1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RegAllocGreedy.h" 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "RegAllocEvictionAdvisor.h" 20 #include "SpillPlacement.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/IndexedMap.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/CodeGen/CalcSpillWeights.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervalUnion.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveRegMatrix.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RegAllocRegistry.h" 53 #include "llvm/CodeGen/RegisterClassInfo.h" 54 #include "llvm/CodeGen/SlotIndexes.h" 55 #include "llvm/CodeGen/Spiller.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/DebugInfoMetadata.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCRegisterInfo.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/BlockFrequency.h" 67 #include "llvm/Support/BranchProbability.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/Timer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <utility> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "regalloc" 81 82 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 83 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 84 STATISTIC(NumEvicted, "Number of interferences evicted"); 85 86 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 87 "split-spill-mode", cl::Hidden, 88 cl::desc("Spill mode for splitting live ranges"), 89 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 90 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 91 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 92 cl::init(SplitEditor::SM_Speed)); 93 94 static cl::opt<unsigned> 95 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 96 cl::desc("Last chance recoloring max depth"), 97 cl::init(5)); 98 99 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 100 "lcr-max-interf", cl::Hidden, 101 cl::desc("Last chance recoloring maximum number of considered" 102 " interference at a time"), 103 cl::init(8)); 104 105 static cl::opt<bool> ExhaustiveSearch( 106 "exhaustive-register-search", cl::NotHidden, 107 cl::desc("Exhaustive Search for registers bypassing the depth " 108 "and interference cutoffs of last chance recoloring"), 109 cl::Hidden); 110 111 static cl::opt<bool> EnableDeferredSpilling( 112 "enable-deferred-spilling", cl::Hidden, 113 cl::desc("Instead of spilling a variable right away, defer the actual " 114 "code insertion to the end of the allocation. That way the " 115 "allocator might still find a suitable coloring for this " 116 "variable because of other evicted variables."), 117 cl::init(false)); 118 119 // FIXME: Find a good default for this flag and remove the flag. 120 static cl::opt<unsigned> 121 CSRFirstTimeCost("regalloc-csr-first-time-cost", 122 cl::desc("Cost for first time use of callee-saved register."), 123 cl::init(0), cl::Hidden); 124 125 static cl::opt<unsigned long> GrowRegionComplexityBudget( 126 "grow-region-complexity-budget", 127 cl::desc("growRegion() does not scale with the number of BB edges, so " 128 "limit its budget and bail out once we reach the limit."), 129 cl::init(10000), cl::Hidden); 130 131 static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness( 132 "greedy-regclass-priority-trumps-globalness", 133 cl::desc("Change the greedy register allocator's live range priority " 134 "calculation to make the AllocationPriority of the register class " 135 "more important then whether the range is global"), 136 cl::Hidden); 137 138 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 139 createGreedyRegisterAllocator); 140 141 char RAGreedy::ID = 0; 142 char &llvm::RAGreedyID = RAGreedy::ID; 143 144 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 145 "Greedy Register Allocator", false, false) 146 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 147 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 148 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 149 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 150 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 151 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 152 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 153 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 154 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 155 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 156 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 157 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 158 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 159 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis) 160 INITIALIZE_PASS_END(RAGreedy, "greedy", 161 "Greedy Register Allocator", false, false) 162 163 #ifndef NDEBUG 164 const char *const RAGreedy::StageName[] = { 165 "RS_New", 166 "RS_Assign", 167 "RS_Split", 168 "RS_Split2", 169 "RS_Spill", 170 "RS_Memory", 171 "RS_Done" 172 }; 173 #endif 174 175 // Hysteresis to use when comparing floats. 176 // This helps stabilize decisions based on float comparisons. 177 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 178 179 FunctionPass* llvm::createGreedyRegisterAllocator() { 180 return new RAGreedy(); 181 } 182 183 namespace llvm { 184 FunctionPass *createGreedyRegisterAllocator(RegClassFilterFunc Ftor); 185 } 186 187 FunctionPass *llvm::createGreedyRegisterAllocator(RegClassFilterFunc Ftor) { 188 return new RAGreedy(Ftor); 189 } 190 191 RAGreedy::RAGreedy(RegClassFilterFunc F): 192 MachineFunctionPass(ID), 193 RegAllocBase(F) { 194 } 195 196 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 197 AU.setPreservesCFG(); 198 AU.addRequired<MachineBlockFrequencyInfo>(); 199 AU.addPreserved<MachineBlockFrequencyInfo>(); 200 AU.addRequired<AAResultsWrapperPass>(); 201 AU.addPreserved<AAResultsWrapperPass>(); 202 AU.addRequired<LiveIntervals>(); 203 AU.addPreserved<LiveIntervals>(); 204 AU.addRequired<SlotIndexes>(); 205 AU.addPreserved<SlotIndexes>(); 206 AU.addRequired<LiveDebugVariables>(); 207 AU.addPreserved<LiveDebugVariables>(); 208 AU.addRequired<LiveStacks>(); 209 AU.addPreserved<LiveStacks>(); 210 AU.addRequired<MachineDominatorTree>(); 211 AU.addPreserved<MachineDominatorTree>(); 212 AU.addRequired<MachineLoopInfo>(); 213 AU.addPreserved<MachineLoopInfo>(); 214 AU.addRequired<VirtRegMap>(); 215 AU.addPreserved<VirtRegMap>(); 216 AU.addRequired<LiveRegMatrix>(); 217 AU.addPreserved<LiveRegMatrix>(); 218 AU.addRequired<EdgeBundles>(); 219 AU.addRequired<SpillPlacement>(); 220 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 221 AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); 222 MachineFunctionPass::getAnalysisUsage(AU); 223 } 224 225 //===----------------------------------------------------------------------===// 226 // LiveRangeEdit delegate methods 227 //===----------------------------------------------------------------------===// 228 229 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 230 LiveInterval &LI = LIS->getInterval(VirtReg); 231 if (VRM->hasPhys(VirtReg)) { 232 Matrix->unassign(LI); 233 aboutToRemoveInterval(LI); 234 return true; 235 } 236 // Unassigned virtreg is probably in the priority queue. 237 // RegAllocBase will erase it after dequeueing. 238 // Nonetheless, clear the live-range so that the debug 239 // dump will show the right state for that VirtReg. 240 LI.clear(); 241 return false; 242 } 243 244 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 245 if (!VRM->hasPhys(VirtReg)) 246 return; 247 248 // Register is assigned, put it back on the queue for reassignment. 249 LiveInterval &LI = LIS->getInterval(VirtReg); 250 Matrix->unassign(LI); 251 RegAllocBase::enqueue(&LI); 252 } 253 254 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 255 ExtraInfo->LRE_DidCloneVirtReg(New, Old); 256 } 257 258 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) { 259 // Cloning a register we haven't even heard about yet? Just ignore it. 260 if (!Info.inBounds(Old)) 261 return; 262 263 // LRE may clone a virtual register because dead code elimination causes it to 264 // be split into connected components. The new components are much smaller 265 // than the original, so they should get a new chance at being assigned. 266 // same stage as the parent. 267 Info[Old].Stage = RS_Assign; 268 Info.grow(New.id()); 269 Info[New] = Info[Old]; 270 } 271 272 void RAGreedy::releaseMemory() { 273 SpillerInstance.reset(); 274 GlobalCand.clear(); 275 } 276 277 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); } 278 279 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) { 280 // Prioritize live ranges by size, assigning larger ranges first. 281 // The queue holds (size, reg) pairs. 282 const unsigned Size = LI->getSize(); 283 const Register Reg = LI->reg(); 284 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 285 unsigned Prio; 286 287 auto Stage = ExtraInfo->getOrInitStage(Reg); 288 if (Stage == RS_New) { 289 Stage = RS_Assign; 290 ExtraInfo->setStage(Reg, Stage); 291 } 292 if (Stage == RS_Split) { 293 // Unsplit ranges that couldn't be allocated immediately are deferred until 294 // everything else has been allocated. 295 Prio = Size; 296 } else if (Stage == RS_Memory) { 297 // Memory operand should be considered last. 298 // Change the priority such that Memory operand are assigned in 299 // the reverse order that they came in. 300 // TODO: Make this a member variable and probably do something about hints. 301 static unsigned MemOp = 0; 302 Prio = MemOp++; 303 } else { 304 // Giant live ranges fall back to the global assignment heuristic, which 305 // prevents excessive spilling in pathological cases. 306 bool ReverseLocal = TRI->reverseLocalAssignment(); 307 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 308 bool ForceGlobal = 309 !ReverseLocal && (Size / SlotIndex::InstrDist) > 310 (2 * RegClassInfo.getNumAllocatableRegs(&RC)); 311 unsigned GlobalBit = 0; 312 313 if (Stage == RS_Assign && !ForceGlobal && !LI->empty() && 314 LIS->intervalIsInOneMBB(*LI)) { 315 // Allocate original local ranges in linear instruction order. Since they 316 // are singly defined, this produces optimal coloring in the absence of 317 // global interference and other constraints. 318 if (!ReverseLocal) 319 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 320 else { 321 // Allocating bottom up may allow many short LRGs to be assigned first 322 // to one of the cheap registers. This could be much faster for very 323 // large blocks on targets with many physical registers. 324 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 325 } 326 } else { 327 // Allocate global and split ranges in long->short order. Long ranges that 328 // don't fit should be spilled (or split) ASAP so they don't create 329 // interference. Mark a bit to prioritize global above local ranges. 330 Prio = Size; 331 GlobalBit = 1; 332 } 333 if (RegClassPriorityTrumpsGlobalness) 334 Prio |= RC.AllocationPriority << 25 | GlobalBit << 24; 335 else 336 Prio |= GlobalBit << 29 | RC.AllocationPriority << 24; 337 338 // Mark a higher bit to prioritize global and local above RS_Split. 339 Prio |= (1u << 31); 340 341 // Boost ranges that have a physical register hint. 342 if (VRM->hasKnownPreference(Reg)) 343 Prio |= (1u << 30); 344 } 345 // The virtual register number is a tie breaker for same-sized ranges. 346 // Give lower vreg numbers higher priority to assign them first. 347 CurQueue.push(std::make_pair(Prio, ~Reg)); 348 } 349 350 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 351 352 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 353 if (CurQueue.empty()) 354 return nullptr; 355 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 356 CurQueue.pop(); 357 return LI; 358 } 359 360 //===----------------------------------------------------------------------===// 361 // Direct Assignment 362 //===----------------------------------------------------------------------===// 363 364 /// tryAssign - Try to assign VirtReg to an available register. 365 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg, 366 AllocationOrder &Order, 367 SmallVectorImpl<Register> &NewVRegs, 368 const SmallVirtRegSet &FixedRegisters) { 369 MCRegister PhysReg; 370 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 371 assert(*I); 372 if (!Matrix->checkInterference(VirtReg, *I)) { 373 if (I.isHint()) 374 return *I; 375 else 376 PhysReg = *I; 377 } 378 } 379 if (!PhysReg.isValid()) 380 return PhysReg; 381 382 // PhysReg is available, but there may be a better choice. 383 384 // If we missed a simple hint, try to cheaply evict interference from the 385 // preferred register. 386 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 387 if (Order.isHint(Hint)) { 388 MCRegister PhysHint = Hint.asMCReg(); 389 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 390 391 if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint, 392 FixedRegisters)) { 393 evictInterference(VirtReg, PhysHint, NewVRegs); 394 return PhysHint; 395 } 396 // Record the missed hint, we may be able to recover 397 // at the end if the surrounding allocation changed. 398 SetOfBrokenHints.insert(&VirtReg); 399 } 400 401 // Try to evict interference from a cheaper alternative. 402 uint8_t Cost = RegCosts[PhysReg]; 403 404 // Most registers have 0 additional cost. 405 if (!Cost) 406 return PhysReg; 407 408 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 409 << (unsigned)Cost << '\n'); 410 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 411 return CheapReg ? CheapReg : PhysReg; 412 } 413 414 //===----------------------------------------------------------------------===// 415 // Interference eviction 416 //===----------------------------------------------------------------------===// 417 418 Register RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg, 419 Register PrevReg) const { 420 auto Order = 421 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 422 MCRegister PhysReg; 423 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 424 if ((*I).id() == PrevReg.id()) 425 continue; 426 427 MCRegUnitIterator Units(*I, TRI); 428 for (; Units.isValid(); ++Units) { 429 // Instantiate a "subquery", not to be confused with the Queries array. 430 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 431 if (subQ.checkInterference()) 432 break; 433 } 434 // If no units have interference, break out with the current PhysReg. 435 if (!Units.isValid()) 436 PhysReg = *I; 437 } 438 if (PhysReg) 439 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 440 << printReg(PrevReg, TRI) << " to " 441 << printReg(PhysReg, TRI) << '\n'); 442 return PhysReg; 443 } 444 445 /// evictInterference - Evict any interferring registers that prevent VirtReg 446 /// from being assigned to Physreg. This assumes that canEvictInterference 447 /// returned true. 448 void RAGreedy::evictInterference(const LiveInterval &VirtReg, 449 MCRegister PhysReg, 450 SmallVectorImpl<Register> &NewVRegs) { 451 // Make sure that VirtReg has a cascade number, and assign that cascade 452 // number to every evicted register. These live ranges than then only be 453 // evicted by a newer cascade, preventing infinite loops. 454 unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg()); 455 456 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 457 << " interference: Cascade " << Cascade << '\n'); 458 459 // Collect all interfering virtregs first. 460 SmallVector<const LiveInterval *, 8> Intfs; 461 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 462 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 463 // We usually have the interfering VRegs cached so collectInterferingVRegs() 464 // should be fast, we may need to recalculate if when different physregs 465 // overlap the same register unit so we had different SubRanges queried 466 // against it. 467 ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs(); 468 Intfs.append(IVR.begin(), IVR.end()); 469 } 470 471 // Evict them second. This will invalidate the queries. 472 for (const LiveInterval *Intf : Intfs) { 473 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 474 if (!VRM->hasPhys(Intf->reg())) 475 continue; 476 477 Matrix->unassign(*Intf); 478 assert((ExtraInfo->getCascade(Intf->reg()) < Cascade || 479 VirtReg.isSpillable() < Intf->isSpillable()) && 480 "Cannot decrease cascade number, illegal eviction"); 481 ExtraInfo->setCascade(Intf->reg(), Cascade); 482 ++NumEvicted; 483 NewVRegs.push_back(Intf->reg()); 484 } 485 } 486 487 /// Returns true if the given \p PhysReg is a callee saved register and has not 488 /// been used for allocation yet. 489 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 490 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 491 if (!CSR) 492 return false; 493 494 return !Matrix->isPhysRegUsed(PhysReg); 495 } 496 497 Optional<unsigned> 498 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg, 499 const AllocationOrder &Order, 500 unsigned CostPerUseLimit) const { 501 unsigned OrderLimit = Order.getOrder().size(); 502 503 if (CostPerUseLimit < uint8_t(~0u)) { 504 // Check of any registers in RC are below CostPerUseLimit. 505 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 506 uint8_t MinCost = RegClassInfo.getMinCost(RC); 507 if (MinCost >= CostPerUseLimit) { 508 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 509 << MinCost << ", no cheaper registers to be found.\n"); 510 return None; 511 } 512 513 // It is normal for register classes to have a long tail of registers with 514 // the same cost. We don't need to look at them if they're too expensive. 515 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 516 OrderLimit = RegClassInfo.getLastCostChange(RC); 517 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 518 << " regs.\n"); 519 } 520 } 521 return OrderLimit; 522 } 523 524 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit, 525 MCRegister PhysReg) const { 526 if (RegCosts[PhysReg] >= CostPerUseLimit) 527 return false; 528 // The first use of a callee-saved register in a function has cost 1. 529 // Don't start using a CSR when the CostPerUseLimit is low. 530 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 531 LLVM_DEBUG( 532 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 533 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 534 << '\n'); 535 return false; 536 } 537 return true; 538 } 539 540 /// tryEvict - Try to evict all interferences for a physreg. 541 /// @param VirtReg Currently unassigned virtual register. 542 /// @param Order Physregs to try. 543 /// @return Physreg to assign VirtReg, or 0. 544 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg, 545 AllocationOrder &Order, 546 SmallVectorImpl<Register> &NewVRegs, 547 uint8_t CostPerUseLimit, 548 const SmallVirtRegSet &FixedRegisters) { 549 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 550 TimePassesIsEnabled); 551 552 MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate( 553 VirtReg, Order, CostPerUseLimit, FixedRegisters); 554 if (BestPhys.isValid()) 555 evictInterference(VirtReg, BestPhys, NewVRegs); 556 return BestPhys; 557 } 558 559 //===----------------------------------------------------------------------===// 560 // Region Splitting 561 //===----------------------------------------------------------------------===// 562 563 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 564 /// interference pattern in Physreg and its aliases. Add the constraints to 565 /// SpillPlacement and return the static cost of this split in Cost, assuming 566 /// that all preferences in SplitConstraints are met. 567 /// Return false if there are no bundles with positive bias. 568 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 569 BlockFrequency &Cost) { 570 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 571 572 // Reset interference dependent info. 573 SplitConstraints.resize(UseBlocks.size()); 574 BlockFrequency StaticCost = 0; 575 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 576 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 577 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 578 579 BC.Number = BI.MBB->getNumber(); 580 Intf.moveToBlock(BC.Number); 581 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 582 BC.Exit = (BI.LiveOut && 583 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 584 ? SpillPlacement::PrefReg 585 : SpillPlacement::DontCare; 586 BC.ChangesValue = BI.FirstDef.isValid(); 587 588 if (!Intf.hasInterference()) 589 continue; 590 591 // Number of spill code instructions to insert. 592 unsigned Ins = 0; 593 594 // Interference for the live-in value. 595 if (BI.LiveIn) { 596 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 597 BC.Entry = SpillPlacement::MustSpill; 598 ++Ins; 599 } else if (Intf.first() < BI.FirstInstr) { 600 BC.Entry = SpillPlacement::PrefSpill; 601 ++Ins; 602 } else if (Intf.first() < BI.LastInstr) { 603 ++Ins; 604 } 605 606 // Abort if the spill cannot be inserted at the MBB' start 607 if (((BC.Entry == SpillPlacement::MustSpill) || 608 (BC.Entry == SpillPlacement::PrefSpill)) && 609 SlotIndex::isEarlierInstr(BI.FirstInstr, 610 SA->getFirstSplitPoint(BC.Number))) 611 return false; 612 } 613 614 // Interference for the live-out value. 615 if (BI.LiveOut) { 616 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 617 BC.Exit = SpillPlacement::MustSpill; 618 ++Ins; 619 } else if (Intf.last() > BI.LastInstr) { 620 BC.Exit = SpillPlacement::PrefSpill; 621 ++Ins; 622 } else if (Intf.last() > BI.FirstInstr) { 623 ++Ins; 624 } 625 } 626 627 // Accumulate the total frequency of inserted spill code. 628 while (Ins--) 629 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 630 } 631 Cost = StaticCost; 632 633 // Add constraints for use-blocks. Note that these are the only constraints 634 // that may add a positive bias, it is downhill from here. 635 SpillPlacer->addConstraints(SplitConstraints); 636 return SpillPlacer->scanActiveBundles(); 637 } 638 639 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 640 /// live-through blocks in Blocks. 641 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 642 ArrayRef<unsigned> Blocks) { 643 const unsigned GroupSize = 8; 644 SpillPlacement::BlockConstraint BCS[GroupSize]; 645 unsigned TBS[GroupSize]; 646 unsigned B = 0, T = 0; 647 648 for (unsigned Number : Blocks) { 649 Intf.moveToBlock(Number); 650 651 if (!Intf.hasInterference()) { 652 assert(T < GroupSize && "Array overflow"); 653 TBS[T] = Number; 654 if (++T == GroupSize) { 655 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 656 T = 0; 657 } 658 continue; 659 } 660 661 assert(B < GroupSize && "Array overflow"); 662 BCS[B].Number = Number; 663 664 // Abort if the spill cannot be inserted at the MBB' start 665 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 666 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 667 if (FirstNonDebugInstr != MBB->end() && 668 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 669 SA->getFirstSplitPoint(Number))) 670 return false; 671 // Interference for the live-in value. 672 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 673 BCS[B].Entry = SpillPlacement::MustSpill; 674 else 675 BCS[B].Entry = SpillPlacement::PrefSpill; 676 677 // Interference for the live-out value. 678 if (Intf.last() >= SA->getLastSplitPoint(Number)) 679 BCS[B].Exit = SpillPlacement::MustSpill; 680 else 681 BCS[B].Exit = SpillPlacement::PrefSpill; 682 683 if (++B == GroupSize) { 684 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 685 B = 0; 686 } 687 } 688 689 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 690 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 691 return true; 692 } 693 694 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 695 // Keep track of through blocks that have not been added to SpillPlacer. 696 BitVector Todo = SA->getThroughBlocks(); 697 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 698 unsigned AddedTo = 0; 699 #ifndef NDEBUG 700 unsigned Visited = 0; 701 #endif 702 703 unsigned long Budget = GrowRegionComplexityBudget; 704 while (true) { 705 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 706 // Find new through blocks in the periphery of PrefRegBundles. 707 for (unsigned Bundle : NewBundles) { 708 // Look at all blocks connected to Bundle in the full graph. 709 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 710 // Limit compilation time by bailing out after we use all our budget. 711 if (Blocks.size() >= Budget) 712 return false; 713 Budget -= Blocks.size(); 714 for (unsigned Block : Blocks) { 715 if (!Todo.test(Block)) 716 continue; 717 Todo.reset(Block); 718 // This is a new through block. Add it to SpillPlacer later. 719 ActiveBlocks.push_back(Block); 720 #ifndef NDEBUG 721 ++Visited; 722 #endif 723 } 724 } 725 // Any new blocks to add? 726 if (ActiveBlocks.size() == AddedTo) 727 break; 728 729 // Compute through constraints from the interference, or assume that all 730 // through blocks prefer spilling when forming compact regions. 731 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 732 if (Cand.PhysReg) { 733 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 734 return false; 735 } else 736 // Provide a strong negative bias on through blocks to prevent unwanted 737 // liveness on loop backedges. 738 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 739 AddedTo = ActiveBlocks.size(); 740 741 // Perhaps iterating can enable more bundles? 742 SpillPlacer->iterate(); 743 } 744 LLVM_DEBUG(dbgs() << ", v=" << Visited); 745 return true; 746 } 747 748 /// calcCompactRegion - Compute the set of edge bundles that should be live 749 /// when splitting the current live range into compact regions. Compact 750 /// regions can be computed without looking at interference. They are the 751 /// regions formed by removing all the live-through blocks from the live range. 752 /// 753 /// Returns false if the current live range is already compact, or if the 754 /// compact regions would form single block regions anyway. 755 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 756 // Without any through blocks, the live range is already compact. 757 if (!SA->getNumThroughBlocks()) 758 return false; 759 760 // Compact regions don't correspond to any physreg. 761 Cand.reset(IntfCache, MCRegister::NoRegister); 762 763 LLVM_DEBUG(dbgs() << "Compact region bundles"); 764 765 // Use the spill placer to determine the live bundles. GrowRegion pretends 766 // that all the through blocks have interference when PhysReg is unset. 767 SpillPlacer->prepare(Cand.LiveBundles); 768 769 // The static split cost will be zero since Cand.Intf reports no interference. 770 BlockFrequency Cost; 771 if (!addSplitConstraints(Cand.Intf, Cost)) { 772 LLVM_DEBUG(dbgs() << ", none.\n"); 773 return false; 774 } 775 776 if (!growRegion(Cand)) { 777 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 778 return false; 779 } 780 781 SpillPlacer->finish(); 782 783 if (!Cand.LiveBundles.any()) { 784 LLVM_DEBUG(dbgs() << ", none.\n"); 785 return false; 786 } 787 788 LLVM_DEBUG({ 789 for (int I : Cand.LiveBundles.set_bits()) 790 dbgs() << " EB#" << I; 791 dbgs() << ".\n"; 792 }); 793 return true; 794 } 795 796 /// calcSpillCost - Compute how expensive it would be to split the live range in 797 /// SA around all use blocks instead of forming bundle regions. 798 BlockFrequency RAGreedy::calcSpillCost() { 799 BlockFrequency Cost = 0; 800 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 801 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 802 unsigned Number = BI.MBB->getNumber(); 803 // We normally only need one spill instruction - a load or a store. 804 Cost += SpillPlacer->getBlockFrequency(Number); 805 806 // Unless the value is redefined in the block. 807 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 808 Cost += SpillPlacer->getBlockFrequency(Number); 809 } 810 return Cost; 811 } 812 813 /// calcGlobalSplitCost - Return the global split cost of following the split 814 /// pattern in LiveBundles. This cost should be added to the local cost of the 815 /// interference pattern in SplitConstraints. 816 /// 817 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 818 const AllocationOrder &Order) { 819 BlockFrequency GlobalCost = 0; 820 const BitVector &LiveBundles = Cand.LiveBundles; 821 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 822 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 823 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 824 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 825 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 826 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 827 unsigned Ins = 0; 828 829 Cand.Intf.moveToBlock(BC.Number); 830 831 if (BI.LiveIn) 832 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 833 if (BI.LiveOut) 834 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 835 while (Ins--) 836 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 837 } 838 839 for (unsigned Number : Cand.ActiveBlocks) { 840 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 841 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 842 if (!RegIn && !RegOut) 843 continue; 844 if (RegIn && RegOut) { 845 // We need double spill code if this block has interference. 846 Cand.Intf.moveToBlock(Number); 847 if (Cand.Intf.hasInterference()) { 848 GlobalCost += SpillPlacer->getBlockFrequency(Number); 849 GlobalCost += SpillPlacer->getBlockFrequency(Number); 850 } 851 continue; 852 } 853 // live-in / stack-out or stack-in live-out. 854 GlobalCost += SpillPlacer->getBlockFrequency(Number); 855 } 856 return GlobalCost; 857 } 858 859 /// splitAroundRegion - Split the current live range around the regions 860 /// determined by BundleCand and GlobalCand. 861 /// 862 /// Before calling this function, GlobalCand and BundleCand must be initialized 863 /// so each bundle is assigned to a valid candidate, or NoCand for the 864 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 865 /// objects must be initialized for the current live range, and intervals 866 /// created for the used candidates. 867 /// 868 /// @param LREdit The LiveRangeEdit object handling the current split. 869 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 870 /// must appear in this list. 871 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 872 ArrayRef<unsigned> UsedCands) { 873 // These are the intervals created for new global ranges. We may create more 874 // intervals for local ranges. 875 const unsigned NumGlobalIntvs = LREdit.size(); 876 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 877 << " globals.\n"); 878 assert(NumGlobalIntvs && "No global intervals configured"); 879 880 // Isolate even single instructions when dealing with a proper sub-class. 881 // That guarantees register class inflation for the stack interval because it 882 // is all copies. 883 Register Reg = SA->getParent().reg(); 884 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 885 886 // First handle all the blocks with uses. 887 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 888 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 889 unsigned Number = BI.MBB->getNumber(); 890 unsigned IntvIn = 0, IntvOut = 0; 891 SlotIndex IntfIn, IntfOut; 892 if (BI.LiveIn) { 893 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 894 if (CandIn != NoCand) { 895 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 896 IntvIn = Cand.IntvIdx; 897 Cand.Intf.moveToBlock(Number); 898 IntfIn = Cand.Intf.first(); 899 } 900 } 901 if (BI.LiveOut) { 902 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 903 if (CandOut != NoCand) { 904 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 905 IntvOut = Cand.IntvIdx; 906 Cand.Intf.moveToBlock(Number); 907 IntfOut = Cand.Intf.last(); 908 } 909 } 910 911 // Create separate intervals for isolated blocks with multiple uses. 912 if (!IntvIn && !IntvOut) { 913 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 914 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 915 SE->splitSingleBlock(BI); 916 continue; 917 } 918 919 if (IntvIn && IntvOut) 920 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 921 else if (IntvIn) 922 SE->splitRegInBlock(BI, IntvIn, IntfIn); 923 else 924 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 925 } 926 927 // Handle live-through blocks. The relevant live-through blocks are stored in 928 // the ActiveBlocks list with each candidate. We need to filter out 929 // duplicates. 930 BitVector Todo = SA->getThroughBlocks(); 931 for (unsigned UsedCand : UsedCands) { 932 ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks; 933 for (unsigned Number : Blocks) { 934 if (!Todo.test(Number)) 935 continue; 936 Todo.reset(Number); 937 938 unsigned IntvIn = 0, IntvOut = 0; 939 SlotIndex IntfIn, IntfOut; 940 941 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 942 if (CandIn != NoCand) { 943 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 944 IntvIn = Cand.IntvIdx; 945 Cand.Intf.moveToBlock(Number); 946 IntfIn = Cand.Intf.first(); 947 } 948 949 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 950 if (CandOut != NoCand) { 951 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 952 IntvOut = Cand.IntvIdx; 953 Cand.Intf.moveToBlock(Number); 954 IntfOut = Cand.Intf.last(); 955 } 956 if (!IntvIn && !IntvOut) 957 continue; 958 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 959 } 960 } 961 962 ++NumGlobalSplits; 963 964 SmallVector<unsigned, 8> IntvMap; 965 SE->finish(&IntvMap); 966 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 967 968 unsigned OrigBlocks = SA->getNumLiveBlocks(); 969 970 // Sort out the new intervals created by splitting. We get four kinds: 971 // - Remainder intervals should not be split again. 972 // - Candidate intervals can be assigned to Cand.PhysReg. 973 // - Block-local splits are candidates for local splitting. 974 // - DCE leftovers should go back on the queue. 975 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 976 const LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 977 978 // Ignore old intervals from DCE. 979 if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New) 980 continue; 981 982 // Remainder interval. Don't try splitting again, spill if it doesn't 983 // allocate. 984 if (IntvMap[I] == 0) { 985 ExtraInfo->setStage(Reg, RS_Spill); 986 continue; 987 } 988 989 // Global intervals. Allow repeated splitting as long as the number of live 990 // blocks is strictly decreasing. 991 if (IntvMap[I] < NumGlobalIntvs) { 992 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 993 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 994 << " blocks as original.\n"); 995 // Don't allow repeated splitting as a safe guard against looping. 996 ExtraInfo->setStage(Reg, RS_Split2); 997 } 998 continue; 999 } 1000 1001 // Other intervals are treated as new. This includes local intervals created 1002 // for blocks with multiple uses, and anything created by DCE. 1003 } 1004 1005 if (VerifyEnabled) 1006 MF->verify(this, "After splitting live range around region"); 1007 } 1008 1009 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg, 1010 AllocationOrder &Order, 1011 SmallVectorImpl<Register> &NewVRegs) { 1012 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1013 return MCRegister::NoRegister; 1014 unsigned NumCands = 0; 1015 BlockFrequency SpillCost = calcSpillCost(); 1016 BlockFrequency BestCost; 1017 1018 // Check if we can split this live range around a compact region. 1019 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1020 if (HasCompact) { 1021 // Yes, keep GlobalCand[0] as the compact region candidate. 1022 NumCands = 1; 1023 BestCost = BlockFrequency::getMaxFrequency(); 1024 } else { 1025 // No benefit from the compact region, our fallback will be per-block 1026 // splitting. Make sure we find a solution that is cheaper than spilling. 1027 BestCost = SpillCost; 1028 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1029 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1030 } 1031 1032 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 1033 NumCands, false /*IgnoreCSR*/); 1034 1035 // No solutions found, fall back to single block splitting. 1036 if (!HasCompact && BestCand == NoCand) 1037 return MCRegister::NoRegister; 1038 1039 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1040 } 1041 1042 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg, 1043 AllocationOrder &Order, 1044 BlockFrequency &BestCost, 1045 unsigned &NumCands, 1046 bool IgnoreCSR) { 1047 unsigned BestCand = NoCand; 1048 for (MCPhysReg PhysReg : Order) { 1049 assert(PhysReg); 1050 if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg)) 1051 continue; 1052 1053 // Discard bad candidates before we run out of interference cache cursors. 1054 // This will only affect register classes with a lot of registers (>32). 1055 if (NumCands == IntfCache.getMaxCursors()) { 1056 unsigned WorstCount = ~0u; 1057 unsigned Worst = 0; 1058 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1059 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1060 continue; 1061 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1062 if (Count < WorstCount) { 1063 Worst = CandIndex; 1064 WorstCount = Count; 1065 } 1066 } 1067 --NumCands; 1068 GlobalCand[Worst] = GlobalCand[NumCands]; 1069 if (BestCand == NumCands) 1070 BestCand = Worst; 1071 } 1072 1073 if (GlobalCand.size() <= NumCands) 1074 GlobalCand.resize(NumCands+1); 1075 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1076 Cand.reset(IntfCache, PhysReg); 1077 1078 SpillPlacer->prepare(Cand.LiveBundles); 1079 BlockFrequency Cost; 1080 if (!addSplitConstraints(Cand.Intf, Cost)) { 1081 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1082 continue; 1083 } 1084 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1085 MBFI->printBlockFreq(dbgs(), Cost)); 1086 if (Cost >= BestCost) { 1087 LLVM_DEBUG({ 1088 if (BestCand == NoCand) 1089 dbgs() << " worse than no bundles\n"; 1090 else 1091 dbgs() << " worse than " 1092 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1093 }); 1094 continue; 1095 } 1096 if (!growRegion(Cand)) { 1097 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1098 continue; 1099 } 1100 1101 SpillPlacer->finish(); 1102 1103 // No live bundles, defer to splitSingleBlocks(). 1104 if (!Cand.LiveBundles.any()) { 1105 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1106 continue; 1107 } 1108 1109 Cost += calcGlobalSplitCost(Cand, Order); 1110 LLVM_DEBUG({ 1111 dbgs() << ", total = "; 1112 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1113 for (int I : Cand.LiveBundles.set_bits()) 1114 dbgs() << " EB#" << I; 1115 dbgs() << ".\n"; 1116 }); 1117 if (Cost < BestCost) { 1118 BestCand = NumCands; 1119 BestCost = Cost; 1120 } 1121 ++NumCands; 1122 } 1123 1124 return BestCand; 1125 } 1126 1127 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand, 1128 bool HasCompact, 1129 SmallVectorImpl<Register> &NewVRegs) { 1130 SmallVector<unsigned, 8> UsedCands; 1131 // Prepare split editor. 1132 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1133 SE->reset(LREdit, SplitSpillMode); 1134 1135 // Assign all edge bundles to the preferred candidate, or NoCand. 1136 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1137 1138 // Assign bundles for the best candidate region. 1139 if (BestCand != NoCand) { 1140 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1141 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1142 UsedCands.push_back(BestCand); 1143 Cand.IntvIdx = SE->openIntv(); 1144 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1145 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1146 (void)B; 1147 } 1148 } 1149 1150 // Assign bundles for the compact region. 1151 if (HasCompact) { 1152 GlobalSplitCandidate &Cand = GlobalCand.front(); 1153 assert(!Cand.PhysReg && "Compact region has no physreg"); 1154 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1155 UsedCands.push_back(0); 1156 Cand.IntvIdx = SE->openIntv(); 1157 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1158 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1159 (void)B; 1160 } 1161 } 1162 1163 splitAroundRegion(LREdit, UsedCands); 1164 return 0; 1165 } 1166 1167 //===----------------------------------------------------------------------===// 1168 // Per-Block Splitting 1169 //===----------------------------------------------------------------------===// 1170 1171 /// tryBlockSplit - Split a global live range around every block with uses. This 1172 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1173 /// they don't allocate. 1174 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg, 1175 AllocationOrder &Order, 1176 SmallVectorImpl<Register> &NewVRegs) { 1177 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1178 Register Reg = VirtReg.reg(); 1179 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1180 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1181 SE->reset(LREdit, SplitSpillMode); 1182 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1183 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1184 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1185 SE->splitSingleBlock(BI); 1186 } 1187 // No blocks were split. 1188 if (LREdit.empty()) 1189 return 0; 1190 1191 // We did split for some blocks. 1192 SmallVector<unsigned, 8> IntvMap; 1193 SE->finish(&IntvMap); 1194 1195 // Tell LiveDebugVariables about the new ranges. 1196 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1197 1198 // Sort out the new intervals created by splitting. The remainder interval 1199 // goes straight to spilling, the new local ranges get to stay RS_New. 1200 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1201 const LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 1202 if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0) 1203 ExtraInfo->setStage(LI, RS_Spill); 1204 } 1205 1206 if (VerifyEnabled) 1207 MF->verify(this, "After splitting live range around basic blocks"); 1208 return 0; 1209 } 1210 1211 //===----------------------------------------------------------------------===// 1212 // Per-Instruction Splitting 1213 //===----------------------------------------------------------------------===// 1214 1215 /// Get the number of allocatable registers that match the constraints of \p Reg 1216 /// on \p MI and that are also in \p SuperRC. 1217 static unsigned getNumAllocatableRegsForConstraints( 1218 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 1219 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1220 const RegisterClassInfo &RCI) { 1221 assert(SuperRC && "Invalid register class"); 1222 1223 const TargetRegisterClass *ConstrainedRC = 1224 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1225 /* ExploreBundle */ true); 1226 if (!ConstrainedRC) 1227 return 0; 1228 return RCI.getNumAllocatableRegs(ConstrainedRC); 1229 } 1230 1231 /// tryInstructionSplit - Split a live range around individual instructions. 1232 /// This is normally not worthwhile since the spiller is doing essentially the 1233 /// same thing. However, when the live range is in a constrained register 1234 /// class, it may help to insert copies such that parts of the live range can 1235 /// be moved to a larger register class. 1236 /// 1237 /// This is similar to spilling to a larger register class. 1238 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg, 1239 AllocationOrder &Order, 1240 SmallVectorImpl<Register> &NewVRegs) { 1241 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1242 // There is no point to this if there are no larger sub-classes. 1243 if (!RegClassInfo.isProperSubClass(CurRC)) 1244 return 0; 1245 1246 // Always enable split spill mode, since we're effectively spilling to a 1247 // register. 1248 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1249 SE->reset(LREdit, SplitEditor::SM_Size); 1250 1251 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1252 if (Uses.size() <= 1) 1253 return 0; 1254 1255 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 1256 << " individual instrs.\n"); 1257 1258 const TargetRegisterClass *SuperRC = 1259 TRI->getLargestLegalSuperClass(CurRC, *MF); 1260 unsigned SuperRCNumAllocatableRegs = 1261 RegClassInfo.getNumAllocatableRegs(SuperRC); 1262 // Split around every non-copy instruction if this split will relax 1263 // the constraints on the virtual register. 1264 // Otherwise, splitting just inserts uncoalescable copies that do not help 1265 // the allocation. 1266 for (const SlotIndex Use : Uses) { 1267 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 1268 if (MI->isFullCopy() || 1269 SuperRCNumAllocatableRegs == 1270 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 1271 TII, TRI, RegClassInfo)) { 1272 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 1273 continue; 1274 } 1275 SE->openIntv(); 1276 SlotIndex SegStart = SE->enterIntvBefore(Use); 1277 SlotIndex SegStop = SE->leaveIntvAfter(Use); 1278 SE->useIntv(SegStart, SegStop); 1279 } 1280 1281 if (LREdit.empty()) { 1282 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 1283 return 0; 1284 } 1285 1286 SmallVector<unsigned, 8> IntvMap; 1287 SE->finish(&IntvMap); 1288 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1289 // Assign all new registers to RS_Spill. This was the last chance. 1290 ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1291 return 0; 1292 } 1293 1294 //===----------------------------------------------------------------------===// 1295 // Local Splitting 1296 //===----------------------------------------------------------------------===// 1297 1298 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1299 /// in order to use PhysReg between two entries in SA->UseSlots. 1300 /// 1301 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 1302 /// 1303 void RAGreedy::calcGapWeights(MCRegister PhysReg, 1304 SmallVectorImpl<float> &GapWeight) { 1305 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1306 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1307 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1308 const unsigned NumGaps = Uses.size()-1; 1309 1310 // Start and end points for the interference check. 1311 SlotIndex StartIdx = 1312 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1313 SlotIndex StopIdx = 1314 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1315 1316 GapWeight.assign(NumGaps, 0.0f); 1317 1318 // Add interference from each overlapping register. 1319 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1320 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1321 .checkInterference()) 1322 continue; 1323 1324 // We know that VirtReg is a continuous interval from FirstInstr to 1325 // LastInstr, so we don't need InterferenceQuery. 1326 // 1327 // Interference that overlaps an instruction is counted in both gaps 1328 // surrounding the instruction. The exception is interference before 1329 // StartIdx and after StopIdx. 1330 // 1331 LiveIntervalUnion::SegmentIter IntI = 1332 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1333 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1334 // Skip the gaps before IntI. 1335 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1336 if (++Gap == NumGaps) 1337 break; 1338 if (Gap == NumGaps) 1339 break; 1340 1341 // Update the gaps covered by IntI. 1342 const float weight = IntI.value()->weight(); 1343 for (; Gap != NumGaps; ++Gap) { 1344 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1345 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1346 break; 1347 } 1348 if (Gap == NumGaps) 1349 break; 1350 } 1351 } 1352 1353 // Add fixed interference. 1354 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1355 const LiveRange &LR = LIS->getRegUnit(*Units); 1356 LiveRange::const_iterator I = LR.find(StartIdx); 1357 LiveRange::const_iterator E = LR.end(); 1358 1359 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1360 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1361 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1362 if (++Gap == NumGaps) 1363 break; 1364 if (Gap == NumGaps) 1365 break; 1366 1367 for (; Gap != NumGaps; ++Gap) { 1368 GapWeight[Gap] = huge_valf; 1369 if (Uses[Gap+1].getBaseIndex() >= I->end) 1370 break; 1371 } 1372 if (Gap == NumGaps) 1373 break; 1374 } 1375 } 1376 } 1377 1378 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1379 /// basic block. 1380 /// 1381 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg, 1382 AllocationOrder &Order, 1383 SmallVectorImpl<Register> &NewVRegs) { 1384 // TODO: the function currently only handles a single UseBlock; it should be 1385 // possible to generalize. 1386 if (SA->getUseBlocks().size() != 1) 1387 return 0; 1388 1389 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1390 1391 // Note that it is possible to have an interval that is live-in or live-out 1392 // while only covering a single block - A phi-def can use undef values from 1393 // predecessors, and the block could be a single-block loop. 1394 // We don't bother doing anything clever about such a case, we simply assume 1395 // that the interval is continuous from FirstInstr to LastInstr. We should 1396 // make sure that we don't do anything illegal to such an interval, though. 1397 1398 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1399 if (Uses.size() <= 2) 1400 return 0; 1401 const unsigned NumGaps = Uses.size()-1; 1402 1403 LLVM_DEBUG({ 1404 dbgs() << "tryLocalSplit: "; 1405 for (const auto &Use : Uses) 1406 dbgs() << ' ' << Use; 1407 dbgs() << '\n'; 1408 }); 1409 1410 // If VirtReg is live across any register mask operands, compute a list of 1411 // gaps with register masks. 1412 SmallVector<unsigned, 8> RegMaskGaps; 1413 if (Matrix->checkRegMaskInterference(VirtReg)) { 1414 // Get regmask slots for the whole block. 1415 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1416 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1417 // Constrain to VirtReg's live range. 1418 unsigned RI = 1419 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 1420 unsigned RE = RMS.size(); 1421 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 1422 // Look for Uses[I] <= RMS <= Uses[I + 1]. 1423 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 1424 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 1425 continue; 1426 // Skip a regmask on the same instruction as the last use. It doesn't 1427 // overlap the live range. 1428 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 1429 break; 1430 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 1431 << Uses[I + 1]); 1432 RegMaskGaps.push_back(I); 1433 // Advance ri to the next gap. A regmask on one of the uses counts in 1434 // both gaps. 1435 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 1436 ++RI; 1437 } 1438 LLVM_DEBUG(dbgs() << '\n'); 1439 } 1440 1441 // Since we allow local split results to be split again, there is a risk of 1442 // creating infinite loops. It is tempting to require that the new live 1443 // ranges have less instructions than the original. That would guarantee 1444 // convergence, but it is too strict. A live range with 3 instructions can be 1445 // split 2+3 (including the COPY), and we want to allow that. 1446 // 1447 // Instead we use these rules: 1448 // 1449 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1450 // noop split, of course). 1451 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1452 // the new ranges must have fewer instructions than before the split. 1453 // 3. New ranges with the same number of instructions are marked RS_Split2, 1454 // smaller ranges are marked RS_New. 1455 // 1456 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1457 // excessive splitting and infinite loops. 1458 // 1459 bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2; 1460 1461 // Best split candidate. 1462 unsigned BestBefore = NumGaps; 1463 unsigned BestAfter = 0; 1464 float BestDiff = 0; 1465 1466 const float blockFreq = 1467 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1468 (1.0f / MBFI->getEntryFreq()); 1469 SmallVector<float, 8> GapWeight; 1470 1471 for (MCPhysReg PhysReg : Order) { 1472 assert(PhysReg); 1473 // Keep track of the largest spill weight that would need to be evicted in 1474 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 1475 calcGapWeights(PhysReg, GapWeight); 1476 1477 // Remove any gaps with regmask clobbers. 1478 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1479 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 1480 GapWeight[RegMaskGaps[I]] = huge_valf; 1481 1482 // Try to find the best sequence of gaps to close. 1483 // The new spill weight must be larger than any gap interference. 1484 1485 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1486 unsigned SplitBefore = 0, SplitAfter = 1; 1487 1488 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1489 // It is the spill weight that needs to be evicted. 1490 float MaxGap = GapWeight[0]; 1491 1492 while (true) { 1493 // Live before/after split? 1494 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1495 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1496 1497 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 1498 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 1499 1500 // Stop before the interval gets so big we wouldn't be making progress. 1501 if (!LiveBefore && !LiveAfter) { 1502 LLVM_DEBUG(dbgs() << " all\n"); 1503 break; 1504 } 1505 // Should the interval be extended or shrunk? 1506 bool Shrink = true; 1507 1508 // How many gaps would the new range have? 1509 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1510 1511 // Legally, without causing looping? 1512 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1513 1514 if (Legal && MaxGap < huge_valf) { 1515 // Estimate the new spill weight. Each instruction reads or writes the 1516 // register. Conservatively assume there are no read-modify-write 1517 // instructions. 1518 // 1519 // Try to guess the size of the new interval. 1520 const float EstWeight = normalizeSpillWeight( 1521 blockFreq * (NewGaps + 1), 1522 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1523 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1524 1); 1525 // Would this split be possible to allocate? 1526 // Never allocate all gaps, we wouldn't be making progress. 1527 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 1528 if (EstWeight * Hysteresis >= MaxGap) { 1529 Shrink = false; 1530 float Diff = EstWeight - MaxGap; 1531 if (Diff > BestDiff) { 1532 LLVM_DEBUG(dbgs() << " (best)"); 1533 BestDiff = Hysteresis * Diff; 1534 BestBefore = SplitBefore; 1535 BestAfter = SplitAfter; 1536 } 1537 } 1538 } 1539 1540 // Try to shrink. 1541 if (Shrink) { 1542 if (++SplitBefore < SplitAfter) { 1543 LLVM_DEBUG(dbgs() << " shrink\n"); 1544 // Recompute the max when necessary. 1545 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1546 MaxGap = GapWeight[SplitBefore]; 1547 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 1548 MaxGap = std::max(MaxGap, GapWeight[I]); 1549 } 1550 continue; 1551 } 1552 MaxGap = 0; 1553 } 1554 1555 // Try to extend the interval. 1556 if (SplitAfter >= NumGaps) { 1557 LLVM_DEBUG(dbgs() << " end\n"); 1558 break; 1559 } 1560 1561 LLVM_DEBUG(dbgs() << " extend\n"); 1562 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1563 } 1564 } 1565 1566 // Didn't find any candidates? 1567 if (BestBefore == NumGaps) 1568 return 0; 1569 1570 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 1571 << Uses[BestAfter] << ", " << BestDiff << ", " 1572 << (BestAfter - BestBefore + 1) << " instrs\n"); 1573 1574 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1575 SE->reset(LREdit); 1576 1577 SE->openIntv(); 1578 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1579 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1580 SE->useIntv(SegStart, SegStop); 1581 SmallVector<unsigned, 8> IntvMap; 1582 SE->finish(&IntvMap); 1583 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1584 // If the new range has the same number of instructions as before, mark it as 1585 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1586 // leave the new intervals as RS_New so they can compete. 1587 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1588 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1589 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1590 if (NewGaps >= NumGaps) { 1591 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 1592 assert(!ProgressRequired && "Didn't make progress when it was required."); 1593 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 1594 if (IntvMap[I] == 1) { 1595 ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 1596 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 1597 } 1598 LLVM_DEBUG(dbgs() << '\n'); 1599 } 1600 ++NumLocalSplits; 1601 1602 return 0; 1603 } 1604 1605 //===----------------------------------------------------------------------===// 1606 // Live Range Splitting 1607 //===----------------------------------------------------------------------===// 1608 1609 /// trySplit - Try to split VirtReg or one of its interferences, making it 1610 /// assignable. 1611 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1612 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order, 1613 SmallVectorImpl<Register> &NewVRegs, 1614 const SmallVirtRegSet &FixedRegisters) { 1615 // Ranges must be Split2 or less. 1616 if (ExtraInfo->getStage(VirtReg) >= RS_Spill) 1617 return 0; 1618 1619 // Local intervals are handled separately. 1620 if (LIS->intervalIsInOneMBB(VirtReg)) { 1621 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 1622 TimerGroupDescription, TimePassesIsEnabled); 1623 SA->analyze(&VirtReg); 1624 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1625 if (PhysReg || !NewVRegs.empty()) 1626 return PhysReg; 1627 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1628 } 1629 1630 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 1631 TimerGroupDescription, TimePassesIsEnabled); 1632 1633 SA->analyze(&VirtReg); 1634 1635 // First try to split around a region spanning multiple blocks. RS_Split2 1636 // ranges already made dubious progress with region splitting, so they go 1637 // straight to single block splitting. 1638 if (ExtraInfo->getStage(VirtReg) < RS_Split2) { 1639 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1640 if (PhysReg || !NewVRegs.empty()) 1641 return PhysReg; 1642 } 1643 1644 // Then isolate blocks. 1645 return tryBlockSplit(VirtReg, Order, NewVRegs); 1646 } 1647 1648 //===----------------------------------------------------------------------===// 1649 // Last Chance Recoloring 1650 //===----------------------------------------------------------------------===// 1651 1652 /// Return true if \p reg has any tied def operand. 1653 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 1654 for (const MachineOperand &MO : MRI->def_operands(reg)) 1655 if (MO.isTied()) 1656 return true; 1657 1658 return false; 1659 } 1660 1661 /// Return true if the existing assignment of \p Intf overlaps, but is not the 1662 /// same, as \p PhysReg. 1663 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI, 1664 const VirtRegMap &VRM, 1665 MCRegister PhysReg, 1666 const LiveInterval &Intf) { 1667 MCRegister AssignedReg = VRM.getPhys(Intf.reg()); 1668 if (PhysReg == AssignedReg) 1669 return false; 1670 return TRI.regsOverlap(PhysReg, AssignedReg); 1671 } 1672 1673 /// mayRecolorAllInterferences - Check if the virtual registers that 1674 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 1675 /// recolored to free \p PhysReg. 1676 /// When true is returned, \p RecoloringCandidates has been augmented with all 1677 /// the live intervals that need to be recolored in order to free \p PhysReg 1678 /// for \p VirtReg. 1679 /// \p FixedRegisters contains all the virtual registers that cannot be 1680 /// recolored. 1681 bool RAGreedy::mayRecolorAllInterferences( 1682 MCRegister PhysReg, const LiveInterval &VirtReg, 1683 SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) { 1684 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1685 1686 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1687 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1688 // If there is LastChanceRecoloringMaxInterference or more interferences, 1689 // chances are one would not be recolorable. 1690 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= 1691 LastChanceRecoloringMaxInterference && 1692 !ExhaustiveSearch) { 1693 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 1694 CutOffInfo |= CO_Interf; 1695 return false; 1696 } 1697 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 1698 // If Intf is done and sits on the same register class as VirtReg, it 1699 // would not be recolorable as it is in the same state as 1700 // VirtReg. However there are at least two exceptions. 1701 // 1702 // If VirtReg has tied defs and Intf doesn't, then 1703 // there is still a point in examining if it can be recolorable. 1704 // 1705 // Additionally, if the register class has overlapping tuple members, it 1706 // may still be recolorable using a different tuple. This is more likely 1707 // if the existing assignment aliases with the candidate. 1708 // 1709 if (((ExtraInfo->getStage(*Intf) == RS_Done && 1710 MRI->getRegClass(Intf->reg()) == CurRC && 1711 !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) && 1712 !(hasTiedDef(MRI, VirtReg.reg()) && 1713 !hasTiedDef(MRI, Intf->reg()))) || 1714 FixedRegisters.count(Intf->reg())) { 1715 LLVM_DEBUG( 1716 dbgs() << "Early abort: the interference is not recolorable.\n"); 1717 return false; 1718 } 1719 RecoloringCandidates.insert(Intf); 1720 } 1721 } 1722 return true; 1723 } 1724 1725 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 1726 /// its interferences. 1727 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 1728 /// virtual register that was using it. The recoloring process may recursively 1729 /// use the last chance recoloring. Therefore, when a virtual register has been 1730 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 1731 /// be last-chance-recolored again during this recoloring "session". 1732 /// E.g., 1733 /// Let 1734 /// vA can use {R1, R2 } 1735 /// vB can use { R2, R3} 1736 /// vC can use {R1 } 1737 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 1738 /// instance) and they all interfere. 1739 /// 1740 /// vA is assigned R1 1741 /// vB is assigned R2 1742 /// vC tries to evict vA but vA is already done. 1743 /// Regular register allocation fails. 1744 /// 1745 /// Last chance recoloring kicks in: 1746 /// vC does as if vA was evicted => vC uses R1. 1747 /// vC is marked as fixed. 1748 /// vA needs to find a color. 1749 /// None are available. 1750 /// vA cannot evict vC: vC is a fixed virtual register now. 1751 /// vA does as if vB was evicted => vA uses R2. 1752 /// vB needs to find a color. 1753 /// R3 is available. 1754 /// Recoloring => vC = R1, vA = R2, vB = R3 1755 /// 1756 /// \p Order defines the preferred allocation order for \p VirtReg. 1757 /// \p NewRegs will contain any new virtual register that have been created 1758 /// (split, spill) during the process and that must be assigned. 1759 /// \p FixedRegisters contains all the virtual registers that cannot be 1760 /// recolored. 1761 /// 1762 /// \p RecolorStack tracks the original assignments of successfully recolored 1763 /// registers. 1764 /// 1765 /// \p Depth gives the current depth of the last chance recoloring. 1766 /// \return a physical register that can be used for VirtReg or ~0u if none 1767 /// exists. 1768 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg, 1769 AllocationOrder &Order, 1770 SmallVectorImpl<Register> &NewVRegs, 1771 SmallVirtRegSet &FixedRegisters, 1772 RecoloringStack &RecolorStack, 1773 unsigned Depth) { 1774 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 1775 return ~0u; 1776 1777 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 1778 1779 const ssize_t EntryStackSize = RecolorStack.size(); 1780 1781 // Ranges must be Done. 1782 assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 1783 "Last chance recoloring should really be last chance"); 1784 // Set the max depth to LastChanceRecoloringMaxDepth. 1785 // We may want to reconsider that if we end up with a too large search space 1786 // for target with hundreds of registers. 1787 // Indeed, in that case we may want to cut the search space earlier. 1788 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 1789 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 1790 CutOffInfo |= CO_Depth; 1791 return ~0u; 1792 } 1793 1794 // Set of Live intervals that will need to be recolored. 1795 SmallLISet RecoloringCandidates; 1796 1797 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 1798 // this recoloring "session". 1799 assert(!FixedRegisters.count(VirtReg.reg())); 1800 FixedRegisters.insert(VirtReg.reg()); 1801 SmallVector<Register, 4> CurrentNewVRegs; 1802 1803 for (MCRegister PhysReg : Order) { 1804 assert(PhysReg.isValid()); 1805 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 1806 << printReg(PhysReg, TRI) << '\n'); 1807 RecoloringCandidates.clear(); 1808 CurrentNewVRegs.clear(); 1809 1810 // It is only possible to recolor virtual register interference. 1811 if (Matrix->checkInterference(VirtReg, PhysReg) > 1812 LiveRegMatrix::IK_VirtReg) { 1813 LLVM_DEBUG( 1814 dbgs() << "Some interferences are not with virtual registers.\n"); 1815 1816 continue; 1817 } 1818 1819 // Early give up on this PhysReg if it is obvious we cannot recolor all 1820 // the interferences. 1821 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 1822 FixedRegisters)) { 1823 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 1824 continue; 1825 } 1826 1827 // RecoloringCandidates contains all the virtual registers that interfere 1828 // with VirtReg on PhysReg (or one of its aliases). Enqueue them for 1829 // recoloring and perform the actual recoloring. 1830 PQueue RecoloringQueue; 1831 for (const LiveInterval *RC : RecoloringCandidates) { 1832 Register ItVirtReg = RC->reg(); 1833 enqueue(RecoloringQueue, RC); 1834 assert(VRM->hasPhys(ItVirtReg) && 1835 "Interferences are supposed to be with allocated variables"); 1836 1837 // Record the current allocation. 1838 RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg))); 1839 1840 // unset the related struct. 1841 Matrix->unassign(*RC); 1842 } 1843 1844 // Do as if VirtReg was assigned to PhysReg so that the underlying 1845 // recoloring has the right information about the interferes and 1846 // available colors. 1847 Matrix->assign(VirtReg, PhysReg); 1848 1849 // Save the current recoloring state. 1850 // If we cannot recolor all the interferences, we will have to start again 1851 // at this point for the next physical register. 1852 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 1853 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 1854 FixedRegisters, RecolorStack, Depth)) { 1855 // Push the queued vregs into the main queue. 1856 for (Register NewVReg : CurrentNewVRegs) 1857 NewVRegs.push_back(NewVReg); 1858 // Do not mess up with the global assignment process. 1859 // I.e., VirtReg must be unassigned. 1860 Matrix->unassign(VirtReg); 1861 return PhysReg; 1862 } 1863 1864 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 1865 << printReg(PhysReg, TRI) << '\n'); 1866 1867 // The recoloring attempt failed, undo the changes. 1868 FixedRegisters = SaveFixedRegisters; 1869 Matrix->unassign(VirtReg); 1870 1871 // For a newly created vreg which is also in RecoloringCandidates, 1872 // don't add it to NewVRegs because its physical register will be restored 1873 // below. Other vregs in CurrentNewVRegs are created by calling 1874 // selectOrSplit and should be added into NewVRegs. 1875 for (Register &R : CurrentNewVRegs) { 1876 if (RecoloringCandidates.count(&LIS->getInterval(R))) 1877 continue; 1878 NewVRegs.push_back(R); 1879 } 1880 1881 // Roll back our unsuccessful recoloring. Also roll back any successful 1882 // recolorings in any recursive recoloring attempts, since it's possible 1883 // they would have introduced conflicts with assignments we will be 1884 // restoring further up the stack. Perform all unassignments prior to 1885 // reassigning, since sub-recolorings may have conflicted with the registers 1886 // we are going to restore to their original assignments. 1887 for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) { 1888 const LiveInterval *LI; 1889 MCRegister PhysReg; 1890 std::tie(LI, PhysReg) = RecolorStack[I]; 1891 1892 if (VRM->hasPhys(LI->reg())) 1893 Matrix->unassign(*LI); 1894 } 1895 1896 for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) { 1897 const LiveInterval *LI; 1898 MCRegister PhysReg; 1899 std::tie(LI, PhysReg) = RecolorStack[I]; 1900 if (!LI->empty() && !MRI->reg_nodbg_empty(LI->reg())) 1901 Matrix->assign(*LI, PhysReg); 1902 } 1903 1904 // Pop the stack of recoloring attempts. 1905 RecolorStack.resize(EntryStackSize); 1906 } 1907 1908 // Last chance recoloring did not worked either, give up. 1909 return ~0u; 1910 } 1911 1912 /// tryRecoloringCandidates - Try to assign a new color to every register 1913 /// in \RecoloringQueue. 1914 /// \p NewRegs will contain any new virtual register created during the 1915 /// recoloring process. 1916 /// \p FixedRegisters[in/out] contains all the registers that have been 1917 /// recolored. 1918 /// \return true if all virtual registers in RecoloringQueue were successfully 1919 /// recolored, false otherwise. 1920 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 1921 SmallVectorImpl<Register> &NewVRegs, 1922 SmallVirtRegSet &FixedRegisters, 1923 RecoloringStack &RecolorStack, 1924 unsigned Depth) { 1925 while (!RecoloringQueue.empty()) { 1926 const LiveInterval *LI = dequeue(RecoloringQueue); 1927 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 1928 MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, 1929 RecolorStack, Depth + 1); 1930 // When splitting happens, the live-range may actually be empty. 1931 // In that case, this is okay to continue the recoloring even 1932 // if we did not find an alternative color for it. Indeed, 1933 // there will not be anything to color for LI in the end. 1934 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 1935 return false; 1936 1937 if (!PhysReg) { 1938 assert(LI->empty() && "Only empty live-range do not require a register"); 1939 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 1940 << " succeeded. Empty LI.\n"); 1941 continue; 1942 } 1943 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 1944 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 1945 1946 Matrix->assign(*LI, PhysReg); 1947 FixedRegisters.insert(LI->reg()); 1948 } 1949 return true; 1950 } 1951 1952 //===----------------------------------------------------------------------===// 1953 // Main Entry Point 1954 //===----------------------------------------------------------------------===// 1955 1956 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg, 1957 SmallVectorImpl<Register> &NewVRegs) { 1958 CutOffInfo = CO_None; 1959 LLVMContext &Ctx = MF->getFunction().getContext(); 1960 SmallVirtRegSet FixedRegisters; 1961 RecoloringStack RecolorStack; 1962 MCRegister Reg = 1963 selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack); 1964 if (Reg == ~0U && (CutOffInfo != CO_None)) { 1965 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 1966 if (CutOffEncountered == CO_Depth) 1967 Ctx.emitError("register allocation failed: maximum depth for recoloring " 1968 "reached. Use -fexhaustive-register-search to skip " 1969 "cutoffs"); 1970 else if (CutOffEncountered == CO_Interf) 1971 Ctx.emitError("register allocation failed: maximum interference for " 1972 "recoloring reached. Use -fexhaustive-register-search " 1973 "to skip cutoffs"); 1974 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 1975 Ctx.emitError("register allocation failed: maximum interference and " 1976 "depth for recoloring reached. Use " 1977 "-fexhaustive-register-search to skip cutoffs"); 1978 } 1979 return Reg; 1980 } 1981 1982 /// Using a CSR for the first time has a cost because it causes push|pop 1983 /// to be added to prologue|epilogue. Splitting a cold section of the live 1984 /// range can have lower cost than using the CSR for the first time; 1985 /// Spilling a live range in the cold path can have lower cost than using 1986 /// the CSR for the first time. Returns the physical register if we decide 1987 /// to use the CSR; otherwise return 0. 1988 MCRegister RAGreedy::tryAssignCSRFirstTime( 1989 const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg, 1990 uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) { 1991 if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 1992 // We choose spill over using the CSR for the first time if the spill cost 1993 // is lower than CSRCost. 1994 SA->analyze(&VirtReg); 1995 if (calcSpillCost() >= CSRCost) 1996 return PhysReg; 1997 1998 // We are going to spill, set CostPerUseLimit to 1 to make sure that 1999 // we will not use a callee-saved register in tryEvict. 2000 CostPerUseLimit = 1; 2001 return 0; 2002 } 2003 if (ExtraInfo->getStage(VirtReg) < RS_Split) { 2004 // We choose pre-splitting over using the CSR for the first time if 2005 // the cost of splitting is lower than CSRCost. 2006 SA->analyze(&VirtReg); 2007 unsigned NumCands = 0; 2008 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2009 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2010 NumCands, true /*IgnoreCSR*/); 2011 if (BestCand == NoCand) 2012 // Use the CSR if we can't find a region split below CSRCost. 2013 return PhysReg; 2014 2015 // Perform the actual pre-splitting. 2016 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2017 return 0; 2018 } 2019 return PhysReg; 2020 } 2021 2022 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) { 2023 // Do not keep invalid information around. 2024 SetOfBrokenHints.remove(&LI); 2025 } 2026 2027 void RAGreedy::initializeCSRCost() { 2028 // We use the larger one out of the command-line option and the value report 2029 // by TRI. 2030 CSRCost = BlockFrequency( 2031 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2032 if (!CSRCost.getFrequency()) 2033 return; 2034 2035 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2036 uint64_t ActualEntry = MBFI->getEntryFreq(); 2037 if (!ActualEntry) { 2038 CSRCost = 0; 2039 return; 2040 } 2041 uint64_t FixedEntry = 1 << 14; 2042 if (ActualEntry < FixedEntry) 2043 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2044 else if (ActualEntry <= UINT32_MAX) 2045 // Invert the fraction and divide. 2046 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2047 else 2048 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2049 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2050 } 2051 2052 /// Collect the hint info for \p Reg. 2053 /// The results are stored into \p Out. 2054 /// \p Out is not cleared before being populated. 2055 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2056 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2057 if (!Instr.isFullCopy()) 2058 continue; 2059 // Look for the other end of the copy. 2060 Register OtherReg = Instr.getOperand(0).getReg(); 2061 if (OtherReg == Reg) { 2062 OtherReg = Instr.getOperand(1).getReg(); 2063 if (OtherReg == Reg) 2064 continue; 2065 } 2066 // Get the current assignment. 2067 MCRegister OtherPhysReg = 2068 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2069 // Push the collected information. 2070 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2071 OtherPhysReg)); 2072 } 2073 } 2074 2075 /// Using the given \p List, compute the cost of the broken hints if 2076 /// \p PhysReg was used. 2077 /// \return The cost of \p List for \p PhysReg. 2078 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2079 MCRegister PhysReg) { 2080 BlockFrequency Cost = 0; 2081 for (const HintInfo &Info : List) { 2082 if (Info.PhysReg != PhysReg) 2083 Cost += Info.Freq; 2084 } 2085 return Cost; 2086 } 2087 2088 /// Using the register assigned to \p VirtReg, try to recolor 2089 /// all the live ranges that are copy-related with \p VirtReg. 2090 /// The recoloring is then propagated to all the live-ranges that have 2091 /// been recolored and so on, until no more copies can be coalesced or 2092 /// it is not profitable. 2093 /// For a given live range, profitability is determined by the sum of the 2094 /// frequencies of the non-identity copies it would introduce with the old 2095 /// and new register. 2096 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) { 2097 // We have a broken hint, check if it is possible to fix it by 2098 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2099 // some register and PhysReg may be available for the other live-ranges. 2100 SmallSet<Register, 4> Visited; 2101 SmallVector<unsigned, 2> RecoloringCandidates; 2102 HintsInfo Info; 2103 Register Reg = VirtReg.reg(); 2104 MCRegister PhysReg = VRM->getPhys(Reg); 2105 // Start the recoloring algorithm from the input live-interval, then 2106 // it will propagate to the ones that are copy-related with it. 2107 Visited.insert(Reg); 2108 RecoloringCandidates.push_back(Reg); 2109 2110 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2111 << '(' << printReg(PhysReg, TRI) << ")\n"); 2112 2113 do { 2114 Reg = RecoloringCandidates.pop_back_val(); 2115 2116 // We cannot recolor physical register. 2117 if (Register::isPhysicalRegister(Reg)) 2118 continue; 2119 2120 // This may be a skipped class 2121 if (!VRM->hasPhys(Reg)) { 2122 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2123 "We have an unallocated variable which should have been handled"); 2124 continue; 2125 } 2126 2127 // Get the live interval mapped with this virtual register to be able 2128 // to check for the interference with the new color. 2129 LiveInterval &LI = LIS->getInterval(Reg); 2130 MCRegister CurrPhys = VRM->getPhys(Reg); 2131 // Check that the new color matches the register class constraints and 2132 // that it is free for this live range. 2133 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2134 Matrix->checkInterference(LI, PhysReg))) 2135 continue; 2136 2137 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2138 << ") is recolorable.\n"); 2139 2140 // Gather the hint info. 2141 Info.clear(); 2142 collectHintInfo(Reg, Info); 2143 // Check if recoloring the live-range will increase the cost of the 2144 // non-identity copies. 2145 if (CurrPhys != PhysReg) { 2146 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2147 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2148 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2149 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2150 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2151 << '\n'); 2152 if (OldCopiesCost < NewCopiesCost) { 2153 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2154 continue; 2155 } 2156 // At this point, the cost is either cheaper or equal. If it is 2157 // equal, we consider this is profitable because it may expose 2158 // more recoloring opportunities. 2159 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2160 // Recolor the live-range. 2161 Matrix->unassign(LI); 2162 Matrix->assign(LI, PhysReg); 2163 } 2164 // Push all copy-related live-ranges to keep reconciling the broken 2165 // hints. 2166 for (const HintInfo &HI : Info) { 2167 if (Visited.insert(HI.Reg).second) 2168 RecoloringCandidates.push_back(HI.Reg); 2169 } 2170 } while (!RecoloringCandidates.empty()); 2171 } 2172 2173 /// Try to recolor broken hints. 2174 /// Broken hints may be repaired by recoloring when an evicted variable 2175 /// freed up a register for a larger live-range. 2176 /// Consider the following example: 2177 /// BB1: 2178 /// a = 2179 /// b = 2180 /// BB2: 2181 /// ... 2182 /// = b 2183 /// = a 2184 /// Let us assume b gets split: 2185 /// BB1: 2186 /// a = 2187 /// b = 2188 /// BB2: 2189 /// c = b 2190 /// ... 2191 /// d = c 2192 /// = d 2193 /// = a 2194 /// Because of how the allocation work, b, c, and d may be assigned different 2195 /// colors. Now, if a gets evicted later: 2196 /// BB1: 2197 /// a = 2198 /// st a, SpillSlot 2199 /// b = 2200 /// BB2: 2201 /// c = b 2202 /// ... 2203 /// d = c 2204 /// = d 2205 /// e = ld SpillSlot 2206 /// = e 2207 /// This is likely that we can assign the same register for b, c, and d, 2208 /// getting rid of 2 copies. 2209 void RAGreedy::tryHintsRecoloring() { 2210 for (const LiveInterval *LI : SetOfBrokenHints) { 2211 assert(Register::isVirtualRegister(LI->reg()) && 2212 "Recoloring is possible only for virtual registers"); 2213 // Some dead defs may be around (e.g., because of debug uses). 2214 // Ignore those. 2215 if (!VRM->hasPhys(LI->reg())) 2216 continue; 2217 tryHintRecoloring(*LI); 2218 } 2219 } 2220 2221 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg, 2222 SmallVectorImpl<Register> &NewVRegs, 2223 SmallVirtRegSet &FixedRegisters, 2224 RecoloringStack &RecolorStack, 2225 unsigned Depth) { 2226 uint8_t CostPerUseLimit = uint8_t(~0u); 2227 // First try assigning a free register. 2228 auto Order = 2229 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 2230 if (MCRegister PhysReg = 2231 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 2232 // When NewVRegs is not empty, we may have made decisions such as evicting 2233 // a virtual register, go with the earlier decisions and use the physical 2234 // register. 2235 if (CSRCost.getFrequency() && 2236 EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) { 2237 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2238 CostPerUseLimit, NewVRegs); 2239 if (CSRReg || !NewVRegs.empty()) 2240 // Return now if we decide to use a CSR or create new vregs due to 2241 // pre-splitting. 2242 return CSRReg; 2243 } else 2244 return PhysReg; 2245 } 2246 2247 LiveRangeStage Stage = ExtraInfo->getStage(VirtReg); 2248 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 2249 << ExtraInfo->getCascade(VirtReg.reg()) << '\n'); 2250 2251 // Try to evict a less worthy live range, but only for ranges from the primary 2252 // queue. The RS_Split ranges already failed to do this, and they should not 2253 // get a second chance until they have been split. 2254 if (Stage != RS_Split) 2255 if (Register PhysReg = 2256 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 2257 FixedRegisters)) { 2258 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 2259 // If VirtReg has a hint and that hint is broken record this 2260 // virtual register as a recoloring candidate for broken hint. 2261 // Indeed, since we evicted a variable in its neighborhood it is 2262 // likely we can at least partially recolor some of the 2263 // copy-related live-ranges. 2264 if (Hint && Hint != PhysReg) 2265 SetOfBrokenHints.insert(&VirtReg); 2266 return PhysReg; 2267 } 2268 2269 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2270 2271 // The first time we see a live range, don't try to split or spill. 2272 // Wait until the second time, when all smaller ranges have been allocated. 2273 // This gives a better picture of the interference to split around. 2274 if (Stage < RS_Split) { 2275 ExtraInfo->setStage(VirtReg, RS_Split); 2276 LLVM_DEBUG(dbgs() << "wait for second round\n"); 2277 NewVRegs.push_back(VirtReg.reg()); 2278 return 0; 2279 } 2280 2281 if (Stage < RS_Spill) { 2282 // Try splitting VirtReg or interferences. 2283 unsigned NewVRegSizeBefore = NewVRegs.size(); 2284 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 2285 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) 2286 return PhysReg; 2287 } 2288 2289 // If we couldn't allocate a register from spilling, there is probably some 2290 // invalid inline assembly. The base class will report it. 2291 if (Stage >= RS_Done || !VirtReg.isSpillable()) { 2292 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2293 RecolorStack, Depth); 2294 } 2295 2296 // Finally spill VirtReg itself. 2297 if ((EnableDeferredSpilling || 2298 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 2299 ExtraInfo->getStage(VirtReg) < RS_Memory) { 2300 // TODO: This is experimental and in particular, we do not model 2301 // the live range splitting done by spilling correctly. 2302 // We would need a deep integration with the spiller to do the 2303 // right thing here. Anyway, that is still good for early testing. 2304 ExtraInfo->setStage(VirtReg, RS_Memory); 2305 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 2306 NewVRegs.push_back(VirtReg.reg()); 2307 } else { 2308 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2309 TimerGroupDescription, TimePassesIsEnabled); 2310 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2311 spiller().spill(LRE); 2312 ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2313 2314 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 2315 // the new regs are kept in LDV (still mapping to the old register), until 2316 // we rewrite spilled locations in LDV at a later stage. 2317 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 2318 2319 if (VerifyEnabled) 2320 MF->verify(this, "After spilling"); 2321 } 2322 2323 // The live virtual register requesting allocation was spilled, so tell 2324 // the caller not to allocate anything during this round. 2325 return 0; 2326 } 2327 2328 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 2329 using namespace ore; 2330 if (Spills) { 2331 R << NV("NumSpills", Spills) << " spills "; 2332 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 2333 } 2334 if (FoldedSpills) { 2335 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 2336 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 2337 << " total folded spills cost "; 2338 } 2339 if (Reloads) { 2340 R << NV("NumReloads", Reloads) << " reloads "; 2341 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 2342 } 2343 if (FoldedReloads) { 2344 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 2345 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 2346 << " total folded reloads cost "; 2347 } 2348 if (ZeroCostFoldedReloads) 2349 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 2350 << " zero cost folded reloads "; 2351 if (Copies) { 2352 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 2353 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 2354 } 2355 } 2356 2357 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 2358 RAGreedyStats Stats; 2359 const MachineFrameInfo &MFI = MF->getFrameInfo(); 2360 int FI; 2361 2362 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 2363 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 2364 A->getPseudoValue())->getFrameIndex()); 2365 }; 2366 auto isPatchpointInstr = [](const MachineInstr &MI) { 2367 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 2368 MI.getOpcode() == TargetOpcode::STACKMAP || 2369 MI.getOpcode() == TargetOpcode::STATEPOINT; 2370 }; 2371 for (MachineInstr &MI : MBB) { 2372 if (MI.isCopy()) { 2373 MachineOperand &Dest = MI.getOperand(0); 2374 MachineOperand &Src = MI.getOperand(1); 2375 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 2376 Src.getReg().isVirtual()) 2377 ++Stats.Copies; 2378 continue; 2379 } 2380 2381 SmallVector<const MachineMemOperand *, 2> Accesses; 2382 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2383 ++Stats.Reloads; 2384 continue; 2385 } 2386 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2387 ++Stats.Spills; 2388 continue; 2389 } 2390 if (TII->hasLoadFromStackSlot(MI, Accesses) && 2391 llvm::any_of(Accesses, isSpillSlotAccess)) { 2392 if (!isPatchpointInstr(MI)) { 2393 Stats.FoldedReloads += Accesses.size(); 2394 continue; 2395 } 2396 // For statepoint there may be folded and zero cost folded stack reloads. 2397 std::pair<unsigned, unsigned> NonZeroCostRange = 2398 TII->getPatchpointUnfoldableRange(MI); 2399 SmallSet<unsigned, 16> FoldedReloads; 2400 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 2401 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 2402 MachineOperand &MO = MI.getOperand(Idx); 2403 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 2404 continue; 2405 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 2406 FoldedReloads.insert(MO.getIndex()); 2407 else 2408 ZeroCostFoldedReloads.insert(MO.getIndex()); 2409 } 2410 // If stack slot is used in folded reload it is not zero cost then. 2411 for (unsigned Slot : FoldedReloads) 2412 ZeroCostFoldedReloads.erase(Slot); 2413 Stats.FoldedReloads += FoldedReloads.size(); 2414 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 2415 continue; 2416 } 2417 Accesses.clear(); 2418 if (TII->hasStoreToStackSlot(MI, Accesses) && 2419 llvm::any_of(Accesses, isSpillSlotAccess)) { 2420 Stats.FoldedSpills += Accesses.size(); 2421 } 2422 } 2423 // Set cost of collected statistic by multiplication to relative frequency of 2424 // this basic block. 2425 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 2426 Stats.ReloadsCost = RelFreq * Stats.Reloads; 2427 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 2428 Stats.SpillsCost = RelFreq * Stats.Spills; 2429 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 2430 Stats.CopiesCost = RelFreq * Stats.Copies; 2431 return Stats; 2432 } 2433 2434 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 2435 RAGreedyStats Stats; 2436 2437 // Sum up the spill and reloads in subloops. 2438 for (MachineLoop *SubLoop : *L) 2439 Stats.add(reportStats(SubLoop)); 2440 2441 for (MachineBasicBlock *MBB : L->getBlocks()) 2442 // Handle blocks that were not included in subloops. 2443 if (Loops->getLoopFor(MBB) == L) 2444 Stats.add(computeStats(*MBB)); 2445 2446 if (!Stats.isEmpty()) { 2447 using namespace ore; 2448 2449 ORE->emit([&]() { 2450 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 2451 L->getStartLoc(), L->getHeader()); 2452 Stats.report(R); 2453 R << "generated in loop"; 2454 return R; 2455 }); 2456 } 2457 return Stats; 2458 } 2459 2460 void RAGreedy::reportStats() { 2461 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 2462 return; 2463 RAGreedyStats Stats; 2464 for (MachineLoop *L : *Loops) 2465 Stats.add(reportStats(L)); 2466 // Process non-loop blocks. 2467 for (MachineBasicBlock &MBB : *MF) 2468 if (!Loops->getLoopFor(&MBB)) 2469 Stats.add(computeStats(MBB)); 2470 if (!Stats.isEmpty()) { 2471 using namespace ore; 2472 2473 ORE->emit([&]() { 2474 DebugLoc Loc; 2475 if (auto *SP = MF->getFunction().getSubprogram()) 2476 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 2477 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 2478 &MF->front()); 2479 Stats.report(R); 2480 R << "generated in function"; 2481 return R; 2482 }); 2483 } 2484 } 2485 2486 bool RAGreedy::hasVirtRegAlloc() { 2487 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2488 Register Reg = Register::index2VirtReg(I); 2489 if (MRI->reg_nodbg_empty(Reg)) 2490 continue; 2491 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 2492 if (!RC) 2493 continue; 2494 if (ShouldAllocateClass(*TRI, *RC)) 2495 return true; 2496 } 2497 2498 return false; 2499 } 2500 2501 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2502 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2503 << "********** Function: " << mf.getName() << '\n'); 2504 2505 MF = &mf; 2506 TII = MF->getSubtarget().getInstrInfo(); 2507 2508 if (VerifyEnabled) 2509 MF->verify(this, "Before greedy register allocator"); 2510 2511 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2512 getAnalysis<LiveIntervals>(), 2513 getAnalysis<LiveRegMatrix>()); 2514 2515 // Early return if there is no virtual register to be allocated to a 2516 // physical register. 2517 if (!hasVirtRegAlloc()) 2518 return false; 2519 2520 Indexes = &getAnalysis<SlotIndexes>(); 2521 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2522 DomTree = &getAnalysis<MachineDominatorTree>(); 2523 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2524 Loops = &getAnalysis<MachineLoopInfo>(); 2525 Bundles = &getAnalysis<EdgeBundles>(); 2526 SpillPlacer = &getAnalysis<SpillPlacement>(); 2527 DebugVars = &getAnalysis<LiveDebugVariables>(); 2528 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2529 2530 initializeCSRCost(); 2531 2532 RegCosts = TRI->getRegisterCosts(*MF); 2533 RegClassPriorityTrumpsGlobalness = 2534 GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences() 2535 ? GreedyRegClassPriorityTrumpsGlobalness 2536 : TRI->regClassPriorityTrumpsGlobalness(*MF); 2537 2538 ExtraInfo.emplace(); 2539 EvictAdvisor = 2540 getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this); 2541 2542 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 2543 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 2544 2545 VRAI->calculateSpillWeightsAndHints(); 2546 2547 LLVM_DEBUG(LIS->dump()); 2548 2549 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2550 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 2551 2552 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2553 GlobalCand.resize(32); // This will grow as needed. 2554 SetOfBrokenHints.clear(); 2555 2556 allocatePhysRegs(); 2557 tryHintsRecoloring(); 2558 2559 if (VerifyEnabled) 2560 MF->verify(this, "Before post optimization"); 2561 postOptimization(); 2562 reportStats(); 2563 2564 releaseMemory(); 2565 return true; 2566 } 2567