1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RegAllocGreedy.h" 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "RegAllocEvictionAdvisor.h" 20 #include "SpillPlacement.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IndexedMap.h" 26 #include "llvm/ADT/MapVector.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/CodeGen/CalcSpillWeights.h" 36 #include "llvm/CodeGen/EdgeBundles.h" 37 #include "llvm/CodeGen/LiveInterval.h" 38 #include "llvm/CodeGen/LiveIntervalUnion.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveRangeEdit.h" 41 #include "llvm/CodeGen/LiveRegMatrix.h" 42 #include "llvm/CodeGen/LiveStacks.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 45 #include "llvm/CodeGen/MachineDominators.h" 46 #include "llvm/CodeGen/MachineFrameInfo.h" 47 #include "llvm/CodeGen/MachineFunction.h" 48 #include "llvm/CodeGen/MachineFunctionPass.h" 49 #include "llvm/CodeGen/MachineInstr.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RegAllocRegistry.h" 55 #include "llvm/CodeGen/RegisterClassInfo.h" 56 #include "llvm/CodeGen/SlotIndexes.h" 57 #include "llvm/CodeGen/Spiller.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetRegisterInfo.h" 60 #include "llvm/CodeGen/TargetSubtargetInfo.h" 61 #include "llvm/CodeGen/VirtRegMap.h" 62 #include "llvm/IR/DebugInfoMetadata.h" 63 #include "llvm/IR/Function.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/Pass.h" 67 #include "llvm/Support/BlockFrequency.h" 68 #include "llvm/Support/BranchProbability.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/Timer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstdint> 78 #include <memory> 79 #include <queue> 80 #include <tuple> 81 #include <utility> 82 83 using namespace llvm; 84 85 #define DEBUG_TYPE "regalloc" 86 87 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 88 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 89 STATISTIC(NumEvicted, "Number of interferences evicted"); 90 91 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 92 "split-spill-mode", cl::Hidden, 93 cl::desc("Spill mode for splitting live ranges"), 94 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 95 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 96 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 97 cl::init(SplitEditor::SM_Speed)); 98 99 static cl::opt<unsigned> 100 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 101 cl::desc("Last chance recoloring max depth"), 102 cl::init(5)); 103 104 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 105 "lcr-max-interf", cl::Hidden, 106 cl::desc("Last chance recoloring maximum number of considered" 107 " interference at a time"), 108 cl::init(8)); 109 110 static cl::opt<bool> ExhaustiveSearch( 111 "exhaustive-register-search", cl::NotHidden, 112 cl::desc("Exhaustive Search for registers bypassing the depth " 113 "and interference cutoffs of last chance recoloring"), 114 cl::Hidden); 115 116 static cl::opt<bool> EnableDeferredSpilling( 117 "enable-deferred-spilling", cl::Hidden, 118 cl::desc("Instead of spilling a variable right away, defer the actual " 119 "code insertion to the end of the allocation. That way the " 120 "allocator might still find a suitable coloring for this " 121 "variable because of other evicted variables."), 122 cl::init(false)); 123 124 // FIXME: Find a good default for this flag and remove the flag. 125 static cl::opt<unsigned> 126 CSRFirstTimeCost("regalloc-csr-first-time-cost", 127 cl::desc("Cost for first time use of callee-saved register."), 128 cl::init(0), cl::Hidden); 129 130 static cl::opt<bool> ConsiderLocalIntervalCost( 131 "consider-local-interval-cost", cl::Hidden, 132 cl::desc("Consider the cost of local intervals created by a split " 133 "candidate when choosing the best split candidate."), 134 cl::init(false)); 135 136 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 137 createGreedyRegisterAllocator); 138 139 char RAGreedy::ID = 0; 140 char &llvm::RAGreedyID = RAGreedy::ID; 141 142 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 143 "Greedy Register Allocator", false, false) 144 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 145 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 146 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 147 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 148 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 149 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 150 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 151 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 152 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 153 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 154 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 155 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 156 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 157 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis) 158 INITIALIZE_PASS_END(RAGreedy, "greedy", 159 "Greedy Register Allocator", false, false) 160 161 #ifndef NDEBUG 162 const char *const RAGreedy::StageName[] = { 163 "RS_New", 164 "RS_Assign", 165 "RS_Split", 166 "RS_Split2", 167 "RS_Spill", 168 "RS_Memory", 169 "RS_Done" 170 }; 171 #endif 172 173 // Hysteresis to use when comparing floats. 174 // This helps stabilize decisions based on float comparisons. 175 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 176 177 FunctionPass* llvm::createGreedyRegisterAllocator() { 178 return new RAGreedy(); 179 } 180 181 namespace llvm { 182 FunctionPass* createGreedyRegisterAllocator( 183 std::function<bool(const TargetRegisterInfo &TRI, 184 const TargetRegisterClass &RC)> Ftor); 185 186 } 187 188 FunctionPass* llvm::createGreedyRegisterAllocator( 189 std::function<bool(const TargetRegisterInfo &TRI, 190 const TargetRegisterClass &RC)> Ftor) { 191 return new RAGreedy(Ftor); 192 } 193 194 RAGreedy::RAGreedy(RegClassFilterFunc F): 195 MachineFunctionPass(ID), 196 RegAllocBase(F) { 197 } 198 199 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 200 AU.setPreservesCFG(); 201 AU.addRequired<MachineBlockFrequencyInfo>(); 202 AU.addPreserved<MachineBlockFrequencyInfo>(); 203 AU.addRequired<AAResultsWrapperPass>(); 204 AU.addPreserved<AAResultsWrapperPass>(); 205 AU.addRequired<LiveIntervals>(); 206 AU.addPreserved<LiveIntervals>(); 207 AU.addRequired<SlotIndexes>(); 208 AU.addPreserved<SlotIndexes>(); 209 AU.addRequired<LiveDebugVariables>(); 210 AU.addPreserved<LiveDebugVariables>(); 211 AU.addRequired<LiveStacks>(); 212 AU.addPreserved<LiveStacks>(); 213 AU.addRequired<MachineDominatorTree>(); 214 AU.addPreserved<MachineDominatorTree>(); 215 AU.addRequired<MachineLoopInfo>(); 216 AU.addPreserved<MachineLoopInfo>(); 217 AU.addRequired<VirtRegMap>(); 218 AU.addPreserved<VirtRegMap>(); 219 AU.addRequired<LiveRegMatrix>(); 220 AU.addPreserved<LiveRegMatrix>(); 221 AU.addRequired<EdgeBundles>(); 222 AU.addRequired<SpillPlacement>(); 223 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 224 AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); 225 MachineFunctionPass::getAnalysisUsage(AU); 226 } 227 228 //===----------------------------------------------------------------------===// 229 // LiveRangeEdit delegate methods 230 //===----------------------------------------------------------------------===// 231 232 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 233 LiveInterval &LI = LIS->getInterval(VirtReg); 234 if (VRM->hasPhys(VirtReg)) { 235 Matrix->unassign(LI); 236 aboutToRemoveInterval(LI); 237 return true; 238 } 239 // Unassigned virtreg is probably in the priority queue. 240 // RegAllocBase will erase it after dequeueing. 241 // Nonetheless, clear the live-range so that the debug 242 // dump will show the right state for that VirtReg. 243 LI.clear(); 244 return false; 245 } 246 247 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 248 if (!VRM->hasPhys(VirtReg)) 249 return; 250 251 // Register is assigned, put it back on the queue for reassignment. 252 LiveInterval &LI = LIS->getInterval(VirtReg); 253 Matrix->unassign(LI); 254 RegAllocBase::enqueue(&LI); 255 } 256 257 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 258 ExtraInfo->LRE_DidCloneVirtReg(New, Old); 259 } 260 261 void ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) { 262 // Cloning a register we haven't even heard about yet? Just ignore it. 263 if (!Info.inBounds(Old)) 264 return; 265 266 // LRE may clone a virtual register because dead code elimination causes it to 267 // be split into connected components. The new components are much smaller 268 // than the original, so they should get a new chance at being assigned. 269 // same stage as the parent. 270 Info[Old].Stage = RS_Assign; 271 Info.grow(New.id()); 272 Info[New] = Info[Old]; 273 } 274 275 void RAGreedy::releaseMemory() { 276 SpillerInstance.reset(); 277 GlobalCand.clear(); 278 } 279 280 void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); } 281 282 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 283 // Prioritize live ranges by size, assigning larger ranges first. 284 // The queue holds (size, reg) pairs. 285 const unsigned Size = LI->getSize(); 286 const Register Reg = LI->reg(); 287 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 288 unsigned Prio; 289 290 auto Stage = ExtraInfo->getOrInitStage(Reg); 291 if (Stage == RS_New) { 292 Stage = RS_Assign; 293 ExtraInfo->setStage(Reg, Stage); 294 } 295 if (Stage == RS_Split) { 296 // Unsplit ranges that couldn't be allocated immediately are deferred until 297 // everything else has been allocated. 298 Prio = Size; 299 } else if (Stage == RS_Memory) { 300 // Memory operand should be considered last. 301 // Change the priority such that Memory operand are assigned in 302 // the reverse order that they came in. 303 // TODO: Make this a member variable and probably do something about hints. 304 static unsigned MemOp = 0; 305 Prio = MemOp++; 306 } else { 307 // Giant live ranges fall back to the global assignment heuristic, which 308 // prevents excessive spilling in pathological cases. 309 bool ReverseLocal = TRI->reverseLocalAssignment(); 310 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 311 bool ForceGlobal = !ReverseLocal && 312 (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC)); 313 314 if (Stage == RS_Assign && !ForceGlobal && !LI->empty() && 315 LIS->intervalIsInOneMBB(*LI)) { 316 // Allocate original local ranges in linear instruction order. Since they 317 // are singly defined, this produces optimal coloring in the absence of 318 // global interference and other constraints. 319 if (!ReverseLocal) 320 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 321 else { 322 // Allocating bottom up may allow many short LRGs to be assigned first 323 // to one of the cheap registers. This could be much faster for very 324 // large blocks on targets with many physical registers. 325 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 326 } 327 Prio |= RC.AllocationPriority << 24; 328 } else { 329 // Allocate global and split ranges in long->short order. Long ranges that 330 // don't fit should be spilled (or split) ASAP so they don't create 331 // interference. Mark a bit to prioritize global above local ranges. 332 Prio = (1u << 29) + Size; 333 334 Prio |= RC.AllocationPriority << 24; 335 } 336 // Mark a higher bit to prioritize global and local above RS_Split. 337 Prio |= (1u << 31); 338 339 // Boost ranges that have a physical register hint. 340 if (VRM->hasKnownPreference(Reg)) 341 Prio |= (1u << 30); 342 } 343 // The virtual register number is a tie breaker for same-sized ranges. 344 // Give lower vreg numbers higher priority to assign them first. 345 CurQueue.push(std::make_pair(Prio, ~Reg)); 346 } 347 348 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 349 350 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 351 if (CurQueue.empty()) 352 return nullptr; 353 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 354 CurQueue.pop(); 355 return LI; 356 } 357 358 //===----------------------------------------------------------------------===// 359 // Direct Assignment 360 //===----------------------------------------------------------------------===// 361 362 /// tryAssign - Try to assign VirtReg to an available register. 363 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg, 364 AllocationOrder &Order, 365 SmallVectorImpl<Register> &NewVRegs, 366 const SmallVirtRegSet &FixedRegisters) { 367 MCRegister PhysReg; 368 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 369 assert(*I); 370 if (!Matrix->checkInterference(VirtReg, *I)) { 371 if (I.isHint()) 372 return *I; 373 else 374 PhysReg = *I; 375 } 376 } 377 if (!PhysReg.isValid()) 378 return PhysReg; 379 380 // PhysReg is available, but there may be a better choice. 381 382 // If we missed a simple hint, try to cheaply evict interference from the 383 // preferred register. 384 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 385 if (Order.isHint(Hint)) { 386 MCRegister PhysHint = Hint.asMCReg(); 387 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 388 389 if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint, 390 FixedRegisters)) { 391 evictInterference(VirtReg, PhysHint, NewVRegs); 392 return PhysHint; 393 } 394 // Record the missed hint, we may be able to recover 395 // at the end if the surrounding allocation changed. 396 SetOfBrokenHints.insert(&VirtReg); 397 } 398 399 // Try to evict interference from a cheaper alternative. 400 uint8_t Cost = RegCosts[PhysReg]; 401 402 // Most registers have 0 additional cost. 403 if (!Cost) 404 return PhysReg; 405 406 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 407 << (unsigned)Cost << '\n'); 408 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 409 return CheapReg ? CheapReg : PhysReg; 410 } 411 412 //===----------------------------------------------------------------------===// 413 // Interference eviction 414 //===----------------------------------------------------------------------===// 415 416 Register RegAllocEvictionAdvisor::canReassign(LiveInterval &VirtReg, 417 Register PrevReg) const { 418 auto Order = 419 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 420 MCRegister PhysReg; 421 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 422 if ((*I).id() == PrevReg.id()) 423 continue; 424 425 MCRegUnitIterator Units(*I, TRI); 426 for (; Units.isValid(); ++Units) { 427 // Instantiate a "subquery", not to be confused with the Queries array. 428 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 429 if (subQ.checkInterference()) 430 break; 431 } 432 // If no units have interference, break out with the current PhysReg. 433 if (!Units.isValid()) 434 PhysReg = *I; 435 } 436 if (PhysReg) 437 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 438 << printReg(PrevReg, TRI) << " to " 439 << printReg(PhysReg, TRI) << '\n'); 440 return PhysReg; 441 } 442 443 /// shouldEvict - determine if A should evict the assigned live range B. The 444 /// eviction policy defined by this function together with the allocation order 445 /// defined by enqueue() decides which registers ultimately end up being split 446 /// and spilled. 447 /// 448 /// Cascade numbers are used to prevent infinite loops if this function is a 449 /// cyclic relation. 450 /// 451 /// @param A The live range to be assigned. 452 /// @param IsHint True when A is about to be assigned to its preferred 453 /// register. 454 /// @param B The live range to be evicted. 455 /// @param BreaksHint True when B is already assigned to its preferred register. 456 bool DefaultEvictionAdvisor::shouldEvict(LiveInterval &A, bool IsHint, 457 LiveInterval &B, 458 bool BreaksHint) const { 459 bool CanSplit = ExtraInfo->getStage(B) < RS_Spill; 460 461 // Be fairly aggressive about following hints as long as the evictee can be 462 // split. 463 if (CanSplit && IsHint && !BreaksHint) 464 return true; 465 466 if (A.weight() > B.weight()) { 467 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n'); 468 return true; 469 } 470 return false; 471 } 472 473 /// canEvictHintInterference - return true if the interference for VirtReg 474 /// on the PhysReg, which is VirtReg's hint, can be evicted in favor of VirtReg. 475 bool DefaultEvictionAdvisor::canEvictHintInterference( 476 LiveInterval &VirtReg, MCRegister PhysReg, 477 const SmallVirtRegSet &FixedRegisters) const { 478 EvictionCost MaxCost; 479 MaxCost.setBrokenHints(1); 480 return canEvictInterferenceBasedOnCost(VirtReg, PhysReg, true, MaxCost, 481 FixedRegisters); 482 } 483 484 /// canEvictInterferenceBasedOnCost - Return true if all interferences between 485 /// VirtReg and PhysReg can be evicted. 486 /// 487 /// @param VirtReg Live range that is about to be assigned. 488 /// @param PhysReg Desired register for assignment. 489 /// @param IsHint True when PhysReg is VirtReg's preferred register. 490 /// @param MaxCost Only look for cheaper candidates and update with new cost 491 /// when returning true. 492 /// @returns True when interference can be evicted cheaper than MaxCost. 493 bool DefaultEvictionAdvisor::canEvictInterferenceBasedOnCost( 494 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 495 EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const { 496 // It is only possible to evict virtual register interference. 497 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 498 return false; 499 500 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 501 502 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 503 // involved in an eviction before. If a cascade number was assigned, deny 504 // evicting anything with the same or a newer cascade number. This prevents 505 // infinite eviction loops. 506 // 507 // This works out so a register without a cascade number is allowed to evict 508 // anything, and it can be evicted by anything. 509 unsigned Cascade = ExtraInfo->getCascadeOrCurrentNext(VirtReg.reg()); 510 511 EvictionCost Cost; 512 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 513 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 514 // If there is 10 or more interferences, chances are one is heavier. 515 const auto &Interferences = Q.interferingVRegs(10); 516 if (Interferences.size() >= 10) 517 return false; 518 519 // Check if any interfering live range is heavier than MaxWeight. 520 for (LiveInterval *Intf : reverse(Interferences)) { 521 assert(Register::isVirtualRegister(Intf->reg()) && 522 "Only expecting virtual register interference from query"); 523 524 // Do not allow eviction of a virtual register if we are in the middle 525 // of last-chance recoloring and this virtual register is one that we 526 // have scavenged a physical register for. 527 if (FixedRegisters.count(Intf->reg())) 528 return false; 529 530 // Never evict spill products. They cannot split or spill. 531 if (ExtraInfo->getStage(*Intf) == RS_Done) 532 return false; 533 // Once a live range becomes small enough, it is urgent that we find a 534 // register for it. This is indicated by an infinite spill weight. These 535 // urgent live ranges get to evict almost anything. 536 // 537 // Also allow urgent evictions of unspillable ranges from a strictly 538 // larger allocation order. 539 bool Urgent = 540 !VirtReg.isSpillable() && 541 (Intf->isSpillable() || 542 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 543 RegClassInfo.getNumAllocatableRegs( 544 MRI->getRegClass(Intf->reg()))); 545 // Only evict older cascades or live ranges without a cascade. 546 unsigned IntfCascade = ExtraInfo->getCascade(Intf->reg()); 547 if (Cascade <= IntfCascade) { 548 if (!Urgent) 549 return false; 550 // We permit breaking cascades for urgent evictions. It should be the 551 // last resort, though, so make it really expensive. 552 Cost.BrokenHints += 10; 553 } 554 // Would this break a satisfied hint? 555 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 556 // Update eviction cost. 557 Cost.BrokenHints += BreaksHint; 558 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 559 // Abort if this would be too expensive. 560 if (!(Cost < MaxCost)) 561 return false; 562 if (Urgent) 563 continue; 564 // Apply the eviction policy for non-urgent evictions. 565 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 566 return false; 567 // If !MaxCost.isMax(), then we're just looking for a cheap register. 568 // Evicting another local live range in this case could lead to suboptimal 569 // coloring. 570 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 571 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 572 return false; 573 } 574 } 575 } 576 MaxCost = Cost; 577 return true; 578 } 579 580 /// Return true if all interferences between VirtReg and PhysReg between 581 /// Start and End can be evicted. 582 /// 583 /// \param VirtReg Live range that is about to be assigned. 584 /// \param PhysReg Desired register for assignment. 585 /// \param Start Start of range to look for interferences. 586 /// \param End End of range to look for interferences. 587 /// \param MaxCost Only look for cheaper candidates and update with new cost 588 /// when returning true. 589 /// \return True when interference can be evicted cheaper than MaxCost. 590 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg, 591 MCRegister PhysReg, SlotIndex Start, 592 SlotIndex End, 593 EvictionCost &MaxCost) const { 594 EvictionCost Cost; 595 596 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 597 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 598 599 // Check if any interfering live range is heavier than MaxWeight. 600 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 601 // Check if interference overlast the segment in interest. 602 if (!Intf->overlaps(Start, End)) 603 continue; 604 605 // Cannot evict non virtual reg interference. 606 if (!Register::isVirtualRegister(Intf->reg())) 607 return false; 608 // Never evict spill products. They cannot split or spill. 609 if (ExtraInfo->getStage(*Intf) == RS_Done) 610 return false; 611 612 // Would this break a satisfied hint? 613 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 614 // Update eviction cost. 615 Cost.BrokenHints += BreaksHint; 616 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 617 // Abort if this would be too expensive. 618 if (!(Cost < MaxCost)) 619 return false; 620 } 621 } 622 623 if (Cost.MaxWeight == 0) 624 return false; 625 626 MaxCost = Cost; 627 return true; 628 } 629 630 /// Return the physical register that will be best 631 /// candidate for eviction by a local split interval that will be created 632 /// between Start and End. 633 /// 634 /// \param Order The allocation order 635 /// \param VirtReg Live range that is about to be assigned. 636 /// \param Start Start of range to look for interferences 637 /// \param End End of range to look for interferences 638 /// \param BestEvictweight The eviction cost of that eviction 639 /// \return The PhysReg which is the best candidate for eviction and the 640 /// eviction cost in BestEvictweight 641 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 642 const LiveInterval &VirtReg, 643 SlotIndex Start, SlotIndex End, 644 float *BestEvictweight) const { 645 EvictionCost BestEvictCost; 646 BestEvictCost.setMax(); 647 BestEvictCost.MaxWeight = VirtReg.weight(); 648 MCRegister BestEvicteePhys; 649 650 // Go over all physical registers and find the best candidate for eviction 651 for (MCRegister PhysReg : Order.getOrder()) { 652 653 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 654 BestEvictCost)) 655 continue; 656 657 // Best so far. 658 BestEvicteePhys = PhysReg; 659 } 660 *BestEvictweight = BestEvictCost.MaxWeight; 661 return BestEvicteePhys; 662 } 663 664 /// evictInterference - Evict any interferring registers that prevent VirtReg 665 /// from being assigned to Physreg. This assumes that canEvictInterference 666 /// returned true. 667 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg, 668 SmallVectorImpl<Register> &NewVRegs) { 669 // Make sure that VirtReg has a cascade number, and assign that cascade 670 // number to every evicted register. These live ranges than then only be 671 // evicted by a newer cascade, preventing infinite loops. 672 unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg()); 673 674 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 675 << " interference: Cascade " << Cascade << '\n'); 676 677 // Collect all interfering virtregs first. 678 SmallVector<LiveInterval*, 8> Intfs; 679 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 680 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 681 // We usually have the interfering VRegs cached so collectInterferingVRegs() 682 // should be fast, we may need to recalculate if when different physregs 683 // overlap the same register unit so we had different SubRanges queried 684 // against it. 685 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 686 Intfs.append(IVR.begin(), IVR.end()); 687 } 688 689 // Evict them second. This will invalidate the queries. 690 for (LiveInterval *Intf : Intfs) { 691 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 692 if (!VRM->hasPhys(Intf->reg())) 693 continue; 694 695 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 696 697 Matrix->unassign(*Intf); 698 assert((ExtraInfo->getCascade(Intf->reg()) < Cascade || 699 VirtReg.isSpillable() < Intf->isSpillable()) && 700 "Cannot decrease cascade number, illegal eviction"); 701 ExtraInfo->setCascade(Intf->reg(), Cascade); 702 ++NumEvicted; 703 NewVRegs.push_back(Intf->reg()); 704 } 705 } 706 707 /// Returns true if the given \p PhysReg is a callee saved register and has not 708 /// been used for allocation yet. 709 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 710 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 711 if (!CSR) 712 return false; 713 714 return !Matrix->isPhysRegUsed(PhysReg); 715 } 716 717 MCRegister DefaultEvictionAdvisor::tryFindEvictionCandidate( 718 LiveInterval &VirtReg, const AllocationOrder &Order, 719 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { 720 // Keep track of the cheapest interference seen so far. 721 EvictionCost BestCost; 722 BestCost.setMax(); 723 MCRegister BestPhys; 724 unsigned OrderLimit = Order.getOrder().size(); 725 726 // When we are just looking for a reduced cost per use, don't break any 727 // hints, and only evict smaller spill weights. 728 if (CostPerUseLimit < uint8_t(~0u)) { 729 BestCost.BrokenHints = 0; 730 BestCost.MaxWeight = VirtReg.weight(); 731 732 // Check of any registers in RC are below CostPerUseLimit. 733 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 734 uint8_t MinCost = RegClassInfo.getMinCost(RC); 735 if (MinCost >= CostPerUseLimit) { 736 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 737 << MinCost << ", no cheaper registers to be found.\n"); 738 return 0; 739 } 740 741 // It is normal for register classes to have a long tail of registers with 742 // the same cost. We don't need to look at them if they're too expensive. 743 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 744 OrderLimit = RegClassInfo.getLastCostChange(RC); 745 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 746 << " regs.\n"); 747 } 748 } 749 750 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 751 ++I) { 752 MCRegister PhysReg = *I; 753 assert(PhysReg); 754 if (RegCosts[PhysReg] >= CostPerUseLimit) 755 continue; 756 // The first use of a callee-saved register in a function has cost 1. 757 // Don't start using a CSR when the CostPerUseLimit is low. 758 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 759 LLVM_DEBUG( 760 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 761 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 762 << '\n'); 763 continue; 764 } 765 766 if (!canEvictInterferenceBasedOnCost(VirtReg, PhysReg, false, BestCost, 767 FixedRegisters)) 768 continue; 769 770 // Best so far. 771 BestPhys = PhysReg; 772 773 // Stop if the hint can be used. 774 if (I.isHint()) 775 break; 776 } 777 return BestPhys; 778 } 779 780 /// tryEvict - Try to evict all interferences for a physreg. 781 /// @param VirtReg Currently unassigned virtual register. 782 /// @param Order Physregs to try. 783 /// @return Physreg to assign VirtReg, or 0. 784 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order, 785 SmallVectorImpl<Register> &NewVRegs, 786 uint8_t CostPerUseLimit, 787 const SmallVirtRegSet &FixedRegisters) { 788 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 789 TimePassesIsEnabled); 790 791 MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate( 792 VirtReg, Order, CostPerUseLimit, FixedRegisters); 793 if (BestPhys.isValid()) 794 evictInterference(VirtReg, BestPhys, NewVRegs); 795 return BestPhys; 796 } 797 798 //===----------------------------------------------------------------------===// 799 // Region Splitting 800 //===----------------------------------------------------------------------===// 801 802 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 803 /// interference pattern in Physreg and its aliases. Add the constraints to 804 /// SpillPlacement and return the static cost of this split in Cost, assuming 805 /// that all preferences in SplitConstraints are met. 806 /// Return false if there are no bundles with positive bias. 807 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 808 BlockFrequency &Cost) { 809 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 810 811 // Reset interference dependent info. 812 SplitConstraints.resize(UseBlocks.size()); 813 BlockFrequency StaticCost = 0; 814 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 815 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 816 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 817 818 BC.Number = BI.MBB->getNumber(); 819 Intf.moveToBlock(BC.Number); 820 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 821 BC.Exit = (BI.LiveOut && 822 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 823 ? SpillPlacement::PrefReg 824 : SpillPlacement::DontCare; 825 BC.ChangesValue = BI.FirstDef.isValid(); 826 827 if (!Intf.hasInterference()) 828 continue; 829 830 // Number of spill code instructions to insert. 831 unsigned Ins = 0; 832 833 // Interference for the live-in value. 834 if (BI.LiveIn) { 835 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 836 BC.Entry = SpillPlacement::MustSpill; 837 ++Ins; 838 } else if (Intf.first() < BI.FirstInstr) { 839 BC.Entry = SpillPlacement::PrefSpill; 840 ++Ins; 841 } else if (Intf.first() < BI.LastInstr) { 842 ++Ins; 843 } 844 845 // Abort if the spill cannot be inserted at the MBB' start 846 if (((BC.Entry == SpillPlacement::MustSpill) || 847 (BC.Entry == SpillPlacement::PrefSpill)) && 848 SlotIndex::isEarlierInstr(BI.FirstInstr, 849 SA->getFirstSplitPoint(BC.Number))) 850 return false; 851 } 852 853 // Interference for the live-out value. 854 if (BI.LiveOut) { 855 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 856 BC.Exit = SpillPlacement::MustSpill; 857 ++Ins; 858 } else if (Intf.last() > BI.LastInstr) { 859 BC.Exit = SpillPlacement::PrefSpill; 860 ++Ins; 861 } else if (Intf.last() > BI.FirstInstr) { 862 ++Ins; 863 } 864 } 865 866 // Accumulate the total frequency of inserted spill code. 867 while (Ins--) 868 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 869 } 870 Cost = StaticCost; 871 872 // Add constraints for use-blocks. Note that these are the only constraints 873 // that may add a positive bias, it is downhill from here. 874 SpillPlacer->addConstraints(SplitConstraints); 875 return SpillPlacer->scanActiveBundles(); 876 } 877 878 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 879 /// live-through blocks in Blocks. 880 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 881 ArrayRef<unsigned> Blocks) { 882 const unsigned GroupSize = 8; 883 SpillPlacement::BlockConstraint BCS[GroupSize]; 884 unsigned TBS[GroupSize]; 885 unsigned B = 0, T = 0; 886 887 for (unsigned Number : Blocks) { 888 Intf.moveToBlock(Number); 889 890 if (!Intf.hasInterference()) { 891 assert(T < GroupSize && "Array overflow"); 892 TBS[T] = Number; 893 if (++T == GroupSize) { 894 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 895 T = 0; 896 } 897 continue; 898 } 899 900 assert(B < GroupSize && "Array overflow"); 901 BCS[B].Number = Number; 902 903 // Abort if the spill cannot be inserted at the MBB' start 904 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 905 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 906 if (FirstNonDebugInstr != MBB->end() && 907 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 908 SA->getFirstSplitPoint(Number))) 909 return false; 910 // Interference for the live-in value. 911 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 912 BCS[B].Entry = SpillPlacement::MustSpill; 913 else 914 BCS[B].Entry = SpillPlacement::PrefSpill; 915 916 // Interference for the live-out value. 917 if (Intf.last() >= SA->getLastSplitPoint(Number)) 918 BCS[B].Exit = SpillPlacement::MustSpill; 919 else 920 BCS[B].Exit = SpillPlacement::PrefSpill; 921 922 if (++B == GroupSize) { 923 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 924 B = 0; 925 } 926 } 927 928 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 929 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 930 return true; 931 } 932 933 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 934 // Keep track of through blocks that have not been added to SpillPlacer. 935 BitVector Todo = SA->getThroughBlocks(); 936 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 937 unsigned AddedTo = 0; 938 #ifndef NDEBUG 939 unsigned Visited = 0; 940 #endif 941 942 while (true) { 943 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 944 // Find new through blocks in the periphery of PrefRegBundles. 945 for (unsigned Bundle : NewBundles) { 946 // Look at all blocks connected to Bundle in the full graph. 947 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 948 for (unsigned Block : Blocks) { 949 if (!Todo.test(Block)) 950 continue; 951 Todo.reset(Block); 952 // This is a new through block. Add it to SpillPlacer later. 953 ActiveBlocks.push_back(Block); 954 #ifndef NDEBUG 955 ++Visited; 956 #endif 957 } 958 } 959 // Any new blocks to add? 960 if (ActiveBlocks.size() == AddedTo) 961 break; 962 963 // Compute through constraints from the interference, or assume that all 964 // through blocks prefer spilling when forming compact regions. 965 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 966 if (Cand.PhysReg) { 967 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 968 return false; 969 } else 970 // Provide a strong negative bias on through blocks to prevent unwanted 971 // liveness on loop backedges. 972 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 973 AddedTo = ActiveBlocks.size(); 974 975 // Perhaps iterating can enable more bundles? 976 SpillPlacer->iterate(); 977 } 978 LLVM_DEBUG(dbgs() << ", v=" << Visited); 979 return true; 980 } 981 982 /// calcCompactRegion - Compute the set of edge bundles that should be live 983 /// when splitting the current live range into compact regions. Compact 984 /// regions can be computed without looking at interference. They are the 985 /// regions formed by removing all the live-through blocks from the live range. 986 /// 987 /// Returns false if the current live range is already compact, or if the 988 /// compact regions would form single block regions anyway. 989 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 990 // Without any through blocks, the live range is already compact. 991 if (!SA->getNumThroughBlocks()) 992 return false; 993 994 // Compact regions don't correspond to any physreg. 995 Cand.reset(IntfCache, MCRegister::NoRegister); 996 997 LLVM_DEBUG(dbgs() << "Compact region bundles"); 998 999 // Use the spill placer to determine the live bundles. GrowRegion pretends 1000 // that all the through blocks have interference when PhysReg is unset. 1001 SpillPlacer->prepare(Cand.LiveBundles); 1002 1003 // The static split cost will be zero since Cand.Intf reports no interference. 1004 BlockFrequency Cost; 1005 if (!addSplitConstraints(Cand.Intf, Cost)) { 1006 LLVM_DEBUG(dbgs() << ", none.\n"); 1007 return false; 1008 } 1009 1010 if (!growRegion(Cand)) { 1011 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1012 return false; 1013 } 1014 1015 SpillPlacer->finish(); 1016 1017 if (!Cand.LiveBundles.any()) { 1018 LLVM_DEBUG(dbgs() << ", none.\n"); 1019 return false; 1020 } 1021 1022 LLVM_DEBUG({ 1023 for (int I : Cand.LiveBundles.set_bits()) 1024 dbgs() << " EB#" << I; 1025 dbgs() << ".\n"; 1026 }); 1027 return true; 1028 } 1029 1030 /// calcSpillCost - Compute how expensive it would be to split the live range in 1031 /// SA around all use blocks instead of forming bundle regions. 1032 BlockFrequency RAGreedy::calcSpillCost() { 1033 BlockFrequency Cost = 0; 1034 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1035 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1036 unsigned Number = BI.MBB->getNumber(); 1037 // We normally only need one spill instruction - a load or a store. 1038 Cost += SpillPlacer->getBlockFrequency(Number); 1039 1040 // Unless the value is redefined in the block. 1041 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1042 Cost += SpillPlacer->getBlockFrequency(Number); 1043 } 1044 return Cost; 1045 } 1046 1047 /// Check if splitting Evictee will create a local split interval in 1048 /// basic block number BBNumber that may cause a bad eviction chain. This is 1049 /// intended to prevent bad eviction sequences like: 1050 /// movl %ebp, 8(%esp) # 4-byte Spill 1051 /// movl %ecx, %ebp 1052 /// movl %ebx, %ecx 1053 /// movl %edi, %ebx 1054 /// movl %edx, %edi 1055 /// cltd 1056 /// idivl %esi 1057 /// movl %edi, %edx 1058 /// movl %ebx, %edi 1059 /// movl %ecx, %ebx 1060 /// movl %ebp, %ecx 1061 /// movl 16(%esp), %ebp # 4 - byte Reload 1062 /// 1063 /// Such sequences are created in 2 scenarios: 1064 /// 1065 /// Scenario #1: 1066 /// %0 is evicted from physreg0 by %1. 1067 /// Evictee %0 is intended for region splitting with split candidate 1068 /// physreg0 (the reg %0 was evicted from). 1069 /// Region splitting creates a local interval because of interference with the 1070 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1071 /// and "by stack" intervals and local interval created when interference 1072 /// occurs). 1073 /// One of the split intervals ends up evicting %2 from physreg1. 1074 /// Evictee %2 is intended for region splitting with split candidate 1075 /// physreg1. 1076 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1077 /// 1078 /// Scenario #2 1079 /// %0 is evicted from physreg0 by %1. 1080 /// %2 is evicted from physreg2 by %3 etc. 1081 /// Evictee %0 is intended for region splitting with split candidate 1082 /// physreg1. 1083 /// Region splitting creates a local interval because of interference with the 1084 /// evictor %1. 1085 /// One of the split intervals ends up evicting back original evictor %1 1086 /// from physreg0 (the reg %0 was evicted from). 1087 /// Another evictee %2 is intended for region splitting with split candidate 1088 /// physreg1. 1089 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1090 /// 1091 /// \param Evictee The register considered to be split. 1092 /// \param Cand The split candidate that determines the physical register 1093 /// we are splitting for and the interferences. 1094 /// \param BBNumber The number of a BB for which the region split process will 1095 /// create a local split interval. 1096 /// \param Order The physical registers that may get evicted by a split 1097 /// artifact of Evictee. 1098 /// \return True if splitting Evictee may cause a bad eviction chain, false 1099 /// otherwise. 1100 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 1101 GlobalSplitCandidate &Cand, 1102 unsigned BBNumber, 1103 const AllocationOrder &Order) { 1104 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1105 unsigned Evictor = VregEvictorInfo.first; 1106 MCRegister PhysReg = VregEvictorInfo.second; 1107 1108 // No actual evictor. 1109 if (!Evictor || !PhysReg) 1110 return false; 1111 1112 float MaxWeight = 0; 1113 MCRegister FutureEvictedPhysReg = 1114 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1115 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1116 1117 // The bad eviction chain occurs when either the split candidate is the 1118 // evicting reg or one of the split artifact will evict the evicting reg. 1119 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1120 return false; 1121 1122 Cand.Intf.moveToBlock(BBNumber); 1123 1124 // Check to see if the Evictor contains interference (with Evictee) in the 1125 // given BB. If so, this interference caused the eviction of Evictee from 1126 // PhysReg. This suggest that we will create a local interval during the 1127 // region split to avoid this interference This local interval may cause a bad 1128 // eviction chain. 1129 if (!LIS->hasInterval(Evictor)) 1130 return false; 1131 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1132 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1133 return false; 1134 1135 // Now, check to see if the local interval we will create is going to be 1136 // expensive enough to evict somebody If so, this may cause a bad eviction 1137 // chain. 1138 float splitArtifactWeight = 1139 VRAI->futureWeight(LIS->getInterval(Evictee), 1140 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1141 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1142 return false; 1143 1144 return true; 1145 } 1146 1147 /// Check if splitting VirtRegToSplit will create a local split interval 1148 /// in basic block number BBNumber that may cause a spill. 1149 /// 1150 /// \param VirtRegToSplit The register considered to be split. 1151 /// \param Cand The split candidate that determines the physical 1152 /// register we are splitting for and the interferences. 1153 /// \param BBNumber The number of a BB for which the region split process 1154 /// will create a local split interval. 1155 /// \param Order The physical registers that may get evicted by a 1156 /// split artifact of VirtRegToSplit. 1157 /// \return True if splitting VirtRegToSplit may cause a spill, false 1158 /// otherwise. 1159 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1160 GlobalSplitCandidate &Cand, 1161 unsigned BBNumber, 1162 const AllocationOrder &Order) { 1163 Cand.Intf.moveToBlock(BBNumber); 1164 1165 // Check if the local interval will find a non interfereing assignment. 1166 for (auto PhysReg : Order.getOrder()) { 1167 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1168 Cand.Intf.last(), PhysReg)) 1169 return false; 1170 } 1171 1172 // The local interval is not able to find non interferencing assignment 1173 // and not able to evict a less worthy interval, therfore, it can cause a 1174 // spill. 1175 return true; 1176 } 1177 1178 /// calcGlobalSplitCost - Return the global split cost of following the split 1179 /// pattern in LiveBundles. This cost should be added to the local cost of the 1180 /// interference pattern in SplitConstraints. 1181 /// 1182 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1183 const AllocationOrder &Order, 1184 bool *CanCauseEvictionChain) { 1185 BlockFrequency GlobalCost = 0; 1186 const BitVector &LiveBundles = Cand.LiveBundles; 1187 Register VirtRegToSplit = SA->getParent().reg(); 1188 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1189 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1190 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1191 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1192 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1193 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1194 unsigned Ins = 0; 1195 1196 Cand.Intf.moveToBlock(BC.Number); 1197 // Check wheather a local interval is going to be created during the region 1198 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1199 // is enabled. 1200 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1201 BI.LiveOut && RegIn && RegOut) { 1202 1203 if (CanCauseEvictionChain && 1204 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1205 // This interference causes our eviction from this assignment, we might 1206 // evict somebody else and eventually someone will spill, add that cost. 1207 // See splitCanCauseEvictionChain for detailed description of scenarios. 1208 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1209 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1210 1211 *CanCauseEvictionChain = true; 1212 1213 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1214 Order)) { 1215 // This interference causes local interval to spill, add that cost. 1216 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1217 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1218 } 1219 } 1220 1221 if (BI.LiveIn) 1222 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1223 if (BI.LiveOut) 1224 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1225 while (Ins--) 1226 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1227 } 1228 1229 for (unsigned Number : Cand.ActiveBlocks) { 1230 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1231 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1232 if (!RegIn && !RegOut) 1233 continue; 1234 if (RegIn && RegOut) { 1235 // We need double spill code if this block has interference. 1236 Cand.Intf.moveToBlock(Number); 1237 if (Cand.Intf.hasInterference()) { 1238 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1239 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1240 1241 // Check wheather a local interval is going to be created during the 1242 // region split. 1243 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1244 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1245 // This interference cause our eviction from this assignment, we might 1246 // evict somebody else, add that cost. 1247 // See splitCanCauseEvictionChain for detailed description of 1248 // scenarios. 1249 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1250 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1251 1252 *CanCauseEvictionChain = true; 1253 } 1254 } 1255 continue; 1256 } 1257 // live-in / stack-out or stack-in live-out. 1258 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1259 } 1260 return GlobalCost; 1261 } 1262 1263 /// splitAroundRegion - Split the current live range around the regions 1264 /// determined by BundleCand and GlobalCand. 1265 /// 1266 /// Before calling this function, GlobalCand and BundleCand must be initialized 1267 /// so each bundle is assigned to a valid candidate, or NoCand for the 1268 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1269 /// objects must be initialized for the current live range, and intervals 1270 /// created for the used candidates. 1271 /// 1272 /// @param LREdit The LiveRangeEdit object handling the current split. 1273 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1274 /// must appear in this list. 1275 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1276 ArrayRef<unsigned> UsedCands) { 1277 // These are the intervals created for new global ranges. We may create more 1278 // intervals for local ranges. 1279 const unsigned NumGlobalIntvs = LREdit.size(); 1280 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1281 << " globals.\n"); 1282 assert(NumGlobalIntvs && "No global intervals configured"); 1283 1284 // Isolate even single instructions when dealing with a proper sub-class. 1285 // That guarantees register class inflation for the stack interval because it 1286 // is all copies. 1287 Register Reg = SA->getParent().reg(); 1288 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1289 1290 // First handle all the blocks with uses. 1291 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1292 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1293 unsigned Number = BI.MBB->getNumber(); 1294 unsigned IntvIn = 0, IntvOut = 0; 1295 SlotIndex IntfIn, IntfOut; 1296 if (BI.LiveIn) { 1297 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1298 if (CandIn != NoCand) { 1299 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1300 IntvIn = Cand.IntvIdx; 1301 Cand.Intf.moveToBlock(Number); 1302 IntfIn = Cand.Intf.first(); 1303 } 1304 } 1305 if (BI.LiveOut) { 1306 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1307 if (CandOut != NoCand) { 1308 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1309 IntvOut = Cand.IntvIdx; 1310 Cand.Intf.moveToBlock(Number); 1311 IntfOut = Cand.Intf.last(); 1312 } 1313 } 1314 1315 // Create separate intervals for isolated blocks with multiple uses. 1316 if (!IntvIn && !IntvOut) { 1317 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1318 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1319 SE->splitSingleBlock(BI); 1320 continue; 1321 } 1322 1323 if (IntvIn && IntvOut) 1324 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1325 else if (IntvIn) 1326 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1327 else 1328 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1329 } 1330 1331 // Handle live-through blocks. The relevant live-through blocks are stored in 1332 // the ActiveBlocks list with each candidate. We need to filter out 1333 // duplicates. 1334 BitVector Todo = SA->getThroughBlocks(); 1335 for (unsigned UsedCand : UsedCands) { 1336 ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks; 1337 for (unsigned Number : Blocks) { 1338 if (!Todo.test(Number)) 1339 continue; 1340 Todo.reset(Number); 1341 1342 unsigned IntvIn = 0, IntvOut = 0; 1343 SlotIndex IntfIn, IntfOut; 1344 1345 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1346 if (CandIn != NoCand) { 1347 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1348 IntvIn = Cand.IntvIdx; 1349 Cand.Intf.moveToBlock(Number); 1350 IntfIn = Cand.Intf.first(); 1351 } 1352 1353 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1354 if (CandOut != NoCand) { 1355 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1356 IntvOut = Cand.IntvIdx; 1357 Cand.Intf.moveToBlock(Number); 1358 IntfOut = Cand.Intf.last(); 1359 } 1360 if (!IntvIn && !IntvOut) 1361 continue; 1362 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1363 } 1364 } 1365 1366 ++NumGlobalSplits; 1367 1368 SmallVector<unsigned, 8> IntvMap; 1369 SE->finish(&IntvMap); 1370 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1371 1372 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1373 1374 // Sort out the new intervals created by splitting. We get four kinds: 1375 // - Remainder intervals should not be split again. 1376 // - Candidate intervals can be assigned to Cand.PhysReg. 1377 // - Block-local splits are candidates for local splitting. 1378 // - DCE leftovers should go back on the queue. 1379 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1380 const LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1381 1382 // Ignore old intervals from DCE. 1383 if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New) 1384 continue; 1385 1386 // Remainder interval. Don't try splitting again, spill if it doesn't 1387 // allocate. 1388 if (IntvMap[I] == 0) { 1389 ExtraInfo->setStage(Reg, RS_Spill); 1390 continue; 1391 } 1392 1393 // Global intervals. Allow repeated splitting as long as the number of live 1394 // blocks is strictly decreasing. 1395 if (IntvMap[I] < NumGlobalIntvs) { 1396 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1397 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1398 << " blocks as original.\n"); 1399 // Don't allow repeated splitting as a safe guard against looping. 1400 ExtraInfo->setStage(Reg, RS_Split2); 1401 } 1402 continue; 1403 } 1404 1405 // Other intervals are treated as new. This includes local intervals created 1406 // for blocks with multiple uses, and anything created by DCE. 1407 } 1408 1409 if (VerifyEnabled) 1410 MF->verify(this, "After splitting live range around region"); 1411 } 1412 1413 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg, 1414 AllocationOrder &Order, 1415 SmallVectorImpl<Register> &NewVRegs) { 1416 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1417 return MCRegister::NoRegister; 1418 unsigned NumCands = 0; 1419 BlockFrequency SpillCost = calcSpillCost(); 1420 BlockFrequency BestCost; 1421 1422 // Check if we can split this live range around a compact region. 1423 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1424 if (HasCompact) { 1425 // Yes, keep GlobalCand[0] as the compact region candidate. 1426 NumCands = 1; 1427 BestCost = BlockFrequency::getMaxFrequency(); 1428 } else { 1429 // No benefit from the compact region, our fallback will be per-block 1430 // splitting. Make sure we find a solution that is cheaper than spilling. 1431 BestCost = SpillCost; 1432 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1433 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1434 } 1435 1436 bool CanCauseEvictionChain = false; 1437 unsigned BestCand = 1438 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1439 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1440 1441 // Split candidates with compact regions can cause a bad eviction sequence. 1442 // See splitCanCauseEvictionChain for detailed description of scenarios. 1443 // To avoid it, we need to comapre the cost with the spill cost and not the 1444 // current max frequency. 1445 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1446 CanCauseEvictionChain) { 1447 return MCRegister::NoRegister; 1448 } 1449 1450 // No solutions found, fall back to single block splitting. 1451 if (!HasCompact && BestCand == NoCand) 1452 return MCRegister::NoRegister; 1453 1454 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1455 } 1456 1457 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1458 AllocationOrder &Order, 1459 BlockFrequency &BestCost, 1460 unsigned &NumCands, bool IgnoreCSR, 1461 bool *CanCauseEvictionChain) { 1462 unsigned BestCand = NoCand; 1463 for (MCPhysReg PhysReg : Order) { 1464 assert(PhysReg); 1465 if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg)) 1466 continue; 1467 1468 // Discard bad candidates before we run out of interference cache cursors. 1469 // This will only affect register classes with a lot of registers (>32). 1470 if (NumCands == IntfCache.getMaxCursors()) { 1471 unsigned WorstCount = ~0u; 1472 unsigned Worst = 0; 1473 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1474 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1475 continue; 1476 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1477 if (Count < WorstCount) { 1478 Worst = CandIndex; 1479 WorstCount = Count; 1480 } 1481 } 1482 --NumCands; 1483 GlobalCand[Worst] = GlobalCand[NumCands]; 1484 if (BestCand == NumCands) 1485 BestCand = Worst; 1486 } 1487 1488 if (GlobalCand.size() <= NumCands) 1489 GlobalCand.resize(NumCands+1); 1490 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1491 Cand.reset(IntfCache, PhysReg); 1492 1493 SpillPlacer->prepare(Cand.LiveBundles); 1494 BlockFrequency Cost; 1495 if (!addSplitConstraints(Cand.Intf, Cost)) { 1496 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1497 continue; 1498 } 1499 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1500 MBFI->printBlockFreq(dbgs(), Cost)); 1501 if (Cost >= BestCost) { 1502 LLVM_DEBUG({ 1503 if (BestCand == NoCand) 1504 dbgs() << " worse than no bundles\n"; 1505 else 1506 dbgs() << " worse than " 1507 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1508 }); 1509 continue; 1510 } 1511 if (!growRegion(Cand)) { 1512 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1513 continue; 1514 } 1515 1516 SpillPlacer->finish(); 1517 1518 // No live bundles, defer to splitSingleBlocks(). 1519 if (!Cand.LiveBundles.any()) { 1520 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1521 continue; 1522 } 1523 1524 bool HasEvictionChain = false; 1525 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1526 LLVM_DEBUG({ 1527 dbgs() << ", total = "; 1528 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1529 for (int I : Cand.LiveBundles.set_bits()) 1530 dbgs() << " EB#" << I; 1531 dbgs() << ".\n"; 1532 }); 1533 if (Cost < BestCost) { 1534 BestCand = NumCands; 1535 BestCost = Cost; 1536 // See splitCanCauseEvictionChain for detailed description of bad 1537 // eviction chain scenarios. 1538 if (CanCauseEvictionChain) 1539 *CanCauseEvictionChain = HasEvictionChain; 1540 } 1541 ++NumCands; 1542 } 1543 1544 if (CanCauseEvictionChain && BestCand != NoCand) { 1545 // See splitCanCauseEvictionChain for detailed description of bad 1546 // eviction chain scenarios. 1547 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1548 << printReg(VirtReg.reg(), TRI) << " may "); 1549 if (!(*CanCauseEvictionChain)) 1550 LLVM_DEBUG(dbgs() << "not "); 1551 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1552 } 1553 1554 return BestCand; 1555 } 1556 1557 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1558 bool HasCompact, 1559 SmallVectorImpl<Register> &NewVRegs) { 1560 SmallVector<unsigned, 8> UsedCands; 1561 // Prepare split editor. 1562 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1563 SE->reset(LREdit, SplitSpillMode); 1564 1565 // Assign all edge bundles to the preferred candidate, or NoCand. 1566 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1567 1568 // Assign bundles for the best candidate region. 1569 if (BestCand != NoCand) { 1570 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1571 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1572 UsedCands.push_back(BestCand); 1573 Cand.IntvIdx = SE->openIntv(); 1574 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1575 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1576 (void)B; 1577 } 1578 } 1579 1580 // Assign bundles for the compact region. 1581 if (HasCompact) { 1582 GlobalSplitCandidate &Cand = GlobalCand.front(); 1583 assert(!Cand.PhysReg && "Compact region has no physreg"); 1584 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1585 UsedCands.push_back(0); 1586 Cand.IntvIdx = SE->openIntv(); 1587 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1588 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1589 (void)B; 1590 } 1591 } 1592 1593 splitAroundRegion(LREdit, UsedCands); 1594 return 0; 1595 } 1596 1597 //===----------------------------------------------------------------------===// 1598 // Per-Block Splitting 1599 //===----------------------------------------------------------------------===// 1600 1601 /// tryBlockSplit - Split a global live range around every block with uses. This 1602 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1603 /// they don't allocate. 1604 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1605 SmallVectorImpl<Register> &NewVRegs) { 1606 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1607 Register Reg = VirtReg.reg(); 1608 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1609 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1610 SE->reset(LREdit, SplitSpillMode); 1611 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1612 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1613 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1614 SE->splitSingleBlock(BI); 1615 } 1616 // No blocks were split. 1617 if (LREdit.empty()) 1618 return 0; 1619 1620 // We did split for some blocks. 1621 SmallVector<unsigned, 8> IntvMap; 1622 SE->finish(&IntvMap); 1623 1624 // Tell LiveDebugVariables about the new ranges. 1625 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1626 1627 // Sort out the new intervals created by splitting. The remainder interval 1628 // goes straight to spilling, the new local ranges get to stay RS_New. 1629 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1630 const LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 1631 if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0) 1632 ExtraInfo->setStage(LI, RS_Spill); 1633 } 1634 1635 if (VerifyEnabled) 1636 MF->verify(this, "After splitting live range around basic blocks"); 1637 return 0; 1638 } 1639 1640 //===----------------------------------------------------------------------===// 1641 // Per-Instruction Splitting 1642 //===----------------------------------------------------------------------===// 1643 1644 /// Get the number of allocatable registers that match the constraints of \p Reg 1645 /// on \p MI and that are also in \p SuperRC. 1646 static unsigned getNumAllocatableRegsForConstraints( 1647 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 1648 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1649 const RegisterClassInfo &RCI) { 1650 assert(SuperRC && "Invalid register class"); 1651 1652 const TargetRegisterClass *ConstrainedRC = 1653 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1654 /* ExploreBundle */ true); 1655 if (!ConstrainedRC) 1656 return 0; 1657 return RCI.getNumAllocatableRegs(ConstrainedRC); 1658 } 1659 1660 /// tryInstructionSplit - Split a live range around individual instructions. 1661 /// This is normally not worthwhile since the spiller is doing essentially the 1662 /// same thing. However, when the live range is in a constrained register 1663 /// class, it may help to insert copies such that parts of the live range can 1664 /// be moved to a larger register class. 1665 /// 1666 /// This is similar to spilling to a larger register class. 1667 unsigned 1668 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1669 SmallVectorImpl<Register> &NewVRegs) { 1670 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1671 // There is no point to this if there are no larger sub-classes. 1672 if (!RegClassInfo.isProperSubClass(CurRC)) 1673 return 0; 1674 1675 // Always enable split spill mode, since we're effectively spilling to a 1676 // register. 1677 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1678 SE->reset(LREdit, SplitEditor::SM_Size); 1679 1680 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1681 if (Uses.size() <= 1) 1682 return 0; 1683 1684 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 1685 << " individual instrs.\n"); 1686 1687 const TargetRegisterClass *SuperRC = 1688 TRI->getLargestLegalSuperClass(CurRC, *MF); 1689 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 1690 // Split around every non-copy instruction if this split will relax 1691 // the constraints on the virtual register. 1692 // Otherwise, splitting just inserts uncoalescable copies that do not help 1693 // the allocation. 1694 for (const SlotIndex Use : Uses) { 1695 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 1696 if (MI->isFullCopy() || 1697 SuperRCNumAllocatableRegs == 1698 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 1699 TII, TRI, RCI)) { 1700 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 1701 continue; 1702 } 1703 SE->openIntv(); 1704 SlotIndex SegStart = SE->enterIntvBefore(Use); 1705 SlotIndex SegStop = SE->leaveIntvAfter(Use); 1706 SE->useIntv(SegStart, SegStop); 1707 } 1708 1709 if (LREdit.empty()) { 1710 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 1711 return 0; 1712 } 1713 1714 SmallVector<unsigned, 8> IntvMap; 1715 SE->finish(&IntvMap); 1716 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1717 // Assign all new registers to RS_Spill. This was the last chance. 1718 ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1719 return 0; 1720 } 1721 1722 //===----------------------------------------------------------------------===// 1723 // Local Splitting 1724 //===----------------------------------------------------------------------===// 1725 1726 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1727 /// in order to use PhysReg between two entries in SA->UseSlots. 1728 /// 1729 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 1730 /// 1731 void RAGreedy::calcGapWeights(MCRegister PhysReg, 1732 SmallVectorImpl<float> &GapWeight) { 1733 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1734 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1735 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1736 const unsigned NumGaps = Uses.size()-1; 1737 1738 // Start and end points for the interference check. 1739 SlotIndex StartIdx = 1740 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1741 SlotIndex StopIdx = 1742 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1743 1744 GapWeight.assign(NumGaps, 0.0f); 1745 1746 // Add interference from each overlapping register. 1747 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1748 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1749 .checkInterference()) 1750 continue; 1751 1752 // We know that VirtReg is a continuous interval from FirstInstr to 1753 // LastInstr, so we don't need InterferenceQuery. 1754 // 1755 // Interference that overlaps an instruction is counted in both gaps 1756 // surrounding the instruction. The exception is interference before 1757 // StartIdx and after StopIdx. 1758 // 1759 LiveIntervalUnion::SegmentIter IntI = 1760 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1761 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1762 // Skip the gaps before IntI. 1763 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1764 if (++Gap == NumGaps) 1765 break; 1766 if (Gap == NumGaps) 1767 break; 1768 1769 // Update the gaps covered by IntI. 1770 const float weight = IntI.value()->weight(); 1771 for (; Gap != NumGaps; ++Gap) { 1772 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1773 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1774 break; 1775 } 1776 if (Gap == NumGaps) 1777 break; 1778 } 1779 } 1780 1781 // Add fixed interference. 1782 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1783 const LiveRange &LR = LIS->getRegUnit(*Units); 1784 LiveRange::const_iterator I = LR.find(StartIdx); 1785 LiveRange::const_iterator E = LR.end(); 1786 1787 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1788 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1789 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1790 if (++Gap == NumGaps) 1791 break; 1792 if (Gap == NumGaps) 1793 break; 1794 1795 for (; Gap != NumGaps; ++Gap) { 1796 GapWeight[Gap] = huge_valf; 1797 if (Uses[Gap+1].getBaseIndex() >= I->end) 1798 break; 1799 } 1800 if (Gap == NumGaps) 1801 break; 1802 } 1803 } 1804 } 1805 1806 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1807 /// basic block. 1808 /// 1809 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1810 SmallVectorImpl<Register> &NewVRegs) { 1811 // TODO: the function currently only handles a single UseBlock; it should be 1812 // possible to generalize. 1813 if (SA->getUseBlocks().size() != 1) 1814 return 0; 1815 1816 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1817 1818 // Note that it is possible to have an interval that is live-in or live-out 1819 // while only covering a single block - A phi-def can use undef values from 1820 // predecessors, and the block could be a single-block loop. 1821 // We don't bother doing anything clever about such a case, we simply assume 1822 // that the interval is continuous from FirstInstr to LastInstr. We should 1823 // make sure that we don't do anything illegal to such an interval, though. 1824 1825 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1826 if (Uses.size() <= 2) 1827 return 0; 1828 const unsigned NumGaps = Uses.size()-1; 1829 1830 LLVM_DEBUG({ 1831 dbgs() << "tryLocalSplit: "; 1832 for (const auto &Use : Uses) 1833 dbgs() << ' ' << Use; 1834 dbgs() << '\n'; 1835 }); 1836 1837 // If VirtReg is live across any register mask operands, compute a list of 1838 // gaps with register masks. 1839 SmallVector<unsigned, 8> RegMaskGaps; 1840 if (Matrix->checkRegMaskInterference(VirtReg)) { 1841 // Get regmask slots for the whole block. 1842 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1843 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1844 // Constrain to VirtReg's live range. 1845 unsigned RI = 1846 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 1847 unsigned RE = RMS.size(); 1848 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 1849 // Look for Uses[I] <= RMS <= Uses[I + 1]. 1850 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 1851 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 1852 continue; 1853 // Skip a regmask on the same instruction as the last use. It doesn't 1854 // overlap the live range. 1855 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 1856 break; 1857 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 1858 << Uses[I + 1]); 1859 RegMaskGaps.push_back(I); 1860 // Advance ri to the next gap. A regmask on one of the uses counts in 1861 // both gaps. 1862 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 1863 ++RI; 1864 } 1865 LLVM_DEBUG(dbgs() << '\n'); 1866 } 1867 1868 // Since we allow local split results to be split again, there is a risk of 1869 // creating infinite loops. It is tempting to require that the new live 1870 // ranges have less instructions than the original. That would guarantee 1871 // convergence, but it is too strict. A live range with 3 instructions can be 1872 // split 2+3 (including the COPY), and we want to allow that. 1873 // 1874 // Instead we use these rules: 1875 // 1876 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1877 // noop split, of course). 1878 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1879 // the new ranges must have fewer instructions than before the split. 1880 // 3. New ranges with the same number of instructions are marked RS_Split2, 1881 // smaller ranges are marked RS_New. 1882 // 1883 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1884 // excessive splitting and infinite loops. 1885 // 1886 bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2; 1887 1888 // Best split candidate. 1889 unsigned BestBefore = NumGaps; 1890 unsigned BestAfter = 0; 1891 float BestDiff = 0; 1892 1893 const float blockFreq = 1894 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1895 (1.0f / MBFI->getEntryFreq()); 1896 SmallVector<float, 8> GapWeight; 1897 1898 for (MCPhysReg PhysReg : Order) { 1899 assert(PhysReg); 1900 // Keep track of the largest spill weight that would need to be evicted in 1901 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 1902 calcGapWeights(PhysReg, GapWeight); 1903 1904 // Remove any gaps with regmask clobbers. 1905 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1906 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 1907 GapWeight[RegMaskGaps[I]] = huge_valf; 1908 1909 // Try to find the best sequence of gaps to close. 1910 // The new spill weight must be larger than any gap interference. 1911 1912 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1913 unsigned SplitBefore = 0, SplitAfter = 1; 1914 1915 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1916 // It is the spill weight that needs to be evicted. 1917 float MaxGap = GapWeight[0]; 1918 1919 while (true) { 1920 // Live before/after split? 1921 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1922 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1923 1924 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 1925 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 1926 1927 // Stop before the interval gets so big we wouldn't be making progress. 1928 if (!LiveBefore && !LiveAfter) { 1929 LLVM_DEBUG(dbgs() << " all\n"); 1930 break; 1931 } 1932 // Should the interval be extended or shrunk? 1933 bool Shrink = true; 1934 1935 // How many gaps would the new range have? 1936 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1937 1938 // Legally, without causing looping? 1939 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1940 1941 if (Legal && MaxGap < huge_valf) { 1942 // Estimate the new spill weight. Each instruction reads or writes the 1943 // register. Conservatively assume there are no read-modify-write 1944 // instructions. 1945 // 1946 // Try to guess the size of the new interval. 1947 const float EstWeight = normalizeSpillWeight( 1948 blockFreq * (NewGaps + 1), 1949 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1950 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1951 1); 1952 // Would this split be possible to allocate? 1953 // Never allocate all gaps, we wouldn't be making progress. 1954 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 1955 if (EstWeight * Hysteresis >= MaxGap) { 1956 Shrink = false; 1957 float Diff = EstWeight - MaxGap; 1958 if (Diff > BestDiff) { 1959 LLVM_DEBUG(dbgs() << " (best)"); 1960 BestDiff = Hysteresis * Diff; 1961 BestBefore = SplitBefore; 1962 BestAfter = SplitAfter; 1963 } 1964 } 1965 } 1966 1967 // Try to shrink. 1968 if (Shrink) { 1969 if (++SplitBefore < SplitAfter) { 1970 LLVM_DEBUG(dbgs() << " shrink\n"); 1971 // Recompute the max when necessary. 1972 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1973 MaxGap = GapWeight[SplitBefore]; 1974 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 1975 MaxGap = std::max(MaxGap, GapWeight[I]); 1976 } 1977 continue; 1978 } 1979 MaxGap = 0; 1980 } 1981 1982 // Try to extend the interval. 1983 if (SplitAfter >= NumGaps) { 1984 LLVM_DEBUG(dbgs() << " end\n"); 1985 break; 1986 } 1987 1988 LLVM_DEBUG(dbgs() << " extend\n"); 1989 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1990 } 1991 } 1992 1993 // Didn't find any candidates? 1994 if (BestBefore == NumGaps) 1995 return 0; 1996 1997 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 1998 << Uses[BestAfter] << ", " << BestDiff << ", " 1999 << (BestAfter - BestBefore + 1) << " instrs\n"); 2000 2001 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2002 SE->reset(LREdit); 2003 2004 SE->openIntv(); 2005 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2006 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2007 SE->useIntv(SegStart, SegStop); 2008 SmallVector<unsigned, 8> IntvMap; 2009 SE->finish(&IntvMap); 2010 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2011 // If the new range has the same number of instructions as before, mark it as 2012 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2013 // leave the new intervals as RS_New so they can compete. 2014 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2015 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2016 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2017 if (NewGaps >= NumGaps) { 2018 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 2019 assert(!ProgressRequired && "Didn't make progress when it was required."); 2020 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 2021 if (IntvMap[I] == 1) { 2022 ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 2023 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 2024 } 2025 LLVM_DEBUG(dbgs() << '\n'); 2026 } 2027 ++NumLocalSplits; 2028 2029 return 0; 2030 } 2031 2032 //===----------------------------------------------------------------------===// 2033 // Live Range Splitting 2034 //===----------------------------------------------------------------------===// 2035 2036 /// trySplit - Try to split VirtReg or one of its interferences, making it 2037 /// assignable. 2038 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2039 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2040 SmallVectorImpl<Register> &NewVRegs, 2041 const SmallVirtRegSet &FixedRegisters) { 2042 // Ranges must be Split2 or less. 2043 if (ExtraInfo->getStage(VirtReg) >= RS_Spill) 2044 return 0; 2045 2046 // Local intervals are handled separately. 2047 if (LIS->intervalIsInOneMBB(VirtReg)) { 2048 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2049 TimerGroupDescription, TimePassesIsEnabled); 2050 SA->analyze(&VirtReg); 2051 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2052 if (PhysReg || !NewVRegs.empty()) 2053 return PhysReg; 2054 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2055 } 2056 2057 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2058 TimerGroupDescription, TimePassesIsEnabled); 2059 2060 SA->analyze(&VirtReg); 2061 2062 // First try to split around a region spanning multiple blocks. RS_Split2 2063 // ranges already made dubious progress with region splitting, so they go 2064 // straight to single block splitting. 2065 if (ExtraInfo->getStage(VirtReg) < RS_Split2) { 2066 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2067 if (PhysReg || !NewVRegs.empty()) 2068 return PhysReg; 2069 } 2070 2071 // Then isolate blocks. 2072 return tryBlockSplit(VirtReg, Order, NewVRegs); 2073 } 2074 2075 //===----------------------------------------------------------------------===// 2076 // Last Chance Recoloring 2077 //===----------------------------------------------------------------------===// 2078 2079 /// Return true if \p reg has any tied def operand. 2080 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2081 for (const MachineOperand &MO : MRI->def_operands(reg)) 2082 if (MO.isTied()) 2083 return true; 2084 2085 return false; 2086 } 2087 2088 /// mayRecolorAllInterferences - Check if the virtual registers that 2089 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2090 /// recolored to free \p PhysReg. 2091 /// When true is returned, \p RecoloringCandidates has been augmented with all 2092 /// the live intervals that need to be recolored in order to free \p PhysReg 2093 /// for \p VirtReg. 2094 /// \p FixedRegisters contains all the virtual registers that cannot be 2095 /// recolored. 2096 bool RAGreedy::mayRecolorAllInterferences( 2097 MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates, 2098 const SmallVirtRegSet &FixedRegisters) { 2099 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2100 2101 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2102 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2103 // If there is LastChanceRecoloringMaxInterference or more interferences, 2104 // chances are one would not be recolorable. 2105 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= 2106 LastChanceRecoloringMaxInterference && 2107 !ExhaustiveSearch) { 2108 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2109 CutOffInfo |= CO_Interf; 2110 return false; 2111 } 2112 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 2113 // If Intf is done and sit on the same register class as VirtReg, 2114 // it would not be recolorable as it is in the same state as VirtReg. 2115 // However, if VirtReg has tied defs and Intf doesn't, then 2116 // there is still a point in examining if it can be recolorable. 2117 if (((ExtraInfo->getStage(*Intf) == RS_Done && 2118 MRI->getRegClass(Intf->reg()) == CurRC) && 2119 !(hasTiedDef(MRI, VirtReg.reg()) && 2120 !hasTiedDef(MRI, Intf->reg()))) || 2121 FixedRegisters.count(Intf->reg())) { 2122 LLVM_DEBUG( 2123 dbgs() << "Early abort: the interference is not recolorable.\n"); 2124 return false; 2125 } 2126 RecoloringCandidates.insert(Intf); 2127 } 2128 } 2129 return true; 2130 } 2131 2132 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2133 /// its interferences. 2134 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2135 /// virtual register that was using it. The recoloring process may recursively 2136 /// use the last chance recoloring. Therefore, when a virtual register has been 2137 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2138 /// be last-chance-recolored again during this recoloring "session". 2139 /// E.g., 2140 /// Let 2141 /// vA can use {R1, R2 } 2142 /// vB can use { R2, R3} 2143 /// vC can use {R1 } 2144 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2145 /// instance) and they all interfere. 2146 /// 2147 /// vA is assigned R1 2148 /// vB is assigned R2 2149 /// vC tries to evict vA but vA is already done. 2150 /// Regular register allocation fails. 2151 /// 2152 /// Last chance recoloring kicks in: 2153 /// vC does as if vA was evicted => vC uses R1. 2154 /// vC is marked as fixed. 2155 /// vA needs to find a color. 2156 /// None are available. 2157 /// vA cannot evict vC: vC is a fixed virtual register now. 2158 /// vA does as if vB was evicted => vA uses R2. 2159 /// vB needs to find a color. 2160 /// R3 is available. 2161 /// Recoloring => vC = R1, vA = R2, vB = R3 2162 /// 2163 /// \p Order defines the preferred allocation order for \p VirtReg. 2164 /// \p NewRegs will contain any new virtual register that have been created 2165 /// (split, spill) during the process and that must be assigned. 2166 /// \p FixedRegisters contains all the virtual registers that cannot be 2167 /// recolored. 2168 /// \p Depth gives the current depth of the last chance recoloring. 2169 /// \return a physical register that can be used for VirtReg or ~0u if none 2170 /// exists. 2171 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2172 AllocationOrder &Order, 2173 SmallVectorImpl<Register> &NewVRegs, 2174 SmallVirtRegSet &FixedRegisters, 2175 unsigned Depth) { 2176 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 2177 return ~0u; 2178 2179 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2180 // Ranges must be Done. 2181 assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2182 "Last chance recoloring should really be last chance"); 2183 // Set the max depth to LastChanceRecoloringMaxDepth. 2184 // We may want to reconsider that if we end up with a too large search space 2185 // for target with hundreds of registers. 2186 // Indeed, in that case we may want to cut the search space earlier. 2187 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2188 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2189 CutOffInfo |= CO_Depth; 2190 return ~0u; 2191 } 2192 2193 // Set of Live intervals that will need to be recolored. 2194 SmallLISet RecoloringCandidates; 2195 // Record the original mapping virtual register to physical register in case 2196 // the recoloring fails. 2197 DenseMap<Register, MCRegister> VirtRegToPhysReg; 2198 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2199 // this recoloring "session". 2200 assert(!FixedRegisters.count(VirtReg.reg())); 2201 FixedRegisters.insert(VirtReg.reg()); 2202 SmallVector<Register, 4> CurrentNewVRegs; 2203 2204 for (MCRegister PhysReg : Order) { 2205 assert(PhysReg.isValid()); 2206 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2207 << printReg(PhysReg, TRI) << '\n'); 2208 RecoloringCandidates.clear(); 2209 VirtRegToPhysReg.clear(); 2210 CurrentNewVRegs.clear(); 2211 2212 // It is only possible to recolor virtual register interference. 2213 if (Matrix->checkInterference(VirtReg, PhysReg) > 2214 LiveRegMatrix::IK_VirtReg) { 2215 LLVM_DEBUG( 2216 dbgs() << "Some interferences are not with virtual registers.\n"); 2217 2218 continue; 2219 } 2220 2221 // Early give up on this PhysReg if it is obvious we cannot recolor all 2222 // the interferences. 2223 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2224 FixedRegisters)) { 2225 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2226 continue; 2227 } 2228 2229 // RecoloringCandidates contains all the virtual registers that interfer 2230 // with VirtReg on PhysReg (or one of its aliases). 2231 // Enqueue them for recoloring and perform the actual recoloring. 2232 PQueue RecoloringQueue; 2233 for (LiveInterval *RC : RecoloringCandidates) { 2234 Register ItVirtReg = RC->reg(); 2235 enqueue(RecoloringQueue, RC); 2236 assert(VRM->hasPhys(ItVirtReg) && 2237 "Interferences are supposed to be with allocated variables"); 2238 2239 // Record the current allocation. 2240 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2241 // unset the related struct. 2242 Matrix->unassign(*RC); 2243 } 2244 2245 // Do as if VirtReg was assigned to PhysReg so that the underlying 2246 // recoloring has the right information about the interferes and 2247 // available colors. 2248 Matrix->assign(VirtReg, PhysReg); 2249 2250 // Save the current recoloring state. 2251 // If we cannot recolor all the interferences, we will have to start again 2252 // at this point for the next physical register. 2253 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2254 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2255 FixedRegisters, Depth)) { 2256 // Push the queued vregs into the main queue. 2257 for (Register NewVReg : CurrentNewVRegs) 2258 NewVRegs.push_back(NewVReg); 2259 // Do not mess up with the global assignment process. 2260 // I.e., VirtReg must be unassigned. 2261 Matrix->unassign(VirtReg); 2262 return PhysReg; 2263 } 2264 2265 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2266 << printReg(PhysReg, TRI) << '\n'); 2267 2268 // The recoloring attempt failed, undo the changes. 2269 FixedRegisters = SaveFixedRegisters; 2270 Matrix->unassign(VirtReg); 2271 2272 // For a newly created vreg which is also in RecoloringCandidates, 2273 // don't add it to NewVRegs because its physical register will be restored 2274 // below. Other vregs in CurrentNewVRegs are created by calling 2275 // selectOrSplit and should be added into NewVRegs. 2276 for (Register &R : CurrentNewVRegs) { 2277 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2278 continue; 2279 NewVRegs.push_back(R); 2280 } 2281 2282 for (LiveInterval *RC : RecoloringCandidates) { 2283 Register ItVirtReg = RC->reg(); 2284 if (VRM->hasPhys(ItVirtReg)) 2285 Matrix->unassign(*RC); 2286 MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2287 Matrix->assign(*RC, ItPhysReg); 2288 } 2289 } 2290 2291 // Last chance recoloring did not worked either, give up. 2292 return ~0u; 2293 } 2294 2295 /// tryRecoloringCandidates - Try to assign a new color to every register 2296 /// in \RecoloringQueue. 2297 /// \p NewRegs will contain any new virtual register created during the 2298 /// recoloring process. 2299 /// \p FixedRegisters[in/out] contains all the registers that have been 2300 /// recolored. 2301 /// \return true if all virtual registers in RecoloringQueue were successfully 2302 /// recolored, false otherwise. 2303 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2304 SmallVectorImpl<Register> &NewVRegs, 2305 SmallVirtRegSet &FixedRegisters, 2306 unsigned Depth) { 2307 while (!RecoloringQueue.empty()) { 2308 LiveInterval *LI = dequeue(RecoloringQueue); 2309 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2310 MCRegister PhysReg = 2311 selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2312 // When splitting happens, the live-range may actually be empty. 2313 // In that case, this is okay to continue the recoloring even 2314 // if we did not find an alternative color for it. Indeed, 2315 // there will not be anything to color for LI in the end. 2316 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2317 return false; 2318 2319 if (!PhysReg) { 2320 assert(LI->empty() && "Only empty live-range do not require a register"); 2321 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2322 << " succeeded. Empty LI.\n"); 2323 continue; 2324 } 2325 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2326 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2327 2328 Matrix->assign(*LI, PhysReg); 2329 FixedRegisters.insert(LI->reg()); 2330 } 2331 return true; 2332 } 2333 2334 //===----------------------------------------------------------------------===// 2335 // Main Entry Point 2336 //===----------------------------------------------------------------------===// 2337 2338 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2339 SmallVectorImpl<Register> &NewVRegs) { 2340 CutOffInfo = CO_None; 2341 LLVMContext &Ctx = MF->getFunction().getContext(); 2342 SmallVirtRegSet FixedRegisters; 2343 MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2344 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2345 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2346 if (CutOffEncountered == CO_Depth) 2347 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2348 "reached. Use -fexhaustive-register-search to skip " 2349 "cutoffs"); 2350 else if (CutOffEncountered == CO_Interf) 2351 Ctx.emitError("register allocation failed: maximum interference for " 2352 "recoloring reached. Use -fexhaustive-register-search " 2353 "to skip cutoffs"); 2354 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2355 Ctx.emitError("register allocation failed: maximum interference and " 2356 "depth for recoloring reached. Use " 2357 "-fexhaustive-register-search to skip cutoffs"); 2358 } 2359 return Reg; 2360 } 2361 2362 /// Using a CSR for the first time has a cost because it causes push|pop 2363 /// to be added to prologue|epilogue. Splitting a cold section of the live 2364 /// range can have lower cost than using the CSR for the first time; 2365 /// Spilling a live range in the cold path can have lower cost than using 2366 /// the CSR for the first time. Returns the physical register if we decide 2367 /// to use the CSR; otherwise return 0. 2368 MCRegister 2369 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 2370 MCRegister PhysReg, uint8_t &CostPerUseLimit, 2371 SmallVectorImpl<Register> &NewVRegs) { 2372 if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2373 // We choose spill over using the CSR for the first time if the spill cost 2374 // is lower than CSRCost. 2375 SA->analyze(&VirtReg); 2376 if (calcSpillCost() >= CSRCost) 2377 return PhysReg; 2378 2379 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2380 // we will not use a callee-saved register in tryEvict. 2381 CostPerUseLimit = 1; 2382 return 0; 2383 } 2384 if (ExtraInfo->getStage(VirtReg) < RS_Split) { 2385 // We choose pre-splitting over using the CSR for the first time if 2386 // the cost of splitting is lower than CSRCost. 2387 SA->analyze(&VirtReg); 2388 unsigned NumCands = 0; 2389 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2390 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2391 NumCands, true /*IgnoreCSR*/); 2392 if (BestCand == NoCand) 2393 // Use the CSR if we can't find a region split below CSRCost. 2394 return PhysReg; 2395 2396 // Perform the actual pre-splitting. 2397 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2398 return 0; 2399 } 2400 return PhysReg; 2401 } 2402 2403 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2404 // Do not keep invalid information around. 2405 SetOfBrokenHints.remove(&LI); 2406 } 2407 2408 void RAGreedy::initializeCSRCost() { 2409 // We use the larger one out of the command-line option and the value report 2410 // by TRI. 2411 CSRCost = BlockFrequency( 2412 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2413 if (!CSRCost.getFrequency()) 2414 return; 2415 2416 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2417 uint64_t ActualEntry = MBFI->getEntryFreq(); 2418 if (!ActualEntry) { 2419 CSRCost = 0; 2420 return; 2421 } 2422 uint64_t FixedEntry = 1 << 14; 2423 if (ActualEntry < FixedEntry) 2424 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2425 else if (ActualEntry <= UINT32_MAX) 2426 // Invert the fraction and divide. 2427 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2428 else 2429 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2430 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2431 } 2432 2433 /// Collect the hint info for \p Reg. 2434 /// The results are stored into \p Out. 2435 /// \p Out is not cleared before being populated. 2436 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2437 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2438 if (!Instr.isFullCopy()) 2439 continue; 2440 // Look for the other end of the copy. 2441 Register OtherReg = Instr.getOperand(0).getReg(); 2442 if (OtherReg == Reg) { 2443 OtherReg = Instr.getOperand(1).getReg(); 2444 if (OtherReg == Reg) 2445 continue; 2446 } 2447 // Get the current assignment. 2448 MCRegister OtherPhysReg = 2449 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2450 // Push the collected information. 2451 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2452 OtherPhysReg)); 2453 } 2454 } 2455 2456 /// Using the given \p List, compute the cost of the broken hints if 2457 /// \p PhysReg was used. 2458 /// \return The cost of \p List for \p PhysReg. 2459 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2460 MCRegister PhysReg) { 2461 BlockFrequency Cost = 0; 2462 for (const HintInfo &Info : List) { 2463 if (Info.PhysReg != PhysReg) 2464 Cost += Info.Freq; 2465 } 2466 return Cost; 2467 } 2468 2469 /// Using the register assigned to \p VirtReg, try to recolor 2470 /// all the live ranges that are copy-related with \p VirtReg. 2471 /// The recoloring is then propagated to all the live-ranges that have 2472 /// been recolored and so on, until no more copies can be coalesced or 2473 /// it is not profitable. 2474 /// For a given live range, profitability is determined by the sum of the 2475 /// frequencies of the non-identity copies it would introduce with the old 2476 /// and new register. 2477 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2478 // We have a broken hint, check if it is possible to fix it by 2479 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2480 // some register and PhysReg may be available for the other live-ranges. 2481 SmallSet<Register, 4> Visited; 2482 SmallVector<unsigned, 2> RecoloringCandidates; 2483 HintsInfo Info; 2484 Register Reg = VirtReg.reg(); 2485 MCRegister PhysReg = VRM->getPhys(Reg); 2486 // Start the recoloring algorithm from the input live-interval, then 2487 // it will propagate to the ones that are copy-related with it. 2488 Visited.insert(Reg); 2489 RecoloringCandidates.push_back(Reg); 2490 2491 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2492 << '(' << printReg(PhysReg, TRI) << ")\n"); 2493 2494 do { 2495 Reg = RecoloringCandidates.pop_back_val(); 2496 2497 // We cannot recolor physical register. 2498 if (Register::isPhysicalRegister(Reg)) 2499 continue; 2500 2501 // This may be a skipped class 2502 if (!VRM->hasPhys(Reg)) { 2503 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2504 "We have an unallocated variable which should have been handled"); 2505 continue; 2506 } 2507 2508 // Get the live interval mapped with this virtual register to be able 2509 // to check for the interference with the new color. 2510 LiveInterval &LI = LIS->getInterval(Reg); 2511 MCRegister CurrPhys = VRM->getPhys(Reg); 2512 // Check that the new color matches the register class constraints and 2513 // that it is free for this live range. 2514 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2515 Matrix->checkInterference(LI, PhysReg))) 2516 continue; 2517 2518 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2519 << ") is recolorable.\n"); 2520 2521 // Gather the hint info. 2522 Info.clear(); 2523 collectHintInfo(Reg, Info); 2524 // Check if recoloring the live-range will increase the cost of the 2525 // non-identity copies. 2526 if (CurrPhys != PhysReg) { 2527 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2528 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2529 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2530 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2531 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2532 << '\n'); 2533 if (OldCopiesCost < NewCopiesCost) { 2534 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2535 continue; 2536 } 2537 // At this point, the cost is either cheaper or equal. If it is 2538 // equal, we consider this is profitable because it may expose 2539 // more recoloring opportunities. 2540 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2541 // Recolor the live-range. 2542 Matrix->unassign(LI); 2543 Matrix->assign(LI, PhysReg); 2544 } 2545 // Push all copy-related live-ranges to keep reconciling the broken 2546 // hints. 2547 for (const HintInfo &HI : Info) { 2548 if (Visited.insert(HI.Reg).second) 2549 RecoloringCandidates.push_back(HI.Reg); 2550 } 2551 } while (!RecoloringCandidates.empty()); 2552 } 2553 2554 /// Try to recolor broken hints. 2555 /// Broken hints may be repaired by recoloring when an evicted variable 2556 /// freed up a register for a larger live-range. 2557 /// Consider the following example: 2558 /// BB1: 2559 /// a = 2560 /// b = 2561 /// BB2: 2562 /// ... 2563 /// = b 2564 /// = a 2565 /// Let us assume b gets split: 2566 /// BB1: 2567 /// a = 2568 /// b = 2569 /// BB2: 2570 /// c = b 2571 /// ... 2572 /// d = c 2573 /// = d 2574 /// = a 2575 /// Because of how the allocation work, b, c, and d may be assigned different 2576 /// colors. Now, if a gets evicted later: 2577 /// BB1: 2578 /// a = 2579 /// st a, SpillSlot 2580 /// b = 2581 /// BB2: 2582 /// c = b 2583 /// ... 2584 /// d = c 2585 /// = d 2586 /// e = ld SpillSlot 2587 /// = e 2588 /// This is likely that we can assign the same register for b, c, and d, 2589 /// getting rid of 2 copies. 2590 void RAGreedy::tryHintsRecoloring() { 2591 for (LiveInterval *LI : SetOfBrokenHints) { 2592 assert(Register::isVirtualRegister(LI->reg()) && 2593 "Recoloring is possible only for virtual registers"); 2594 // Some dead defs may be around (e.g., because of debug uses). 2595 // Ignore those. 2596 if (!VRM->hasPhys(LI->reg())) 2597 continue; 2598 tryHintRecoloring(*LI); 2599 } 2600 } 2601 2602 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2603 SmallVectorImpl<Register> &NewVRegs, 2604 SmallVirtRegSet &FixedRegisters, 2605 unsigned Depth) { 2606 uint8_t CostPerUseLimit = uint8_t(~0u); 2607 // First try assigning a free register. 2608 auto Order = 2609 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 2610 if (MCRegister PhysReg = 2611 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 2612 // If VirtReg got an assignment, the eviction info is no longer relevant. 2613 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2614 // When NewVRegs is not empty, we may have made decisions such as evicting 2615 // a virtual register, go with the earlier decisions and use the physical 2616 // register. 2617 if (CSRCost.getFrequency() && 2618 EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) { 2619 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2620 CostPerUseLimit, NewVRegs); 2621 if (CSRReg || !NewVRegs.empty()) 2622 // Return now if we decide to use a CSR or create new vregs due to 2623 // pre-splitting. 2624 return CSRReg; 2625 } else 2626 return PhysReg; 2627 } 2628 2629 LiveRangeStage Stage = ExtraInfo->getStage(VirtReg); 2630 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 2631 << ExtraInfo->getCascade(VirtReg.reg()) << '\n'); 2632 2633 // Try to evict a less worthy live range, but only for ranges from the primary 2634 // queue. The RS_Split ranges already failed to do this, and they should not 2635 // get a second chance until they have been split. 2636 if (Stage != RS_Split) 2637 if (Register PhysReg = 2638 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 2639 FixedRegisters)) { 2640 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 2641 // If VirtReg has a hint and that hint is broken record this 2642 // virtual register as a recoloring candidate for broken hint. 2643 // Indeed, since we evicted a variable in its neighborhood it is 2644 // likely we can at least partially recolor some of the 2645 // copy-related live-ranges. 2646 if (Hint && Hint != PhysReg) 2647 SetOfBrokenHints.insert(&VirtReg); 2648 // If VirtReg eviction someone, the eviction info for it as an evictee is 2649 // no longer relevant. 2650 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2651 return PhysReg; 2652 } 2653 2654 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2655 2656 // The first time we see a live range, don't try to split or spill. 2657 // Wait until the second time, when all smaller ranges have been allocated. 2658 // This gives a better picture of the interference to split around. 2659 if (Stage < RS_Split) { 2660 ExtraInfo->setStage(VirtReg, RS_Split); 2661 LLVM_DEBUG(dbgs() << "wait for second round\n"); 2662 NewVRegs.push_back(VirtReg.reg()); 2663 return 0; 2664 } 2665 2666 if (Stage < RS_Spill) { 2667 // Try splitting VirtReg or interferences. 2668 unsigned NewVRegSizeBefore = NewVRegs.size(); 2669 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 2670 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 2671 // If VirtReg got split, the eviction info is no longer relevant. 2672 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2673 return PhysReg; 2674 } 2675 } 2676 2677 // If we couldn't allocate a register from spilling, there is probably some 2678 // invalid inline assembly. The base class will report it. 2679 if (Stage >= RS_Done || !VirtReg.isSpillable()) 2680 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2681 Depth); 2682 2683 // Finally spill VirtReg itself. 2684 if ((EnableDeferredSpilling || 2685 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 2686 ExtraInfo->getStage(VirtReg) < RS_Memory) { 2687 // TODO: This is experimental and in particular, we do not model 2688 // the live range splitting done by spilling correctly. 2689 // We would need a deep integration with the spiller to do the 2690 // right thing here. Anyway, that is still good for early testing. 2691 ExtraInfo->setStage(VirtReg, RS_Memory); 2692 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 2693 NewVRegs.push_back(VirtReg.reg()); 2694 } else { 2695 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2696 TimerGroupDescription, TimePassesIsEnabled); 2697 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2698 spiller().spill(LRE); 2699 ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2700 2701 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 2702 // the new regs are kept in LDV (still mapping to the old register), until 2703 // we rewrite spilled locations in LDV at a later stage. 2704 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 2705 2706 if (VerifyEnabled) 2707 MF->verify(this, "After spilling"); 2708 } 2709 2710 // The live virtual register requesting allocation was spilled, so tell 2711 // the caller not to allocate anything during this round. 2712 return 0; 2713 } 2714 2715 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 2716 using namespace ore; 2717 if (Spills) { 2718 R << NV("NumSpills", Spills) << " spills "; 2719 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 2720 } 2721 if (FoldedSpills) { 2722 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 2723 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 2724 << " total folded spills cost "; 2725 } 2726 if (Reloads) { 2727 R << NV("NumReloads", Reloads) << " reloads "; 2728 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 2729 } 2730 if (FoldedReloads) { 2731 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 2732 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 2733 << " total folded reloads cost "; 2734 } 2735 if (ZeroCostFoldedReloads) 2736 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 2737 << " zero cost folded reloads "; 2738 if (Copies) { 2739 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 2740 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 2741 } 2742 } 2743 2744 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 2745 RAGreedyStats Stats; 2746 const MachineFrameInfo &MFI = MF->getFrameInfo(); 2747 int FI; 2748 2749 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 2750 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 2751 A->getPseudoValue())->getFrameIndex()); 2752 }; 2753 auto isPatchpointInstr = [](const MachineInstr &MI) { 2754 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 2755 MI.getOpcode() == TargetOpcode::STACKMAP || 2756 MI.getOpcode() == TargetOpcode::STATEPOINT; 2757 }; 2758 for (MachineInstr &MI : MBB) { 2759 if (MI.isCopy()) { 2760 MachineOperand &Dest = MI.getOperand(0); 2761 MachineOperand &Src = MI.getOperand(1); 2762 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 2763 Src.getReg().isVirtual()) 2764 ++Stats.Copies; 2765 continue; 2766 } 2767 2768 SmallVector<const MachineMemOperand *, 2> Accesses; 2769 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2770 ++Stats.Reloads; 2771 continue; 2772 } 2773 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2774 ++Stats.Spills; 2775 continue; 2776 } 2777 if (TII->hasLoadFromStackSlot(MI, Accesses) && 2778 llvm::any_of(Accesses, isSpillSlotAccess)) { 2779 if (!isPatchpointInstr(MI)) { 2780 Stats.FoldedReloads += Accesses.size(); 2781 continue; 2782 } 2783 // For statepoint there may be folded and zero cost folded stack reloads. 2784 std::pair<unsigned, unsigned> NonZeroCostRange = 2785 TII->getPatchpointUnfoldableRange(MI); 2786 SmallSet<unsigned, 16> FoldedReloads; 2787 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 2788 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 2789 MachineOperand &MO = MI.getOperand(Idx); 2790 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 2791 continue; 2792 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 2793 FoldedReloads.insert(MO.getIndex()); 2794 else 2795 ZeroCostFoldedReloads.insert(MO.getIndex()); 2796 } 2797 // If stack slot is used in folded reload it is not zero cost then. 2798 for (unsigned Slot : FoldedReloads) 2799 ZeroCostFoldedReloads.erase(Slot); 2800 Stats.FoldedReloads += FoldedReloads.size(); 2801 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 2802 continue; 2803 } 2804 Accesses.clear(); 2805 if (TII->hasStoreToStackSlot(MI, Accesses) && 2806 llvm::any_of(Accesses, isSpillSlotAccess)) { 2807 Stats.FoldedSpills += Accesses.size(); 2808 } 2809 } 2810 // Set cost of collected statistic by multiplication to relative frequency of 2811 // this basic block. 2812 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 2813 Stats.ReloadsCost = RelFreq * Stats.Reloads; 2814 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 2815 Stats.SpillsCost = RelFreq * Stats.Spills; 2816 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 2817 Stats.CopiesCost = RelFreq * Stats.Copies; 2818 return Stats; 2819 } 2820 2821 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 2822 RAGreedyStats Stats; 2823 2824 // Sum up the spill and reloads in subloops. 2825 for (MachineLoop *SubLoop : *L) 2826 Stats.add(reportStats(SubLoop)); 2827 2828 for (MachineBasicBlock *MBB : L->getBlocks()) 2829 // Handle blocks that were not included in subloops. 2830 if (Loops->getLoopFor(MBB) == L) 2831 Stats.add(computeStats(*MBB)); 2832 2833 if (!Stats.isEmpty()) { 2834 using namespace ore; 2835 2836 ORE->emit([&]() { 2837 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 2838 L->getStartLoc(), L->getHeader()); 2839 Stats.report(R); 2840 R << "generated in loop"; 2841 return R; 2842 }); 2843 } 2844 return Stats; 2845 } 2846 2847 void RAGreedy::reportStats() { 2848 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 2849 return; 2850 RAGreedyStats Stats; 2851 for (MachineLoop *L : *Loops) 2852 Stats.add(reportStats(L)); 2853 // Process non-loop blocks. 2854 for (MachineBasicBlock &MBB : *MF) 2855 if (!Loops->getLoopFor(&MBB)) 2856 Stats.add(computeStats(MBB)); 2857 if (!Stats.isEmpty()) { 2858 using namespace ore; 2859 2860 ORE->emit([&]() { 2861 DebugLoc Loc; 2862 if (auto *SP = MF->getFunction().getSubprogram()) 2863 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 2864 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 2865 &MF->front()); 2866 Stats.report(R); 2867 R << "generated in function"; 2868 return R; 2869 }); 2870 } 2871 } 2872 2873 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2874 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2875 << "********** Function: " << mf.getName() << '\n'); 2876 2877 MF = &mf; 2878 TRI = MF->getSubtarget().getRegisterInfo(); 2879 TII = MF->getSubtarget().getInstrInfo(); 2880 RCI.runOnMachineFunction(mf); 2881 2882 EnableAdvancedRASplitCost = 2883 ConsiderLocalIntervalCost.getNumOccurrences() 2884 ? ConsiderLocalIntervalCost 2885 : MF->getSubtarget().enableAdvancedRASplitCost(); 2886 2887 if (VerifyEnabled) 2888 MF->verify(this, "Before greedy register allocator"); 2889 2890 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2891 getAnalysis<LiveIntervals>(), 2892 getAnalysis<LiveRegMatrix>()); 2893 Indexes = &getAnalysis<SlotIndexes>(); 2894 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2895 DomTree = &getAnalysis<MachineDominatorTree>(); 2896 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2897 Loops = &getAnalysis<MachineLoopInfo>(); 2898 Bundles = &getAnalysis<EdgeBundles>(); 2899 SpillPlacer = &getAnalysis<SpillPlacement>(); 2900 DebugVars = &getAnalysis<LiveDebugVariables>(); 2901 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2902 2903 initializeCSRCost(); 2904 2905 RegCosts = TRI->getRegisterCosts(*MF); 2906 2907 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 2908 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 2909 2910 VRAI->calculateSpillWeightsAndHints(); 2911 2912 LLVM_DEBUG(LIS->dump()); 2913 2914 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2915 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 2916 ExtraInfo.emplace(); 2917 EvictAdvisor = getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor( 2918 *MF, Matrix, LIS, VRM, RegClassInfo, &*ExtraInfo); 2919 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2920 GlobalCand.resize(32); // This will grow as needed. 2921 SetOfBrokenHints.clear(); 2922 LastEvicted.clear(); 2923 2924 allocatePhysRegs(); 2925 tryHintsRecoloring(); 2926 2927 if (VerifyEnabled) 2928 MF->verify(this, "Before post optimization"); 2929 postOptimization(); 2930 reportStats(); 2931 2932 releaseMemory(); 2933 return true; 2934 } 2935