1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "SpillPlacement.h" 20 #include "Spiller.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/CalcSpillWeights.h" 25 #include "llvm/CodeGen/EdgeBundles.h" 26 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 27 #include "llvm/CodeGen/LiveRangeEdit.h" 28 #include "llvm/CodeGen/LiveRegMatrix.h" 29 #include "llvm/CodeGen/LiveStackAnalysis.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineLoopInfo.h" 35 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/Passes.h" 38 #include "llvm/CodeGen/RegAllocRegistry.h" 39 #include "llvm/CodeGen/RegisterClassInfo.h" 40 #include "llvm/CodeGen/VirtRegMap.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/PassAnalysisSupport.h" 43 #include "llvm/Support/BranchProbability.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetSubtargetInfo.h" 51 #include <queue> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "regalloc" 56 57 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 58 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 59 STATISTIC(NumEvicted, "Number of interferences evicted"); 60 61 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 62 "split-spill-mode", cl::Hidden, 63 cl::desc("Spill mode for splitting live ranges"), 64 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 65 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 66 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 67 cl::init(SplitEditor::SM_Speed)); 68 69 static cl::opt<unsigned> 70 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 71 cl::desc("Last chance recoloring max depth"), 72 cl::init(5)); 73 74 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 75 "lcr-max-interf", cl::Hidden, 76 cl::desc("Last chance recoloring maximum number of considered" 77 " interference at a time"), 78 cl::init(8)); 79 80 static cl::opt<bool> 81 ExhaustiveSearch("exhaustive-register-search", cl::NotHidden, 82 cl::desc("Exhaustive Search for registers bypassing the depth " 83 "and interference cutoffs of last chance recoloring")); 84 85 static cl::opt<bool> EnableLocalReassignment( 86 "enable-local-reassign", cl::Hidden, 87 cl::desc("Local reassignment can yield better allocation decisions, but " 88 "may be compile time intensive"), 89 cl::init(false)); 90 91 static cl::opt<bool> EnableDeferredSpilling( 92 "enable-deferred-spilling", cl::Hidden, 93 cl::desc("Instead of spilling a variable right away, defer the actual " 94 "code insertion to the end of the allocation. That way the " 95 "allocator might still find a suitable coloring for this " 96 "variable because of other evicted variables."), 97 cl::init(false)); 98 99 // FIXME: Find a good default for this flag and remove the flag. 100 static cl::opt<unsigned> 101 CSRFirstTimeCost("regalloc-csr-first-time-cost", 102 cl::desc("Cost for first time use of callee-saved register."), 103 cl::init(0), cl::Hidden); 104 105 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 106 createGreedyRegisterAllocator); 107 108 namespace { 109 class RAGreedy : public MachineFunctionPass, 110 public RegAllocBase, 111 private LiveRangeEdit::Delegate { 112 // Convenient shortcuts. 113 typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue; 114 typedef SmallPtrSet<LiveInterval *, 4> SmallLISet; 115 typedef SmallSet<unsigned, 16> SmallVirtRegSet; 116 117 // context 118 MachineFunction *MF; 119 120 // Shortcuts to some useful interface. 121 const TargetInstrInfo *TII; 122 const TargetRegisterInfo *TRI; 123 RegisterClassInfo RCI; 124 125 // analyses 126 SlotIndexes *Indexes; 127 MachineBlockFrequencyInfo *MBFI; 128 MachineDominatorTree *DomTree; 129 MachineLoopInfo *Loops; 130 MachineOptimizationRemarkEmitter *ORE; 131 EdgeBundles *Bundles; 132 SpillPlacement *SpillPlacer; 133 LiveDebugVariables *DebugVars; 134 AliasAnalysis *AA; 135 136 // state 137 std::unique_ptr<Spiller> SpillerInstance; 138 PQueue Queue; 139 unsigned NextCascade; 140 141 // Live ranges pass through a number of stages as we try to allocate them. 142 // Some of the stages may also create new live ranges: 143 // 144 // - Region splitting. 145 // - Per-block splitting. 146 // - Local splitting. 147 // - Spilling. 148 // 149 // Ranges produced by one of the stages skip the previous stages when they are 150 // dequeued. This improves performance because we can skip interference checks 151 // that are unlikely to give any results. It also guarantees that the live 152 // range splitting algorithm terminates, something that is otherwise hard to 153 // ensure. 154 enum LiveRangeStage { 155 /// Newly created live range that has never been queued. 156 RS_New, 157 158 /// Only attempt assignment and eviction. Then requeue as RS_Split. 159 RS_Assign, 160 161 /// Attempt live range splitting if assignment is impossible. 162 RS_Split, 163 164 /// Attempt more aggressive live range splitting that is guaranteed to make 165 /// progress. This is used for split products that may not be making 166 /// progress. 167 RS_Split2, 168 169 /// Live range will be spilled. No more splitting will be attempted. 170 RS_Spill, 171 172 173 /// Live range is in memory. Because of other evictions, it might get moved 174 /// in a register in the end. 175 RS_Memory, 176 177 /// There is nothing more we can do to this live range. Abort compilation 178 /// if it can't be assigned. 179 RS_Done 180 }; 181 182 // Enum CutOffStage to keep a track whether the register allocation failed 183 // because of the cutoffs encountered in last chance recoloring. 184 // Note: This is used as bitmask. New value should be next power of 2. 185 enum CutOffStage { 186 // No cutoffs encountered 187 CO_None = 0, 188 189 // lcr-max-depth cutoff encountered 190 CO_Depth = 1, 191 192 // lcr-max-interf cutoff encountered 193 CO_Interf = 2 194 }; 195 196 uint8_t CutOffInfo; 197 198 #ifndef NDEBUG 199 static const char *const StageName[]; 200 #endif 201 202 // RegInfo - Keep additional information about each live range. 203 struct RegInfo { 204 LiveRangeStage Stage; 205 206 // Cascade - Eviction loop prevention. See canEvictInterference(). 207 unsigned Cascade; 208 209 RegInfo() : Stage(RS_New), Cascade(0) {} 210 }; 211 212 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 213 214 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 215 return ExtraRegInfo[VirtReg.reg].Stage; 216 } 217 218 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 219 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 220 ExtraRegInfo[VirtReg.reg].Stage = Stage; 221 } 222 223 template<typename Iterator> 224 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 225 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 226 for (;Begin != End; ++Begin) { 227 unsigned Reg = *Begin; 228 if (ExtraRegInfo[Reg].Stage == RS_New) 229 ExtraRegInfo[Reg].Stage = NewStage; 230 } 231 } 232 233 /// Cost of evicting interference. 234 struct EvictionCost { 235 unsigned BrokenHints; ///< Total number of broken hints. 236 float MaxWeight; ///< Maximum spill weight evicted. 237 238 EvictionCost(): BrokenHints(0), MaxWeight(0) {} 239 240 bool isMax() const { return BrokenHints == ~0u; } 241 242 void setMax() { BrokenHints = ~0u; } 243 244 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 245 246 bool operator<(const EvictionCost &O) const { 247 return std::tie(BrokenHints, MaxWeight) < 248 std::tie(O.BrokenHints, O.MaxWeight); 249 } 250 }; 251 252 // splitting state. 253 std::unique_ptr<SplitAnalysis> SA; 254 std::unique_ptr<SplitEditor> SE; 255 256 /// Cached per-block interference maps 257 InterferenceCache IntfCache; 258 259 /// All basic blocks where the current register has uses. 260 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 261 262 /// Global live range splitting candidate info. 263 struct GlobalSplitCandidate { 264 // Register intended for assignment, or 0. 265 unsigned PhysReg; 266 267 // SplitKit interval index for this candidate. 268 unsigned IntvIdx; 269 270 // Interference for PhysReg. 271 InterferenceCache::Cursor Intf; 272 273 // Bundles where this candidate should be live. 274 BitVector LiveBundles; 275 SmallVector<unsigned, 8> ActiveBlocks; 276 277 void reset(InterferenceCache &Cache, unsigned Reg) { 278 PhysReg = Reg; 279 IntvIdx = 0; 280 Intf.setPhysReg(Cache, Reg); 281 LiveBundles.clear(); 282 ActiveBlocks.clear(); 283 } 284 285 // Set B[i] = C for every live bundle where B[i] was NoCand. 286 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 287 unsigned Count = 0; 288 for (int i = LiveBundles.find_first(); i >= 0; 289 i = LiveBundles.find_next(i)) 290 if (B[i] == NoCand) { 291 B[i] = C; 292 Count++; 293 } 294 return Count; 295 } 296 }; 297 298 /// Candidate info for each PhysReg in AllocationOrder. 299 /// This vector never shrinks, but grows to the size of the largest register 300 /// class. 301 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 302 303 enum : unsigned { NoCand = ~0u }; 304 305 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 306 /// NoCand which indicates the stack interval. 307 SmallVector<unsigned, 32> BundleCand; 308 309 /// Callee-save register cost, calculated once per machine function. 310 BlockFrequency CSRCost; 311 312 /// Run or not the local reassignment heuristic. This information is 313 /// obtained from the TargetSubtargetInfo. 314 bool EnableLocalReassign; 315 316 /// Set of broken hints that may be reconciled later because of eviction. 317 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 318 319 public: 320 RAGreedy(); 321 322 /// Return the pass name. 323 StringRef getPassName() const override { return "Greedy Register Allocator"; } 324 325 /// RAGreedy analysis usage. 326 void getAnalysisUsage(AnalysisUsage &AU) const override; 327 void releaseMemory() override; 328 Spiller &spiller() override { return *SpillerInstance; } 329 void enqueue(LiveInterval *LI) override; 330 LiveInterval *dequeue() override; 331 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; 332 void aboutToRemoveInterval(LiveInterval &) override; 333 334 /// Perform register allocation. 335 bool runOnMachineFunction(MachineFunction &mf) override; 336 337 MachineFunctionProperties getRequiredProperties() const override { 338 return MachineFunctionProperties().set( 339 MachineFunctionProperties::Property::NoPHIs); 340 } 341 342 static char ID; 343 344 private: 345 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, 346 SmallVirtRegSet &, unsigned = 0); 347 348 bool LRE_CanEraseVirtReg(unsigned) override; 349 void LRE_WillShrinkVirtReg(unsigned) override; 350 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 351 void enqueue(PQueue &CurQueue, LiveInterval *LI); 352 LiveInterval *dequeue(PQueue &CurQueue); 353 354 BlockFrequency calcSpillCost(); 355 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 356 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 357 void growRegion(GlobalSplitCandidate &Cand); 358 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&); 359 bool calcCompactRegion(GlobalSplitCandidate&); 360 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 361 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 362 unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg); 363 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 364 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 365 void evictInterference(LiveInterval&, unsigned, 366 SmallVectorImpl<unsigned>&); 367 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 368 SmallLISet &RecoloringCandidates, 369 const SmallVirtRegSet &FixedRegisters); 370 371 unsigned tryAssign(LiveInterval&, AllocationOrder&, 372 SmallVectorImpl<unsigned>&); 373 unsigned tryEvict(LiveInterval&, AllocationOrder&, 374 SmallVectorImpl<unsigned>&, unsigned = ~0u); 375 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 376 SmallVectorImpl<unsigned>&); 377 /// Calculate cost of region splitting. 378 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 379 AllocationOrder &Order, 380 BlockFrequency &BestCost, 381 unsigned &NumCands, bool IgnoreCSR); 382 /// Perform region splitting. 383 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 384 bool HasCompact, 385 SmallVectorImpl<unsigned> &NewVRegs); 386 /// Check other options before using a callee-saved register for the first 387 /// time. 388 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 389 unsigned PhysReg, unsigned &CostPerUseLimit, 390 SmallVectorImpl<unsigned> &NewVRegs); 391 void initializeCSRCost(); 392 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 393 SmallVectorImpl<unsigned>&); 394 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 395 SmallVectorImpl<unsigned>&); 396 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 397 SmallVectorImpl<unsigned>&); 398 unsigned trySplit(LiveInterval&, AllocationOrder&, 399 SmallVectorImpl<unsigned>&); 400 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 401 SmallVectorImpl<unsigned> &, 402 SmallVirtRegSet &, unsigned); 403 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, 404 SmallVirtRegSet &, unsigned); 405 void tryHintRecoloring(LiveInterval &); 406 void tryHintsRecoloring(); 407 408 /// Model the information carried by one end of a copy. 409 struct HintInfo { 410 /// The frequency of the copy. 411 BlockFrequency Freq; 412 /// The virtual register or physical register. 413 unsigned Reg; 414 /// Its currently assigned register. 415 /// In case of a physical register Reg == PhysReg. 416 unsigned PhysReg; 417 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) 418 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 419 }; 420 typedef SmallVector<HintInfo, 4> HintsInfo; 421 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 422 void collectHintInfo(unsigned, HintsInfo &); 423 424 bool isUnusedCalleeSavedReg(unsigned PhysReg) const; 425 426 /// Compute and report the number of spills and reloads for a loop. 427 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 428 unsigned &FoldedReloads, unsigned &Spills, 429 unsigned &FoldedSpills); 430 431 /// Report the number of spills and reloads for each loop. 432 void reportNumberOfSplillsReloads() { 433 for (MachineLoop *L : *Loops) { 434 unsigned Reloads, FoldedReloads, Spills, FoldedSpills; 435 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills, 436 FoldedSpills); 437 } 438 } 439 }; 440 } // end anonymous namespace 441 442 char RAGreedy::ID = 0; 443 char &llvm::RAGreedyID = RAGreedy::ID; 444 445 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 446 "Greedy Register Allocator", false, false) 447 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 448 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 449 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 450 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 451 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 452 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 453 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 454 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 455 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 456 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 457 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 458 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 459 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 460 INITIALIZE_PASS_END(RAGreedy, "greedy", 461 "Greedy Register Allocator", false, false) 462 463 #ifndef NDEBUG 464 const char *const RAGreedy::StageName[] = { 465 "RS_New", 466 "RS_Assign", 467 "RS_Split", 468 "RS_Split2", 469 "RS_Spill", 470 "RS_Memory", 471 "RS_Done" 472 }; 473 #endif 474 475 // Hysteresis to use when comparing floats. 476 // This helps stabilize decisions based on float comparisons. 477 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 478 479 480 FunctionPass* llvm::createGreedyRegisterAllocator() { 481 return new RAGreedy(); 482 } 483 484 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 485 } 486 487 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 488 AU.setPreservesCFG(); 489 AU.addRequired<MachineBlockFrequencyInfo>(); 490 AU.addPreserved<MachineBlockFrequencyInfo>(); 491 AU.addRequired<AAResultsWrapperPass>(); 492 AU.addPreserved<AAResultsWrapperPass>(); 493 AU.addRequired<LiveIntervals>(); 494 AU.addPreserved<LiveIntervals>(); 495 AU.addRequired<SlotIndexes>(); 496 AU.addPreserved<SlotIndexes>(); 497 AU.addRequired<LiveDebugVariables>(); 498 AU.addPreserved<LiveDebugVariables>(); 499 AU.addRequired<LiveStacks>(); 500 AU.addPreserved<LiveStacks>(); 501 AU.addRequired<MachineDominatorTree>(); 502 AU.addPreserved<MachineDominatorTree>(); 503 AU.addRequired<MachineLoopInfo>(); 504 AU.addPreserved<MachineLoopInfo>(); 505 AU.addRequired<VirtRegMap>(); 506 AU.addPreserved<VirtRegMap>(); 507 AU.addRequired<LiveRegMatrix>(); 508 AU.addPreserved<LiveRegMatrix>(); 509 AU.addRequired<EdgeBundles>(); 510 AU.addRequired<SpillPlacement>(); 511 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 512 MachineFunctionPass::getAnalysisUsage(AU); 513 } 514 515 516 //===----------------------------------------------------------------------===// 517 // LiveRangeEdit delegate methods 518 //===----------------------------------------------------------------------===// 519 520 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 521 if (VRM->hasPhys(VirtReg)) { 522 LiveInterval &LI = LIS->getInterval(VirtReg); 523 Matrix->unassign(LI); 524 aboutToRemoveInterval(LI); 525 return true; 526 } 527 // Unassigned virtreg is probably in the priority queue. 528 // RegAllocBase will erase it after dequeueing. 529 return false; 530 } 531 532 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 533 if (!VRM->hasPhys(VirtReg)) 534 return; 535 536 // Register is assigned, put it back on the queue for reassignment. 537 LiveInterval &LI = LIS->getInterval(VirtReg); 538 Matrix->unassign(LI); 539 enqueue(&LI); 540 } 541 542 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 543 // Cloning a register we haven't even heard about yet? Just ignore it. 544 if (!ExtraRegInfo.inBounds(Old)) 545 return; 546 547 // LRE may clone a virtual register because dead code elimination causes it to 548 // be split into connected components. The new components are much smaller 549 // than the original, so they should get a new chance at being assigned. 550 // same stage as the parent. 551 ExtraRegInfo[Old].Stage = RS_Assign; 552 ExtraRegInfo.grow(New); 553 ExtraRegInfo[New] = ExtraRegInfo[Old]; 554 } 555 556 void RAGreedy::releaseMemory() { 557 SpillerInstance.reset(); 558 ExtraRegInfo.clear(); 559 GlobalCand.clear(); 560 } 561 562 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 563 564 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 565 // Prioritize live ranges by size, assigning larger ranges first. 566 // The queue holds (size, reg) pairs. 567 const unsigned Size = LI->getSize(); 568 const unsigned Reg = LI->reg; 569 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 570 "Can only enqueue virtual registers"); 571 unsigned Prio; 572 573 ExtraRegInfo.grow(Reg); 574 if (ExtraRegInfo[Reg].Stage == RS_New) 575 ExtraRegInfo[Reg].Stage = RS_Assign; 576 577 if (ExtraRegInfo[Reg].Stage == RS_Split) { 578 // Unsplit ranges that couldn't be allocated immediately are deferred until 579 // everything else has been allocated. 580 Prio = Size; 581 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 582 // Memory operand should be considered last. 583 // Change the priority such that Memory operand are assigned in 584 // the reverse order that they came in. 585 // TODO: Make this a member variable and probably do something about hints. 586 static unsigned MemOp = 0; 587 Prio = MemOp++; 588 } else { 589 // Giant live ranges fall back to the global assignment heuristic, which 590 // prevents excessive spilling in pathological cases. 591 bool ReverseLocal = TRI->reverseLocalAssignment(); 592 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 593 bool ForceGlobal = !ReverseLocal && 594 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 595 596 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 597 LIS->intervalIsInOneMBB(*LI)) { 598 // Allocate original local ranges in linear instruction order. Since they 599 // are singly defined, this produces optimal coloring in the absence of 600 // global interference and other constraints. 601 if (!ReverseLocal) 602 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 603 else { 604 // Allocating bottom up may allow many short LRGs to be assigned first 605 // to one of the cheap registers. This could be much faster for very 606 // large blocks on targets with many physical registers. 607 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 608 } 609 Prio |= RC.AllocationPriority << 24; 610 } else { 611 // Allocate global and split ranges in long->short order. Long ranges that 612 // don't fit should be spilled (or split) ASAP so they don't create 613 // interference. Mark a bit to prioritize global above local ranges. 614 Prio = (1u << 29) + Size; 615 } 616 // Mark a higher bit to prioritize global and local above RS_Split. 617 Prio |= (1u << 31); 618 619 // Boost ranges that have a physical register hint. 620 if (VRM->hasKnownPreference(Reg)) 621 Prio |= (1u << 30); 622 } 623 // The virtual register number is a tie breaker for same-sized ranges. 624 // Give lower vreg numbers higher priority to assign them first. 625 CurQueue.push(std::make_pair(Prio, ~Reg)); 626 } 627 628 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 629 630 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 631 if (CurQueue.empty()) 632 return nullptr; 633 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 634 CurQueue.pop(); 635 return LI; 636 } 637 638 639 //===----------------------------------------------------------------------===// 640 // Direct Assignment 641 //===----------------------------------------------------------------------===// 642 643 /// tryAssign - Try to assign VirtReg to an available register. 644 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 645 AllocationOrder &Order, 646 SmallVectorImpl<unsigned> &NewVRegs) { 647 Order.rewind(); 648 unsigned PhysReg; 649 while ((PhysReg = Order.next())) 650 if (!Matrix->checkInterference(VirtReg, PhysReg)) 651 break; 652 if (!PhysReg || Order.isHint()) 653 return PhysReg; 654 655 // PhysReg is available, but there may be a better choice. 656 657 // If we missed a simple hint, try to cheaply evict interference from the 658 // preferred register. 659 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 660 if (Order.isHint(Hint)) { 661 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); 662 EvictionCost MaxCost; 663 MaxCost.setBrokenHints(1); 664 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 665 evictInterference(VirtReg, Hint, NewVRegs); 666 return Hint; 667 } 668 // Record the missed hint, we may be able to recover 669 // at the end if the surrounding allocation changed. 670 SetOfBrokenHints.insert(&VirtReg); 671 } 672 673 // Try to evict interference from a cheaper alternative. 674 unsigned Cost = TRI->getCostPerUse(PhysReg); 675 676 // Most registers have 0 additional cost. 677 if (!Cost) 678 return PhysReg; 679 680 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost 681 << '\n'); 682 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 683 return CheapReg ? CheapReg : PhysReg; 684 } 685 686 687 //===----------------------------------------------------------------------===// 688 // Interference eviction 689 //===----------------------------------------------------------------------===// 690 691 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { 692 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 693 unsigned PhysReg; 694 while ((PhysReg = Order.next())) { 695 if (PhysReg == PrevReg) 696 continue; 697 698 MCRegUnitIterator Units(PhysReg, TRI); 699 for (; Units.isValid(); ++Units) { 700 // Instantiate a "subquery", not to be confused with the Queries array. 701 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 702 if (subQ.checkInterference()) 703 break; 704 } 705 // If no units have interference, break out with the current PhysReg. 706 if (!Units.isValid()) 707 break; 708 } 709 if (PhysReg) 710 DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 711 << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI) 712 << '\n'); 713 return PhysReg; 714 } 715 716 /// shouldEvict - determine if A should evict the assigned live range B. The 717 /// eviction policy defined by this function together with the allocation order 718 /// defined by enqueue() decides which registers ultimately end up being split 719 /// and spilled. 720 /// 721 /// Cascade numbers are used to prevent infinite loops if this function is a 722 /// cyclic relation. 723 /// 724 /// @param A The live range to be assigned. 725 /// @param IsHint True when A is about to be assigned to its preferred 726 /// register. 727 /// @param B The live range to be evicted. 728 /// @param BreaksHint True when B is already assigned to its preferred register. 729 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 730 LiveInterval &B, bool BreaksHint) { 731 bool CanSplit = getStage(B) < RS_Spill; 732 733 // Be fairly aggressive about following hints as long as the evictee can be 734 // split. 735 if (CanSplit && IsHint && !BreaksHint) 736 return true; 737 738 if (A.weight > B.weight) { 739 DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); 740 return true; 741 } 742 return false; 743 } 744 745 /// canEvictInterference - Return true if all interferences between VirtReg and 746 /// PhysReg can be evicted. 747 /// 748 /// @param VirtReg Live range that is about to be assigned. 749 /// @param PhysReg Desired register for assignment. 750 /// @param IsHint True when PhysReg is VirtReg's preferred register. 751 /// @param MaxCost Only look for cheaper candidates and update with new cost 752 /// when returning true. 753 /// @returns True when interference can be evicted cheaper than MaxCost. 754 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 755 bool IsHint, EvictionCost &MaxCost) { 756 // It is only possible to evict virtual register interference. 757 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 758 return false; 759 760 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 761 762 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 763 // involved in an eviction before. If a cascade number was assigned, deny 764 // evicting anything with the same or a newer cascade number. This prevents 765 // infinite eviction loops. 766 // 767 // This works out so a register without a cascade number is allowed to evict 768 // anything, and it can be evicted by anything. 769 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 770 if (!Cascade) 771 Cascade = NextCascade; 772 773 EvictionCost Cost; 774 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 775 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 776 // If there is 10 or more interferences, chances are one is heavier. 777 if (Q.collectInterferingVRegs(10) >= 10) 778 return false; 779 780 // Check if any interfering live range is heavier than MaxWeight. 781 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 782 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 783 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && 784 "Only expecting virtual register interference from query"); 785 // Never evict spill products. They cannot split or spill. 786 if (getStage(*Intf) == RS_Done) 787 return false; 788 // Once a live range becomes small enough, it is urgent that we find a 789 // register for it. This is indicated by an infinite spill weight. These 790 // urgent live ranges get to evict almost anything. 791 // 792 // Also allow urgent evictions of unspillable ranges from a strictly 793 // larger allocation order. 794 bool Urgent = !VirtReg.isSpillable() && 795 (Intf->isSpillable() || 796 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 797 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 798 // Only evict older cascades or live ranges without a cascade. 799 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 800 if (Cascade <= IntfCascade) { 801 if (!Urgent) 802 return false; 803 // We permit breaking cascades for urgent evictions. It should be the 804 // last resort, though, so make it really expensive. 805 Cost.BrokenHints += 10; 806 } 807 // Would this break a satisfied hint? 808 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 809 // Update eviction cost. 810 Cost.BrokenHints += BreaksHint; 811 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 812 // Abort if this would be too expensive. 813 if (!(Cost < MaxCost)) 814 return false; 815 if (Urgent) 816 continue; 817 // Apply the eviction policy for non-urgent evictions. 818 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 819 return false; 820 // If !MaxCost.isMax(), then we're just looking for a cheap register. 821 // Evicting another local live range in this case could lead to suboptimal 822 // coloring. 823 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 824 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 825 return false; 826 } 827 } 828 } 829 MaxCost = Cost; 830 return true; 831 } 832 833 /// evictInterference - Evict any interferring registers that prevent VirtReg 834 /// from being assigned to Physreg. This assumes that canEvictInterference 835 /// returned true. 836 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 837 SmallVectorImpl<unsigned> &NewVRegs) { 838 // Make sure that VirtReg has a cascade number, and assign that cascade 839 // number to every evicted register. These live ranges than then only be 840 // evicted by a newer cascade, preventing infinite loops. 841 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 842 if (!Cascade) 843 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 844 845 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) 846 << " interference: Cascade " << Cascade << '\n'); 847 848 // Collect all interfering virtregs first. 849 SmallVector<LiveInterval*, 8> Intfs; 850 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 851 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 852 assert(Q.seenAllInterferences() && "Didn't check all interfererences."); 853 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 854 Intfs.append(IVR.begin(), IVR.end()); 855 } 856 857 // Evict them second. This will invalidate the queries. 858 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 859 LiveInterval *Intf = Intfs[i]; 860 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 861 if (!VRM->hasPhys(Intf->reg)) 862 continue; 863 Matrix->unassign(*Intf); 864 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 865 VirtReg.isSpillable() < Intf->isSpillable()) && 866 "Cannot decrease cascade number, illegal eviction"); 867 ExtraRegInfo[Intf->reg].Cascade = Cascade; 868 ++NumEvicted; 869 NewVRegs.push_back(Intf->reg); 870 } 871 } 872 873 /// Returns true if the given \p PhysReg is a callee saved register and has not 874 /// been used for allocation yet. 875 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { 876 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 877 if (CSR == 0) 878 return false; 879 880 return !Matrix->isPhysRegUsed(PhysReg); 881 } 882 883 /// tryEvict - Try to evict all interferences for a physreg. 884 /// @param VirtReg Currently unassigned virtual register. 885 /// @param Order Physregs to try. 886 /// @return Physreg to assign VirtReg, or 0. 887 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 888 AllocationOrder &Order, 889 SmallVectorImpl<unsigned> &NewVRegs, 890 unsigned CostPerUseLimit) { 891 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 892 TimePassesIsEnabled); 893 894 // Keep track of the cheapest interference seen so far. 895 EvictionCost BestCost; 896 BestCost.setMax(); 897 unsigned BestPhys = 0; 898 unsigned OrderLimit = Order.getOrder().size(); 899 900 // When we are just looking for a reduced cost per use, don't break any 901 // hints, and only evict smaller spill weights. 902 if (CostPerUseLimit < ~0u) { 903 BestCost.BrokenHints = 0; 904 BestCost.MaxWeight = VirtReg.weight; 905 906 // Check of any registers in RC are below CostPerUseLimit. 907 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 908 unsigned MinCost = RegClassInfo.getMinCost(RC); 909 if (MinCost >= CostPerUseLimit) { 910 DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost 911 << ", no cheaper registers to be found.\n"); 912 return 0; 913 } 914 915 // It is normal for register classes to have a long tail of registers with 916 // the same cost. We don't need to look at them if they're too expensive. 917 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 918 OrderLimit = RegClassInfo.getLastCostChange(RC); 919 DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n"); 920 } 921 } 922 923 Order.rewind(); 924 while (unsigned PhysReg = Order.next(OrderLimit)) { 925 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 926 continue; 927 // The first use of a callee-saved register in a function has cost 1. 928 // Don't start using a CSR when the CostPerUseLimit is low. 929 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 930 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " 931 << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 932 << '\n'); 933 continue; 934 } 935 936 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 937 continue; 938 939 // Best so far. 940 BestPhys = PhysReg; 941 942 // Stop if the hint can be used. 943 if (Order.isHint()) 944 break; 945 } 946 947 if (!BestPhys) 948 return 0; 949 950 evictInterference(VirtReg, BestPhys, NewVRegs); 951 return BestPhys; 952 } 953 954 955 //===----------------------------------------------------------------------===// 956 // Region Splitting 957 //===----------------------------------------------------------------------===// 958 959 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 960 /// interference pattern in Physreg and its aliases. Add the constraints to 961 /// SpillPlacement and return the static cost of this split in Cost, assuming 962 /// that all preferences in SplitConstraints are met. 963 /// Return false if there are no bundles with positive bias. 964 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 965 BlockFrequency &Cost) { 966 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 967 968 // Reset interference dependent info. 969 SplitConstraints.resize(UseBlocks.size()); 970 BlockFrequency StaticCost = 0; 971 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 972 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 973 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 974 975 BC.Number = BI.MBB->getNumber(); 976 Intf.moveToBlock(BC.Number); 977 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 978 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 979 BC.ChangesValue = BI.FirstDef.isValid(); 980 981 if (!Intf.hasInterference()) 982 continue; 983 984 // Number of spill code instructions to insert. 985 unsigned Ins = 0; 986 987 // Interference for the live-in value. 988 if (BI.LiveIn) { 989 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 990 BC.Entry = SpillPlacement::MustSpill; 991 ++Ins; 992 } else if (Intf.first() < BI.FirstInstr) { 993 BC.Entry = SpillPlacement::PrefSpill; 994 ++Ins; 995 } else if (Intf.first() < BI.LastInstr) { 996 ++Ins; 997 } 998 } 999 1000 // Interference for the live-out value. 1001 if (BI.LiveOut) { 1002 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1003 BC.Exit = SpillPlacement::MustSpill; 1004 ++Ins; 1005 } else if (Intf.last() > BI.LastInstr) { 1006 BC.Exit = SpillPlacement::PrefSpill; 1007 ++Ins; 1008 } else if (Intf.last() > BI.FirstInstr) { 1009 ++Ins; 1010 } 1011 } 1012 1013 // Accumulate the total frequency of inserted spill code. 1014 while (Ins--) 1015 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1016 } 1017 Cost = StaticCost; 1018 1019 // Add constraints for use-blocks. Note that these are the only constraints 1020 // that may add a positive bias, it is downhill from here. 1021 SpillPlacer->addConstraints(SplitConstraints); 1022 return SpillPlacer->scanActiveBundles(); 1023 } 1024 1025 1026 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1027 /// live-through blocks in Blocks. 1028 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1029 ArrayRef<unsigned> Blocks) { 1030 const unsigned GroupSize = 8; 1031 SpillPlacement::BlockConstraint BCS[GroupSize]; 1032 unsigned TBS[GroupSize]; 1033 unsigned B = 0, T = 0; 1034 1035 for (unsigned i = 0; i != Blocks.size(); ++i) { 1036 unsigned Number = Blocks[i]; 1037 Intf.moveToBlock(Number); 1038 1039 if (!Intf.hasInterference()) { 1040 assert(T < GroupSize && "Array overflow"); 1041 TBS[T] = Number; 1042 if (++T == GroupSize) { 1043 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1044 T = 0; 1045 } 1046 continue; 1047 } 1048 1049 assert(B < GroupSize && "Array overflow"); 1050 BCS[B].Number = Number; 1051 1052 // Interference for the live-in value. 1053 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1054 BCS[B].Entry = SpillPlacement::MustSpill; 1055 else 1056 BCS[B].Entry = SpillPlacement::PrefSpill; 1057 1058 // Interference for the live-out value. 1059 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1060 BCS[B].Exit = SpillPlacement::MustSpill; 1061 else 1062 BCS[B].Exit = SpillPlacement::PrefSpill; 1063 1064 if (++B == GroupSize) { 1065 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1066 B = 0; 1067 } 1068 } 1069 1070 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1071 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1072 } 1073 1074 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1075 // Keep track of through blocks that have not been added to SpillPlacer. 1076 BitVector Todo = SA->getThroughBlocks(); 1077 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1078 unsigned AddedTo = 0; 1079 #ifndef NDEBUG 1080 unsigned Visited = 0; 1081 #endif 1082 1083 for (;;) { 1084 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1085 // Find new through blocks in the periphery of PrefRegBundles. 1086 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1087 unsigned Bundle = NewBundles[i]; 1088 // Look at all blocks connected to Bundle in the full graph. 1089 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1090 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1091 I != E; ++I) { 1092 unsigned Block = *I; 1093 if (!Todo.test(Block)) 1094 continue; 1095 Todo.reset(Block); 1096 // This is a new through block. Add it to SpillPlacer later. 1097 ActiveBlocks.push_back(Block); 1098 #ifndef NDEBUG 1099 ++Visited; 1100 #endif 1101 } 1102 } 1103 // Any new blocks to add? 1104 if (ActiveBlocks.size() == AddedTo) 1105 break; 1106 1107 // Compute through constraints from the interference, or assume that all 1108 // through blocks prefer spilling when forming compact regions. 1109 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1110 if (Cand.PhysReg) 1111 addThroughConstraints(Cand.Intf, NewBlocks); 1112 else 1113 // Provide a strong negative bias on through blocks to prevent unwanted 1114 // liveness on loop backedges. 1115 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1116 AddedTo = ActiveBlocks.size(); 1117 1118 // Perhaps iterating can enable more bundles? 1119 SpillPlacer->iterate(); 1120 } 1121 DEBUG(dbgs() << ", v=" << Visited); 1122 } 1123 1124 /// calcCompactRegion - Compute the set of edge bundles that should be live 1125 /// when splitting the current live range into compact regions. Compact 1126 /// regions can be computed without looking at interference. They are the 1127 /// regions formed by removing all the live-through blocks from the live range. 1128 /// 1129 /// Returns false if the current live range is already compact, or if the 1130 /// compact regions would form single block regions anyway. 1131 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1132 // Without any through blocks, the live range is already compact. 1133 if (!SA->getNumThroughBlocks()) 1134 return false; 1135 1136 // Compact regions don't correspond to any physreg. 1137 Cand.reset(IntfCache, 0); 1138 1139 DEBUG(dbgs() << "Compact region bundles"); 1140 1141 // Use the spill placer to determine the live bundles. GrowRegion pretends 1142 // that all the through blocks have interference when PhysReg is unset. 1143 SpillPlacer->prepare(Cand.LiveBundles); 1144 1145 // The static split cost will be zero since Cand.Intf reports no interference. 1146 BlockFrequency Cost; 1147 if (!addSplitConstraints(Cand.Intf, Cost)) { 1148 DEBUG(dbgs() << ", none.\n"); 1149 return false; 1150 } 1151 1152 growRegion(Cand); 1153 SpillPlacer->finish(); 1154 1155 if (!Cand.LiveBundles.any()) { 1156 DEBUG(dbgs() << ", none.\n"); 1157 return false; 1158 } 1159 1160 DEBUG({ 1161 for (int i = Cand.LiveBundles.find_first(); i>=0; 1162 i = Cand.LiveBundles.find_next(i)) 1163 dbgs() << " EB#" << i; 1164 dbgs() << ".\n"; 1165 }); 1166 return true; 1167 } 1168 1169 /// calcSpillCost - Compute how expensive it would be to split the live range in 1170 /// SA around all use blocks instead of forming bundle regions. 1171 BlockFrequency RAGreedy::calcSpillCost() { 1172 BlockFrequency Cost = 0; 1173 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1174 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1175 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1176 unsigned Number = BI.MBB->getNumber(); 1177 // We normally only need one spill instruction - a load or a store. 1178 Cost += SpillPlacer->getBlockFrequency(Number); 1179 1180 // Unless the value is redefined in the block. 1181 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1182 Cost += SpillPlacer->getBlockFrequency(Number); 1183 } 1184 return Cost; 1185 } 1186 1187 /// calcGlobalSplitCost - Return the global split cost of following the split 1188 /// pattern in LiveBundles. This cost should be added to the local cost of the 1189 /// interference pattern in SplitConstraints. 1190 /// 1191 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) { 1192 BlockFrequency GlobalCost = 0; 1193 const BitVector &LiveBundles = Cand.LiveBundles; 1194 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1195 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1196 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1197 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1198 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)]; 1199 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)]; 1200 unsigned Ins = 0; 1201 1202 if (BI.LiveIn) 1203 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1204 if (BI.LiveOut) 1205 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1206 while (Ins--) 1207 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1208 } 1209 1210 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1211 unsigned Number = Cand.ActiveBlocks[i]; 1212 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)]; 1213 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)]; 1214 if (!RegIn && !RegOut) 1215 continue; 1216 if (RegIn && RegOut) { 1217 // We need double spill code if this block has interference. 1218 Cand.Intf.moveToBlock(Number); 1219 if (Cand.Intf.hasInterference()) { 1220 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1221 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1222 } 1223 continue; 1224 } 1225 // live-in / stack-out or stack-in live-out. 1226 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1227 } 1228 return GlobalCost; 1229 } 1230 1231 /// splitAroundRegion - Split the current live range around the regions 1232 /// determined by BundleCand and GlobalCand. 1233 /// 1234 /// Before calling this function, GlobalCand and BundleCand must be initialized 1235 /// so each bundle is assigned to a valid candidate, or NoCand for the 1236 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1237 /// objects must be initialized for the current live range, and intervals 1238 /// created for the used candidates. 1239 /// 1240 /// @param LREdit The LiveRangeEdit object handling the current split. 1241 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1242 /// must appear in this list. 1243 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1244 ArrayRef<unsigned> UsedCands) { 1245 // These are the intervals created for new global ranges. We may create more 1246 // intervals for local ranges. 1247 const unsigned NumGlobalIntvs = LREdit.size(); 1248 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 1249 assert(NumGlobalIntvs && "No global intervals configured"); 1250 1251 // Isolate even single instructions when dealing with a proper sub-class. 1252 // That guarantees register class inflation for the stack interval because it 1253 // is all copies. 1254 unsigned Reg = SA->getParent().reg; 1255 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1256 1257 // First handle all the blocks with uses. 1258 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1259 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1260 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1261 unsigned Number = BI.MBB->getNumber(); 1262 unsigned IntvIn = 0, IntvOut = 0; 1263 SlotIndex IntfIn, IntfOut; 1264 if (BI.LiveIn) { 1265 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1266 if (CandIn != NoCand) { 1267 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1268 IntvIn = Cand.IntvIdx; 1269 Cand.Intf.moveToBlock(Number); 1270 IntfIn = Cand.Intf.first(); 1271 } 1272 } 1273 if (BI.LiveOut) { 1274 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1275 if (CandOut != NoCand) { 1276 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1277 IntvOut = Cand.IntvIdx; 1278 Cand.Intf.moveToBlock(Number); 1279 IntfOut = Cand.Intf.last(); 1280 } 1281 } 1282 1283 // Create separate intervals for isolated blocks with multiple uses. 1284 if (!IntvIn && !IntvOut) { 1285 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); 1286 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1287 SE->splitSingleBlock(BI); 1288 continue; 1289 } 1290 1291 if (IntvIn && IntvOut) 1292 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1293 else if (IntvIn) 1294 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1295 else 1296 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1297 } 1298 1299 // Handle live-through blocks. The relevant live-through blocks are stored in 1300 // the ActiveBlocks list with each candidate. We need to filter out 1301 // duplicates. 1302 BitVector Todo = SA->getThroughBlocks(); 1303 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1304 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1305 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1306 unsigned Number = Blocks[i]; 1307 if (!Todo.test(Number)) 1308 continue; 1309 Todo.reset(Number); 1310 1311 unsigned IntvIn = 0, IntvOut = 0; 1312 SlotIndex IntfIn, IntfOut; 1313 1314 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1315 if (CandIn != NoCand) { 1316 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1317 IntvIn = Cand.IntvIdx; 1318 Cand.Intf.moveToBlock(Number); 1319 IntfIn = Cand.Intf.first(); 1320 } 1321 1322 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1323 if (CandOut != NoCand) { 1324 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1325 IntvOut = Cand.IntvIdx; 1326 Cand.Intf.moveToBlock(Number); 1327 IntfOut = Cand.Intf.last(); 1328 } 1329 if (!IntvIn && !IntvOut) 1330 continue; 1331 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1332 } 1333 } 1334 1335 ++NumGlobalSplits; 1336 1337 SmallVector<unsigned, 8> IntvMap; 1338 SE->finish(&IntvMap); 1339 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1340 1341 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1342 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1343 1344 // Sort out the new intervals created by splitting. We get four kinds: 1345 // - Remainder intervals should not be split again. 1346 // - Candidate intervals can be assigned to Cand.PhysReg. 1347 // - Block-local splits are candidates for local splitting. 1348 // - DCE leftovers should go back on the queue. 1349 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1350 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1351 1352 // Ignore old intervals from DCE. 1353 if (getStage(Reg) != RS_New) 1354 continue; 1355 1356 // Remainder interval. Don't try splitting again, spill if it doesn't 1357 // allocate. 1358 if (IntvMap[i] == 0) { 1359 setStage(Reg, RS_Spill); 1360 continue; 1361 } 1362 1363 // Global intervals. Allow repeated splitting as long as the number of live 1364 // blocks is strictly decreasing. 1365 if (IntvMap[i] < NumGlobalIntvs) { 1366 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1367 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1368 << " blocks as original.\n"); 1369 // Don't allow repeated splitting as a safe guard against looping. 1370 setStage(Reg, RS_Split2); 1371 } 1372 continue; 1373 } 1374 1375 // Other intervals are treated as new. This includes local intervals created 1376 // for blocks with multiple uses, and anything created by DCE. 1377 } 1378 1379 if (VerifyEnabled) 1380 MF->verify(this, "After splitting live range around region"); 1381 } 1382 1383 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1384 SmallVectorImpl<unsigned> &NewVRegs) { 1385 unsigned NumCands = 0; 1386 BlockFrequency BestCost; 1387 1388 // Check if we can split this live range around a compact region. 1389 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1390 if (HasCompact) { 1391 // Yes, keep GlobalCand[0] as the compact region candidate. 1392 NumCands = 1; 1393 BestCost = BlockFrequency::getMaxFrequency(); 1394 } else { 1395 // No benefit from the compact region, our fallback will be per-block 1396 // splitting. Make sure we find a solution that is cheaper than spilling. 1397 BestCost = calcSpillCost(); 1398 DEBUG(dbgs() << "Cost of isolating all blocks = "; 1399 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1400 } 1401 1402 unsigned BestCand = 1403 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1404 false/*IgnoreCSR*/); 1405 1406 // No solutions found, fall back to single block splitting. 1407 if (!HasCompact && BestCand == NoCand) 1408 return 0; 1409 1410 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1411 } 1412 1413 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1414 AllocationOrder &Order, 1415 BlockFrequency &BestCost, 1416 unsigned &NumCands, 1417 bool IgnoreCSR) { 1418 unsigned BestCand = NoCand; 1419 Order.rewind(); 1420 while (unsigned PhysReg = Order.next()) { 1421 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1422 continue; 1423 1424 // Discard bad candidates before we run out of interference cache cursors. 1425 // This will only affect register classes with a lot of registers (>32). 1426 if (NumCands == IntfCache.getMaxCursors()) { 1427 unsigned WorstCount = ~0u; 1428 unsigned Worst = 0; 1429 for (unsigned i = 0; i != NumCands; ++i) { 1430 if (i == BestCand || !GlobalCand[i].PhysReg) 1431 continue; 1432 unsigned Count = GlobalCand[i].LiveBundles.count(); 1433 if (Count < WorstCount) { 1434 Worst = i; 1435 WorstCount = Count; 1436 } 1437 } 1438 --NumCands; 1439 GlobalCand[Worst] = GlobalCand[NumCands]; 1440 if (BestCand == NumCands) 1441 BestCand = Worst; 1442 } 1443 1444 if (GlobalCand.size() <= NumCands) 1445 GlobalCand.resize(NumCands+1); 1446 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1447 Cand.reset(IntfCache, PhysReg); 1448 1449 SpillPlacer->prepare(Cand.LiveBundles); 1450 BlockFrequency Cost; 1451 if (!addSplitConstraints(Cand.Intf, Cost)) { 1452 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); 1453 continue; 1454 } 1455 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = "; 1456 MBFI->printBlockFreq(dbgs(), Cost)); 1457 if (Cost >= BestCost) { 1458 DEBUG({ 1459 if (BestCand == NoCand) 1460 dbgs() << " worse than no bundles\n"; 1461 else 1462 dbgs() << " worse than " 1463 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1464 }); 1465 continue; 1466 } 1467 growRegion(Cand); 1468 1469 SpillPlacer->finish(); 1470 1471 // No live bundles, defer to splitSingleBlocks(). 1472 if (!Cand.LiveBundles.any()) { 1473 DEBUG(dbgs() << " no bundles.\n"); 1474 continue; 1475 } 1476 1477 Cost += calcGlobalSplitCost(Cand); 1478 DEBUG({ 1479 dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost) 1480 << " with bundles"; 1481 for (int i = Cand.LiveBundles.find_first(); i>=0; 1482 i = Cand.LiveBundles.find_next(i)) 1483 dbgs() << " EB#" << i; 1484 dbgs() << ".\n"; 1485 }); 1486 if (Cost < BestCost) { 1487 BestCand = NumCands; 1488 BestCost = Cost; 1489 } 1490 ++NumCands; 1491 } 1492 return BestCand; 1493 } 1494 1495 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1496 bool HasCompact, 1497 SmallVectorImpl<unsigned> &NewVRegs) { 1498 SmallVector<unsigned, 8> UsedCands; 1499 // Prepare split editor. 1500 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1501 SE->reset(LREdit, SplitSpillMode); 1502 1503 // Assign all edge bundles to the preferred candidate, or NoCand. 1504 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1505 1506 // Assign bundles for the best candidate region. 1507 if (BestCand != NoCand) { 1508 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1509 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1510 UsedCands.push_back(BestCand); 1511 Cand.IntvIdx = SE->openIntv(); 1512 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in " 1513 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1514 (void)B; 1515 } 1516 } 1517 1518 // Assign bundles for the compact region. 1519 if (HasCompact) { 1520 GlobalSplitCandidate &Cand = GlobalCand.front(); 1521 assert(!Cand.PhysReg && "Compact region has no physreg"); 1522 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1523 UsedCands.push_back(0); 1524 Cand.IntvIdx = SE->openIntv(); 1525 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1526 << Cand.IntvIdx << ".\n"); 1527 (void)B; 1528 } 1529 } 1530 1531 splitAroundRegion(LREdit, UsedCands); 1532 return 0; 1533 } 1534 1535 1536 //===----------------------------------------------------------------------===// 1537 // Per-Block Splitting 1538 //===----------------------------------------------------------------------===// 1539 1540 /// tryBlockSplit - Split a global live range around every block with uses. This 1541 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1542 /// they don't allocate. 1543 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1544 SmallVectorImpl<unsigned> &NewVRegs) { 1545 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1546 unsigned Reg = VirtReg.reg; 1547 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1548 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1549 SE->reset(LREdit, SplitSpillMode); 1550 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1551 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1552 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1553 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1554 SE->splitSingleBlock(BI); 1555 } 1556 // No blocks were split. 1557 if (LREdit.empty()) 1558 return 0; 1559 1560 // We did split for some blocks. 1561 SmallVector<unsigned, 8> IntvMap; 1562 SE->finish(&IntvMap); 1563 1564 // Tell LiveDebugVariables about the new ranges. 1565 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1566 1567 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1568 1569 // Sort out the new intervals created by splitting. The remainder interval 1570 // goes straight to spilling, the new local ranges get to stay RS_New. 1571 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1572 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 1573 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1574 setStage(LI, RS_Spill); 1575 } 1576 1577 if (VerifyEnabled) 1578 MF->verify(this, "After splitting live range around basic blocks"); 1579 return 0; 1580 } 1581 1582 1583 //===----------------------------------------------------------------------===// 1584 // Per-Instruction Splitting 1585 //===----------------------------------------------------------------------===// 1586 1587 /// Get the number of allocatable registers that match the constraints of \p Reg 1588 /// on \p MI and that are also in \p SuperRC. 1589 static unsigned getNumAllocatableRegsForConstraints( 1590 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 1591 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1592 const RegisterClassInfo &RCI) { 1593 assert(SuperRC && "Invalid register class"); 1594 1595 const TargetRegisterClass *ConstrainedRC = 1596 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1597 /* ExploreBundle */ true); 1598 if (!ConstrainedRC) 1599 return 0; 1600 return RCI.getNumAllocatableRegs(ConstrainedRC); 1601 } 1602 1603 /// tryInstructionSplit - Split a live range around individual instructions. 1604 /// This is normally not worthwhile since the spiller is doing essentially the 1605 /// same thing. However, when the live range is in a constrained register 1606 /// class, it may help to insert copies such that parts of the live range can 1607 /// be moved to a larger register class. 1608 /// 1609 /// This is similar to spilling to a larger register class. 1610 unsigned 1611 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1612 SmallVectorImpl<unsigned> &NewVRegs) { 1613 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 1614 // There is no point to this if there are no larger sub-classes. 1615 if (!RegClassInfo.isProperSubClass(CurRC)) 1616 return 0; 1617 1618 // Always enable split spill mode, since we're effectively spilling to a 1619 // register. 1620 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1621 SE->reset(LREdit, SplitEditor::SM_Size); 1622 1623 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1624 if (Uses.size() <= 1) 1625 return 0; 1626 1627 DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n"); 1628 1629 const TargetRegisterClass *SuperRC = 1630 TRI->getLargestLegalSuperClass(CurRC, *MF); 1631 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 1632 // Split around every non-copy instruction if this split will relax 1633 // the constraints on the virtual register. 1634 // Otherwise, splitting just inserts uncoalescable copies that do not help 1635 // the allocation. 1636 for (unsigned i = 0; i != Uses.size(); ++i) { 1637 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 1638 if (MI->isFullCopy() || 1639 SuperRCNumAllocatableRegs == 1640 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, 1641 TRI, RCI)) { 1642 DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 1643 continue; 1644 } 1645 SE->openIntv(); 1646 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 1647 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 1648 SE->useIntv(SegStart, SegStop); 1649 } 1650 1651 if (LREdit.empty()) { 1652 DEBUG(dbgs() << "All uses were copies.\n"); 1653 return 0; 1654 } 1655 1656 SmallVector<unsigned, 8> IntvMap; 1657 SE->finish(&IntvMap); 1658 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 1659 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1660 1661 // Assign all new registers to RS_Spill. This was the last chance. 1662 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1663 return 0; 1664 } 1665 1666 1667 //===----------------------------------------------------------------------===// 1668 // Local Splitting 1669 //===----------------------------------------------------------------------===// 1670 1671 1672 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1673 /// in order to use PhysReg between two entries in SA->UseSlots. 1674 /// 1675 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 1676 /// 1677 void RAGreedy::calcGapWeights(unsigned PhysReg, 1678 SmallVectorImpl<float> &GapWeight) { 1679 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1680 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1681 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1682 const unsigned NumGaps = Uses.size()-1; 1683 1684 // Start and end points for the interference check. 1685 SlotIndex StartIdx = 1686 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1687 SlotIndex StopIdx = 1688 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1689 1690 GapWeight.assign(NumGaps, 0.0f); 1691 1692 // Add interference from each overlapping register. 1693 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1694 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1695 .checkInterference()) 1696 continue; 1697 1698 // We know that VirtReg is a continuous interval from FirstInstr to 1699 // LastInstr, so we don't need InterferenceQuery. 1700 // 1701 // Interference that overlaps an instruction is counted in both gaps 1702 // surrounding the instruction. The exception is interference before 1703 // StartIdx and after StopIdx. 1704 // 1705 LiveIntervalUnion::SegmentIter IntI = 1706 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1707 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1708 // Skip the gaps before IntI. 1709 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1710 if (++Gap == NumGaps) 1711 break; 1712 if (Gap == NumGaps) 1713 break; 1714 1715 // Update the gaps covered by IntI. 1716 const float weight = IntI.value()->weight; 1717 for (; Gap != NumGaps; ++Gap) { 1718 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1719 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1720 break; 1721 } 1722 if (Gap == NumGaps) 1723 break; 1724 } 1725 } 1726 1727 // Add fixed interference. 1728 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1729 const LiveRange &LR = LIS->getRegUnit(*Units); 1730 LiveRange::const_iterator I = LR.find(StartIdx); 1731 LiveRange::const_iterator E = LR.end(); 1732 1733 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1734 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1735 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1736 if (++Gap == NumGaps) 1737 break; 1738 if (Gap == NumGaps) 1739 break; 1740 1741 for (; Gap != NumGaps; ++Gap) { 1742 GapWeight[Gap] = llvm::huge_valf; 1743 if (Uses[Gap+1].getBaseIndex() >= I->end) 1744 break; 1745 } 1746 if (Gap == NumGaps) 1747 break; 1748 } 1749 } 1750 } 1751 1752 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1753 /// basic block. 1754 /// 1755 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1756 SmallVectorImpl<unsigned> &NewVRegs) { 1757 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1758 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1759 1760 // Note that it is possible to have an interval that is live-in or live-out 1761 // while only covering a single block - A phi-def can use undef values from 1762 // predecessors, and the block could be a single-block loop. 1763 // We don't bother doing anything clever about such a case, we simply assume 1764 // that the interval is continuous from FirstInstr to LastInstr. We should 1765 // make sure that we don't do anything illegal to such an interval, though. 1766 1767 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1768 if (Uses.size() <= 2) 1769 return 0; 1770 const unsigned NumGaps = Uses.size()-1; 1771 1772 DEBUG({ 1773 dbgs() << "tryLocalSplit: "; 1774 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 1775 dbgs() << ' ' << Uses[i]; 1776 dbgs() << '\n'; 1777 }); 1778 1779 // If VirtReg is live across any register mask operands, compute a list of 1780 // gaps with register masks. 1781 SmallVector<unsigned, 8> RegMaskGaps; 1782 if (Matrix->checkRegMaskInterference(VirtReg)) { 1783 // Get regmask slots for the whole block. 1784 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1785 DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1786 // Constrain to VirtReg's live range. 1787 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 1788 Uses.front().getRegSlot()) - RMS.begin(); 1789 unsigned re = RMS.size(); 1790 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 1791 // Look for Uses[i] <= RMS <= Uses[i+1]. 1792 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 1793 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 1794 continue; 1795 // Skip a regmask on the same instruction as the last use. It doesn't 1796 // overlap the live range. 1797 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 1798 break; 1799 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]); 1800 RegMaskGaps.push_back(i); 1801 // Advance ri to the next gap. A regmask on one of the uses counts in 1802 // both gaps. 1803 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 1804 ++ri; 1805 } 1806 DEBUG(dbgs() << '\n'); 1807 } 1808 1809 // Since we allow local split results to be split again, there is a risk of 1810 // creating infinite loops. It is tempting to require that the new live 1811 // ranges have less instructions than the original. That would guarantee 1812 // convergence, but it is too strict. A live range with 3 instructions can be 1813 // split 2+3 (including the COPY), and we want to allow that. 1814 // 1815 // Instead we use these rules: 1816 // 1817 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1818 // noop split, of course). 1819 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1820 // the new ranges must have fewer instructions than before the split. 1821 // 3. New ranges with the same number of instructions are marked RS_Split2, 1822 // smaller ranges are marked RS_New. 1823 // 1824 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1825 // excessive splitting and infinite loops. 1826 // 1827 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 1828 1829 // Best split candidate. 1830 unsigned BestBefore = NumGaps; 1831 unsigned BestAfter = 0; 1832 float BestDiff = 0; 1833 1834 const float blockFreq = 1835 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1836 (1.0f / MBFI->getEntryFreq()); 1837 SmallVector<float, 8> GapWeight; 1838 1839 Order.rewind(); 1840 while (unsigned PhysReg = Order.next()) { 1841 // Keep track of the largest spill weight that would need to be evicted in 1842 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 1843 calcGapWeights(PhysReg, GapWeight); 1844 1845 // Remove any gaps with regmask clobbers. 1846 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1847 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 1848 GapWeight[RegMaskGaps[i]] = llvm::huge_valf; 1849 1850 // Try to find the best sequence of gaps to close. 1851 // The new spill weight must be larger than any gap interference. 1852 1853 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1854 unsigned SplitBefore = 0, SplitAfter = 1; 1855 1856 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1857 // It is the spill weight that needs to be evicted. 1858 float MaxGap = GapWeight[0]; 1859 1860 for (;;) { 1861 // Live before/after split? 1862 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1863 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1864 1865 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' 1866 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 1867 << " i=" << MaxGap); 1868 1869 // Stop before the interval gets so big we wouldn't be making progress. 1870 if (!LiveBefore && !LiveAfter) { 1871 DEBUG(dbgs() << " all\n"); 1872 break; 1873 } 1874 // Should the interval be extended or shrunk? 1875 bool Shrink = true; 1876 1877 // How many gaps would the new range have? 1878 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1879 1880 // Legally, without causing looping? 1881 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1882 1883 if (Legal && MaxGap < llvm::huge_valf) { 1884 // Estimate the new spill weight. Each instruction reads or writes the 1885 // register. Conservatively assume there are no read-modify-write 1886 // instructions. 1887 // 1888 // Try to guess the size of the new interval. 1889 const float EstWeight = normalizeSpillWeight( 1890 blockFreq * (NewGaps + 1), 1891 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1892 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1893 1); 1894 // Would this split be possible to allocate? 1895 // Never allocate all gaps, we wouldn't be making progress. 1896 DEBUG(dbgs() << " w=" << EstWeight); 1897 if (EstWeight * Hysteresis >= MaxGap) { 1898 Shrink = false; 1899 float Diff = EstWeight - MaxGap; 1900 if (Diff > BestDiff) { 1901 DEBUG(dbgs() << " (best)"); 1902 BestDiff = Hysteresis * Diff; 1903 BestBefore = SplitBefore; 1904 BestAfter = SplitAfter; 1905 } 1906 } 1907 } 1908 1909 // Try to shrink. 1910 if (Shrink) { 1911 if (++SplitBefore < SplitAfter) { 1912 DEBUG(dbgs() << " shrink\n"); 1913 // Recompute the max when necessary. 1914 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1915 MaxGap = GapWeight[SplitBefore]; 1916 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 1917 MaxGap = std::max(MaxGap, GapWeight[i]); 1918 } 1919 continue; 1920 } 1921 MaxGap = 0; 1922 } 1923 1924 // Try to extend the interval. 1925 if (SplitAfter >= NumGaps) { 1926 DEBUG(dbgs() << " end\n"); 1927 break; 1928 } 1929 1930 DEBUG(dbgs() << " extend\n"); 1931 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1932 } 1933 } 1934 1935 // Didn't find any candidates? 1936 if (BestBefore == NumGaps) 1937 return 0; 1938 1939 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 1940 << '-' << Uses[BestAfter] << ", " << BestDiff 1941 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 1942 1943 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1944 SE->reset(LREdit); 1945 1946 SE->openIntv(); 1947 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1948 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1949 SE->useIntv(SegStart, SegStop); 1950 SmallVector<unsigned, 8> IntvMap; 1951 SE->finish(&IntvMap); 1952 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 1953 1954 // If the new range has the same number of instructions as before, mark it as 1955 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1956 // leave the new intervals as RS_New so they can compete. 1957 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1958 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1959 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1960 if (NewGaps >= NumGaps) { 1961 DEBUG(dbgs() << "Tagging non-progress ranges: "); 1962 assert(!ProgressRequired && "Didn't make progress when it was required."); 1963 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 1964 if (IntvMap[i] == 1) { 1965 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 1966 DEBUG(dbgs() << PrintReg(LREdit.get(i))); 1967 } 1968 DEBUG(dbgs() << '\n'); 1969 } 1970 ++NumLocalSplits; 1971 1972 return 0; 1973 } 1974 1975 //===----------------------------------------------------------------------===// 1976 // Live Range Splitting 1977 //===----------------------------------------------------------------------===// 1978 1979 /// trySplit - Try to split VirtReg or one of its interferences, making it 1980 /// assignable. 1981 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1982 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 1983 SmallVectorImpl<unsigned>&NewVRegs) { 1984 // Ranges must be Split2 or less. 1985 if (getStage(VirtReg) >= RS_Spill) 1986 return 0; 1987 1988 // Local intervals are handled separately. 1989 if (LIS->intervalIsInOneMBB(VirtReg)) { 1990 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 1991 TimerGroupDescription, TimePassesIsEnabled); 1992 SA->analyze(&VirtReg); 1993 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1994 if (PhysReg || !NewVRegs.empty()) 1995 return PhysReg; 1996 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1997 } 1998 1999 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2000 TimerGroupDescription, TimePassesIsEnabled); 2001 2002 SA->analyze(&VirtReg); 2003 2004 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2005 // coalescer. That may cause the range to become allocatable which means that 2006 // tryRegionSplit won't be making progress. This check should be replaced with 2007 // an assertion when the coalescer is fixed. 2008 if (SA->didRepairRange()) { 2009 // VirtReg has changed, so all cached queries are invalid. 2010 Matrix->invalidateVirtRegs(); 2011 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 2012 return PhysReg; 2013 } 2014 2015 // First try to split around a region spanning multiple blocks. RS_Split2 2016 // ranges already made dubious progress with region splitting, so they go 2017 // straight to single block splitting. 2018 if (getStage(VirtReg) < RS_Split2) { 2019 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2020 if (PhysReg || !NewVRegs.empty()) 2021 return PhysReg; 2022 } 2023 2024 // Then isolate blocks. 2025 return tryBlockSplit(VirtReg, Order, NewVRegs); 2026 } 2027 2028 //===----------------------------------------------------------------------===// 2029 // Last Chance Recoloring 2030 //===----------------------------------------------------------------------===// 2031 2032 /// mayRecolorAllInterferences - Check if the virtual registers that 2033 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2034 /// recolored to free \p PhysReg. 2035 /// When true is returned, \p RecoloringCandidates has been augmented with all 2036 /// the live intervals that need to be recolored in order to free \p PhysReg 2037 /// for \p VirtReg. 2038 /// \p FixedRegisters contains all the virtual registers that cannot be 2039 /// recolored. 2040 bool 2041 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 2042 SmallLISet &RecoloringCandidates, 2043 const SmallVirtRegSet &FixedRegisters) { 2044 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2045 2046 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2047 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2048 // If there is LastChanceRecoloringMaxInterference or more interferences, 2049 // chances are one would not be recolorable. 2050 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2051 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2052 DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2053 CutOffInfo |= CO_Interf; 2054 return false; 2055 } 2056 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 2057 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 2058 // If Intf is done and sit on the same register class as VirtReg, 2059 // it would not be recolorable as it is in the same state as VirtReg. 2060 if ((getStage(*Intf) == RS_Done && 2061 MRI->getRegClass(Intf->reg) == CurRC) || 2062 FixedRegisters.count(Intf->reg)) { 2063 DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n"); 2064 return false; 2065 } 2066 RecoloringCandidates.insert(Intf); 2067 } 2068 } 2069 return true; 2070 } 2071 2072 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2073 /// its interferences. 2074 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2075 /// virtual register that was using it. The recoloring process may recursively 2076 /// use the last chance recoloring. Therefore, when a virtual register has been 2077 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2078 /// be last-chance-recolored again during this recoloring "session". 2079 /// E.g., 2080 /// Let 2081 /// vA can use {R1, R2 } 2082 /// vB can use { R2, R3} 2083 /// vC can use {R1 } 2084 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2085 /// instance) and they all interfere. 2086 /// 2087 /// vA is assigned R1 2088 /// vB is assigned R2 2089 /// vC tries to evict vA but vA is already done. 2090 /// Regular register allocation fails. 2091 /// 2092 /// Last chance recoloring kicks in: 2093 /// vC does as if vA was evicted => vC uses R1. 2094 /// vC is marked as fixed. 2095 /// vA needs to find a color. 2096 /// None are available. 2097 /// vA cannot evict vC: vC is a fixed virtual register now. 2098 /// vA does as if vB was evicted => vA uses R2. 2099 /// vB needs to find a color. 2100 /// R3 is available. 2101 /// Recoloring => vC = R1, vA = R2, vB = R3 2102 /// 2103 /// \p Order defines the preferred allocation order for \p VirtReg. 2104 /// \p NewRegs will contain any new virtual register that have been created 2105 /// (split, spill) during the process and that must be assigned. 2106 /// \p FixedRegisters contains all the virtual registers that cannot be 2107 /// recolored. 2108 /// \p Depth gives the current depth of the last chance recoloring. 2109 /// \return a physical register that can be used for VirtReg or ~0u if none 2110 /// exists. 2111 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2112 AllocationOrder &Order, 2113 SmallVectorImpl<unsigned> &NewVRegs, 2114 SmallVirtRegSet &FixedRegisters, 2115 unsigned Depth) { 2116 DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2117 // Ranges must be Done. 2118 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2119 "Last chance recoloring should really be last chance"); 2120 // Set the max depth to LastChanceRecoloringMaxDepth. 2121 // We may want to reconsider that if we end up with a too large search space 2122 // for target with hundreds of registers. 2123 // Indeed, in that case we may want to cut the search space earlier. 2124 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2125 DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2126 CutOffInfo |= CO_Depth; 2127 return ~0u; 2128 } 2129 2130 // Set of Live intervals that will need to be recolored. 2131 SmallLISet RecoloringCandidates; 2132 // Record the original mapping virtual register to physical register in case 2133 // the recoloring fails. 2134 DenseMap<unsigned, unsigned> VirtRegToPhysReg; 2135 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2136 // this recoloring "session". 2137 FixedRegisters.insert(VirtReg.reg); 2138 SmallVector<unsigned, 4> CurrentNewVRegs; 2139 2140 Order.rewind(); 2141 while (unsigned PhysReg = Order.next()) { 2142 DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2143 << PrintReg(PhysReg, TRI) << '\n'); 2144 RecoloringCandidates.clear(); 2145 VirtRegToPhysReg.clear(); 2146 CurrentNewVRegs.clear(); 2147 2148 // It is only possible to recolor virtual register interference. 2149 if (Matrix->checkInterference(VirtReg, PhysReg) > 2150 LiveRegMatrix::IK_VirtReg) { 2151 DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n"); 2152 2153 continue; 2154 } 2155 2156 // Early give up on this PhysReg if it is obvious we cannot recolor all 2157 // the interferences. 2158 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2159 FixedRegisters)) { 2160 DEBUG(dbgs() << "Some inteferences cannot be recolored.\n"); 2161 continue; 2162 } 2163 2164 // RecoloringCandidates contains all the virtual registers that interfer 2165 // with VirtReg on PhysReg (or one of its aliases). 2166 // Enqueue them for recoloring and perform the actual recoloring. 2167 PQueue RecoloringQueue; 2168 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2169 EndIt = RecoloringCandidates.end(); 2170 It != EndIt; ++It) { 2171 unsigned ItVirtReg = (*It)->reg; 2172 enqueue(RecoloringQueue, *It); 2173 assert(VRM->hasPhys(ItVirtReg) && 2174 "Interferences are supposed to be with allocated vairables"); 2175 2176 // Record the current allocation. 2177 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2178 // unset the related struct. 2179 Matrix->unassign(**It); 2180 } 2181 2182 // Do as if VirtReg was assigned to PhysReg so that the underlying 2183 // recoloring has the right information about the interferes and 2184 // available colors. 2185 Matrix->assign(VirtReg, PhysReg); 2186 2187 // Save the current recoloring state. 2188 // If we cannot recolor all the interferences, we will have to start again 2189 // at this point for the next physical register. 2190 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2191 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2192 FixedRegisters, Depth)) { 2193 // Push the queued vregs into the main queue. 2194 for (unsigned NewVReg : CurrentNewVRegs) 2195 NewVRegs.push_back(NewVReg); 2196 // Do not mess up with the global assignment process. 2197 // I.e., VirtReg must be unassigned. 2198 Matrix->unassign(VirtReg); 2199 return PhysReg; 2200 } 2201 2202 DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2203 << PrintReg(PhysReg, TRI) << '\n'); 2204 2205 // The recoloring attempt failed, undo the changes. 2206 FixedRegisters = SaveFixedRegisters; 2207 Matrix->unassign(VirtReg); 2208 2209 // For a newly created vreg which is also in RecoloringCandidates, 2210 // don't add it to NewVRegs because its physical register will be restored 2211 // below. Other vregs in CurrentNewVRegs are created by calling 2212 // selectOrSplit and should be added into NewVRegs. 2213 for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(), 2214 End = CurrentNewVRegs.end(); 2215 Next != End; ++Next) { 2216 if (RecoloringCandidates.count(&LIS->getInterval(*Next))) 2217 continue; 2218 NewVRegs.push_back(*Next); 2219 } 2220 2221 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2222 EndIt = RecoloringCandidates.end(); 2223 It != EndIt; ++It) { 2224 unsigned ItVirtReg = (*It)->reg; 2225 if (VRM->hasPhys(ItVirtReg)) 2226 Matrix->unassign(**It); 2227 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2228 Matrix->assign(**It, ItPhysReg); 2229 } 2230 } 2231 2232 // Last chance recoloring did not worked either, give up. 2233 return ~0u; 2234 } 2235 2236 /// tryRecoloringCandidates - Try to assign a new color to every register 2237 /// in \RecoloringQueue. 2238 /// \p NewRegs will contain any new virtual register created during the 2239 /// recoloring process. 2240 /// \p FixedRegisters[in/out] contains all the registers that have been 2241 /// recolored. 2242 /// \return true if all virtual registers in RecoloringQueue were successfully 2243 /// recolored, false otherwise. 2244 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2245 SmallVectorImpl<unsigned> &NewVRegs, 2246 SmallVirtRegSet &FixedRegisters, 2247 unsigned Depth) { 2248 while (!RecoloringQueue.empty()) { 2249 LiveInterval *LI = dequeue(RecoloringQueue); 2250 DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2251 unsigned PhysReg; 2252 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2253 // When splitting happens, the live-range may actually be empty. 2254 // In that case, this is okay to continue the recoloring even 2255 // if we did not find an alternative color for it. Indeed, 2256 // there will not be anything to color for LI in the end. 2257 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2258 return false; 2259 2260 if (!PhysReg) { 2261 assert(LI->empty() && "Only empty live-range do not require a register"); 2262 DEBUG(dbgs() << "Recoloring of " << *LI << " succeeded. Empty LI.\n"); 2263 continue; 2264 } 2265 DEBUG(dbgs() << "Recoloring of " << *LI 2266 << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n'); 2267 2268 Matrix->assign(*LI, PhysReg); 2269 FixedRegisters.insert(LI->reg); 2270 } 2271 return true; 2272 } 2273 2274 //===----------------------------------------------------------------------===// 2275 // Main Entry Point 2276 //===----------------------------------------------------------------------===// 2277 2278 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2279 SmallVectorImpl<unsigned> &NewVRegs) { 2280 CutOffInfo = CO_None; 2281 LLVMContext &Ctx = MF->getFunction()->getContext(); 2282 SmallVirtRegSet FixedRegisters; 2283 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2284 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2285 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2286 if (CutOffEncountered == CO_Depth) 2287 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2288 "reached. Use -fexhaustive-register-search to skip " 2289 "cutoffs"); 2290 else if (CutOffEncountered == CO_Interf) 2291 Ctx.emitError("register allocation failed: maximum interference for " 2292 "recoloring reached. Use -fexhaustive-register-search " 2293 "to skip cutoffs"); 2294 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2295 Ctx.emitError("register allocation failed: maximum interference and " 2296 "depth for recoloring reached. Use " 2297 "-fexhaustive-register-search to skip cutoffs"); 2298 } 2299 return Reg; 2300 } 2301 2302 /// Using a CSR for the first time has a cost because it causes push|pop 2303 /// to be added to prologue|epilogue. Splitting a cold section of the live 2304 /// range can have lower cost than using the CSR for the first time; 2305 /// Spilling a live range in the cold path can have lower cost than using 2306 /// the CSR for the first time. Returns the physical register if we decide 2307 /// to use the CSR; otherwise return 0. 2308 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2309 AllocationOrder &Order, 2310 unsigned PhysReg, 2311 unsigned &CostPerUseLimit, 2312 SmallVectorImpl<unsigned> &NewVRegs) { 2313 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2314 // We choose spill over using the CSR for the first time if the spill cost 2315 // is lower than CSRCost. 2316 SA->analyze(&VirtReg); 2317 if (calcSpillCost() >= CSRCost) 2318 return PhysReg; 2319 2320 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2321 // we will not use a callee-saved register in tryEvict. 2322 CostPerUseLimit = 1; 2323 return 0; 2324 } 2325 if (getStage(VirtReg) < RS_Split) { 2326 // We choose pre-splitting over using the CSR for the first time if 2327 // the cost of splitting is lower than CSRCost. 2328 SA->analyze(&VirtReg); 2329 unsigned NumCands = 0; 2330 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2331 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2332 NumCands, true /*IgnoreCSR*/); 2333 if (BestCand == NoCand) 2334 // Use the CSR if we can't find a region split below CSRCost. 2335 return PhysReg; 2336 2337 // Perform the actual pre-splitting. 2338 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2339 return 0; 2340 } 2341 return PhysReg; 2342 } 2343 2344 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2345 // Do not keep invalid information around. 2346 SetOfBrokenHints.remove(&LI); 2347 } 2348 2349 void RAGreedy::initializeCSRCost() { 2350 // We use the larger one out of the command-line option and the value report 2351 // by TRI. 2352 CSRCost = BlockFrequency( 2353 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2354 if (!CSRCost.getFrequency()) 2355 return; 2356 2357 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2358 uint64_t ActualEntry = MBFI->getEntryFreq(); 2359 if (!ActualEntry) { 2360 CSRCost = 0; 2361 return; 2362 } 2363 uint64_t FixedEntry = 1 << 14; 2364 if (ActualEntry < FixedEntry) 2365 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2366 else if (ActualEntry <= UINT32_MAX) 2367 // Invert the fraction and divide. 2368 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2369 else 2370 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2371 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2372 } 2373 2374 /// \brief Collect the hint info for \p Reg. 2375 /// The results are stored into \p Out. 2376 /// \p Out is not cleared before being populated. 2377 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2378 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2379 if (!Instr.isFullCopy()) 2380 continue; 2381 // Look for the other end of the copy. 2382 unsigned OtherReg = Instr.getOperand(0).getReg(); 2383 if (OtherReg == Reg) { 2384 OtherReg = Instr.getOperand(1).getReg(); 2385 if (OtherReg == Reg) 2386 continue; 2387 } 2388 // Get the current assignment. 2389 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg) 2390 ? OtherReg 2391 : VRM->getPhys(OtherReg); 2392 // Push the collected information. 2393 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2394 OtherPhysReg)); 2395 } 2396 } 2397 2398 /// \brief Using the given \p List, compute the cost of the broken hints if 2399 /// \p PhysReg was used. 2400 /// \return The cost of \p List for \p PhysReg. 2401 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2402 unsigned PhysReg) { 2403 BlockFrequency Cost = 0; 2404 for (const HintInfo &Info : List) { 2405 if (Info.PhysReg != PhysReg) 2406 Cost += Info.Freq; 2407 } 2408 return Cost; 2409 } 2410 2411 /// \brief Using the register assigned to \p VirtReg, try to recolor 2412 /// all the live ranges that are copy-related with \p VirtReg. 2413 /// The recoloring is then propagated to all the live-ranges that have 2414 /// been recolored and so on, until no more copies can be coalesced or 2415 /// it is not profitable. 2416 /// For a given live range, profitability is determined by the sum of the 2417 /// frequencies of the non-identity copies it would introduce with the old 2418 /// and new register. 2419 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2420 // We have a broken hint, check if it is possible to fix it by 2421 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2422 // some register and PhysReg may be available for the other live-ranges. 2423 SmallSet<unsigned, 4> Visited; 2424 SmallVector<unsigned, 2> RecoloringCandidates; 2425 HintsInfo Info; 2426 unsigned Reg = VirtReg.reg; 2427 unsigned PhysReg = VRM->getPhys(Reg); 2428 // Start the recoloring algorithm from the input live-interval, then 2429 // it will propagate to the ones that are copy-related with it. 2430 Visited.insert(Reg); 2431 RecoloringCandidates.push_back(Reg); 2432 2433 DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '(' 2434 << PrintReg(PhysReg, TRI) << ")\n"); 2435 2436 do { 2437 Reg = RecoloringCandidates.pop_back_val(); 2438 2439 // We cannot recolor physcal register. 2440 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 2441 continue; 2442 2443 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2444 2445 // Get the live interval mapped with this virtual register to be able 2446 // to check for the interference with the new color. 2447 LiveInterval &LI = LIS->getInterval(Reg); 2448 unsigned CurrPhys = VRM->getPhys(Reg); 2449 // Check that the new color matches the register class constraints and 2450 // that it is free for this live range. 2451 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2452 Matrix->checkInterference(LI, PhysReg))) 2453 continue; 2454 2455 DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI) 2456 << ") is recolorable.\n"); 2457 2458 // Gather the hint info. 2459 Info.clear(); 2460 collectHintInfo(Reg, Info); 2461 // Check if recoloring the live-range will increase the cost of the 2462 // non-identity copies. 2463 if (CurrPhys != PhysReg) { 2464 DEBUG(dbgs() << "Checking profitability:\n"); 2465 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2466 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2467 DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2468 << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n'); 2469 if (OldCopiesCost < NewCopiesCost) { 2470 DEBUG(dbgs() << "=> Not profitable.\n"); 2471 continue; 2472 } 2473 // At this point, the cost is either cheaper or equal. If it is 2474 // equal, we consider this is profitable because it may expose 2475 // more recoloring opportunities. 2476 DEBUG(dbgs() << "=> Profitable.\n"); 2477 // Recolor the live-range. 2478 Matrix->unassign(LI); 2479 Matrix->assign(LI, PhysReg); 2480 } 2481 // Push all copy-related live-ranges to keep reconciling the broken 2482 // hints. 2483 for (const HintInfo &HI : Info) { 2484 if (Visited.insert(HI.Reg).second) 2485 RecoloringCandidates.push_back(HI.Reg); 2486 } 2487 } while (!RecoloringCandidates.empty()); 2488 } 2489 2490 /// \brief Try to recolor broken hints. 2491 /// Broken hints may be repaired by recoloring when an evicted variable 2492 /// freed up a register for a larger live-range. 2493 /// Consider the following example: 2494 /// BB1: 2495 /// a = 2496 /// b = 2497 /// BB2: 2498 /// ... 2499 /// = b 2500 /// = a 2501 /// Let us assume b gets split: 2502 /// BB1: 2503 /// a = 2504 /// b = 2505 /// BB2: 2506 /// c = b 2507 /// ... 2508 /// d = c 2509 /// = d 2510 /// = a 2511 /// Because of how the allocation work, b, c, and d may be assigned different 2512 /// colors. Now, if a gets evicted later: 2513 /// BB1: 2514 /// a = 2515 /// st a, SpillSlot 2516 /// b = 2517 /// BB2: 2518 /// c = b 2519 /// ... 2520 /// d = c 2521 /// = d 2522 /// e = ld SpillSlot 2523 /// = e 2524 /// This is likely that we can assign the same register for b, c, and d, 2525 /// getting rid of 2 copies. 2526 void RAGreedy::tryHintsRecoloring() { 2527 for (LiveInterval *LI : SetOfBrokenHints) { 2528 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) && 2529 "Recoloring is possible only for virtual registers"); 2530 // Some dead defs may be around (e.g., because of debug uses). 2531 // Ignore those. 2532 if (!VRM->hasPhys(LI->reg)) 2533 continue; 2534 tryHintRecoloring(*LI); 2535 } 2536 } 2537 2538 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2539 SmallVectorImpl<unsigned> &NewVRegs, 2540 SmallVirtRegSet &FixedRegisters, 2541 unsigned Depth) { 2542 unsigned CostPerUseLimit = ~0u; 2543 // First try assigning a free register. 2544 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 2545 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) { 2546 // When NewVRegs is not empty, we may have made decisions such as evicting 2547 // a virtual register, go with the earlier decisions and use the physical 2548 // register. 2549 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 2550 NewVRegs.empty()) { 2551 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2552 CostPerUseLimit, NewVRegs); 2553 if (CSRReg || !NewVRegs.empty()) 2554 // Return now if we decide to use a CSR or create new vregs due to 2555 // pre-splitting. 2556 return CSRReg; 2557 } else 2558 return PhysReg; 2559 } 2560 2561 LiveRangeStage Stage = getStage(VirtReg); 2562 DEBUG(dbgs() << StageName[Stage] 2563 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 2564 2565 // Try to evict a less worthy live range, but only for ranges from the primary 2566 // queue. The RS_Split ranges already failed to do this, and they should not 2567 // get a second chance until they have been split. 2568 if (Stage != RS_Split) 2569 if (unsigned PhysReg = 2570 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) { 2571 unsigned Hint = MRI->getSimpleHint(VirtReg.reg); 2572 // If VirtReg has a hint and that hint is broken record this 2573 // virtual register as a recoloring candidate for broken hint. 2574 // Indeed, since we evicted a variable in its neighborhood it is 2575 // likely we can at least partially recolor some of the 2576 // copy-related live-ranges. 2577 if (Hint && Hint != PhysReg) 2578 SetOfBrokenHints.insert(&VirtReg); 2579 return PhysReg; 2580 } 2581 2582 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2583 2584 // The first time we see a live range, don't try to split or spill. 2585 // Wait until the second time, when all smaller ranges have been allocated. 2586 // This gives a better picture of the interference to split around. 2587 if (Stage < RS_Split) { 2588 setStage(VirtReg, RS_Split); 2589 DEBUG(dbgs() << "wait for second round\n"); 2590 NewVRegs.push_back(VirtReg.reg); 2591 return 0; 2592 } 2593 2594 if (Stage < RS_Spill) { 2595 // Try splitting VirtReg or interferences. 2596 unsigned NewVRegSizeBefore = NewVRegs.size(); 2597 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 2598 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) 2599 return PhysReg; 2600 } 2601 2602 // If we couldn't allocate a register from spilling, there is probably some 2603 // invalid inline assembly. The base class wil report it. 2604 if (Stage >= RS_Done || !VirtReg.isSpillable()) 2605 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2606 Depth); 2607 2608 // Finally spill VirtReg itself. 2609 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) { 2610 // TODO: This is experimental and in particular, we do not model 2611 // the live range splitting done by spilling correctly. 2612 // We would need a deep integration with the spiller to do the 2613 // right thing here. Anyway, that is still good for early testing. 2614 setStage(VirtReg, RS_Memory); 2615 DEBUG(dbgs() << "Do as if this register is in memory\n"); 2616 NewVRegs.push_back(VirtReg.reg); 2617 } else { 2618 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2619 TimerGroupDescription, TimePassesIsEnabled); 2620 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2621 spiller().spill(LRE); 2622 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2623 2624 if (VerifyEnabled) 2625 MF->verify(this, "After spilling"); 2626 } 2627 2628 // The live virtual register requesting allocation was spilled, so tell 2629 // the caller not to allocate anything during this round. 2630 return 0; 2631 } 2632 2633 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 2634 unsigned &FoldedReloads, 2635 unsigned &Spills, 2636 unsigned &FoldedSpills) { 2637 Reloads = 0; 2638 FoldedReloads = 0; 2639 Spills = 0; 2640 FoldedSpills = 0; 2641 2642 // Sum up the spill and reloads in subloops. 2643 for (MachineLoop *SubLoop : *L) { 2644 unsigned SubReloads; 2645 unsigned SubFoldedReloads; 2646 unsigned SubSpills; 2647 unsigned SubFoldedSpills; 2648 2649 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads, 2650 SubSpills, SubFoldedSpills); 2651 Reloads += SubReloads; 2652 FoldedReloads += SubFoldedReloads; 2653 Spills += SubSpills; 2654 FoldedSpills += SubFoldedSpills; 2655 } 2656 2657 const MachineFrameInfo &MFI = MF->getFrameInfo(); 2658 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2659 int FI; 2660 2661 for (MachineBasicBlock *MBB : L->getBlocks()) 2662 // Handle blocks that were not included in subloops. 2663 if (Loops->getLoopFor(MBB) == L) 2664 for (MachineInstr &MI : *MBB) { 2665 const MachineMemOperand *MMO; 2666 2667 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) 2668 ++Reloads; 2669 else if (TII->hasLoadFromStackSlot(MI, MMO, FI) && 2670 MFI.isSpillSlotObjectIndex(FI)) 2671 ++FoldedReloads; 2672 else if (TII->isStoreToStackSlot(MI, FI) && 2673 MFI.isSpillSlotObjectIndex(FI)) 2674 ++Spills; 2675 else if (TII->hasStoreToStackSlot(MI, MMO, FI) && 2676 MFI.isSpillSlotObjectIndex(FI)) 2677 ++FoldedSpills; 2678 } 2679 2680 if (Reloads || FoldedReloads || Spills || FoldedSpills) { 2681 using namespace ore; 2682 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", 2683 L->getStartLoc(), L->getHeader()); 2684 if (Spills) 2685 R << NV("NumSpills", Spills) << " spills "; 2686 if (FoldedSpills) 2687 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 2688 if (Reloads) 2689 R << NV("NumReloads", Reloads) << " reloads "; 2690 if (FoldedReloads) 2691 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 2692 ORE->emit(R << "generated in loop"); 2693 } 2694 } 2695 2696 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2697 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2698 << "********** Function: " << mf.getName() << '\n'); 2699 2700 MF = &mf; 2701 TRI = MF->getSubtarget().getRegisterInfo(); 2702 TII = MF->getSubtarget().getInstrInfo(); 2703 RCI.runOnMachineFunction(mf); 2704 2705 EnableLocalReassign = EnableLocalReassignment || 2706 MF->getSubtarget().enableRALocalReassignment( 2707 MF->getTarget().getOptLevel()); 2708 2709 if (VerifyEnabled) 2710 MF->verify(this, "Before greedy register allocator"); 2711 2712 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2713 getAnalysis<LiveIntervals>(), 2714 getAnalysis<LiveRegMatrix>()); 2715 Indexes = &getAnalysis<SlotIndexes>(); 2716 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2717 DomTree = &getAnalysis<MachineDominatorTree>(); 2718 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2719 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 2720 Loops = &getAnalysis<MachineLoopInfo>(); 2721 Bundles = &getAnalysis<EdgeBundles>(); 2722 SpillPlacer = &getAnalysis<SpillPlacement>(); 2723 DebugVars = &getAnalysis<LiveDebugVariables>(); 2724 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2725 2726 initializeCSRCost(); 2727 2728 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); 2729 2730 DEBUG(LIS->dump()); 2731 2732 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2733 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); 2734 ExtraRegInfo.clear(); 2735 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2736 NextCascade = 1; 2737 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2738 GlobalCand.resize(32); // This will grow as needed. 2739 SetOfBrokenHints.clear(); 2740 2741 allocatePhysRegs(); 2742 tryHintsRecoloring(); 2743 postOptimization(); 2744 reportNumberOfSplillsReloads(); 2745 2746 releaseMemory(); 2747 return true; 2748 } 2749