1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RAGreedy function pass for register allocation in
11 // optimized builds.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "SpillPlacement.h"
20 #include "Spiller.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/CalcSpillWeights.h"
25 #include "llvm/CodeGen/EdgeBundles.h"
26 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
27 #include "llvm/CodeGen/LiveRangeEdit.h"
28 #include "llvm/CodeGen/LiveRegMatrix.h"
29 #include "llvm/CodeGen/LiveStackAnalysis.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineLoopInfo.h"
35 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/CodeGen/RegAllocRegistry.h"
39 #include "llvm/CodeGen/RegisterClassInfo.h"
40 #include "llvm/CodeGen/VirtRegMap.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/PassAnalysisSupport.h"
43 #include "llvm/Support/BranchProbability.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/Timer.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetSubtargetInfo.h"
51 #include <queue>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "regalloc"
56 
57 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
58 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
59 STATISTIC(NumEvicted,      "Number of interferences evicted");
60 
61 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
62     "split-spill-mode", cl::Hidden,
63     cl::desc("Spill mode for splitting live ranges"),
64     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
65                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
66                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
67     cl::init(SplitEditor::SM_Speed));
68 
69 static cl::opt<unsigned>
70 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
71                              cl::desc("Last chance recoloring max depth"),
72                              cl::init(5));
73 
74 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
75     "lcr-max-interf", cl::Hidden,
76     cl::desc("Last chance recoloring maximum number of considered"
77              " interference at a time"),
78     cl::init(8));
79 
80 static cl::opt<bool>
81 ExhaustiveSearch("exhaustive-register-search", cl::NotHidden,
82                  cl::desc("Exhaustive Search for registers bypassing the depth "
83                           "and interference cutoffs of last chance recoloring"));
84 
85 static cl::opt<bool> EnableLocalReassignment(
86     "enable-local-reassign", cl::Hidden,
87     cl::desc("Local reassignment can yield better allocation decisions, but "
88              "may be compile time intensive"),
89     cl::init(false));
90 
91 static cl::opt<bool> EnableDeferredSpilling(
92     "enable-deferred-spilling", cl::Hidden,
93     cl::desc("Instead of spilling a variable right away, defer the actual "
94              "code insertion to the end of the allocation. That way the "
95              "allocator might still find a suitable coloring for this "
96              "variable because of other evicted variables."),
97     cl::init(false));
98 
99 // FIXME: Find a good default for this flag and remove the flag.
100 static cl::opt<unsigned>
101 CSRFirstTimeCost("regalloc-csr-first-time-cost",
102               cl::desc("Cost for first time use of callee-saved register."),
103               cl::init(0), cl::Hidden);
104 
105 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
106                                        createGreedyRegisterAllocator);
107 
108 namespace {
109 class RAGreedy : public MachineFunctionPass,
110                  public RegAllocBase,
111                  private LiveRangeEdit::Delegate {
112   // Convenient shortcuts.
113   typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue;
114   typedef SmallPtrSet<LiveInterval *, 4> SmallLISet;
115   typedef SmallSet<unsigned, 16> SmallVirtRegSet;
116 
117   // context
118   MachineFunction *MF;
119 
120   // Shortcuts to some useful interface.
121   const TargetInstrInfo *TII;
122   const TargetRegisterInfo *TRI;
123   RegisterClassInfo RCI;
124 
125   // analyses
126   SlotIndexes *Indexes;
127   MachineBlockFrequencyInfo *MBFI;
128   MachineDominatorTree *DomTree;
129   MachineLoopInfo *Loops;
130   MachineOptimizationRemarkEmitter *ORE;
131   EdgeBundles *Bundles;
132   SpillPlacement *SpillPlacer;
133   LiveDebugVariables *DebugVars;
134   AliasAnalysis *AA;
135 
136   // state
137   std::unique_ptr<Spiller> SpillerInstance;
138   PQueue Queue;
139   unsigned NextCascade;
140 
141   // Live ranges pass through a number of stages as we try to allocate them.
142   // Some of the stages may also create new live ranges:
143   //
144   // - Region splitting.
145   // - Per-block splitting.
146   // - Local splitting.
147   // - Spilling.
148   //
149   // Ranges produced by one of the stages skip the previous stages when they are
150   // dequeued. This improves performance because we can skip interference checks
151   // that are unlikely to give any results. It also guarantees that the live
152   // range splitting algorithm terminates, something that is otherwise hard to
153   // ensure.
154   enum LiveRangeStage {
155     /// Newly created live range that has never been queued.
156     RS_New,
157 
158     /// Only attempt assignment and eviction. Then requeue as RS_Split.
159     RS_Assign,
160 
161     /// Attempt live range splitting if assignment is impossible.
162     RS_Split,
163 
164     /// Attempt more aggressive live range splitting that is guaranteed to make
165     /// progress.  This is used for split products that may not be making
166     /// progress.
167     RS_Split2,
168 
169     /// Live range will be spilled.  No more splitting will be attempted.
170     RS_Spill,
171 
172 
173     /// Live range is in memory. Because of other evictions, it might get moved
174     /// in a register in the end.
175     RS_Memory,
176 
177     /// There is nothing more we can do to this live range.  Abort compilation
178     /// if it can't be assigned.
179     RS_Done
180   };
181 
182   // Enum CutOffStage to keep a track whether the register allocation failed
183   // because of the cutoffs encountered in last chance recoloring.
184   // Note: This is used as bitmask. New value should be next power of 2.
185   enum CutOffStage {
186     // No cutoffs encountered
187     CO_None = 0,
188 
189     // lcr-max-depth cutoff encountered
190     CO_Depth = 1,
191 
192     // lcr-max-interf cutoff encountered
193     CO_Interf = 2
194   };
195 
196   uint8_t CutOffInfo;
197 
198 #ifndef NDEBUG
199   static const char *const StageName[];
200 #endif
201 
202   // RegInfo - Keep additional information about each live range.
203   struct RegInfo {
204     LiveRangeStage Stage;
205 
206     // Cascade - Eviction loop prevention. See canEvictInterference().
207     unsigned Cascade;
208 
209     RegInfo() : Stage(RS_New), Cascade(0) {}
210   };
211 
212   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
213 
214   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
215     return ExtraRegInfo[VirtReg.reg].Stage;
216   }
217 
218   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
219     ExtraRegInfo.resize(MRI->getNumVirtRegs());
220     ExtraRegInfo[VirtReg.reg].Stage = Stage;
221   }
222 
223   template<typename Iterator>
224   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
225     ExtraRegInfo.resize(MRI->getNumVirtRegs());
226     for (;Begin != End; ++Begin) {
227       unsigned Reg = *Begin;
228       if (ExtraRegInfo[Reg].Stage == RS_New)
229         ExtraRegInfo[Reg].Stage = NewStage;
230     }
231   }
232 
233   /// Cost of evicting interference.
234   struct EvictionCost {
235     unsigned BrokenHints; ///< Total number of broken hints.
236     float MaxWeight;      ///< Maximum spill weight evicted.
237 
238     EvictionCost(): BrokenHints(0), MaxWeight(0) {}
239 
240     bool isMax() const { return BrokenHints == ~0u; }
241 
242     void setMax() { BrokenHints = ~0u; }
243 
244     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
245 
246     bool operator<(const EvictionCost &O) const {
247       return std::tie(BrokenHints, MaxWeight) <
248              std::tie(O.BrokenHints, O.MaxWeight);
249     }
250   };
251 
252   // splitting state.
253   std::unique_ptr<SplitAnalysis> SA;
254   std::unique_ptr<SplitEditor> SE;
255 
256   /// Cached per-block interference maps
257   InterferenceCache IntfCache;
258 
259   /// All basic blocks where the current register has uses.
260   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
261 
262   /// Global live range splitting candidate info.
263   struct GlobalSplitCandidate {
264     // Register intended for assignment, or 0.
265     unsigned PhysReg;
266 
267     // SplitKit interval index for this candidate.
268     unsigned IntvIdx;
269 
270     // Interference for PhysReg.
271     InterferenceCache::Cursor Intf;
272 
273     // Bundles where this candidate should be live.
274     BitVector LiveBundles;
275     SmallVector<unsigned, 8> ActiveBlocks;
276 
277     void reset(InterferenceCache &Cache, unsigned Reg) {
278       PhysReg = Reg;
279       IntvIdx = 0;
280       Intf.setPhysReg(Cache, Reg);
281       LiveBundles.clear();
282       ActiveBlocks.clear();
283     }
284 
285     // Set B[i] = C for every live bundle where B[i] was NoCand.
286     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
287       unsigned Count = 0;
288       for (int i = LiveBundles.find_first(); i >= 0;
289            i = LiveBundles.find_next(i))
290         if (B[i] == NoCand) {
291           B[i] = C;
292           Count++;
293         }
294       return Count;
295     }
296   };
297 
298   /// Candidate info for each PhysReg in AllocationOrder.
299   /// This vector never shrinks, but grows to the size of the largest register
300   /// class.
301   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
302 
303   enum : unsigned { NoCand = ~0u };
304 
305   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
306   /// NoCand which indicates the stack interval.
307   SmallVector<unsigned, 32> BundleCand;
308 
309   /// Callee-save register cost, calculated once per machine function.
310   BlockFrequency CSRCost;
311 
312   /// Run or not the local reassignment heuristic. This information is
313   /// obtained from the TargetSubtargetInfo.
314   bool EnableLocalReassign;
315 
316   /// Set of broken hints that may be reconciled later because of eviction.
317   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
318 
319 public:
320   RAGreedy();
321 
322   /// Return the pass name.
323   StringRef getPassName() const override { return "Greedy Register Allocator"; }
324 
325   /// RAGreedy analysis usage.
326   void getAnalysisUsage(AnalysisUsage &AU) const override;
327   void releaseMemory() override;
328   Spiller &spiller() override { return *SpillerInstance; }
329   void enqueue(LiveInterval *LI) override;
330   LiveInterval *dequeue() override;
331   unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
332   void aboutToRemoveInterval(LiveInterval &) override;
333 
334   /// Perform register allocation.
335   bool runOnMachineFunction(MachineFunction &mf) override;
336 
337   MachineFunctionProperties getRequiredProperties() const override {
338     return MachineFunctionProperties().set(
339         MachineFunctionProperties::Property::NoPHIs);
340   }
341 
342   static char ID;
343 
344 private:
345   unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
346                              SmallVirtRegSet &, unsigned = 0);
347 
348   bool LRE_CanEraseVirtReg(unsigned) override;
349   void LRE_WillShrinkVirtReg(unsigned) override;
350   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
351   void enqueue(PQueue &CurQueue, LiveInterval *LI);
352   LiveInterval *dequeue(PQueue &CurQueue);
353 
354   BlockFrequency calcSpillCost();
355   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
356   void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
357   void growRegion(GlobalSplitCandidate &Cand);
358   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
359   bool calcCompactRegion(GlobalSplitCandidate&);
360   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
361   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
362   unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
363   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
364   bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
365   void evictInterference(LiveInterval&, unsigned,
366                          SmallVectorImpl<unsigned>&);
367   bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
368                                   SmallLISet &RecoloringCandidates,
369                                   const SmallVirtRegSet &FixedRegisters);
370 
371   unsigned tryAssign(LiveInterval&, AllocationOrder&,
372                      SmallVectorImpl<unsigned>&);
373   unsigned tryEvict(LiveInterval&, AllocationOrder&,
374                     SmallVectorImpl<unsigned>&, unsigned = ~0u);
375   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
376                           SmallVectorImpl<unsigned>&);
377   /// Calculate cost of region splitting.
378   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
379                                     AllocationOrder &Order,
380                                     BlockFrequency &BestCost,
381                                     unsigned &NumCands, bool IgnoreCSR);
382   /// Perform region splitting.
383   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
384                          bool HasCompact,
385                          SmallVectorImpl<unsigned> &NewVRegs);
386   /// Check other options before using a callee-saved register for the first
387   /// time.
388   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
389                                  unsigned PhysReg, unsigned &CostPerUseLimit,
390                                  SmallVectorImpl<unsigned> &NewVRegs);
391   void initializeCSRCost();
392   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
393                          SmallVectorImpl<unsigned>&);
394   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
395                                SmallVectorImpl<unsigned>&);
396   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
397     SmallVectorImpl<unsigned>&);
398   unsigned trySplit(LiveInterval&, AllocationOrder&,
399                     SmallVectorImpl<unsigned>&);
400   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
401                                    SmallVectorImpl<unsigned> &,
402                                    SmallVirtRegSet &, unsigned);
403   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
404                                SmallVirtRegSet &, unsigned);
405   void tryHintRecoloring(LiveInterval &);
406   void tryHintsRecoloring();
407 
408   /// Model the information carried by one end of a copy.
409   struct HintInfo {
410     /// The frequency of the copy.
411     BlockFrequency Freq;
412     /// The virtual register or physical register.
413     unsigned Reg;
414     /// Its currently assigned register.
415     /// In case of a physical register Reg == PhysReg.
416     unsigned PhysReg;
417     HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
418         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
419   };
420   typedef SmallVector<HintInfo, 4> HintsInfo;
421   BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
422   void collectHintInfo(unsigned, HintsInfo &);
423 
424   bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
425 
426   /// Compute and report the number of spills and reloads for a loop.
427   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
428                                     unsigned &FoldedReloads, unsigned &Spills,
429                                     unsigned &FoldedSpills);
430 
431   /// Report the number of spills and reloads for each loop.
432   void reportNumberOfSplillsReloads() {
433     for (MachineLoop *L : *Loops) {
434       unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
435       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
436                                    FoldedSpills);
437     }
438   }
439 };
440 } // end anonymous namespace
441 
442 char RAGreedy::ID = 0;
443 char &llvm::RAGreedyID = RAGreedy::ID;
444 
445 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
446                 "Greedy Register Allocator", false, false)
447 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
448 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
449 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
450 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
451 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
452 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
453 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
454 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
455 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
456 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
457 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
458 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
459 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
460 INITIALIZE_PASS_END(RAGreedy, "greedy",
461                 "Greedy Register Allocator", false, false)
462 
463 #ifndef NDEBUG
464 const char *const RAGreedy::StageName[] = {
465     "RS_New",
466     "RS_Assign",
467     "RS_Split",
468     "RS_Split2",
469     "RS_Spill",
470     "RS_Memory",
471     "RS_Done"
472 };
473 #endif
474 
475 // Hysteresis to use when comparing floats.
476 // This helps stabilize decisions based on float comparisons.
477 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
478 
479 
480 FunctionPass* llvm::createGreedyRegisterAllocator() {
481   return new RAGreedy();
482 }
483 
484 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
485 }
486 
487 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
488   AU.setPreservesCFG();
489   AU.addRequired<MachineBlockFrequencyInfo>();
490   AU.addPreserved<MachineBlockFrequencyInfo>();
491   AU.addRequired<AAResultsWrapperPass>();
492   AU.addPreserved<AAResultsWrapperPass>();
493   AU.addRequired<LiveIntervals>();
494   AU.addPreserved<LiveIntervals>();
495   AU.addRequired<SlotIndexes>();
496   AU.addPreserved<SlotIndexes>();
497   AU.addRequired<LiveDebugVariables>();
498   AU.addPreserved<LiveDebugVariables>();
499   AU.addRequired<LiveStacks>();
500   AU.addPreserved<LiveStacks>();
501   AU.addRequired<MachineDominatorTree>();
502   AU.addPreserved<MachineDominatorTree>();
503   AU.addRequired<MachineLoopInfo>();
504   AU.addPreserved<MachineLoopInfo>();
505   AU.addRequired<VirtRegMap>();
506   AU.addPreserved<VirtRegMap>();
507   AU.addRequired<LiveRegMatrix>();
508   AU.addPreserved<LiveRegMatrix>();
509   AU.addRequired<EdgeBundles>();
510   AU.addRequired<SpillPlacement>();
511   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
512   MachineFunctionPass::getAnalysisUsage(AU);
513 }
514 
515 
516 //===----------------------------------------------------------------------===//
517 //                     LiveRangeEdit delegate methods
518 //===----------------------------------------------------------------------===//
519 
520 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
521   if (VRM->hasPhys(VirtReg)) {
522     LiveInterval &LI = LIS->getInterval(VirtReg);
523     Matrix->unassign(LI);
524     aboutToRemoveInterval(LI);
525     return true;
526   }
527   // Unassigned virtreg is probably in the priority queue.
528   // RegAllocBase will erase it after dequeueing.
529   return false;
530 }
531 
532 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
533   if (!VRM->hasPhys(VirtReg))
534     return;
535 
536   // Register is assigned, put it back on the queue for reassignment.
537   LiveInterval &LI = LIS->getInterval(VirtReg);
538   Matrix->unassign(LI);
539   enqueue(&LI);
540 }
541 
542 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
543   // Cloning a register we haven't even heard about yet?  Just ignore it.
544   if (!ExtraRegInfo.inBounds(Old))
545     return;
546 
547   // LRE may clone a virtual register because dead code elimination causes it to
548   // be split into connected components. The new components are much smaller
549   // than the original, so they should get a new chance at being assigned.
550   // same stage as the parent.
551   ExtraRegInfo[Old].Stage = RS_Assign;
552   ExtraRegInfo.grow(New);
553   ExtraRegInfo[New] = ExtraRegInfo[Old];
554 }
555 
556 void RAGreedy::releaseMemory() {
557   SpillerInstance.reset();
558   ExtraRegInfo.clear();
559   GlobalCand.clear();
560 }
561 
562 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
563 
564 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
565   // Prioritize live ranges by size, assigning larger ranges first.
566   // The queue holds (size, reg) pairs.
567   const unsigned Size = LI->getSize();
568   const unsigned Reg = LI->reg;
569   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
570          "Can only enqueue virtual registers");
571   unsigned Prio;
572 
573   ExtraRegInfo.grow(Reg);
574   if (ExtraRegInfo[Reg].Stage == RS_New)
575     ExtraRegInfo[Reg].Stage = RS_Assign;
576 
577   if (ExtraRegInfo[Reg].Stage == RS_Split) {
578     // Unsplit ranges that couldn't be allocated immediately are deferred until
579     // everything else has been allocated.
580     Prio = Size;
581   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
582     // Memory operand should be considered last.
583     // Change the priority such that Memory operand are assigned in
584     // the reverse order that they came in.
585     // TODO: Make this a member variable and probably do something about hints.
586     static unsigned MemOp = 0;
587     Prio = MemOp++;
588   } else {
589     // Giant live ranges fall back to the global assignment heuristic, which
590     // prevents excessive spilling in pathological cases.
591     bool ReverseLocal = TRI->reverseLocalAssignment();
592     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
593     bool ForceGlobal = !ReverseLocal &&
594       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
595 
596     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
597         LIS->intervalIsInOneMBB(*LI)) {
598       // Allocate original local ranges in linear instruction order. Since they
599       // are singly defined, this produces optimal coloring in the absence of
600       // global interference and other constraints.
601       if (!ReverseLocal)
602         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
603       else {
604         // Allocating bottom up may allow many short LRGs to be assigned first
605         // to one of the cheap registers. This could be much faster for very
606         // large blocks on targets with many physical registers.
607         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
608       }
609       Prio |= RC.AllocationPriority << 24;
610     } else {
611       // Allocate global and split ranges in long->short order. Long ranges that
612       // don't fit should be spilled (or split) ASAP so they don't create
613       // interference.  Mark a bit to prioritize global above local ranges.
614       Prio = (1u << 29) + Size;
615     }
616     // Mark a higher bit to prioritize global and local above RS_Split.
617     Prio |= (1u << 31);
618 
619     // Boost ranges that have a physical register hint.
620     if (VRM->hasKnownPreference(Reg))
621       Prio |= (1u << 30);
622   }
623   // The virtual register number is a tie breaker for same-sized ranges.
624   // Give lower vreg numbers higher priority to assign them first.
625   CurQueue.push(std::make_pair(Prio, ~Reg));
626 }
627 
628 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
629 
630 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
631   if (CurQueue.empty())
632     return nullptr;
633   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
634   CurQueue.pop();
635   return LI;
636 }
637 
638 
639 //===----------------------------------------------------------------------===//
640 //                            Direct Assignment
641 //===----------------------------------------------------------------------===//
642 
643 /// tryAssign - Try to assign VirtReg to an available register.
644 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
645                              AllocationOrder &Order,
646                              SmallVectorImpl<unsigned> &NewVRegs) {
647   Order.rewind();
648   unsigned PhysReg;
649   while ((PhysReg = Order.next()))
650     if (!Matrix->checkInterference(VirtReg, PhysReg))
651       break;
652   if (!PhysReg || Order.isHint())
653     return PhysReg;
654 
655   // PhysReg is available, but there may be a better choice.
656 
657   // If we missed a simple hint, try to cheaply evict interference from the
658   // preferred register.
659   if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
660     if (Order.isHint(Hint)) {
661       DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
662       EvictionCost MaxCost;
663       MaxCost.setBrokenHints(1);
664       if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
665         evictInterference(VirtReg, Hint, NewVRegs);
666         return Hint;
667       }
668       // Record the missed hint, we may be able to recover
669       // at the end if the surrounding allocation changed.
670       SetOfBrokenHints.insert(&VirtReg);
671     }
672 
673   // Try to evict interference from a cheaper alternative.
674   unsigned Cost = TRI->getCostPerUse(PhysReg);
675 
676   // Most registers have 0 additional cost.
677   if (!Cost)
678     return PhysReg;
679 
680   DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
681                << '\n');
682   unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
683   return CheapReg ? CheapReg : PhysReg;
684 }
685 
686 
687 //===----------------------------------------------------------------------===//
688 //                         Interference eviction
689 //===----------------------------------------------------------------------===//
690 
691 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
692   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
693   unsigned PhysReg;
694   while ((PhysReg = Order.next())) {
695     if (PhysReg == PrevReg)
696       continue;
697 
698     MCRegUnitIterator Units(PhysReg, TRI);
699     for (; Units.isValid(); ++Units) {
700       // Instantiate a "subquery", not to be confused with the Queries array.
701       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
702       if (subQ.checkInterference())
703         break;
704     }
705     // If no units have interference, break out with the current PhysReg.
706     if (!Units.isValid())
707       break;
708   }
709   if (PhysReg)
710     DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
711           << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
712           << '\n');
713   return PhysReg;
714 }
715 
716 /// shouldEvict - determine if A should evict the assigned live range B. The
717 /// eviction policy defined by this function together with the allocation order
718 /// defined by enqueue() decides which registers ultimately end up being split
719 /// and spilled.
720 ///
721 /// Cascade numbers are used to prevent infinite loops if this function is a
722 /// cyclic relation.
723 ///
724 /// @param A          The live range to be assigned.
725 /// @param IsHint     True when A is about to be assigned to its preferred
726 ///                   register.
727 /// @param B          The live range to be evicted.
728 /// @param BreaksHint True when B is already assigned to its preferred register.
729 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
730                            LiveInterval &B, bool BreaksHint) {
731   bool CanSplit = getStage(B) < RS_Spill;
732 
733   // Be fairly aggressive about following hints as long as the evictee can be
734   // split.
735   if (CanSplit && IsHint && !BreaksHint)
736     return true;
737 
738   if (A.weight > B.weight) {
739     DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
740     return true;
741   }
742   return false;
743 }
744 
745 /// canEvictInterference - Return true if all interferences between VirtReg and
746 /// PhysReg can be evicted.
747 ///
748 /// @param VirtReg Live range that is about to be assigned.
749 /// @param PhysReg Desired register for assignment.
750 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
751 /// @param MaxCost Only look for cheaper candidates and update with new cost
752 ///                when returning true.
753 /// @returns True when interference can be evicted cheaper than MaxCost.
754 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
755                                     bool IsHint, EvictionCost &MaxCost) {
756   // It is only possible to evict virtual register interference.
757   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
758     return false;
759 
760   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
761 
762   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
763   // involved in an eviction before. If a cascade number was assigned, deny
764   // evicting anything with the same or a newer cascade number. This prevents
765   // infinite eviction loops.
766   //
767   // This works out so a register without a cascade number is allowed to evict
768   // anything, and it can be evicted by anything.
769   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
770   if (!Cascade)
771     Cascade = NextCascade;
772 
773   EvictionCost Cost;
774   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
775     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
776     // If there is 10 or more interferences, chances are one is heavier.
777     if (Q.collectInterferingVRegs(10) >= 10)
778       return false;
779 
780     // Check if any interfering live range is heavier than MaxWeight.
781     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
782       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
783       assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
784              "Only expecting virtual register interference from query");
785       // Never evict spill products. They cannot split or spill.
786       if (getStage(*Intf) == RS_Done)
787         return false;
788       // Once a live range becomes small enough, it is urgent that we find a
789       // register for it. This is indicated by an infinite spill weight. These
790       // urgent live ranges get to evict almost anything.
791       //
792       // Also allow urgent evictions of unspillable ranges from a strictly
793       // larger allocation order.
794       bool Urgent = !VirtReg.isSpillable() &&
795         (Intf->isSpillable() ||
796          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
797          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
798       // Only evict older cascades or live ranges without a cascade.
799       unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
800       if (Cascade <= IntfCascade) {
801         if (!Urgent)
802           return false;
803         // We permit breaking cascades for urgent evictions. It should be the
804         // last resort, though, so make it really expensive.
805         Cost.BrokenHints += 10;
806       }
807       // Would this break a satisfied hint?
808       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
809       // Update eviction cost.
810       Cost.BrokenHints += BreaksHint;
811       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
812       // Abort if this would be too expensive.
813       if (!(Cost < MaxCost))
814         return false;
815       if (Urgent)
816         continue;
817       // Apply the eviction policy for non-urgent evictions.
818       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
819         return false;
820       // If !MaxCost.isMax(), then we're just looking for a cheap register.
821       // Evicting another local live range in this case could lead to suboptimal
822       // coloring.
823       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
824           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
825         return false;
826       }
827     }
828   }
829   MaxCost = Cost;
830   return true;
831 }
832 
833 /// evictInterference - Evict any interferring registers that prevent VirtReg
834 /// from being assigned to Physreg. This assumes that canEvictInterference
835 /// returned true.
836 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
837                                  SmallVectorImpl<unsigned> &NewVRegs) {
838   // Make sure that VirtReg has a cascade number, and assign that cascade
839   // number to every evicted register. These live ranges than then only be
840   // evicted by a newer cascade, preventing infinite loops.
841   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
842   if (!Cascade)
843     Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
844 
845   DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
846                << " interference: Cascade " << Cascade << '\n');
847 
848   // Collect all interfering virtregs first.
849   SmallVector<LiveInterval*, 8> Intfs;
850   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
851     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
852     assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
853     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
854     Intfs.append(IVR.begin(), IVR.end());
855   }
856 
857   // Evict them second. This will invalidate the queries.
858   for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
859     LiveInterval *Intf = Intfs[i];
860     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
861     if (!VRM->hasPhys(Intf->reg))
862       continue;
863     Matrix->unassign(*Intf);
864     assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
865             VirtReg.isSpillable() < Intf->isSpillable()) &&
866            "Cannot decrease cascade number, illegal eviction");
867     ExtraRegInfo[Intf->reg].Cascade = Cascade;
868     ++NumEvicted;
869     NewVRegs.push_back(Intf->reg);
870   }
871 }
872 
873 /// Returns true if the given \p PhysReg is a callee saved register and has not
874 /// been used for allocation yet.
875 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
876   unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
877   if (CSR == 0)
878     return false;
879 
880   return !Matrix->isPhysRegUsed(PhysReg);
881 }
882 
883 /// tryEvict - Try to evict all interferences for a physreg.
884 /// @param  VirtReg Currently unassigned virtual register.
885 /// @param  Order   Physregs to try.
886 /// @return         Physreg to assign VirtReg, or 0.
887 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
888                             AllocationOrder &Order,
889                             SmallVectorImpl<unsigned> &NewVRegs,
890                             unsigned CostPerUseLimit) {
891   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
892                      TimePassesIsEnabled);
893 
894   // Keep track of the cheapest interference seen so far.
895   EvictionCost BestCost;
896   BestCost.setMax();
897   unsigned BestPhys = 0;
898   unsigned OrderLimit = Order.getOrder().size();
899 
900   // When we are just looking for a reduced cost per use, don't break any
901   // hints, and only evict smaller spill weights.
902   if (CostPerUseLimit < ~0u) {
903     BestCost.BrokenHints = 0;
904     BestCost.MaxWeight = VirtReg.weight;
905 
906     // Check of any registers in RC are below CostPerUseLimit.
907     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
908     unsigned MinCost = RegClassInfo.getMinCost(RC);
909     if (MinCost >= CostPerUseLimit) {
910       DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost
911                    << ", no cheaper registers to be found.\n");
912       return 0;
913     }
914 
915     // It is normal for register classes to have a long tail of registers with
916     // the same cost. We don't need to look at them if they're too expensive.
917     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
918       OrderLimit = RegClassInfo.getLastCostChange(RC);
919       DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
920     }
921   }
922 
923   Order.rewind();
924   while (unsigned PhysReg = Order.next(OrderLimit)) {
925     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
926       continue;
927     // The first use of a callee-saved register in a function has cost 1.
928     // Don't start using a CSR when the CostPerUseLimit is low.
929     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
930       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
931             << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
932             << '\n');
933       continue;
934     }
935 
936     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
937       continue;
938 
939     // Best so far.
940     BestPhys = PhysReg;
941 
942     // Stop if the hint can be used.
943     if (Order.isHint())
944       break;
945   }
946 
947   if (!BestPhys)
948     return 0;
949 
950   evictInterference(VirtReg, BestPhys, NewVRegs);
951   return BestPhys;
952 }
953 
954 
955 //===----------------------------------------------------------------------===//
956 //                              Region Splitting
957 //===----------------------------------------------------------------------===//
958 
959 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
960 /// interference pattern in Physreg and its aliases. Add the constraints to
961 /// SpillPlacement and return the static cost of this split in Cost, assuming
962 /// that all preferences in SplitConstraints are met.
963 /// Return false if there are no bundles with positive bias.
964 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
965                                    BlockFrequency &Cost) {
966   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
967 
968   // Reset interference dependent info.
969   SplitConstraints.resize(UseBlocks.size());
970   BlockFrequency StaticCost = 0;
971   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
972     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
973     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
974 
975     BC.Number = BI.MBB->getNumber();
976     Intf.moveToBlock(BC.Number);
977     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
978     BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
979     BC.ChangesValue = BI.FirstDef.isValid();
980 
981     if (!Intf.hasInterference())
982       continue;
983 
984     // Number of spill code instructions to insert.
985     unsigned Ins = 0;
986 
987     // Interference for the live-in value.
988     if (BI.LiveIn) {
989       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
990         BC.Entry = SpillPlacement::MustSpill;
991         ++Ins;
992       } else if (Intf.first() < BI.FirstInstr) {
993         BC.Entry = SpillPlacement::PrefSpill;
994         ++Ins;
995       } else if (Intf.first() < BI.LastInstr) {
996         ++Ins;
997       }
998     }
999 
1000     // Interference for the live-out value.
1001     if (BI.LiveOut) {
1002       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1003         BC.Exit = SpillPlacement::MustSpill;
1004         ++Ins;
1005       } else if (Intf.last() > BI.LastInstr) {
1006         BC.Exit = SpillPlacement::PrefSpill;
1007         ++Ins;
1008       } else if (Intf.last() > BI.FirstInstr) {
1009         ++Ins;
1010       }
1011     }
1012 
1013     // Accumulate the total frequency of inserted spill code.
1014     while (Ins--)
1015       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1016   }
1017   Cost = StaticCost;
1018 
1019   // Add constraints for use-blocks. Note that these are the only constraints
1020   // that may add a positive bias, it is downhill from here.
1021   SpillPlacer->addConstraints(SplitConstraints);
1022   return SpillPlacer->scanActiveBundles();
1023 }
1024 
1025 
1026 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1027 /// live-through blocks in Blocks.
1028 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1029                                      ArrayRef<unsigned> Blocks) {
1030   const unsigned GroupSize = 8;
1031   SpillPlacement::BlockConstraint BCS[GroupSize];
1032   unsigned TBS[GroupSize];
1033   unsigned B = 0, T = 0;
1034 
1035   for (unsigned i = 0; i != Blocks.size(); ++i) {
1036     unsigned Number = Blocks[i];
1037     Intf.moveToBlock(Number);
1038 
1039     if (!Intf.hasInterference()) {
1040       assert(T < GroupSize && "Array overflow");
1041       TBS[T] = Number;
1042       if (++T == GroupSize) {
1043         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1044         T = 0;
1045       }
1046       continue;
1047     }
1048 
1049     assert(B < GroupSize && "Array overflow");
1050     BCS[B].Number = Number;
1051 
1052     // Interference for the live-in value.
1053     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1054       BCS[B].Entry = SpillPlacement::MustSpill;
1055     else
1056       BCS[B].Entry = SpillPlacement::PrefSpill;
1057 
1058     // Interference for the live-out value.
1059     if (Intf.last() >= SA->getLastSplitPoint(Number))
1060       BCS[B].Exit = SpillPlacement::MustSpill;
1061     else
1062       BCS[B].Exit = SpillPlacement::PrefSpill;
1063 
1064     if (++B == GroupSize) {
1065       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1066       B = 0;
1067     }
1068   }
1069 
1070   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1071   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1072 }
1073 
1074 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1075   // Keep track of through blocks that have not been added to SpillPlacer.
1076   BitVector Todo = SA->getThroughBlocks();
1077   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1078   unsigned AddedTo = 0;
1079 #ifndef NDEBUG
1080   unsigned Visited = 0;
1081 #endif
1082 
1083   for (;;) {
1084     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1085     // Find new through blocks in the periphery of PrefRegBundles.
1086     for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1087       unsigned Bundle = NewBundles[i];
1088       // Look at all blocks connected to Bundle in the full graph.
1089       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1090       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1091            I != E; ++I) {
1092         unsigned Block = *I;
1093         if (!Todo.test(Block))
1094           continue;
1095         Todo.reset(Block);
1096         // This is a new through block. Add it to SpillPlacer later.
1097         ActiveBlocks.push_back(Block);
1098 #ifndef NDEBUG
1099         ++Visited;
1100 #endif
1101       }
1102     }
1103     // Any new blocks to add?
1104     if (ActiveBlocks.size() == AddedTo)
1105       break;
1106 
1107     // Compute through constraints from the interference, or assume that all
1108     // through blocks prefer spilling when forming compact regions.
1109     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1110     if (Cand.PhysReg)
1111       addThroughConstraints(Cand.Intf, NewBlocks);
1112     else
1113       // Provide a strong negative bias on through blocks to prevent unwanted
1114       // liveness on loop backedges.
1115       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1116     AddedTo = ActiveBlocks.size();
1117 
1118     // Perhaps iterating can enable more bundles?
1119     SpillPlacer->iterate();
1120   }
1121   DEBUG(dbgs() << ", v=" << Visited);
1122 }
1123 
1124 /// calcCompactRegion - Compute the set of edge bundles that should be live
1125 /// when splitting the current live range into compact regions.  Compact
1126 /// regions can be computed without looking at interference.  They are the
1127 /// regions formed by removing all the live-through blocks from the live range.
1128 ///
1129 /// Returns false if the current live range is already compact, or if the
1130 /// compact regions would form single block regions anyway.
1131 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1132   // Without any through blocks, the live range is already compact.
1133   if (!SA->getNumThroughBlocks())
1134     return false;
1135 
1136   // Compact regions don't correspond to any physreg.
1137   Cand.reset(IntfCache, 0);
1138 
1139   DEBUG(dbgs() << "Compact region bundles");
1140 
1141   // Use the spill placer to determine the live bundles. GrowRegion pretends
1142   // that all the through blocks have interference when PhysReg is unset.
1143   SpillPlacer->prepare(Cand.LiveBundles);
1144 
1145   // The static split cost will be zero since Cand.Intf reports no interference.
1146   BlockFrequency Cost;
1147   if (!addSplitConstraints(Cand.Intf, Cost)) {
1148     DEBUG(dbgs() << ", none.\n");
1149     return false;
1150   }
1151 
1152   growRegion(Cand);
1153   SpillPlacer->finish();
1154 
1155   if (!Cand.LiveBundles.any()) {
1156     DEBUG(dbgs() << ", none.\n");
1157     return false;
1158   }
1159 
1160   DEBUG({
1161     for (int i = Cand.LiveBundles.find_first(); i>=0;
1162          i = Cand.LiveBundles.find_next(i))
1163     dbgs() << " EB#" << i;
1164     dbgs() << ".\n";
1165   });
1166   return true;
1167 }
1168 
1169 /// calcSpillCost - Compute how expensive it would be to split the live range in
1170 /// SA around all use blocks instead of forming bundle regions.
1171 BlockFrequency RAGreedy::calcSpillCost() {
1172   BlockFrequency Cost = 0;
1173   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1174   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1175     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1176     unsigned Number = BI.MBB->getNumber();
1177     // We normally only need one spill instruction - a load or a store.
1178     Cost += SpillPlacer->getBlockFrequency(Number);
1179 
1180     // Unless the value is redefined in the block.
1181     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1182       Cost += SpillPlacer->getBlockFrequency(Number);
1183   }
1184   return Cost;
1185 }
1186 
1187 /// calcGlobalSplitCost - Return the global split cost of following the split
1188 /// pattern in LiveBundles. This cost should be added to the local cost of the
1189 /// interference pattern in SplitConstraints.
1190 ///
1191 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
1192   BlockFrequency GlobalCost = 0;
1193   const BitVector &LiveBundles = Cand.LiveBundles;
1194   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1195   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1196     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1197     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1198     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
1199     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
1200     unsigned Ins = 0;
1201 
1202     if (BI.LiveIn)
1203       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1204     if (BI.LiveOut)
1205       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1206     while (Ins--)
1207       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1208   }
1209 
1210   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1211     unsigned Number = Cand.ActiveBlocks[i];
1212     bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
1213     bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
1214     if (!RegIn && !RegOut)
1215       continue;
1216     if (RegIn && RegOut) {
1217       // We need double spill code if this block has interference.
1218       Cand.Intf.moveToBlock(Number);
1219       if (Cand.Intf.hasInterference()) {
1220         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1221         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1222       }
1223       continue;
1224     }
1225     // live-in / stack-out or stack-in live-out.
1226     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1227   }
1228   return GlobalCost;
1229 }
1230 
1231 /// splitAroundRegion - Split the current live range around the regions
1232 /// determined by BundleCand and GlobalCand.
1233 ///
1234 /// Before calling this function, GlobalCand and BundleCand must be initialized
1235 /// so each bundle is assigned to a valid candidate, or NoCand for the
1236 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1237 /// objects must be initialized for the current live range, and intervals
1238 /// created for the used candidates.
1239 ///
1240 /// @param LREdit    The LiveRangeEdit object handling the current split.
1241 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1242 ///                  must appear in this list.
1243 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1244                                  ArrayRef<unsigned> UsedCands) {
1245   // These are the intervals created for new global ranges. We may create more
1246   // intervals for local ranges.
1247   const unsigned NumGlobalIntvs = LREdit.size();
1248   DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
1249   assert(NumGlobalIntvs && "No global intervals configured");
1250 
1251   // Isolate even single instructions when dealing with a proper sub-class.
1252   // That guarantees register class inflation for the stack interval because it
1253   // is all copies.
1254   unsigned Reg = SA->getParent().reg;
1255   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1256 
1257   // First handle all the blocks with uses.
1258   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1259   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1260     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1261     unsigned Number = BI.MBB->getNumber();
1262     unsigned IntvIn = 0, IntvOut = 0;
1263     SlotIndex IntfIn, IntfOut;
1264     if (BI.LiveIn) {
1265       unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1266       if (CandIn != NoCand) {
1267         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1268         IntvIn = Cand.IntvIdx;
1269         Cand.Intf.moveToBlock(Number);
1270         IntfIn = Cand.Intf.first();
1271       }
1272     }
1273     if (BI.LiveOut) {
1274       unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1275       if (CandOut != NoCand) {
1276         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1277         IntvOut = Cand.IntvIdx;
1278         Cand.Intf.moveToBlock(Number);
1279         IntfOut = Cand.Intf.last();
1280       }
1281     }
1282 
1283     // Create separate intervals for isolated blocks with multiple uses.
1284     if (!IntvIn && !IntvOut) {
1285       DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
1286       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1287         SE->splitSingleBlock(BI);
1288       continue;
1289     }
1290 
1291     if (IntvIn && IntvOut)
1292       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1293     else if (IntvIn)
1294       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1295     else
1296       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1297   }
1298 
1299   // Handle live-through blocks. The relevant live-through blocks are stored in
1300   // the ActiveBlocks list with each candidate. We need to filter out
1301   // duplicates.
1302   BitVector Todo = SA->getThroughBlocks();
1303   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1304     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1305     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1306       unsigned Number = Blocks[i];
1307       if (!Todo.test(Number))
1308         continue;
1309       Todo.reset(Number);
1310 
1311       unsigned IntvIn = 0, IntvOut = 0;
1312       SlotIndex IntfIn, IntfOut;
1313 
1314       unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1315       if (CandIn != NoCand) {
1316         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1317         IntvIn = Cand.IntvIdx;
1318         Cand.Intf.moveToBlock(Number);
1319         IntfIn = Cand.Intf.first();
1320       }
1321 
1322       unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1323       if (CandOut != NoCand) {
1324         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1325         IntvOut = Cand.IntvIdx;
1326         Cand.Intf.moveToBlock(Number);
1327         IntfOut = Cand.Intf.last();
1328       }
1329       if (!IntvIn && !IntvOut)
1330         continue;
1331       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1332     }
1333   }
1334 
1335   ++NumGlobalSplits;
1336 
1337   SmallVector<unsigned, 8> IntvMap;
1338   SE->finish(&IntvMap);
1339   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1340 
1341   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1342   unsigned OrigBlocks = SA->getNumLiveBlocks();
1343 
1344   // Sort out the new intervals created by splitting. We get four kinds:
1345   // - Remainder intervals should not be split again.
1346   // - Candidate intervals can be assigned to Cand.PhysReg.
1347   // - Block-local splits are candidates for local splitting.
1348   // - DCE leftovers should go back on the queue.
1349   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1350     LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1351 
1352     // Ignore old intervals from DCE.
1353     if (getStage(Reg) != RS_New)
1354       continue;
1355 
1356     // Remainder interval. Don't try splitting again, spill if it doesn't
1357     // allocate.
1358     if (IntvMap[i] == 0) {
1359       setStage(Reg, RS_Spill);
1360       continue;
1361     }
1362 
1363     // Global intervals. Allow repeated splitting as long as the number of live
1364     // blocks is strictly decreasing.
1365     if (IntvMap[i] < NumGlobalIntvs) {
1366       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1367         DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1368                      << " blocks as original.\n");
1369         // Don't allow repeated splitting as a safe guard against looping.
1370         setStage(Reg, RS_Split2);
1371       }
1372       continue;
1373     }
1374 
1375     // Other intervals are treated as new. This includes local intervals created
1376     // for blocks with multiple uses, and anything created by DCE.
1377   }
1378 
1379   if (VerifyEnabled)
1380     MF->verify(this, "After splitting live range around region");
1381 }
1382 
1383 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1384                                   SmallVectorImpl<unsigned> &NewVRegs) {
1385   unsigned NumCands = 0;
1386   BlockFrequency BestCost;
1387 
1388   // Check if we can split this live range around a compact region.
1389   bool HasCompact = calcCompactRegion(GlobalCand.front());
1390   if (HasCompact) {
1391     // Yes, keep GlobalCand[0] as the compact region candidate.
1392     NumCands = 1;
1393     BestCost = BlockFrequency::getMaxFrequency();
1394   } else {
1395     // No benefit from the compact region, our fallback will be per-block
1396     // splitting. Make sure we find a solution that is cheaper than spilling.
1397     BestCost = calcSpillCost();
1398     DEBUG(dbgs() << "Cost of isolating all blocks = ";
1399                  MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1400   }
1401 
1402   unsigned BestCand =
1403       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1404                                false/*IgnoreCSR*/);
1405 
1406   // No solutions found, fall back to single block splitting.
1407   if (!HasCompact && BestCand == NoCand)
1408     return 0;
1409 
1410   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1411 }
1412 
1413 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1414                                             AllocationOrder &Order,
1415                                             BlockFrequency &BestCost,
1416                                             unsigned &NumCands,
1417                                             bool IgnoreCSR) {
1418   unsigned BestCand = NoCand;
1419   Order.rewind();
1420   while (unsigned PhysReg = Order.next()) {
1421     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1422       continue;
1423 
1424     // Discard bad candidates before we run out of interference cache cursors.
1425     // This will only affect register classes with a lot of registers (>32).
1426     if (NumCands == IntfCache.getMaxCursors()) {
1427       unsigned WorstCount = ~0u;
1428       unsigned Worst = 0;
1429       for (unsigned i = 0; i != NumCands; ++i) {
1430         if (i == BestCand || !GlobalCand[i].PhysReg)
1431           continue;
1432         unsigned Count = GlobalCand[i].LiveBundles.count();
1433         if (Count < WorstCount) {
1434           Worst = i;
1435           WorstCount = Count;
1436         }
1437       }
1438       --NumCands;
1439       GlobalCand[Worst] = GlobalCand[NumCands];
1440       if (BestCand == NumCands)
1441         BestCand = Worst;
1442     }
1443 
1444     if (GlobalCand.size() <= NumCands)
1445       GlobalCand.resize(NumCands+1);
1446     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1447     Cand.reset(IntfCache, PhysReg);
1448 
1449     SpillPlacer->prepare(Cand.LiveBundles);
1450     BlockFrequency Cost;
1451     if (!addSplitConstraints(Cand.Intf, Cost)) {
1452       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1453       continue;
1454     }
1455     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = ";
1456                  MBFI->printBlockFreq(dbgs(), Cost));
1457     if (Cost >= BestCost) {
1458       DEBUG({
1459         if (BestCand == NoCand)
1460           dbgs() << " worse than no bundles\n";
1461         else
1462           dbgs() << " worse than "
1463                  << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1464       });
1465       continue;
1466     }
1467     growRegion(Cand);
1468 
1469     SpillPlacer->finish();
1470 
1471     // No live bundles, defer to splitSingleBlocks().
1472     if (!Cand.LiveBundles.any()) {
1473       DEBUG(dbgs() << " no bundles.\n");
1474       continue;
1475     }
1476 
1477     Cost += calcGlobalSplitCost(Cand);
1478     DEBUG({
1479       dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost)
1480                                 << " with bundles";
1481       for (int i = Cand.LiveBundles.find_first(); i>=0;
1482            i = Cand.LiveBundles.find_next(i))
1483         dbgs() << " EB#" << i;
1484       dbgs() << ".\n";
1485     });
1486     if (Cost < BestCost) {
1487       BestCand = NumCands;
1488       BestCost = Cost;
1489     }
1490     ++NumCands;
1491   }
1492   return BestCand;
1493 }
1494 
1495 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1496                                  bool HasCompact,
1497                                  SmallVectorImpl<unsigned> &NewVRegs) {
1498   SmallVector<unsigned, 8> UsedCands;
1499   // Prepare split editor.
1500   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1501   SE->reset(LREdit, SplitSpillMode);
1502 
1503   // Assign all edge bundles to the preferred candidate, or NoCand.
1504   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1505 
1506   // Assign bundles for the best candidate region.
1507   if (BestCand != NoCand) {
1508     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1509     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1510       UsedCands.push_back(BestCand);
1511       Cand.IntvIdx = SE->openIntv();
1512       DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1513                    << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1514       (void)B;
1515     }
1516   }
1517 
1518   // Assign bundles for the compact region.
1519   if (HasCompact) {
1520     GlobalSplitCandidate &Cand = GlobalCand.front();
1521     assert(!Cand.PhysReg && "Compact region has no physreg");
1522     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1523       UsedCands.push_back(0);
1524       Cand.IntvIdx = SE->openIntv();
1525       DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1526                    << Cand.IntvIdx << ".\n");
1527       (void)B;
1528     }
1529   }
1530 
1531   splitAroundRegion(LREdit, UsedCands);
1532   return 0;
1533 }
1534 
1535 
1536 //===----------------------------------------------------------------------===//
1537 //                            Per-Block Splitting
1538 //===----------------------------------------------------------------------===//
1539 
1540 /// tryBlockSplit - Split a global live range around every block with uses. This
1541 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1542 /// they don't allocate.
1543 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1544                                  SmallVectorImpl<unsigned> &NewVRegs) {
1545   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1546   unsigned Reg = VirtReg.reg;
1547   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1548   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1549   SE->reset(LREdit, SplitSpillMode);
1550   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1551   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1552     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1553     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1554       SE->splitSingleBlock(BI);
1555   }
1556   // No blocks were split.
1557   if (LREdit.empty())
1558     return 0;
1559 
1560   // We did split for some blocks.
1561   SmallVector<unsigned, 8> IntvMap;
1562   SE->finish(&IntvMap);
1563 
1564   // Tell LiveDebugVariables about the new ranges.
1565   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1566 
1567   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1568 
1569   // Sort out the new intervals created by splitting. The remainder interval
1570   // goes straight to spilling, the new local ranges get to stay RS_New.
1571   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1572     LiveInterval &LI = LIS->getInterval(LREdit.get(i));
1573     if (getStage(LI) == RS_New && IntvMap[i] == 0)
1574       setStage(LI, RS_Spill);
1575   }
1576 
1577   if (VerifyEnabled)
1578     MF->verify(this, "After splitting live range around basic blocks");
1579   return 0;
1580 }
1581 
1582 
1583 //===----------------------------------------------------------------------===//
1584 //                         Per-Instruction Splitting
1585 //===----------------------------------------------------------------------===//
1586 
1587 /// Get the number of allocatable registers that match the constraints of \p Reg
1588 /// on \p MI and that are also in \p SuperRC.
1589 static unsigned getNumAllocatableRegsForConstraints(
1590     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
1591     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1592     const RegisterClassInfo &RCI) {
1593   assert(SuperRC && "Invalid register class");
1594 
1595   const TargetRegisterClass *ConstrainedRC =
1596       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1597                                              /* ExploreBundle */ true);
1598   if (!ConstrainedRC)
1599     return 0;
1600   return RCI.getNumAllocatableRegs(ConstrainedRC);
1601 }
1602 
1603 /// tryInstructionSplit - Split a live range around individual instructions.
1604 /// This is normally not worthwhile since the spiller is doing essentially the
1605 /// same thing. However, when the live range is in a constrained register
1606 /// class, it may help to insert copies such that parts of the live range can
1607 /// be moved to a larger register class.
1608 ///
1609 /// This is similar to spilling to a larger register class.
1610 unsigned
1611 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1612                               SmallVectorImpl<unsigned> &NewVRegs) {
1613   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
1614   // There is no point to this if there are no larger sub-classes.
1615   if (!RegClassInfo.isProperSubClass(CurRC))
1616     return 0;
1617 
1618   // Always enable split spill mode, since we're effectively spilling to a
1619   // register.
1620   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1621   SE->reset(LREdit, SplitEditor::SM_Size);
1622 
1623   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1624   if (Uses.size() <= 1)
1625     return 0;
1626 
1627   DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
1628 
1629   const TargetRegisterClass *SuperRC =
1630       TRI->getLargestLegalSuperClass(CurRC, *MF);
1631   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
1632   // Split around every non-copy instruction if this split will relax
1633   // the constraints on the virtual register.
1634   // Otherwise, splitting just inserts uncoalescable copies that do not help
1635   // the allocation.
1636   for (unsigned i = 0; i != Uses.size(); ++i) {
1637     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
1638       if (MI->isFullCopy() ||
1639           SuperRCNumAllocatableRegs ==
1640               getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
1641                                                   TRI, RCI)) {
1642         DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
1643         continue;
1644       }
1645     SE->openIntv();
1646     SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
1647     SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
1648     SE->useIntv(SegStart, SegStop);
1649   }
1650 
1651   if (LREdit.empty()) {
1652     DEBUG(dbgs() << "All uses were copies.\n");
1653     return 0;
1654   }
1655 
1656   SmallVector<unsigned, 8> IntvMap;
1657   SE->finish(&IntvMap);
1658   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1659   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1660 
1661   // Assign all new registers to RS_Spill. This was the last chance.
1662   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1663   return 0;
1664 }
1665 
1666 
1667 //===----------------------------------------------------------------------===//
1668 //                             Local Splitting
1669 //===----------------------------------------------------------------------===//
1670 
1671 
1672 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1673 /// in order to use PhysReg between two entries in SA->UseSlots.
1674 ///
1675 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1676 ///
1677 void RAGreedy::calcGapWeights(unsigned PhysReg,
1678                               SmallVectorImpl<float> &GapWeight) {
1679   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1680   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1681   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1682   const unsigned NumGaps = Uses.size()-1;
1683 
1684   // Start and end points for the interference check.
1685   SlotIndex StartIdx =
1686     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1687   SlotIndex StopIdx =
1688     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1689 
1690   GapWeight.assign(NumGaps, 0.0f);
1691 
1692   // Add interference from each overlapping register.
1693   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1694     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1695           .checkInterference())
1696       continue;
1697 
1698     // We know that VirtReg is a continuous interval from FirstInstr to
1699     // LastInstr, so we don't need InterferenceQuery.
1700     //
1701     // Interference that overlaps an instruction is counted in both gaps
1702     // surrounding the instruction. The exception is interference before
1703     // StartIdx and after StopIdx.
1704     //
1705     LiveIntervalUnion::SegmentIter IntI =
1706       Matrix->getLiveUnions()[*Units] .find(StartIdx);
1707     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1708       // Skip the gaps before IntI.
1709       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1710         if (++Gap == NumGaps)
1711           break;
1712       if (Gap == NumGaps)
1713         break;
1714 
1715       // Update the gaps covered by IntI.
1716       const float weight = IntI.value()->weight;
1717       for (; Gap != NumGaps; ++Gap) {
1718         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1719         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1720           break;
1721       }
1722       if (Gap == NumGaps)
1723         break;
1724     }
1725   }
1726 
1727   // Add fixed interference.
1728   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1729     const LiveRange &LR = LIS->getRegUnit(*Units);
1730     LiveRange::const_iterator I = LR.find(StartIdx);
1731     LiveRange::const_iterator E = LR.end();
1732 
1733     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1734     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1735       while (Uses[Gap+1].getBoundaryIndex() < I->start)
1736         if (++Gap == NumGaps)
1737           break;
1738       if (Gap == NumGaps)
1739         break;
1740 
1741       for (; Gap != NumGaps; ++Gap) {
1742         GapWeight[Gap] = llvm::huge_valf;
1743         if (Uses[Gap+1].getBaseIndex() >= I->end)
1744           break;
1745       }
1746       if (Gap == NumGaps)
1747         break;
1748     }
1749   }
1750 }
1751 
1752 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1753 /// basic block.
1754 ///
1755 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1756                                  SmallVectorImpl<unsigned> &NewVRegs) {
1757   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1758   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1759 
1760   // Note that it is possible to have an interval that is live-in or live-out
1761   // while only covering a single block - A phi-def can use undef values from
1762   // predecessors, and the block could be a single-block loop.
1763   // We don't bother doing anything clever about such a case, we simply assume
1764   // that the interval is continuous from FirstInstr to LastInstr. We should
1765   // make sure that we don't do anything illegal to such an interval, though.
1766 
1767   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1768   if (Uses.size() <= 2)
1769     return 0;
1770   const unsigned NumGaps = Uses.size()-1;
1771 
1772   DEBUG({
1773     dbgs() << "tryLocalSplit: ";
1774     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1775       dbgs() << ' ' << Uses[i];
1776     dbgs() << '\n';
1777   });
1778 
1779   // If VirtReg is live across any register mask operands, compute a list of
1780   // gaps with register masks.
1781   SmallVector<unsigned, 8> RegMaskGaps;
1782   if (Matrix->checkRegMaskInterference(VirtReg)) {
1783     // Get regmask slots for the whole block.
1784     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1785     DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1786     // Constrain to VirtReg's live range.
1787     unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1788                                    Uses.front().getRegSlot()) - RMS.begin();
1789     unsigned re = RMS.size();
1790     for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1791       // Look for Uses[i] <= RMS <= Uses[i+1].
1792       assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1793       if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1794         continue;
1795       // Skip a regmask on the same instruction as the last use. It doesn't
1796       // overlap the live range.
1797       if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1798         break;
1799       DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1800       RegMaskGaps.push_back(i);
1801       // Advance ri to the next gap. A regmask on one of the uses counts in
1802       // both gaps.
1803       while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1804         ++ri;
1805     }
1806     DEBUG(dbgs() << '\n');
1807   }
1808 
1809   // Since we allow local split results to be split again, there is a risk of
1810   // creating infinite loops. It is tempting to require that the new live
1811   // ranges have less instructions than the original. That would guarantee
1812   // convergence, but it is too strict. A live range with 3 instructions can be
1813   // split 2+3 (including the COPY), and we want to allow that.
1814   //
1815   // Instead we use these rules:
1816   //
1817   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1818   //    noop split, of course).
1819   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1820   //    the new ranges must have fewer instructions than before the split.
1821   // 3. New ranges with the same number of instructions are marked RS_Split2,
1822   //    smaller ranges are marked RS_New.
1823   //
1824   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1825   // excessive splitting and infinite loops.
1826   //
1827   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1828 
1829   // Best split candidate.
1830   unsigned BestBefore = NumGaps;
1831   unsigned BestAfter = 0;
1832   float BestDiff = 0;
1833 
1834   const float blockFreq =
1835     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1836     (1.0f / MBFI->getEntryFreq());
1837   SmallVector<float, 8> GapWeight;
1838 
1839   Order.rewind();
1840   while (unsigned PhysReg = Order.next()) {
1841     // Keep track of the largest spill weight that would need to be evicted in
1842     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1843     calcGapWeights(PhysReg, GapWeight);
1844 
1845     // Remove any gaps with regmask clobbers.
1846     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1847       for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1848         GapWeight[RegMaskGaps[i]] = llvm::huge_valf;
1849 
1850     // Try to find the best sequence of gaps to close.
1851     // The new spill weight must be larger than any gap interference.
1852 
1853     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1854     unsigned SplitBefore = 0, SplitAfter = 1;
1855 
1856     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1857     // It is the spill weight that needs to be evicted.
1858     float MaxGap = GapWeight[0];
1859 
1860     for (;;) {
1861       // Live before/after split?
1862       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1863       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1864 
1865       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1866                    << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1867                    << " i=" << MaxGap);
1868 
1869       // Stop before the interval gets so big we wouldn't be making progress.
1870       if (!LiveBefore && !LiveAfter) {
1871         DEBUG(dbgs() << " all\n");
1872         break;
1873       }
1874       // Should the interval be extended or shrunk?
1875       bool Shrink = true;
1876 
1877       // How many gaps would the new range have?
1878       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1879 
1880       // Legally, without causing looping?
1881       bool Legal = !ProgressRequired || NewGaps < NumGaps;
1882 
1883       if (Legal && MaxGap < llvm::huge_valf) {
1884         // Estimate the new spill weight. Each instruction reads or writes the
1885         // register. Conservatively assume there are no read-modify-write
1886         // instructions.
1887         //
1888         // Try to guess the size of the new interval.
1889         const float EstWeight = normalizeSpillWeight(
1890             blockFreq * (NewGaps + 1),
1891             Uses[SplitBefore].distance(Uses[SplitAfter]) +
1892                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1893             1);
1894         // Would this split be possible to allocate?
1895         // Never allocate all gaps, we wouldn't be making progress.
1896         DEBUG(dbgs() << " w=" << EstWeight);
1897         if (EstWeight * Hysteresis >= MaxGap) {
1898           Shrink = false;
1899           float Diff = EstWeight - MaxGap;
1900           if (Diff > BestDiff) {
1901             DEBUG(dbgs() << " (best)");
1902             BestDiff = Hysteresis * Diff;
1903             BestBefore = SplitBefore;
1904             BestAfter = SplitAfter;
1905           }
1906         }
1907       }
1908 
1909       // Try to shrink.
1910       if (Shrink) {
1911         if (++SplitBefore < SplitAfter) {
1912           DEBUG(dbgs() << " shrink\n");
1913           // Recompute the max when necessary.
1914           if (GapWeight[SplitBefore - 1] >= MaxGap) {
1915             MaxGap = GapWeight[SplitBefore];
1916             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1917               MaxGap = std::max(MaxGap, GapWeight[i]);
1918           }
1919           continue;
1920         }
1921         MaxGap = 0;
1922       }
1923 
1924       // Try to extend the interval.
1925       if (SplitAfter >= NumGaps) {
1926         DEBUG(dbgs() << " end\n");
1927         break;
1928       }
1929 
1930       DEBUG(dbgs() << " extend\n");
1931       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1932     }
1933   }
1934 
1935   // Didn't find any candidates?
1936   if (BestBefore == NumGaps)
1937     return 0;
1938 
1939   DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1940                << '-' << Uses[BestAfter] << ", " << BestDiff
1941                << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1942 
1943   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1944   SE->reset(LREdit);
1945 
1946   SE->openIntv();
1947   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1948   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1949   SE->useIntv(SegStart, SegStop);
1950   SmallVector<unsigned, 8> IntvMap;
1951   SE->finish(&IntvMap);
1952   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1953 
1954   // If the new range has the same number of instructions as before, mark it as
1955   // RS_Split2 so the next split will be forced to make progress. Otherwise,
1956   // leave the new intervals as RS_New so they can compete.
1957   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1958   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1959   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1960   if (NewGaps >= NumGaps) {
1961     DEBUG(dbgs() << "Tagging non-progress ranges: ");
1962     assert(!ProgressRequired && "Didn't make progress when it was required.");
1963     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1964       if (IntvMap[i] == 1) {
1965         setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
1966         DEBUG(dbgs() << PrintReg(LREdit.get(i)));
1967       }
1968     DEBUG(dbgs() << '\n');
1969   }
1970   ++NumLocalSplits;
1971 
1972   return 0;
1973 }
1974 
1975 //===----------------------------------------------------------------------===//
1976 //                          Live Range Splitting
1977 //===----------------------------------------------------------------------===//
1978 
1979 /// trySplit - Try to split VirtReg or one of its interferences, making it
1980 /// assignable.
1981 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1982 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1983                             SmallVectorImpl<unsigned>&NewVRegs) {
1984   // Ranges must be Split2 or less.
1985   if (getStage(VirtReg) >= RS_Spill)
1986     return 0;
1987 
1988   // Local intervals are handled separately.
1989   if (LIS->intervalIsInOneMBB(VirtReg)) {
1990     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
1991                        TimerGroupDescription, TimePassesIsEnabled);
1992     SA->analyze(&VirtReg);
1993     unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1994     if (PhysReg || !NewVRegs.empty())
1995       return PhysReg;
1996     return tryInstructionSplit(VirtReg, Order, NewVRegs);
1997   }
1998 
1999   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2000                      TimerGroupDescription, TimePassesIsEnabled);
2001 
2002   SA->analyze(&VirtReg);
2003 
2004   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2005   // coalescer. That may cause the range to become allocatable which means that
2006   // tryRegionSplit won't be making progress. This check should be replaced with
2007   // an assertion when the coalescer is fixed.
2008   if (SA->didRepairRange()) {
2009     // VirtReg has changed, so all cached queries are invalid.
2010     Matrix->invalidateVirtRegs();
2011     if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
2012       return PhysReg;
2013   }
2014 
2015   // First try to split around a region spanning multiple blocks. RS_Split2
2016   // ranges already made dubious progress with region splitting, so they go
2017   // straight to single block splitting.
2018   if (getStage(VirtReg) < RS_Split2) {
2019     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2020     if (PhysReg || !NewVRegs.empty())
2021       return PhysReg;
2022   }
2023 
2024   // Then isolate blocks.
2025   return tryBlockSplit(VirtReg, Order, NewVRegs);
2026 }
2027 
2028 //===----------------------------------------------------------------------===//
2029 //                          Last Chance Recoloring
2030 //===----------------------------------------------------------------------===//
2031 
2032 /// mayRecolorAllInterferences - Check if the virtual registers that
2033 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2034 /// recolored to free \p PhysReg.
2035 /// When true is returned, \p RecoloringCandidates has been augmented with all
2036 /// the live intervals that need to be recolored in order to free \p PhysReg
2037 /// for \p VirtReg.
2038 /// \p FixedRegisters contains all the virtual registers that cannot be
2039 /// recolored.
2040 bool
2041 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2042                                      SmallLISet &RecoloringCandidates,
2043                                      const SmallVirtRegSet &FixedRegisters) {
2044   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2045 
2046   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2047     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2048     // If there is LastChanceRecoloringMaxInterference or more interferences,
2049     // chances are one would not be recolorable.
2050     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2051         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2052       DEBUG(dbgs() << "Early abort: too many interferences.\n");
2053       CutOffInfo |= CO_Interf;
2054       return false;
2055     }
2056     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2057       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2058       // If Intf is done and sit on the same register class as VirtReg,
2059       // it would not be recolorable as it is in the same state as VirtReg.
2060       if ((getStage(*Intf) == RS_Done &&
2061            MRI->getRegClass(Intf->reg) == CurRC) ||
2062           FixedRegisters.count(Intf->reg)) {
2063         DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n");
2064         return false;
2065       }
2066       RecoloringCandidates.insert(Intf);
2067     }
2068   }
2069   return true;
2070 }
2071 
2072 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2073 /// its interferences.
2074 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2075 /// virtual register that was using it. The recoloring process may recursively
2076 /// use the last chance recoloring. Therefore, when a virtual register has been
2077 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2078 /// be last-chance-recolored again during this recoloring "session".
2079 /// E.g.,
2080 /// Let
2081 /// vA can use {R1, R2    }
2082 /// vB can use {    R2, R3}
2083 /// vC can use {R1        }
2084 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2085 /// instance) and they all interfere.
2086 ///
2087 /// vA is assigned R1
2088 /// vB is assigned R2
2089 /// vC tries to evict vA but vA is already done.
2090 /// Regular register allocation fails.
2091 ///
2092 /// Last chance recoloring kicks in:
2093 /// vC does as if vA was evicted => vC uses R1.
2094 /// vC is marked as fixed.
2095 /// vA needs to find a color.
2096 /// None are available.
2097 /// vA cannot evict vC: vC is a fixed virtual register now.
2098 /// vA does as if vB was evicted => vA uses R2.
2099 /// vB needs to find a color.
2100 /// R3 is available.
2101 /// Recoloring => vC = R1, vA = R2, vB = R3
2102 ///
2103 /// \p Order defines the preferred allocation order for \p VirtReg.
2104 /// \p NewRegs will contain any new virtual register that have been created
2105 /// (split, spill) during the process and that must be assigned.
2106 /// \p FixedRegisters contains all the virtual registers that cannot be
2107 /// recolored.
2108 /// \p Depth gives the current depth of the last chance recoloring.
2109 /// \return a physical register that can be used for VirtReg or ~0u if none
2110 /// exists.
2111 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2112                                            AllocationOrder &Order,
2113                                            SmallVectorImpl<unsigned> &NewVRegs,
2114                                            SmallVirtRegSet &FixedRegisters,
2115                                            unsigned Depth) {
2116   DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2117   // Ranges must be Done.
2118   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2119          "Last chance recoloring should really be last chance");
2120   // Set the max depth to LastChanceRecoloringMaxDepth.
2121   // We may want to reconsider that if we end up with a too large search space
2122   // for target with hundreds of registers.
2123   // Indeed, in that case we may want to cut the search space earlier.
2124   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2125     DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2126     CutOffInfo |= CO_Depth;
2127     return ~0u;
2128   }
2129 
2130   // Set of Live intervals that will need to be recolored.
2131   SmallLISet RecoloringCandidates;
2132   // Record the original mapping virtual register to physical register in case
2133   // the recoloring fails.
2134   DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2135   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2136   // this recoloring "session".
2137   FixedRegisters.insert(VirtReg.reg);
2138   SmallVector<unsigned, 4> CurrentNewVRegs;
2139 
2140   Order.rewind();
2141   while (unsigned PhysReg = Order.next()) {
2142     DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2143                  << PrintReg(PhysReg, TRI) << '\n');
2144     RecoloringCandidates.clear();
2145     VirtRegToPhysReg.clear();
2146     CurrentNewVRegs.clear();
2147 
2148     // It is only possible to recolor virtual register interference.
2149     if (Matrix->checkInterference(VirtReg, PhysReg) >
2150         LiveRegMatrix::IK_VirtReg) {
2151       DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n");
2152 
2153       continue;
2154     }
2155 
2156     // Early give up on this PhysReg if it is obvious we cannot recolor all
2157     // the interferences.
2158     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2159                                     FixedRegisters)) {
2160       DEBUG(dbgs() << "Some inteferences cannot be recolored.\n");
2161       continue;
2162     }
2163 
2164     // RecoloringCandidates contains all the virtual registers that interfer
2165     // with VirtReg on PhysReg (or one of its aliases).
2166     // Enqueue them for recoloring and perform the actual recoloring.
2167     PQueue RecoloringQueue;
2168     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2169                               EndIt = RecoloringCandidates.end();
2170          It != EndIt; ++It) {
2171       unsigned ItVirtReg = (*It)->reg;
2172       enqueue(RecoloringQueue, *It);
2173       assert(VRM->hasPhys(ItVirtReg) &&
2174              "Interferences are supposed to be with allocated vairables");
2175 
2176       // Record the current allocation.
2177       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2178       // unset the related struct.
2179       Matrix->unassign(**It);
2180     }
2181 
2182     // Do as if VirtReg was assigned to PhysReg so that the underlying
2183     // recoloring has the right information about the interferes and
2184     // available colors.
2185     Matrix->assign(VirtReg, PhysReg);
2186 
2187     // Save the current recoloring state.
2188     // If we cannot recolor all the interferences, we will have to start again
2189     // at this point for the next physical register.
2190     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2191     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2192                                 FixedRegisters, Depth)) {
2193       // Push the queued vregs into the main queue.
2194       for (unsigned NewVReg : CurrentNewVRegs)
2195         NewVRegs.push_back(NewVReg);
2196       // Do not mess up with the global assignment process.
2197       // I.e., VirtReg must be unassigned.
2198       Matrix->unassign(VirtReg);
2199       return PhysReg;
2200     }
2201 
2202     DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2203                  << PrintReg(PhysReg, TRI) << '\n');
2204 
2205     // The recoloring attempt failed, undo the changes.
2206     FixedRegisters = SaveFixedRegisters;
2207     Matrix->unassign(VirtReg);
2208 
2209     // For a newly created vreg which is also in RecoloringCandidates,
2210     // don't add it to NewVRegs because its physical register will be restored
2211     // below. Other vregs in CurrentNewVRegs are created by calling
2212     // selectOrSplit and should be added into NewVRegs.
2213     for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(),
2214                                              End = CurrentNewVRegs.end();
2215          Next != End; ++Next) {
2216       if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2217         continue;
2218       NewVRegs.push_back(*Next);
2219     }
2220 
2221     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2222                               EndIt = RecoloringCandidates.end();
2223          It != EndIt; ++It) {
2224       unsigned ItVirtReg = (*It)->reg;
2225       if (VRM->hasPhys(ItVirtReg))
2226         Matrix->unassign(**It);
2227       unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2228       Matrix->assign(**It, ItPhysReg);
2229     }
2230   }
2231 
2232   // Last chance recoloring did not worked either, give up.
2233   return ~0u;
2234 }
2235 
2236 /// tryRecoloringCandidates - Try to assign a new color to every register
2237 /// in \RecoloringQueue.
2238 /// \p NewRegs will contain any new virtual register created during the
2239 /// recoloring process.
2240 /// \p FixedRegisters[in/out] contains all the registers that have been
2241 /// recolored.
2242 /// \return true if all virtual registers in RecoloringQueue were successfully
2243 /// recolored, false otherwise.
2244 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2245                                        SmallVectorImpl<unsigned> &NewVRegs,
2246                                        SmallVirtRegSet &FixedRegisters,
2247                                        unsigned Depth) {
2248   while (!RecoloringQueue.empty()) {
2249     LiveInterval *LI = dequeue(RecoloringQueue);
2250     DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2251     unsigned PhysReg;
2252     PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2253     // When splitting happens, the live-range may actually be empty.
2254     // In that case, this is okay to continue the recoloring even
2255     // if we did not find an alternative color for it. Indeed,
2256     // there will not be anything to color for LI in the end.
2257     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2258       return false;
2259 
2260     if (!PhysReg) {
2261       assert(LI->empty() && "Only empty live-range do not require a register");
2262       DEBUG(dbgs() << "Recoloring of " << *LI << " succeeded. Empty LI.\n");
2263       continue;
2264     }
2265     DEBUG(dbgs() << "Recoloring of " << *LI
2266                  << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n');
2267 
2268     Matrix->assign(*LI, PhysReg);
2269     FixedRegisters.insert(LI->reg);
2270   }
2271   return true;
2272 }
2273 
2274 //===----------------------------------------------------------------------===//
2275 //                            Main Entry Point
2276 //===----------------------------------------------------------------------===//
2277 
2278 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2279                                  SmallVectorImpl<unsigned> &NewVRegs) {
2280   CutOffInfo = CO_None;
2281   LLVMContext &Ctx = MF->getFunction()->getContext();
2282   SmallVirtRegSet FixedRegisters;
2283   unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2284   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2285     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2286     if (CutOffEncountered == CO_Depth)
2287       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2288                     "reached. Use -fexhaustive-register-search to skip "
2289                     "cutoffs");
2290     else if (CutOffEncountered == CO_Interf)
2291       Ctx.emitError("register allocation failed: maximum interference for "
2292                     "recoloring reached. Use -fexhaustive-register-search "
2293                     "to skip cutoffs");
2294     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2295       Ctx.emitError("register allocation failed: maximum interference and "
2296                     "depth for recoloring reached. Use "
2297                     "-fexhaustive-register-search to skip cutoffs");
2298   }
2299   return Reg;
2300 }
2301 
2302 /// Using a CSR for the first time has a cost because it causes push|pop
2303 /// to be added to prologue|epilogue. Splitting a cold section of the live
2304 /// range can have lower cost than using the CSR for the first time;
2305 /// Spilling a live range in the cold path can have lower cost than using
2306 /// the CSR for the first time. Returns the physical register if we decide
2307 /// to use the CSR; otherwise return 0.
2308 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2309                                          AllocationOrder &Order,
2310                                          unsigned PhysReg,
2311                                          unsigned &CostPerUseLimit,
2312                                          SmallVectorImpl<unsigned> &NewVRegs) {
2313   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2314     // We choose spill over using the CSR for the first time if the spill cost
2315     // is lower than CSRCost.
2316     SA->analyze(&VirtReg);
2317     if (calcSpillCost() >= CSRCost)
2318       return PhysReg;
2319 
2320     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2321     // we will not use a callee-saved register in tryEvict.
2322     CostPerUseLimit = 1;
2323     return 0;
2324   }
2325   if (getStage(VirtReg) < RS_Split) {
2326     // We choose pre-splitting over using the CSR for the first time if
2327     // the cost of splitting is lower than CSRCost.
2328     SA->analyze(&VirtReg);
2329     unsigned NumCands = 0;
2330     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2331     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2332                                                  NumCands, true /*IgnoreCSR*/);
2333     if (BestCand == NoCand)
2334       // Use the CSR if we can't find a region split below CSRCost.
2335       return PhysReg;
2336 
2337     // Perform the actual pre-splitting.
2338     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2339     return 0;
2340   }
2341   return PhysReg;
2342 }
2343 
2344 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2345   // Do not keep invalid information around.
2346   SetOfBrokenHints.remove(&LI);
2347 }
2348 
2349 void RAGreedy::initializeCSRCost() {
2350   // We use the larger one out of the command-line option and the value report
2351   // by TRI.
2352   CSRCost = BlockFrequency(
2353       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2354   if (!CSRCost.getFrequency())
2355     return;
2356 
2357   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2358   uint64_t ActualEntry = MBFI->getEntryFreq();
2359   if (!ActualEntry) {
2360     CSRCost = 0;
2361     return;
2362   }
2363   uint64_t FixedEntry = 1 << 14;
2364   if (ActualEntry < FixedEntry)
2365     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2366   else if (ActualEntry <= UINT32_MAX)
2367     // Invert the fraction and divide.
2368     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2369   else
2370     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2371     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2372 }
2373 
2374 /// \brief Collect the hint info for \p Reg.
2375 /// The results are stored into \p Out.
2376 /// \p Out is not cleared before being populated.
2377 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2378   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2379     if (!Instr.isFullCopy())
2380       continue;
2381     // Look for the other end of the copy.
2382     unsigned OtherReg = Instr.getOperand(0).getReg();
2383     if (OtherReg == Reg) {
2384       OtherReg = Instr.getOperand(1).getReg();
2385       if (OtherReg == Reg)
2386         continue;
2387     }
2388     // Get the current assignment.
2389     unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
2390                                 ? OtherReg
2391                                 : VRM->getPhys(OtherReg);
2392     // Push the collected information.
2393     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2394                            OtherPhysReg));
2395   }
2396 }
2397 
2398 /// \brief Using the given \p List, compute the cost of the broken hints if
2399 /// \p PhysReg was used.
2400 /// \return The cost of \p List for \p PhysReg.
2401 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2402                                            unsigned PhysReg) {
2403   BlockFrequency Cost = 0;
2404   for (const HintInfo &Info : List) {
2405     if (Info.PhysReg != PhysReg)
2406       Cost += Info.Freq;
2407   }
2408   return Cost;
2409 }
2410 
2411 /// \brief Using the register assigned to \p VirtReg, try to recolor
2412 /// all the live ranges that are copy-related with \p VirtReg.
2413 /// The recoloring is then propagated to all the live-ranges that have
2414 /// been recolored and so on, until no more copies can be coalesced or
2415 /// it is not profitable.
2416 /// For a given live range, profitability is determined by the sum of the
2417 /// frequencies of the non-identity copies it would introduce with the old
2418 /// and new register.
2419 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2420   // We have a broken hint, check if it is possible to fix it by
2421   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2422   // some register and PhysReg may be available for the other live-ranges.
2423   SmallSet<unsigned, 4> Visited;
2424   SmallVector<unsigned, 2> RecoloringCandidates;
2425   HintsInfo Info;
2426   unsigned Reg = VirtReg.reg;
2427   unsigned PhysReg = VRM->getPhys(Reg);
2428   // Start the recoloring algorithm from the input live-interval, then
2429   // it will propagate to the ones that are copy-related with it.
2430   Visited.insert(Reg);
2431   RecoloringCandidates.push_back(Reg);
2432 
2433   DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '('
2434                << PrintReg(PhysReg, TRI) << ")\n");
2435 
2436   do {
2437     Reg = RecoloringCandidates.pop_back_val();
2438 
2439     // We cannot recolor physcal register.
2440     if (TargetRegisterInfo::isPhysicalRegister(Reg))
2441       continue;
2442 
2443     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2444 
2445     // Get the live interval mapped with this virtual register to be able
2446     // to check for the interference with the new color.
2447     LiveInterval &LI = LIS->getInterval(Reg);
2448     unsigned CurrPhys = VRM->getPhys(Reg);
2449     // Check that the new color matches the register class constraints and
2450     // that it is free for this live range.
2451     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2452                                 Matrix->checkInterference(LI, PhysReg)))
2453       continue;
2454 
2455     DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI)
2456                  << ") is recolorable.\n");
2457 
2458     // Gather the hint info.
2459     Info.clear();
2460     collectHintInfo(Reg, Info);
2461     // Check if recoloring the live-range will increase the cost of the
2462     // non-identity copies.
2463     if (CurrPhys != PhysReg) {
2464       DEBUG(dbgs() << "Checking profitability:\n");
2465       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2466       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2467       DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2468                    << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n');
2469       if (OldCopiesCost < NewCopiesCost) {
2470         DEBUG(dbgs() << "=> Not profitable.\n");
2471         continue;
2472       }
2473       // At this point, the cost is either cheaper or equal. If it is
2474       // equal, we consider this is profitable because it may expose
2475       // more recoloring opportunities.
2476       DEBUG(dbgs() << "=> Profitable.\n");
2477       // Recolor the live-range.
2478       Matrix->unassign(LI);
2479       Matrix->assign(LI, PhysReg);
2480     }
2481     // Push all copy-related live-ranges to keep reconciling the broken
2482     // hints.
2483     for (const HintInfo &HI : Info) {
2484       if (Visited.insert(HI.Reg).second)
2485         RecoloringCandidates.push_back(HI.Reg);
2486     }
2487   } while (!RecoloringCandidates.empty());
2488 }
2489 
2490 /// \brief Try to recolor broken hints.
2491 /// Broken hints may be repaired by recoloring when an evicted variable
2492 /// freed up a register for a larger live-range.
2493 /// Consider the following example:
2494 /// BB1:
2495 ///   a =
2496 ///   b =
2497 /// BB2:
2498 ///   ...
2499 ///   = b
2500 ///   = a
2501 /// Let us assume b gets split:
2502 /// BB1:
2503 ///   a =
2504 ///   b =
2505 /// BB2:
2506 ///   c = b
2507 ///   ...
2508 ///   d = c
2509 ///   = d
2510 ///   = a
2511 /// Because of how the allocation work, b, c, and d may be assigned different
2512 /// colors. Now, if a gets evicted later:
2513 /// BB1:
2514 ///   a =
2515 ///   st a, SpillSlot
2516 ///   b =
2517 /// BB2:
2518 ///   c = b
2519 ///   ...
2520 ///   d = c
2521 ///   = d
2522 ///   e = ld SpillSlot
2523 ///   = e
2524 /// This is likely that we can assign the same register for b, c, and d,
2525 /// getting rid of 2 copies.
2526 void RAGreedy::tryHintsRecoloring() {
2527   for (LiveInterval *LI : SetOfBrokenHints) {
2528     assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
2529            "Recoloring is possible only for virtual registers");
2530     // Some dead defs may be around (e.g., because of debug uses).
2531     // Ignore those.
2532     if (!VRM->hasPhys(LI->reg))
2533       continue;
2534     tryHintRecoloring(*LI);
2535   }
2536 }
2537 
2538 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
2539                                      SmallVectorImpl<unsigned> &NewVRegs,
2540                                      SmallVirtRegSet &FixedRegisters,
2541                                      unsigned Depth) {
2542   unsigned CostPerUseLimit = ~0u;
2543   // First try assigning a free register.
2544   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
2545   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
2546     // When NewVRegs is not empty, we may have made decisions such as evicting
2547     // a virtual register, go with the earlier decisions and use the physical
2548     // register.
2549     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
2550         NewVRegs.empty()) {
2551       unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2552                                               CostPerUseLimit, NewVRegs);
2553       if (CSRReg || !NewVRegs.empty())
2554         // Return now if we decide to use a CSR or create new vregs due to
2555         // pre-splitting.
2556         return CSRReg;
2557     } else
2558       return PhysReg;
2559   }
2560 
2561   LiveRangeStage Stage = getStage(VirtReg);
2562   DEBUG(dbgs() << StageName[Stage]
2563                << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
2564 
2565   // Try to evict a less worthy live range, but only for ranges from the primary
2566   // queue. The RS_Split ranges already failed to do this, and they should not
2567   // get a second chance until they have been split.
2568   if (Stage != RS_Split)
2569     if (unsigned PhysReg =
2570             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) {
2571       unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
2572       // If VirtReg has a hint and that hint is broken record this
2573       // virtual register as a recoloring candidate for broken hint.
2574       // Indeed, since we evicted a variable in its neighborhood it is
2575       // likely we can at least partially recolor some of the
2576       // copy-related live-ranges.
2577       if (Hint && Hint != PhysReg)
2578         SetOfBrokenHints.insert(&VirtReg);
2579       return PhysReg;
2580     }
2581 
2582   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2583 
2584   // The first time we see a live range, don't try to split or spill.
2585   // Wait until the second time, when all smaller ranges have been allocated.
2586   // This gives a better picture of the interference to split around.
2587   if (Stage < RS_Split) {
2588     setStage(VirtReg, RS_Split);
2589     DEBUG(dbgs() << "wait for second round\n");
2590     NewVRegs.push_back(VirtReg.reg);
2591     return 0;
2592   }
2593 
2594   if (Stage < RS_Spill) {
2595     // Try splitting VirtReg or interferences.
2596     unsigned NewVRegSizeBefore = NewVRegs.size();
2597     unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
2598     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore))
2599       return PhysReg;
2600   }
2601 
2602   // If we couldn't allocate a register from spilling, there is probably some
2603   // invalid inline assembly. The base class wil report it.
2604   if (Stage >= RS_Done || !VirtReg.isSpillable())
2605     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2606                                    Depth);
2607 
2608   // Finally spill VirtReg itself.
2609   if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
2610     // TODO: This is experimental and in particular, we do not model
2611     // the live range splitting done by spilling correctly.
2612     // We would need a deep integration with the spiller to do the
2613     // right thing here. Anyway, that is still good for early testing.
2614     setStage(VirtReg, RS_Memory);
2615     DEBUG(dbgs() << "Do as if this register is in memory\n");
2616     NewVRegs.push_back(VirtReg.reg);
2617   } else {
2618     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
2619                        TimerGroupDescription, TimePassesIsEnabled);
2620     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2621     spiller().spill(LRE);
2622     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2623 
2624     if (VerifyEnabled)
2625       MF->verify(this, "After spilling");
2626   }
2627 
2628   // The live virtual register requesting allocation was spilled, so tell
2629   // the caller not to allocate anything during this round.
2630   return 0;
2631 }
2632 
2633 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
2634                                             unsigned &FoldedReloads,
2635                                             unsigned &Spills,
2636                                             unsigned &FoldedSpills) {
2637   Reloads = 0;
2638   FoldedReloads = 0;
2639   Spills = 0;
2640   FoldedSpills = 0;
2641 
2642   // Sum up the spill and reloads in subloops.
2643   for (MachineLoop *SubLoop : *L) {
2644     unsigned SubReloads;
2645     unsigned SubFoldedReloads;
2646     unsigned SubSpills;
2647     unsigned SubFoldedSpills;
2648 
2649     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
2650                                  SubSpills, SubFoldedSpills);
2651     Reloads += SubReloads;
2652     FoldedReloads += SubFoldedReloads;
2653     Spills += SubSpills;
2654     FoldedSpills += SubFoldedSpills;
2655   }
2656 
2657   const MachineFrameInfo &MFI = MF->getFrameInfo();
2658   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2659   int FI;
2660 
2661   for (MachineBasicBlock *MBB : L->getBlocks())
2662     // Handle blocks that were not included in subloops.
2663     if (Loops->getLoopFor(MBB) == L)
2664       for (MachineInstr &MI : *MBB) {
2665         const MachineMemOperand *MMO;
2666 
2667         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
2668           ++Reloads;
2669         else if (TII->hasLoadFromStackSlot(MI, MMO, FI) &&
2670                  MFI.isSpillSlotObjectIndex(FI))
2671           ++FoldedReloads;
2672         else if (TII->isStoreToStackSlot(MI, FI) &&
2673                  MFI.isSpillSlotObjectIndex(FI))
2674           ++Spills;
2675         else if (TII->hasStoreToStackSlot(MI, MMO, FI) &&
2676                  MFI.isSpillSlotObjectIndex(FI))
2677           ++FoldedSpills;
2678       }
2679 
2680   if (Reloads || FoldedReloads || Spills || FoldedSpills) {
2681     using namespace ore;
2682     MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
2683                                       L->getStartLoc(), L->getHeader());
2684     if (Spills)
2685       R << NV("NumSpills", Spills) << " spills ";
2686     if (FoldedSpills)
2687       R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2688     if (Reloads)
2689       R << NV("NumReloads", Reloads) << " reloads ";
2690     if (FoldedReloads)
2691       R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2692     ORE->emit(R << "generated in loop");
2693   }
2694 }
2695 
2696 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2697   DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2698                << "********** Function: " << mf.getName() << '\n');
2699 
2700   MF = &mf;
2701   TRI = MF->getSubtarget().getRegisterInfo();
2702   TII = MF->getSubtarget().getInstrInfo();
2703   RCI.runOnMachineFunction(mf);
2704 
2705   EnableLocalReassign = EnableLocalReassignment ||
2706                         MF->getSubtarget().enableRALocalReassignment(
2707                             MF->getTarget().getOptLevel());
2708 
2709   if (VerifyEnabled)
2710     MF->verify(this, "Before greedy register allocator");
2711 
2712   RegAllocBase::init(getAnalysis<VirtRegMap>(),
2713                      getAnalysis<LiveIntervals>(),
2714                      getAnalysis<LiveRegMatrix>());
2715   Indexes = &getAnalysis<SlotIndexes>();
2716   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2717   DomTree = &getAnalysis<MachineDominatorTree>();
2718   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2719   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
2720   Loops = &getAnalysis<MachineLoopInfo>();
2721   Bundles = &getAnalysis<EdgeBundles>();
2722   SpillPlacer = &getAnalysis<SpillPlacement>();
2723   DebugVars = &getAnalysis<LiveDebugVariables>();
2724   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2725 
2726   initializeCSRCost();
2727 
2728   calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
2729 
2730   DEBUG(LIS->dump());
2731 
2732   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2733   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
2734   ExtraRegInfo.clear();
2735   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2736   NextCascade = 1;
2737   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2738   GlobalCand.resize(32);  // This will grow as needed.
2739   SetOfBrokenHints.clear();
2740 
2741   allocatePhysRegs();
2742   tryHintsRecoloring();
2743   postOptimization();
2744   reportNumberOfSplillsReloads();
2745 
2746   releaseMemory();
2747   return true;
2748 }
2749