Reloads;
3169         else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3170                  llvm::any_of(Accesses, isSpillSlotAccess))
3171           ++FoldedReloads;
3172         else if (TII->isStoreToStackSlot(MI, FI) &&
3173                  MFI.isSpillSlotObjectIndex(FI))
3174           ++Spills;
3175         else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3176                  llvm::any_of(Accesses, isSpillSlotAccess))
3177           ++FoldedSpills;
3178       }
3179 
3180   if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3181     using namespace ore;
3182 
3183     ORE->emit([&]() {
3184       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3185                                         L->getStartLoc(), L->getHeader());
3186       if (Spills)
3187         R << NV("NumSpills", Spills) << " spills ";
3188       if (FoldedSpills)
3189         R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3190       if (Reloads)
3191         R << NV("NumReloads", Reloads) << " reloads ";
3192       if (FoldedReloads)
3193         R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3194       R << "generated in loop";
3195       return R;
3196     });
3197   }
3198 }
3199 
3200 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3201   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3202                     << "********** Function: " << mf.getName() << '\n');
3203 
3204   MF = &mf;
3205   TRI = MF->getSubtarget().getRegisterInfo();
3206   TII = MF->getSubtarget().getInstrInfo();
3207   RCI.runOnMachineFunction(mf);
3208 
3209   EnableLocalReassign = EnableLocalReassignment ||
3210                         MF->getSubtarget().enableRALocalReassignment(
3211                             MF->getTarget().getOptLevel());
3212 
3213   EnableAdvancedRASplitCost =
3214       ConsiderLocalIntervalCost.getNumOccurrences()
3215           ? ConsiderLocalIntervalCost
3216           : MF->getSubtarget().enableAdvancedRASplitCost();
3217 
3218   if (VerifyEnabled)
3219     MF->verify(this, "Before greedy register allocator");
3220 
3221   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3222                      getAnalysis<LiveIntervals>(),
3223                      getAnalysis<LiveRegMatrix>());
3224   Indexes = &getAnalysis<SlotIndexes>();
3225   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3226   DomTree = &getAnalysis<MachineDominatorTree>();
3227   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3228   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3229   Loops = &getAnalysis<MachineLoopInfo>();
3230   Bundles = &getAnalysis<EdgeBundles>();
3231   SpillPlacer = &getAnalysis<SpillPlacement>();
3232   DebugVars = &getAnalysis<LiveDebugVariables>();
3233   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3234 
3235   initializeCSRCost();
3236 
3237   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, VRM, *Loops, *MBFI);
3238 
3239   VRAI->calculateSpillWeightsAndHints();
3240 
3241   LLVM_DEBUG(LIS->dump());
3242 
3243   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3244   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3245   ExtraRegInfo.clear();
3246   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3247   NextCascade = 1;
3248   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3249   GlobalCand.resize(32);  // This will grow as needed.
3250   SetOfBrokenHints.clear();
3251   LastEvicted.clear();
3252 
3253   allocatePhysRegs();
3254   tryHintsRecoloring();
3255   postOptimization();
3256   reportNumberOfSplillsReloads();
3257 
3258   releaseMemory();
3259   return true;
3260 }
3261