1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "SpillPlacement.h" 19 #include "SplitKit.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/IndexedMap.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/CodeGen/CalcSpillWeights.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervalUnion.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveRegMatrix.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RegAllocRegistry.h" 53 #include "llvm/CodeGen/RegisterClassInfo.h" 54 #include "llvm/CodeGen/SlotIndexes.h" 55 #include "llvm/CodeGen/Spiller.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/BlockFrequency.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/Timer.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <memory> 76 #include <queue> 77 #include <tuple> 78 #include <utility> 79 80 using namespace llvm; 81 82 #define DEBUG_TYPE "regalloc" 83 84 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 85 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 86 STATISTIC(NumEvicted, "Number of interferences evicted"); 87 88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 89 "split-spill-mode", cl::Hidden, 90 cl::desc("Spill mode for splitting live ranges"), 91 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 92 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 93 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 94 cl::init(SplitEditor::SM_Speed)); 95 96 static cl::opt<unsigned> 97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 98 cl::desc("Last chance recoloring max depth"), 99 cl::init(5)); 100 101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 102 "lcr-max-interf", cl::Hidden, 103 cl::desc("Last chance recoloring maximum number of considered" 104 " interference at a time"), 105 cl::init(8)); 106 107 static cl::opt<bool> ExhaustiveSearch( 108 "exhaustive-register-search", cl::NotHidden, 109 cl::desc("Exhaustive Search for registers bypassing the depth " 110 "and interference cutoffs of last chance recoloring"), 111 cl::Hidden); 112 113 static cl::opt<bool> EnableLocalReassignment( 114 "enable-local-reassign", cl::Hidden, 115 cl::desc("Local reassignment can yield better allocation decisions, but " 116 "may be compile time intensive"), 117 cl::init(false)); 118 119 static cl::opt<bool> EnableDeferredSpilling( 120 "enable-deferred-spilling", cl::Hidden, 121 cl::desc("Instead of spilling a variable right away, defer the actual " 122 "code insertion to the end of the allocation. That way the " 123 "allocator might still find a suitable coloring for this " 124 "variable because of other evicted variables."), 125 cl::init(false)); 126 127 // FIXME: Find a good default for this flag and remove the flag. 128 static cl::opt<unsigned> 129 CSRFirstTimeCost("regalloc-csr-first-time-cost", 130 cl::desc("Cost for first time use of callee-saved register."), 131 cl::init(0), cl::Hidden); 132 133 static cl::opt<bool> ConsiderLocalIntervalCost( 134 "consider-local-interval-cost", cl::Hidden, 135 cl::desc("Consider the cost of local intervals created by a split " 136 "candidate when choosing the best split candidate."), 137 cl::init(false)); 138 139 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 140 createGreedyRegisterAllocator); 141 142 namespace { 143 144 class RAGreedy : public MachineFunctionPass, 145 public RegAllocBase, 146 private LiveRangeEdit::Delegate { 147 // Convenient shortcuts. 148 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 149 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 150 using SmallVirtRegSet = SmallSet<Register, 16>; 151 152 // context 153 MachineFunction *MF; 154 155 // Shortcuts to some useful interface. 156 const TargetInstrInfo *TII; 157 const TargetRegisterInfo *TRI; 158 RegisterClassInfo RCI; 159 160 // analyses 161 SlotIndexes *Indexes; 162 MachineBlockFrequencyInfo *MBFI; 163 MachineDominatorTree *DomTree; 164 MachineLoopInfo *Loops; 165 MachineOptimizationRemarkEmitter *ORE; 166 EdgeBundles *Bundles; 167 SpillPlacement *SpillPlacer; 168 LiveDebugVariables *DebugVars; 169 AliasAnalysis *AA; 170 171 // state 172 std::unique_ptr<Spiller> SpillerInstance; 173 PQueue Queue; 174 unsigned NextCascade; 175 std::unique_ptr<VirtRegAuxInfo> VRAI; 176 177 // Live ranges pass through a number of stages as we try to allocate them. 178 // Some of the stages may also create new live ranges: 179 // 180 // - Region splitting. 181 // - Per-block splitting. 182 // - Local splitting. 183 // - Spilling. 184 // 185 // Ranges produced by one of the stages skip the previous stages when they are 186 // dequeued. This improves performance because we can skip interference checks 187 // that are unlikely to give any results. It also guarantees that the live 188 // range splitting algorithm terminates, something that is otherwise hard to 189 // ensure. 190 enum LiveRangeStage { 191 /// Newly created live range that has never been queued. 192 RS_New, 193 194 /// Only attempt assignment and eviction. Then requeue as RS_Split. 195 RS_Assign, 196 197 /// Attempt live range splitting if assignment is impossible. 198 RS_Split, 199 200 /// Attempt more aggressive live range splitting that is guaranteed to make 201 /// progress. This is used for split products that may not be making 202 /// progress. 203 RS_Split2, 204 205 /// Live range will be spilled. No more splitting will be attempted. 206 RS_Spill, 207 208 209 /// Live range is in memory. Because of other evictions, it might get moved 210 /// in a register in the end. 211 RS_Memory, 212 213 /// There is nothing more we can do to this live range. Abort compilation 214 /// if it can't be assigned. 215 RS_Done 216 }; 217 218 // Enum CutOffStage to keep a track whether the register allocation failed 219 // because of the cutoffs encountered in last chance recoloring. 220 // Note: This is used as bitmask. New value should be next power of 2. 221 enum CutOffStage { 222 // No cutoffs encountered 223 CO_None = 0, 224 225 // lcr-max-depth cutoff encountered 226 CO_Depth = 1, 227 228 // lcr-max-interf cutoff encountered 229 CO_Interf = 2 230 }; 231 232 uint8_t CutOffInfo; 233 234 #ifndef NDEBUG 235 static const char *const StageName[]; 236 #endif 237 238 // RegInfo - Keep additional information about each live range. 239 struct RegInfo { 240 LiveRangeStage Stage = RS_New; 241 242 // Cascade - Eviction loop prevention. See canEvictInterference(). 243 unsigned Cascade = 0; 244 245 RegInfo() = default; 246 }; 247 248 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 249 250 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 251 return ExtraRegInfo[VirtReg.reg()].Stage; 252 } 253 254 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 255 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 256 ExtraRegInfo[VirtReg.reg()].Stage = Stage; 257 } 258 259 template<typename Iterator> 260 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 261 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 262 for (;Begin != End; ++Begin) { 263 Register Reg = *Begin; 264 if (ExtraRegInfo[Reg].Stage == RS_New) 265 ExtraRegInfo[Reg].Stage = NewStage; 266 } 267 } 268 269 /// Cost of evicting interference. 270 struct EvictionCost { 271 unsigned BrokenHints = 0; ///< Total number of broken hints. 272 float MaxWeight = 0; ///< Maximum spill weight evicted. 273 274 EvictionCost() = default; 275 276 bool isMax() const { return BrokenHints == ~0u; } 277 278 void setMax() { BrokenHints = ~0u; } 279 280 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 281 282 bool operator<(const EvictionCost &O) const { 283 return std::tie(BrokenHints, MaxWeight) < 284 std::tie(O.BrokenHints, O.MaxWeight); 285 } 286 }; 287 288 /// EvictionTrack - Keeps track of past evictions in order to optimize region 289 /// split decision. 290 class EvictionTrack { 291 292 public: 293 using EvictorInfo = 294 std::pair<Register /* evictor */, MCRegister /* physreg */>; 295 using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>; 296 297 private: 298 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 299 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 300 EvicteeInfo Evictees; 301 302 public: 303 /// Clear all eviction information. 304 void clear() { Evictees.clear(); } 305 306 /// Clear eviction information for the given evictee Vreg. 307 /// E.g. when Vreg get's a new allocation, the old eviction info is no 308 /// longer relevant. 309 /// \param Evictee The evictee Vreg for whom we want to clear collected 310 /// eviction info. 311 void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); } 312 313 /// Track new eviction. 314 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 315 /// \param PhysReg The physical register Evictee was evicted from. 316 /// \param Evictor The evictor Vreg that evicted Evictee. 317 /// \param Evictee The evictee Vreg. 318 void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) { 319 Evictees[Evictee].first = Evictor; 320 Evictees[Evictee].second = PhysReg; 321 } 322 323 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 324 /// \param Evictee The evictee vreg. 325 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 326 /// nobody has evicted Evictee from PhysReg. 327 EvictorInfo getEvictor(Register Evictee) { 328 if (Evictees.count(Evictee)) { 329 return Evictees[Evictee]; 330 } 331 332 return EvictorInfo(0, 0); 333 } 334 }; 335 336 // Keeps track of past evictions in order to optimize region split decision. 337 EvictionTrack LastEvicted; 338 339 // splitting state. 340 std::unique_ptr<SplitAnalysis> SA; 341 std::unique_ptr<SplitEditor> SE; 342 343 /// Cached per-block interference maps 344 InterferenceCache IntfCache; 345 346 /// All basic blocks where the current register has uses. 347 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 348 349 /// Global live range splitting candidate info. 350 struct GlobalSplitCandidate { 351 // Register intended for assignment, or 0. 352 MCRegister PhysReg; 353 354 // SplitKit interval index for this candidate. 355 unsigned IntvIdx; 356 357 // Interference for PhysReg. 358 InterferenceCache::Cursor Intf; 359 360 // Bundles where this candidate should be live. 361 BitVector LiveBundles; 362 SmallVector<unsigned, 8> ActiveBlocks; 363 364 void reset(InterferenceCache &Cache, MCRegister Reg) { 365 PhysReg = Reg; 366 IntvIdx = 0; 367 Intf.setPhysReg(Cache, Reg); 368 LiveBundles.clear(); 369 ActiveBlocks.clear(); 370 } 371 372 // Set B[I] = C for every live bundle where B[I] was NoCand. 373 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 374 unsigned Count = 0; 375 for (unsigned I : LiveBundles.set_bits()) 376 if (B[I] == NoCand) { 377 B[I] = C; 378 Count++; 379 } 380 return Count; 381 } 382 }; 383 384 /// Candidate info for each PhysReg in AllocationOrder. 385 /// This vector never shrinks, but grows to the size of the largest register 386 /// class. 387 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 388 389 enum : unsigned { NoCand = ~0u }; 390 391 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 392 /// NoCand which indicates the stack interval. 393 SmallVector<unsigned, 32> BundleCand; 394 395 /// Callee-save register cost, calculated once per machine function. 396 BlockFrequency CSRCost; 397 398 /// Run or not the local reassignment heuristic. This information is 399 /// obtained from the TargetSubtargetInfo. 400 bool EnableLocalReassign; 401 402 /// Enable or not the consideration of the cost of local intervals created 403 /// by a split candidate when choosing the best split candidate. 404 bool EnableAdvancedRASplitCost; 405 406 /// Set of broken hints that may be reconciled later because of eviction. 407 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 408 409 /// The register cost values. This list will be recreated for each Machine 410 /// Function 411 ArrayRef<uint8_t> RegCosts; 412 413 public: 414 RAGreedy(); 415 416 /// Return the pass name. 417 StringRef getPassName() const override { return "Greedy Register Allocator"; } 418 419 /// RAGreedy analysis usage. 420 void getAnalysisUsage(AnalysisUsage &AU) const override; 421 void releaseMemory() override; 422 Spiller &spiller() override { return *SpillerInstance; } 423 void enqueue(LiveInterval *LI) override; 424 LiveInterval *dequeue() override; 425 MCRegister selectOrSplit(LiveInterval &, 426 SmallVectorImpl<Register> &) override; 427 void aboutToRemoveInterval(LiveInterval &) override; 428 429 /// Perform register allocation. 430 bool runOnMachineFunction(MachineFunction &mf) override; 431 432 MachineFunctionProperties getRequiredProperties() const override { 433 return MachineFunctionProperties().set( 434 MachineFunctionProperties::Property::NoPHIs); 435 } 436 437 MachineFunctionProperties getClearedProperties() const override { 438 return MachineFunctionProperties().set( 439 MachineFunctionProperties::Property::IsSSA); 440 } 441 442 static char ID; 443 444 private: 445 MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &, 446 SmallVirtRegSet &, unsigned = 0); 447 448 bool LRE_CanEraseVirtReg(Register) override; 449 void LRE_WillShrinkVirtReg(Register) override; 450 void LRE_DidCloneVirtReg(Register, Register) override; 451 void enqueue(PQueue &CurQueue, LiveInterval *LI); 452 LiveInterval *dequeue(PQueue &CurQueue); 453 454 BlockFrequency calcSpillCost(); 455 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 456 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 457 bool growRegion(GlobalSplitCandidate &Cand); 458 bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand, 459 unsigned BBNumber, 460 const AllocationOrder &Order); 461 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 462 GlobalSplitCandidate &Cand, unsigned BBNumber, 463 const AllocationOrder &Order); 464 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 465 const AllocationOrder &Order, 466 bool *CanCauseEvictionChain); 467 bool calcCompactRegion(GlobalSplitCandidate&); 468 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 469 void calcGapWeights(MCRegister, SmallVectorImpl<float> &); 470 Register canReassign(LiveInterval &VirtReg, Register PrevReg) const; 471 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const; 472 bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &, 473 const SmallVirtRegSet &) const; 474 bool canEvictInterferenceInRange(LiveInterval &VirtReg, MCRegister PhysReg, 475 SlotIndex Start, SlotIndex End, 476 EvictionCost &MaxCost) const; 477 MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order, 478 LiveInterval &VirtReg, SlotIndex Start, 479 SlotIndex End, float *BestEvictWeight); 480 void evictInterference(LiveInterval &, MCRegister, 481 SmallVectorImpl<Register> &); 482 bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg, 483 SmallLISet &RecoloringCandidates, 484 const SmallVirtRegSet &FixedRegisters); 485 486 MCRegister tryAssign(LiveInterval&, AllocationOrder&, 487 SmallVectorImpl<Register>&, 488 const SmallVirtRegSet&); 489 MCRegister tryEvict(LiveInterval &, AllocationOrder &, 490 SmallVectorImpl<Register> &, uint8_t, 491 const SmallVirtRegSet &); 492 MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &, 493 SmallVectorImpl<Register> &); 494 /// Calculate cost of region splitting. 495 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 496 AllocationOrder &Order, 497 BlockFrequency &BestCost, 498 unsigned &NumCands, bool IgnoreCSR, 499 bool *CanCauseEvictionChain = nullptr); 500 /// Perform region splitting. 501 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 502 bool HasCompact, 503 SmallVectorImpl<Register> &NewVRegs); 504 /// Check other options before using a callee-saved register for the first 505 /// time. 506 MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg, 507 AllocationOrder &Order, MCRegister PhysReg, 508 uint8_t &CostPerUseLimit, 509 SmallVectorImpl<Register> &NewVRegs); 510 void initializeCSRCost(); 511 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 512 SmallVectorImpl<Register>&); 513 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 514 SmallVectorImpl<Register>&); 515 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 516 SmallVectorImpl<Register>&); 517 unsigned trySplit(LiveInterval&, AllocationOrder&, 518 SmallVectorImpl<Register>&, 519 const SmallVirtRegSet&); 520 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 521 SmallVectorImpl<Register> &, 522 SmallVirtRegSet &, unsigned); 523 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &, 524 SmallVirtRegSet &, unsigned); 525 void tryHintRecoloring(LiveInterval &); 526 void tryHintsRecoloring(); 527 528 /// Model the information carried by one end of a copy. 529 struct HintInfo { 530 /// The frequency of the copy. 531 BlockFrequency Freq; 532 /// The virtual register or physical register. 533 Register Reg; 534 /// Its currently assigned register. 535 /// In case of a physical register Reg == PhysReg. 536 MCRegister PhysReg; 537 538 HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg) 539 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 540 }; 541 using HintsInfo = SmallVector<HintInfo, 4>; 542 543 BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister); 544 void collectHintInfo(Register, HintsInfo &); 545 546 bool isUnusedCalleeSavedReg(MCRegister PhysReg) const; 547 548 /// Compute and report the number of spills and reloads for a loop. 549 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 550 unsigned &FoldedReloads, unsigned &Spills, 551 unsigned &FoldedSpills); 552 553 /// Report the number of spills and reloads for each loop. 554 void reportNumberOfSplillsReloads() { 555 for (MachineLoop *L : *Loops) { 556 unsigned Reloads, FoldedReloads, Spills, FoldedSpills; 557 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills, 558 FoldedSpills); 559 } 560 } 561 }; 562 563 } // end anonymous namespace 564 565 char RAGreedy::ID = 0; 566 char &llvm::RAGreedyID = RAGreedy::ID; 567 568 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 569 "Greedy Register Allocator", false, false) 570 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 571 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 572 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 573 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 574 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 575 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 576 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 577 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 578 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 579 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 580 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 581 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 582 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 583 INITIALIZE_PASS_END(RAGreedy, "greedy", 584 "Greedy Register Allocator", false, false) 585 586 #ifndef NDEBUG 587 const char *const RAGreedy::StageName[] = { 588 "RS_New", 589 "RS_Assign", 590 "RS_Split", 591 "RS_Split2", 592 "RS_Spill", 593 "RS_Memory", 594 "RS_Done" 595 }; 596 #endif 597 598 // Hysteresis to use when comparing floats. 599 // This helps stabilize decisions based on float comparisons. 600 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 601 602 FunctionPass* llvm::createGreedyRegisterAllocator() { 603 return new RAGreedy(); 604 } 605 606 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 607 } 608 609 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 610 AU.setPreservesCFG(); 611 AU.addRequired<MachineBlockFrequencyInfo>(); 612 AU.addPreserved<MachineBlockFrequencyInfo>(); 613 AU.addRequired<AAResultsWrapperPass>(); 614 AU.addPreserved<AAResultsWrapperPass>(); 615 AU.addRequired<LiveIntervals>(); 616 AU.addPreserved<LiveIntervals>(); 617 AU.addRequired<SlotIndexes>(); 618 AU.addPreserved<SlotIndexes>(); 619 AU.addRequired<LiveDebugVariables>(); 620 AU.addPreserved<LiveDebugVariables>(); 621 AU.addRequired<LiveStacks>(); 622 AU.addPreserved<LiveStacks>(); 623 AU.addRequired<MachineDominatorTree>(); 624 AU.addPreserved<MachineDominatorTree>(); 625 AU.addRequired<MachineLoopInfo>(); 626 AU.addPreserved<MachineLoopInfo>(); 627 AU.addRequired<VirtRegMap>(); 628 AU.addPreserved<VirtRegMap>(); 629 AU.addRequired<LiveRegMatrix>(); 630 AU.addPreserved<LiveRegMatrix>(); 631 AU.addRequired<EdgeBundles>(); 632 AU.addRequired<SpillPlacement>(); 633 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 634 MachineFunctionPass::getAnalysisUsage(AU); 635 } 636 637 //===----------------------------------------------------------------------===// 638 // LiveRangeEdit delegate methods 639 //===----------------------------------------------------------------------===// 640 641 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 642 LiveInterval &LI = LIS->getInterval(VirtReg); 643 if (VRM->hasPhys(VirtReg)) { 644 Matrix->unassign(LI); 645 aboutToRemoveInterval(LI); 646 return true; 647 } 648 // Unassigned virtreg is probably in the priority queue. 649 // RegAllocBase will erase it after dequeueing. 650 // Nonetheless, clear the live-range so that the debug 651 // dump will show the right state for that VirtReg. 652 LI.clear(); 653 return false; 654 } 655 656 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 657 if (!VRM->hasPhys(VirtReg)) 658 return; 659 660 // Register is assigned, put it back on the queue for reassignment. 661 LiveInterval &LI = LIS->getInterval(VirtReg); 662 Matrix->unassign(LI); 663 enqueue(&LI); 664 } 665 666 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 667 // Cloning a register we haven't even heard about yet? Just ignore it. 668 if (!ExtraRegInfo.inBounds(Old)) 669 return; 670 671 // LRE may clone a virtual register because dead code elimination causes it to 672 // be split into connected components. The new components are much smaller 673 // than the original, so they should get a new chance at being assigned. 674 // same stage as the parent. 675 ExtraRegInfo[Old].Stage = RS_Assign; 676 ExtraRegInfo.grow(New); 677 ExtraRegInfo[New] = ExtraRegInfo[Old]; 678 } 679 680 void RAGreedy::releaseMemory() { 681 SpillerInstance.reset(); 682 ExtraRegInfo.clear(); 683 GlobalCand.clear(); 684 } 685 686 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 687 688 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 689 // Prioritize live ranges by size, assigning larger ranges first. 690 // The queue holds (size, reg) pairs. 691 const unsigned Size = LI->getSize(); 692 const Register Reg = LI->reg(); 693 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 694 unsigned Prio; 695 696 ExtraRegInfo.grow(Reg); 697 if (ExtraRegInfo[Reg].Stage == RS_New) 698 ExtraRegInfo[Reg].Stage = RS_Assign; 699 700 if (ExtraRegInfo[Reg].Stage == RS_Split) { 701 // Unsplit ranges that couldn't be allocated immediately are deferred until 702 // everything else has been allocated. 703 Prio = Size; 704 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 705 // Memory operand should be considered last. 706 // Change the priority such that Memory operand are assigned in 707 // the reverse order that they came in. 708 // TODO: Make this a member variable and probably do something about hints. 709 static unsigned MemOp = 0; 710 Prio = MemOp++; 711 } else { 712 // Giant live ranges fall back to the global assignment heuristic, which 713 // prevents excessive spilling in pathological cases. 714 bool ReverseLocal = TRI->reverseLocalAssignment(); 715 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 716 bool ForceGlobal = !ReverseLocal && 717 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 718 719 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 720 LIS->intervalIsInOneMBB(*LI)) { 721 // Allocate original local ranges in linear instruction order. Since they 722 // are singly defined, this produces optimal coloring in the absence of 723 // global interference and other constraints. 724 if (!ReverseLocal) 725 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 726 else { 727 // Allocating bottom up may allow many short LRGs to be assigned first 728 // to one of the cheap registers. This could be much faster for very 729 // large blocks on targets with many physical registers. 730 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 731 } 732 Prio |= RC.AllocationPriority << 24; 733 } else { 734 // Allocate global and split ranges in long->short order. Long ranges that 735 // don't fit should be spilled (or split) ASAP so they don't create 736 // interference. Mark a bit to prioritize global above local ranges. 737 Prio = (1u << 29) + Size; 738 } 739 // Mark a higher bit to prioritize global and local above RS_Split. 740 Prio |= (1u << 31); 741 742 // Boost ranges that have a physical register hint. 743 if (VRM->hasKnownPreference(Reg)) 744 Prio |= (1u << 30); 745 } 746 // The virtual register number is a tie breaker for same-sized ranges. 747 // Give lower vreg numbers higher priority to assign them first. 748 CurQueue.push(std::make_pair(Prio, ~Reg)); 749 } 750 751 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 752 753 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 754 if (CurQueue.empty()) 755 return nullptr; 756 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 757 CurQueue.pop(); 758 return LI; 759 } 760 761 //===----------------------------------------------------------------------===// 762 // Direct Assignment 763 //===----------------------------------------------------------------------===// 764 765 /// tryAssign - Try to assign VirtReg to an available register. 766 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg, 767 AllocationOrder &Order, 768 SmallVectorImpl<Register> &NewVRegs, 769 const SmallVirtRegSet &FixedRegisters) { 770 MCRegister PhysReg; 771 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 772 assert(*I); 773 if (!Matrix->checkInterference(VirtReg, *I)) { 774 if (I.isHint()) 775 return *I; 776 else 777 PhysReg = *I; 778 } 779 } 780 if (!PhysReg.isValid()) 781 return PhysReg; 782 783 // PhysReg is available, but there may be a better choice. 784 785 // If we missed a simple hint, try to cheaply evict interference from the 786 // preferred register. 787 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 788 if (Order.isHint(Hint)) { 789 MCRegister PhysHint = Hint.asMCReg(); 790 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 791 EvictionCost MaxCost; 792 MaxCost.setBrokenHints(1); 793 if (canEvictInterference(VirtReg, PhysHint, true, MaxCost, 794 FixedRegisters)) { 795 evictInterference(VirtReg, PhysHint, NewVRegs); 796 return PhysHint; 797 } 798 // Record the missed hint, we may be able to recover 799 // at the end if the surrounding allocation changed. 800 SetOfBrokenHints.insert(&VirtReg); 801 } 802 803 // Try to evict interference from a cheaper alternative. 804 uint8_t Cost = RegCosts[PhysReg]; 805 806 // Most registers have 0 additional cost. 807 if (!Cost) 808 return PhysReg; 809 810 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 811 << Cost << '\n'); 812 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 813 return CheapReg ? CheapReg : PhysReg; 814 } 815 816 //===----------------------------------------------------------------------===// 817 // Interference eviction 818 //===----------------------------------------------------------------------===// 819 820 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const { 821 auto Order = 822 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 823 MCRegister PhysReg; 824 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 825 if ((*I).id() == PrevReg.id()) 826 continue; 827 828 MCRegUnitIterator Units(*I, TRI); 829 for (; Units.isValid(); ++Units) { 830 // Instantiate a "subquery", not to be confused with the Queries array. 831 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 832 if (subQ.checkInterference()) 833 break; 834 } 835 // If no units have interference, break out with the current PhysReg. 836 if (!Units.isValid()) 837 PhysReg = *I; 838 } 839 if (PhysReg) 840 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 841 << printReg(PrevReg, TRI) << " to " 842 << printReg(PhysReg, TRI) << '\n'); 843 return PhysReg; 844 } 845 846 /// shouldEvict - determine if A should evict the assigned live range B. The 847 /// eviction policy defined by this function together with the allocation order 848 /// defined by enqueue() decides which registers ultimately end up being split 849 /// and spilled. 850 /// 851 /// Cascade numbers are used to prevent infinite loops if this function is a 852 /// cyclic relation. 853 /// 854 /// @param A The live range to be assigned. 855 /// @param IsHint True when A is about to be assigned to its preferred 856 /// register. 857 /// @param B The live range to be evicted. 858 /// @param BreaksHint True when B is already assigned to its preferred register. 859 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 860 LiveInterval &B, bool BreaksHint) const { 861 bool CanSplit = getStage(B) < RS_Spill; 862 863 // Be fairly aggressive about following hints as long as the evictee can be 864 // split. 865 if (CanSplit && IsHint && !BreaksHint) 866 return true; 867 868 if (A.weight() > B.weight()) { 869 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n'); 870 return true; 871 } 872 return false; 873 } 874 875 /// canEvictInterference - Return true if all interferences between VirtReg and 876 /// PhysReg can be evicted. 877 /// 878 /// @param VirtReg Live range that is about to be assigned. 879 /// @param PhysReg Desired register for assignment. 880 /// @param IsHint True when PhysReg is VirtReg's preferred register. 881 /// @param MaxCost Only look for cheaper candidates and update with new cost 882 /// when returning true. 883 /// @returns True when interference can be evicted cheaper than MaxCost. 884 bool RAGreedy::canEvictInterference( 885 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 886 EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const { 887 // It is only possible to evict virtual register interference. 888 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 889 return false; 890 891 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 892 893 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 894 // involved in an eviction before. If a cascade number was assigned, deny 895 // evicting anything with the same or a newer cascade number. This prevents 896 // infinite eviction loops. 897 // 898 // This works out so a register without a cascade number is allowed to evict 899 // anything, and it can be evicted by anything. 900 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 901 if (!Cascade) 902 Cascade = NextCascade; 903 904 EvictionCost Cost; 905 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 906 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 907 // If there is 10 or more interferences, chances are one is heavier. 908 if (Q.collectInterferingVRegs(10) >= 10) 909 return false; 910 911 // Check if any interfering live range is heavier than MaxWeight. 912 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 913 assert(Register::isVirtualRegister(Intf->reg()) && 914 "Only expecting virtual register interference from query"); 915 916 // Do not allow eviction of a virtual register if we are in the middle 917 // of last-chance recoloring and this virtual register is one that we 918 // have scavenged a physical register for. 919 if (FixedRegisters.count(Intf->reg())) 920 return false; 921 922 // Never evict spill products. They cannot split or spill. 923 if (getStage(*Intf) == RS_Done) 924 return false; 925 // Once a live range becomes small enough, it is urgent that we find a 926 // register for it. This is indicated by an infinite spill weight. These 927 // urgent live ranges get to evict almost anything. 928 // 929 // Also allow urgent evictions of unspillable ranges from a strictly 930 // larger allocation order. 931 bool Urgent = 932 !VirtReg.isSpillable() && 933 (Intf->isSpillable() || 934 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 935 RegClassInfo.getNumAllocatableRegs( 936 MRI->getRegClass(Intf->reg()))); 937 // Only evict older cascades or live ranges without a cascade. 938 unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade; 939 if (Cascade <= IntfCascade) { 940 if (!Urgent) 941 return false; 942 // We permit breaking cascades for urgent evictions. It should be the 943 // last resort, though, so make it really expensive. 944 Cost.BrokenHints += 10; 945 } 946 // Would this break a satisfied hint? 947 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 948 // Update eviction cost. 949 Cost.BrokenHints += BreaksHint; 950 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 951 // Abort if this would be too expensive. 952 if (!(Cost < MaxCost)) 953 return false; 954 if (Urgent) 955 continue; 956 // Apply the eviction policy for non-urgent evictions. 957 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 958 return false; 959 // If !MaxCost.isMax(), then we're just looking for a cheap register. 960 // Evicting another local live range in this case could lead to suboptimal 961 // coloring. 962 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 963 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 964 return false; 965 } 966 } 967 } 968 MaxCost = Cost; 969 return true; 970 } 971 972 /// Return true if all interferences between VirtReg and PhysReg between 973 /// Start and End can be evicted. 974 /// 975 /// \param VirtReg Live range that is about to be assigned. 976 /// \param PhysReg Desired register for assignment. 977 /// \param Start Start of range to look for interferences. 978 /// \param End End of range to look for interferences. 979 /// \param MaxCost Only look for cheaper candidates and update with new cost 980 /// when returning true. 981 /// \return True when interference can be evicted cheaper than MaxCost. 982 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg, 983 MCRegister PhysReg, SlotIndex Start, 984 SlotIndex End, 985 EvictionCost &MaxCost) const { 986 EvictionCost Cost; 987 988 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 989 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 990 991 // Check if any interfering live range is heavier than MaxWeight. 992 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 993 // Check if interference overlast the segment in interest. 994 if (!Intf->overlaps(Start, End)) 995 continue; 996 997 // Cannot evict non virtual reg interference. 998 if (!Register::isVirtualRegister(Intf->reg())) 999 return false; 1000 // Never evict spill products. They cannot split or spill. 1001 if (getStage(*Intf) == RS_Done) 1002 return false; 1003 1004 // Would this break a satisfied hint? 1005 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 1006 // Update eviction cost. 1007 Cost.BrokenHints += BreaksHint; 1008 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 1009 // Abort if this would be too expensive. 1010 if (!(Cost < MaxCost)) 1011 return false; 1012 } 1013 } 1014 1015 if (Cost.MaxWeight == 0) 1016 return false; 1017 1018 MaxCost = Cost; 1019 return true; 1020 } 1021 1022 /// Return the physical register that will be best 1023 /// candidate for eviction by a local split interval that will be created 1024 /// between Start and End. 1025 /// 1026 /// \param Order The allocation order 1027 /// \param VirtReg Live range that is about to be assigned. 1028 /// \param Start Start of range to look for interferences 1029 /// \param End End of range to look for interferences 1030 /// \param BestEvictweight The eviction cost of that eviction 1031 /// \return The PhysReg which is the best candidate for eviction and the 1032 /// eviction cost in BestEvictweight 1033 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1034 LiveInterval &VirtReg, 1035 SlotIndex Start, SlotIndex End, 1036 float *BestEvictweight) { 1037 EvictionCost BestEvictCost; 1038 BestEvictCost.setMax(); 1039 BestEvictCost.MaxWeight = VirtReg.weight(); 1040 MCRegister BestEvicteePhys; 1041 1042 // Go over all physical registers and find the best candidate for eviction 1043 for (MCRegister PhysReg : Order.getOrder()) { 1044 1045 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1046 BestEvictCost)) 1047 continue; 1048 1049 // Best so far. 1050 BestEvicteePhys = PhysReg; 1051 } 1052 *BestEvictweight = BestEvictCost.MaxWeight; 1053 return BestEvicteePhys; 1054 } 1055 1056 /// evictInterference - Evict any interferring registers that prevent VirtReg 1057 /// from being assigned to Physreg. This assumes that canEvictInterference 1058 /// returned true. 1059 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg, 1060 SmallVectorImpl<Register> &NewVRegs) { 1061 // Make sure that VirtReg has a cascade number, and assign that cascade 1062 // number to every evicted register. These live ranges than then only be 1063 // evicted by a newer cascade, preventing infinite loops. 1064 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 1065 if (!Cascade) 1066 Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++; 1067 1068 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1069 << " interference: Cascade " << Cascade << '\n'); 1070 1071 // Collect all interfering virtregs first. 1072 SmallVector<LiveInterval*, 8> Intfs; 1073 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1074 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1075 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1076 // should be fast, we may need to recalculate if when different physregs 1077 // overlap the same register unit so we had different SubRanges queried 1078 // against it. 1079 Q.collectInterferingVRegs(); 1080 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1081 Intfs.append(IVR.begin(), IVR.end()); 1082 } 1083 1084 // Evict them second. This will invalidate the queries. 1085 for (LiveInterval *Intf : Intfs) { 1086 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1087 if (!VRM->hasPhys(Intf->reg())) 1088 continue; 1089 1090 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 1091 1092 Matrix->unassign(*Intf); 1093 assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade || 1094 VirtReg.isSpillable() < Intf->isSpillable()) && 1095 "Cannot decrease cascade number, illegal eviction"); 1096 ExtraRegInfo[Intf->reg()].Cascade = Cascade; 1097 ++NumEvicted; 1098 NewVRegs.push_back(Intf->reg()); 1099 } 1100 } 1101 1102 /// Returns true if the given \p PhysReg is a callee saved register and has not 1103 /// been used for allocation yet. 1104 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 1105 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1106 if (!CSR) 1107 return false; 1108 1109 return !Matrix->isPhysRegUsed(PhysReg); 1110 } 1111 1112 /// tryEvict - Try to evict all interferences for a physreg. 1113 /// @param VirtReg Currently unassigned virtual register. 1114 /// @param Order Physregs to try. 1115 /// @return Physreg to assign VirtReg, or 0. 1116 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order, 1117 SmallVectorImpl<Register> &NewVRegs, 1118 uint8_t CostPerUseLimit, 1119 const SmallVirtRegSet &FixedRegisters) { 1120 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1121 TimePassesIsEnabled); 1122 1123 // Keep track of the cheapest interference seen so far. 1124 EvictionCost BestCost; 1125 BestCost.setMax(); 1126 MCRegister BestPhys; 1127 unsigned OrderLimit = Order.getOrder().size(); 1128 1129 // When we are just looking for a reduced cost per use, don't break any 1130 // hints, and only evict smaller spill weights. 1131 if (CostPerUseLimit < uint8_t(~0u)) { 1132 BestCost.BrokenHints = 0; 1133 BestCost.MaxWeight = VirtReg.weight(); 1134 1135 // Check of any registers in RC are below CostPerUseLimit. 1136 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 1137 uint8_t MinCost = RegClassInfo.getMinCost(RC); 1138 if (MinCost >= CostPerUseLimit) { 1139 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1140 << MinCost << ", no cheaper registers to be found.\n"); 1141 return 0; 1142 } 1143 1144 // It is normal for register classes to have a long tail of registers with 1145 // the same cost. We don't need to look at them if they're too expensive. 1146 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 1147 OrderLimit = RegClassInfo.getLastCostChange(RC); 1148 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1149 << " regs.\n"); 1150 } 1151 } 1152 1153 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 1154 ++I) { 1155 MCRegister PhysReg = *I; 1156 assert(PhysReg); 1157 if (RegCosts[PhysReg] >= CostPerUseLimit) 1158 continue; 1159 // The first use of a callee-saved register in a function has cost 1. 1160 // Don't start using a CSR when the CostPerUseLimit is low. 1161 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1162 LLVM_DEBUG( 1163 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1164 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1165 << '\n'); 1166 continue; 1167 } 1168 1169 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost, 1170 FixedRegisters)) 1171 continue; 1172 1173 // Best so far. 1174 BestPhys = PhysReg; 1175 1176 // Stop if the hint can be used. 1177 if (I.isHint()) 1178 break; 1179 } 1180 1181 if (BestPhys.isValid()) 1182 evictInterference(VirtReg, BestPhys, NewVRegs); 1183 return BestPhys; 1184 } 1185 1186 //===----------------------------------------------------------------------===// 1187 // Region Splitting 1188 //===----------------------------------------------------------------------===// 1189 1190 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1191 /// interference pattern in Physreg and its aliases. Add the constraints to 1192 /// SpillPlacement and return the static cost of this split in Cost, assuming 1193 /// that all preferences in SplitConstraints are met. 1194 /// Return false if there are no bundles with positive bias. 1195 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1196 BlockFrequency &Cost) { 1197 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1198 1199 // Reset interference dependent info. 1200 SplitConstraints.resize(UseBlocks.size()); 1201 BlockFrequency StaticCost = 0; 1202 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1203 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1204 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1205 1206 BC.Number = BI.MBB->getNumber(); 1207 Intf.moveToBlock(BC.Number); 1208 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1209 BC.Exit = (BI.LiveOut && 1210 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1211 ? SpillPlacement::PrefReg 1212 : SpillPlacement::DontCare; 1213 BC.ChangesValue = BI.FirstDef.isValid(); 1214 1215 if (!Intf.hasInterference()) 1216 continue; 1217 1218 // Number of spill code instructions to insert. 1219 unsigned Ins = 0; 1220 1221 // Interference for the live-in value. 1222 if (BI.LiveIn) { 1223 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1224 BC.Entry = SpillPlacement::MustSpill; 1225 ++Ins; 1226 } else if (Intf.first() < BI.FirstInstr) { 1227 BC.Entry = SpillPlacement::PrefSpill; 1228 ++Ins; 1229 } else if (Intf.first() < BI.LastInstr) { 1230 ++Ins; 1231 } 1232 1233 // Abort if the spill cannot be inserted at the MBB' start 1234 if (((BC.Entry == SpillPlacement::MustSpill) || 1235 (BC.Entry == SpillPlacement::PrefSpill)) && 1236 SlotIndex::isEarlierInstr(BI.FirstInstr, 1237 SA->getFirstSplitPoint(BC.Number))) 1238 return false; 1239 } 1240 1241 // Interference for the live-out value. 1242 if (BI.LiveOut) { 1243 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1244 BC.Exit = SpillPlacement::MustSpill; 1245 ++Ins; 1246 } else if (Intf.last() > BI.LastInstr) { 1247 BC.Exit = SpillPlacement::PrefSpill; 1248 ++Ins; 1249 } else if (Intf.last() > BI.FirstInstr) { 1250 ++Ins; 1251 } 1252 } 1253 1254 // Accumulate the total frequency of inserted spill code. 1255 while (Ins--) 1256 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1257 } 1258 Cost = StaticCost; 1259 1260 // Add constraints for use-blocks. Note that these are the only constraints 1261 // that may add a positive bias, it is downhill from here. 1262 SpillPlacer->addConstraints(SplitConstraints); 1263 return SpillPlacer->scanActiveBundles(); 1264 } 1265 1266 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1267 /// live-through blocks in Blocks. 1268 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1269 ArrayRef<unsigned> Blocks) { 1270 const unsigned GroupSize = 8; 1271 SpillPlacement::BlockConstraint BCS[GroupSize]; 1272 unsigned TBS[GroupSize]; 1273 unsigned B = 0, T = 0; 1274 1275 for (unsigned Number : Blocks) { 1276 Intf.moveToBlock(Number); 1277 1278 if (!Intf.hasInterference()) { 1279 assert(T < GroupSize && "Array overflow"); 1280 TBS[T] = Number; 1281 if (++T == GroupSize) { 1282 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1283 T = 0; 1284 } 1285 continue; 1286 } 1287 1288 assert(B < GroupSize && "Array overflow"); 1289 BCS[B].Number = Number; 1290 1291 // Abort if the spill cannot be inserted at the MBB' start 1292 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1293 if (!MBB->empty() && 1294 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()), 1295 SA->getFirstSplitPoint(Number))) 1296 return false; 1297 // Interference for the live-in value. 1298 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1299 BCS[B].Entry = SpillPlacement::MustSpill; 1300 else 1301 BCS[B].Entry = SpillPlacement::PrefSpill; 1302 1303 // Interference for the live-out value. 1304 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1305 BCS[B].Exit = SpillPlacement::MustSpill; 1306 else 1307 BCS[B].Exit = SpillPlacement::PrefSpill; 1308 1309 if (++B == GroupSize) { 1310 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1311 B = 0; 1312 } 1313 } 1314 1315 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1316 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1317 return true; 1318 } 1319 1320 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1321 // Keep track of through blocks that have not been added to SpillPlacer. 1322 BitVector Todo = SA->getThroughBlocks(); 1323 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1324 unsigned AddedTo = 0; 1325 #ifndef NDEBUG 1326 unsigned Visited = 0; 1327 #endif 1328 1329 while (true) { 1330 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1331 // Find new through blocks in the periphery of PrefRegBundles. 1332 for (unsigned Bundle : NewBundles) { 1333 // Look at all blocks connected to Bundle in the full graph. 1334 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1335 for (unsigned Block : Blocks) { 1336 if (!Todo.test(Block)) 1337 continue; 1338 Todo.reset(Block); 1339 // This is a new through block. Add it to SpillPlacer later. 1340 ActiveBlocks.push_back(Block); 1341 #ifndef NDEBUG 1342 ++Visited; 1343 #endif 1344 } 1345 } 1346 // Any new blocks to add? 1347 if (ActiveBlocks.size() == AddedTo) 1348 break; 1349 1350 // Compute through constraints from the interference, or assume that all 1351 // through blocks prefer spilling when forming compact regions. 1352 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1353 if (Cand.PhysReg) { 1354 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1355 return false; 1356 } else 1357 // Provide a strong negative bias on through blocks to prevent unwanted 1358 // liveness on loop backedges. 1359 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1360 AddedTo = ActiveBlocks.size(); 1361 1362 // Perhaps iterating can enable more bundles? 1363 SpillPlacer->iterate(); 1364 } 1365 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1366 return true; 1367 } 1368 1369 /// calcCompactRegion - Compute the set of edge bundles that should be live 1370 /// when splitting the current live range into compact regions. Compact 1371 /// regions can be computed without looking at interference. They are the 1372 /// regions formed by removing all the live-through blocks from the live range. 1373 /// 1374 /// Returns false if the current live range is already compact, or if the 1375 /// compact regions would form single block regions anyway. 1376 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1377 // Without any through blocks, the live range is already compact. 1378 if (!SA->getNumThroughBlocks()) 1379 return false; 1380 1381 // Compact regions don't correspond to any physreg. 1382 Cand.reset(IntfCache, MCRegister::NoRegister); 1383 1384 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1385 1386 // Use the spill placer to determine the live bundles. GrowRegion pretends 1387 // that all the through blocks have interference when PhysReg is unset. 1388 SpillPlacer->prepare(Cand.LiveBundles); 1389 1390 // The static split cost will be zero since Cand.Intf reports no interference. 1391 BlockFrequency Cost; 1392 if (!addSplitConstraints(Cand.Intf, Cost)) { 1393 LLVM_DEBUG(dbgs() << ", none.\n"); 1394 return false; 1395 } 1396 1397 if (!growRegion(Cand)) { 1398 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1399 return false; 1400 } 1401 1402 SpillPlacer->finish(); 1403 1404 if (!Cand.LiveBundles.any()) { 1405 LLVM_DEBUG(dbgs() << ", none.\n"); 1406 return false; 1407 } 1408 1409 LLVM_DEBUG({ 1410 for (int I : Cand.LiveBundles.set_bits()) 1411 dbgs() << " EB#" << I; 1412 dbgs() << ".\n"; 1413 }); 1414 return true; 1415 } 1416 1417 /// calcSpillCost - Compute how expensive it would be to split the live range in 1418 /// SA around all use blocks instead of forming bundle regions. 1419 BlockFrequency RAGreedy::calcSpillCost() { 1420 BlockFrequency Cost = 0; 1421 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1422 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1423 unsigned Number = BI.MBB->getNumber(); 1424 // We normally only need one spill instruction - a load or a store. 1425 Cost += SpillPlacer->getBlockFrequency(Number); 1426 1427 // Unless the value is redefined in the block. 1428 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1429 Cost += SpillPlacer->getBlockFrequency(Number); 1430 } 1431 return Cost; 1432 } 1433 1434 /// Check if splitting Evictee will create a local split interval in 1435 /// basic block number BBNumber that may cause a bad eviction chain. This is 1436 /// intended to prevent bad eviction sequences like: 1437 /// movl %ebp, 8(%esp) # 4-byte Spill 1438 /// movl %ecx, %ebp 1439 /// movl %ebx, %ecx 1440 /// movl %edi, %ebx 1441 /// movl %edx, %edi 1442 /// cltd 1443 /// idivl %esi 1444 /// movl %edi, %edx 1445 /// movl %ebx, %edi 1446 /// movl %ecx, %ebx 1447 /// movl %ebp, %ecx 1448 /// movl 16(%esp), %ebp # 4 - byte Reload 1449 /// 1450 /// Such sequences are created in 2 scenarios: 1451 /// 1452 /// Scenario #1: 1453 /// %0 is evicted from physreg0 by %1. 1454 /// Evictee %0 is intended for region splitting with split candidate 1455 /// physreg0 (the reg %0 was evicted from). 1456 /// Region splitting creates a local interval because of interference with the 1457 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1458 /// and "by stack" intervals and local interval created when interference 1459 /// occurs). 1460 /// One of the split intervals ends up evicting %2 from physreg1. 1461 /// Evictee %2 is intended for region splitting with split candidate 1462 /// physreg1. 1463 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1464 /// 1465 /// Scenario #2 1466 /// %0 is evicted from physreg0 by %1. 1467 /// %2 is evicted from physreg2 by %3 etc. 1468 /// Evictee %0 is intended for region splitting with split candidate 1469 /// physreg1. 1470 /// Region splitting creates a local interval because of interference with the 1471 /// evictor %1. 1472 /// One of the split intervals ends up evicting back original evictor %1 1473 /// from physreg0 (the reg %0 was evicted from). 1474 /// Another evictee %2 is intended for region splitting with split candidate 1475 /// physreg1. 1476 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1477 /// 1478 /// \param Evictee The register considered to be split. 1479 /// \param Cand The split candidate that determines the physical register 1480 /// we are splitting for and the interferences. 1481 /// \param BBNumber The number of a BB for which the region split process will 1482 /// create a local split interval. 1483 /// \param Order The physical registers that may get evicted by a split 1484 /// artifact of Evictee. 1485 /// \return True if splitting Evictee may cause a bad eviction chain, false 1486 /// otherwise. 1487 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 1488 GlobalSplitCandidate &Cand, 1489 unsigned BBNumber, 1490 const AllocationOrder &Order) { 1491 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1492 unsigned Evictor = VregEvictorInfo.first; 1493 MCRegister PhysReg = VregEvictorInfo.second; 1494 1495 // No actual evictor. 1496 if (!Evictor || !PhysReg) 1497 return false; 1498 1499 float MaxWeight = 0; 1500 MCRegister FutureEvictedPhysReg = 1501 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1502 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1503 1504 // The bad eviction chain occurs when either the split candidate is the 1505 // evicting reg or one of the split artifact will evict the evicting reg. 1506 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1507 return false; 1508 1509 Cand.Intf.moveToBlock(BBNumber); 1510 1511 // Check to see if the Evictor contains interference (with Evictee) in the 1512 // given BB. If so, this interference caused the eviction of Evictee from 1513 // PhysReg. This suggest that we will create a local interval during the 1514 // region split to avoid this interference This local interval may cause a bad 1515 // eviction chain. 1516 if (!LIS->hasInterval(Evictor)) 1517 return false; 1518 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1519 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1520 return false; 1521 1522 // Now, check to see if the local interval we will create is going to be 1523 // expensive enough to evict somebody If so, this may cause a bad eviction 1524 // chain. 1525 float splitArtifactWeight = 1526 VRAI->futureWeight(LIS->getInterval(Evictee), 1527 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1528 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1529 return false; 1530 1531 return true; 1532 } 1533 1534 /// Check if splitting VirtRegToSplit will create a local split interval 1535 /// in basic block number BBNumber that may cause a spill. 1536 /// 1537 /// \param VirtRegToSplit The register considered to be split. 1538 /// \param Cand The split candidate that determines the physical 1539 /// register we are splitting for and the interferences. 1540 /// \param BBNumber The number of a BB for which the region split process 1541 /// will create a local split interval. 1542 /// \param Order The physical registers that may get evicted by a 1543 /// split artifact of VirtRegToSplit. 1544 /// \return True if splitting VirtRegToSplit may cause a spill, false 1545 /// otherwise. 1546 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1547 GlobalSplitCandidate &Cand, 1548 unsigned BBNumber, 1549 const AllocationOrder &Order) { 1550 Cand.Intf.moveToBlock(BBNumber); 1551 1552 // Check if the local interval will find a non interfereing assignment. 1553 for (auto PhysReg : Order.getOrder()) { 1554 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1555 Cand.Intf.last(), PhysReg)) 1556 return false; 1557 } 1558 1559 // Check if the local interval will evict a cheaper interval. 1560 float CheapestEvictWeight = 0; 1561 MCRegister FutureEvictedPhysReg = getCheapestEvicteeWeight( 1562 Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(), 1563 Cand.Intf.last(), &CheapestEvictWeight); 1564 1565 // Have we found an interval that can be evicted? 1566 if (FutureEvictedPhysReg) { 1567 float splitArtifactWeight = 1568 VRAI->futureWeight(LIS->getInterval(VirtRegToSplit), 1569 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1570 // Will the weight of the local interval be higher than the cheapest evictee 1571 // weight? If so it will evict it and will not cause a spill. 1572 if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight) 1573 return false; 1574 } 1575 1576 // The local interval is not able to find non interferencing assignment and 1577 // not able to evict a less worthy interval, therfore, it can cause a spill. 1578 return true; 1579 } 1580 1581 /// calcGlobalSplitCost - Return the global split cost of following the split 1582 /// pattern in LiveBundles. This cost should be added to the local cost of the 1583 /// interference pattern in SplitConstraints. 1584 /// 1585 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1586 const AllocationOrder &Order, 1587 bool *CanCauseEvictionChain) { 1588 BlockFrequency GlobalCost = 0; 1589 const BitVector &LiveBundles = Cand.LiveBundles; 1590 Register VirtRegToSplit = SA->getParent().reg(); 1591 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1592 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1593 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1594 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1595 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1596 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1597 unsigned Ins = 0; 1598 1599 Cand.Intf.moveToBlock(BC.Number); 1600 // Check wheather a local interval is going to be created during the region 1601 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1602 // is enabled. 1603 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1604 BI.LiveOut && RegIn && RegOut) { 1605 1606 if (CanCauseEvictionChain && 1607 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1608 // This interference causes our eviction from this assignment, we might 1609 // evict somebody else and eventually someone will spill, add that cost. 1610 // See splitCanCauseEvictionChain for detailed description of scenarios. 1611 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1612 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1613 1614 *CanCauseEvictionChain = true; 1615 1616 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1617 Order)) { 1618 // This interference causes local interval to spill, add that cost. 1619 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1620 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1621 } 1622 } 1623 1624 if (BI.LiveIn) 1625 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1626 if (BI.LiveOut) 1627 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1628 while (Ins--) 1629 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1630 } 1631 1632 for (unsigned Number : Cand.ActiveBlocks) { 1633 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1634 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1635 if (!RegIn && !RegOut) 1636 continue; 1637 if (RegIn && RegOut) { 1638 // We need double spill code if this block has interference. 1639 Cand.Intf.moveToBlock(Number); 1640 if (Cand.Intf.hasInterference()) { 1641 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1642 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1643 1644 // Check wheather a local interval is going to be created during the 1645 // region split. 1646 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1647 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1648 // This interference cause our eviction from this assignment, we might 1649 // evict somebody else, add that cost. 1650 // See splitCanCauseEvictionChain for detailed description of 1651 // scenarios. 1652 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1653 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1654 1655 *CanCauseEvictionChain = true; 1656 } 1657 } 1658 continue; 1659 } 1660 // live-in / stack-out or stack-in live-out. 1661 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1662 } 1663 return GlobalCost; 1664 } 1665 1666 /// splitAroundRegion - Split the current live range around the regions 1667 /// determined by BundleCand and GlobalCand. 1668 /// 1669 /// Before calling this function, GlobalCand and BundleCand must be initialized 1670 /// so each bundle is assigned to a valid candidate, or NoCand for the 1671 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1672 /// objects must be initialized for the current live range, and intervals 1673 /// created for the used candidates. 1674 /// 1675 /// @param LREdit The LiveRangeEdit object handling the current split. 1676 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1677 /// must appear in this list. 1678 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1679 ArrayRef<unsigned> UsedCands) { 1680 // These are the intervals created for new global ranges. We may create more 1681 // intervals for local ranges. 1682 const unsigned NumGlobalIntvs = LREdit.size(); 1683 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1684 << " globals.\n"); 1685 assert(NumGlobalIntvs && "No global intervals configured"); 1686 1687 // Isolate even single instructions when dealing with a proper sub-class. 1688 // That guarantees register class inflation for the stack interval because it 1689 // is all copies. 1690 Register Reg = SA->getParent().reg(); 1691 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1692 1693 // First handle all the blocks with uses. 1694 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1695 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1696 unsigned Number = BI.MBB->getNumber(); 1697 unsigned IntvIn = 0, IntvOut = 0; 1698 SlotIndex IntfIn, IntfOut; 1699 if (BI.LiveIn) { 1700 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1701 if (CandIn != NoCand) { 1702 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1703 IntvIn = Cand.IntvIdx; 1704 Cand.Intf.moveToBlock(Number); 1705 IntfIn = Cand.Intf.first(); 1706 } 1707 } 1708 if (BI.LiveOut) { 1709 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1710 if (CandOut != NoCand) { 1711 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1712 IntvOut = Cand.IntvIdx; 1713 Cand.Intf.moveToBlock(Number); 1714 IntfOut = Cand.Intf.last(); 1715 } 1716 } 1717 1718 // Create separate intervals for isolated blocks with multiple uses. 1719 if (!IntvIn && !IntvOut) { 1720 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1721 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1722 SE->splitSingleBlock(BI); 1723 continue; 1724 } 1725 1726 if (IntvIn && IntvOut) 1727 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1728 else if (IntvIn) 1729 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1730 else 1731 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1732 } 1733 1734 // Handle live-through blocks. The relevant live-through blocks are stored in 1735 // the ActiveBlocks list with each candidate. We need to filter out 1736 // duplicates. 1737 BitVector Todo = SA->getThroughBlocks(); 1738 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1739 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1740 for (unsigned Number : Blocks) { 1741 if (!Todo.test(Number)) 1742 continue; 1743 Todo.reset(Number); 1744 1745 unsigned IntvIn = 0, IntvOut = 0; 1746 SlotIndex IntfIn, IntfOut; 1747 1748 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1749 if (CandIn != NoCand) { 1750 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1751 IntvIn = Cand.IntvIdx; 1752 Cand.Intf.moveToBlock(Number); 1753 IntfIn = Cand.Intf.first(); 1754 } 1755 1756 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1757 if (CandOut != NoCand) { 1758 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1759 IntvOut = Cand.IntvIdx; 1760 Cand.Intf.moveToBlock(Number); 1761 IntfOut = Cand.Intf.last(); 1762 } 1763 if (!IntvIn && !IntvOut) 1764 continue; 1765 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1766 } 1767 } 1768 1769 ++NumGlobalSplits; 1770 1771 SmallVector<unsigned, 8> IntvMap; 1772 SE->finish(&IntvMap); 1773 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1774 1775 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1776 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1777 1778 // Sort out the new intervals created by splitting. We get four kinds: 1779 // - Remainder intervals should not be split again. 1780 // - Candidate intervals can be assigned to Cand.PhysReg. 1781 // - Block-local splits are candidates for local splitting. 1782 // - DCE leftovers should go back on the queue. 1783 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1784 LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1785 1786 // Ignore old intervals from DCE. 1787 if (getStage(Reg) != RS_New) 1788 continue; 1789 1790 // Remainder interval. Don't try splitting again, spill if it doesn't 1791 // allocate. 1792 if (IntvMap[I] == 0) { 1793 setStage(Reg, RS_Spill); 1794 continue; 1795 } 1796 1797 // Global intervals. Allow repeated splitting as long as the number of live 1798 // blocks is strictly decreasing. 1799 if (IntvMap[I] < NumGlobalIntvs) { 1800 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1801 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1802 << " blocks as original.\n"); 1803 // Don't allow repeated splitting as a safe guard against looping. 1804 setStage(Reg, RS_Split2); 1805 } 1806 continue; 1807 } 1808 1809 // Other intervals are treated as new. This includes local intervals created 1810 // for blocks with multiple uses, and anything created by DCE. 1811 } 1812 1813 if (VerifyEnabled) 1814 MF->verify(this, "After splitting live range around region"); 1815 } 1816 1817 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg, 1818 AllocationOrder &Order, 1819 SmallVectorImpl<Register> &NewVRegs) { 1820 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1821 return MCRegister::NoRegister; 1822 unsigned NumCands = 0; 1823 BlockFrequency SpillCost = calcSpillCost(); 1824 BlockFrequency BestCost; 1825 1826 // Check if we can split this live range around a compact region. 1827 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1828 if (HasCompact) { 1829 // Yes, keep GlobalCand[0] as the compact region candidate. 1830 NumCands = 1; 1831 BestCost = BlockFrequency::getMaxFrequency(); 1832 } else { 1833 // No benefit from the compact region, our fallback will be per-block 1834 // splitting. Make sure we find a solution that is cheaper than spilling. 1835 BestCost = SpillCost; 1836 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1837 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1838 } 1839 1840 bool CanCauseEvictionChain = false; 1841 unsigned BestCand = 1842 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1843 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1844 1845 // Split candidates with compact regions can cause a bad eviction sequence. 1846 // See splitCanCauseEvictionChain for detailed description of scenarios. 1847 // To avoid it, we need to comapre the cost with the spill cost and not the 1848 // current max frequency. 1849 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1850 CanCauseEvictionChain) { 1851 return MCRegister::NoRegister; 1852 } 1853 1854 // No solutions found, fall back to single block splitting. 1855 if (!HasCompact && BestCand == NoCand) 1856 return MCRegister::NoRegister; 1857 1858 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1859 } 1860 1861 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1862 AllocationOrder &Order, 1863 BlockFrequency &BestCost, 1864 unsigned &NumCands, bool IgnoreCSR, 1865 bool *CanCauseEvictionChain) { 1866 unsigned BestCand = NoCand; 1867 for (MCPhysReg PhysReg : Order) { 1868 assert(PhysReg); 1869 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1870 continue; 1871 1872 // Discard bad candidates before we run out of interference cache cursors. 1873 // This will only affect register classes with a lot of registers (>32). 1874 if (NumCands == IntfCache.getMaxCursors()) { 1875 unsigned WorstCount = ~0u; 1876 unsigned Worst = 0; 1877 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1878 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1879 continue; 1880 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1881 if (Count < WorstCount) { 1882 Worst = CandIndex; 1883 WorstCount = Count; 1884 } 1885 } 1886 --NumCands; 1887 GlobalCand[Worst] = GlobalCand[NumCands]; 1888 if (BestCand == NumCands) 1889 BestCand = Worst; 1890 } 1891 1892 if (GlobalCand.size() <= NumCands) 1893 GlobalCand.resize(NumCands+1); 1894 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1895 Cand.reset(IntfCache, PhysReg); 1896 1897 SpillPlacer->prepare(Cand.LiveBundles); 1898 BlockFrequency Cost; 1899 if (!addSplitConstraints(Cand.Intf, Cost)) { 1900 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1901 continue; 1902 } 1903 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1904 MBFI->printBlockFreq(dbgs(), Cost)); 1905 if (Cost >= BestCost) { 1906 LLVM_DEBUG({ 1907 if (BestCand == NoCand) 1908 dbgs() << " worse than no bundles\n"; 1909 else 1910 dbgs() << " worse than " 1911 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1912 }); 1913 continue; 1914 } 1915 if (!growRegion(Cand)) { 1916 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1917 continue; 1918 } 1919 1920 SpillPlacer->finish(); 1921 1922 // No live bundles, defer to splitSingleBlocks(). 1923 if (!Cand.LiveBundles.any()) { 1924 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1925 continue; 1926 } 1927 1928 bool HasEvictionChain = false; 1929 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1930 LLVM_DEBUG({ 1931 dbgs() << ", total = "; 1932 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1933 for (int I : Cand.LiveBundles.set_bits()) 1934 dbgs() << " EB#" << I; 1935 dbgs() << ".\n"; 1936 }); 1937 if (Cost < BestCost) { 1938 BestCand = NumCands; 1939 BestCost = Cost; 1940 // See splitCanCauseEvictionChain for detailed description of bad 1941 // eviction chain scenarios. 1942 if (CanCauseEvictionChain) 1943 *CanCauseEvictionChain = HasEvictionChain; 1944 } 1945 ++NumCands; 1946 } 1947 1948 if (CanCauseEvictionChain && BestCand != NoCand) { 1949 // See splitCanCauseEvictionChain for detailed description of bad 1950 // eviction chain scenarios. 1951 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1952 << printReg(VirtReg.reg(), TRI) << " may "); 1953 if (!(*CanCauseEvictionChain)) 1954 LLVM_DEBUG(dbgs() << "not "); 1955 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1956 } 1957 1958 return BestCand; 1959 } 1960 1961 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1962 bool HasCompact, 1963 SmallVectorImpl<Register> &NewVRegs) { 1964 SmallVector<unsigned, 8> UsedCands; 1965 // Prepare split editor. 1966 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1967 SE->reset(LREdit, SplitSpillMode); 1968 1969 // Assign all edge bundles to the preferred candidate, or NoCand. 1970 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1971 1972 // Assign bundles for the best candidate region. 1973 if (BestCand != NoCand) { 1974 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1975 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1976 UsedCands.push_back(BestCand); 1977 Cand.IntvIdx = SE->openIntv(); 1978 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1979 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1980 (void)B; 1981 } 1982 } 1983 1984 // Assign bundles for the compact region. 1985 if (HasCompact) { 1986 GlobalSplitCandidate &Cand = GlobalCand.front(); 1987 assert(!Cand.PhysReg && "Compact region has no physreg"); 1988 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1989 UsedCands.push_back(0); 1990 Cand.IntvIdx = SE->openIntv(); 1991 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1992 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1993 (void)B; 1994 } 1995 } 1996 1997 splitAroundRegion(LREdit, UsedCands); 1998 return 0; 1999 } 2000 2001 //===----------------------------------------------------------------------===// 2002 // Per-Block Splitting 2003 //===----------------------------------------------------------------------===// 2004 2005 /// tryBlockSplit - Split a global live range around every block with uses. This 2006 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 2007 /// they don't allocate. 2008 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2009 SmallVectorImpl<Register> &NewVRegs) { 2010 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 2011 Register Reg = VirtReg.reg(); 2012 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 2013 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2014 SE->reset(LREdit, SplitSpillMode); 2015 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 2016 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 2017 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 2018 SE->splitSingleBlock(BI); 2019 } 2020 // No blocks were split. 2021 if (LREdit.empty()) 2022 return 0; 2023 2024 // We did split for some blocks. 2025 SmallVector<unsigned, 8> IntvMap; 2026 SE->finish(&IntvMap); 2027 2028 // Tell LiveDebugVariables about the new ranges. 2029 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2030 2031 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2032 2033 // Sort out the new intervals created by splitting. The remainder interval 2034 // goes straight to spilling, the new local ranges get to stay RS_New. 2035 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 2036 LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 2037 if (getStage(LI) == RS_New && IntvMap[I] == 0) 2038 setStage(LI, RS_Spill); 2039 } 2040 2041 if (VerifyEnabled) 2042 MF->verify(this, "After splitting live range around basic blocks"); 2043 return 0; 2044 } 2045 2046 //===----------------------------------------------------------------------===// 2047 // Per-Instruction Splitting 2048 //===----------------------------------------------------------------------===// 2049 2050 /// Get the number of allocatable registers that match the constraints of \p Reg 2051 /// on \p MI and that are also in \p SuperRC. 2052 static unsigned getNumAllocatableRegsForConstraints( 2053 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 2054 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2055 const RegisterClassInfo &RCI) { 2056 assert(SuperRC && "Invalid register class"); 2057 2058 const TargetRegisterClass *ConstrainedRC = 2059 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2060 /* ExploreBundle */ true); 2061 if (!ConstrainedRC) 2062 return 0; 2063 return RCI.getNumAllocatableRegs(ConstrainedRC); 2064 } 2065 2066 /// tryInstructionSplit - Split a live range around individual instructions. 2067 /// This is normally not worthwhile since the spiller is doing essentially the 2068 /// same thing. However, when the live range is in a constrained register 2069 /// class, it may help to insert copies such that parts of the live range can 2070 /// be moved to a larger register class. 2071 /// 2072 /// This is similar to spilling to a larger register class. 2073 unsigned 2074 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2075 SmallVectorImpl<Register> &NewVRegs) { 2076 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2077 // There is no point to this if there are no larger sub-classes. 2078 if (!RegClassInfo.isProperSubClass(CurRC)) 2079 return 0; 2080 2081 // Always enable split spill mode, since we're effectively spilling to a 2082 // register. 2083 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2084 SE->reset(LREdit, SplitEditor::SM_Size); 2085 2086 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2087 if (Uses.size() <= 1) 2088 return 0; 2089 2090 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2091 << " individual instrs.\n"); 2092 2093 const TargetRegisterClass *SuperRC = 2094 TRI->getLargestLegalSuperClass(CurRC, *MF); 2095 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2096 // Split around every non-copy instruction if this split will relax 2097 // the constraints on the virtual register. 2098 // Otherwise, splitting just inserts uncoalescable copies that do not help 2099 // the allocation. 2100 for (const auto &Use : Uses) { 2101 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 2102 if (MI->isFullCopy() || 2103 SuperRCNumAllocatableRegs == 2104 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 2105 TII, TRI, RCI)) { 2106 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 2107 continue; 2108 } 2109 SE->openIntv(); 2110 SlotIndex SegStart = SE->enterIntvBefore(Use); 2111 SlotIndex SegStop = SE->leaveIntvAfter(Use); 2112 SE->useIntv(SegStart, SegStop); 2113 } 2114 2115 if (LREdit.empty()) { 2116 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2117 return 0; 2118 } 2119 2120 SmallVector<unsigned, 8> IntvMap; 2121 SE->finish(&IntvMap); 2122 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2123 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2124 2125 // Assign all new registers to RS_Spill. This was the last chance. 2126 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2127 return 0; 2128 } 2129 2130 //===----------------------------------------------------------------------===// 2131 // Local Splitting 2132 //===----------------------------------------------------------------------===// 2133 2134 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2135 /// in order to use PhysReg between two entries in SA->UseSlots. 2136 /// 2137 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 2138 /// 2139 void RAGreedy::calcGapWeights(MCRegister PhysReg, 2140 SmallVectorImpl<float> &GapWeight) { 2141 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2142 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2143 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2144 const unsigned NumGaps = Uses.size()-1; 2145 2146 // Start and end points for the interference check. 2147 SlotIndex StartIdx = 2148 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2149 SlotIndex StopIdx = 2150 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2151 2152 GapWeight.assign(NumGaps, 0.0f); 2153 2154 // Add interference from each overlapping register. 2155 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2156 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2157 .checkInterference()) 2158 continue; 2159 2160 // We know that VirtReg is a continuous interval from FirstInstr to 2161 // LastInstr, so we don't need InterferenceQuery. 2162 // 2163 // Interference that overlaps an instruction is counted in both gaps 2164 // surrounding the instruction. The exception is interference before 2165 // StartIdx and after StopIdx. 2166 // 2167 LiveIntervalUnion::SegmentIter IntI = 2168 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2169 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2170 // Skip the gaps before IntI. 2171 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2172 if (++Gap == NumGaps) 2173 break; 2174 if (Gap == NumGaps) 2175 break; 2176 2177 // Update the gaps covered by IntI. 2178 const float weight = IntI.value()->weight(); 2179 for (; Gap != NumGaps; ++Gap) { 2180 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2181 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2182 break; 2183 } 2184 if (Gap == NumGaps) 2185 break; 2186 } 2187 } 2188 2189 // Add fixed interference. 2190 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2191 const LiveRange &LR = LIS->getRegUnit(*Units); 2192 LiveRange::const_iterator I = LR.find(StartIdx); 2193 LiveRange::const_iterator E = LR.end(); 2194 2195 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2196 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2197 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2198 if (++Gap == NumGaps) 2199 break; 2200 if (Gap == NumGaps) 2201 break; 2202 2203 for (; Gap != NumGaps; ++Gap) { 2204 GapWeight[Gap] = huge_valf; 2205 if (Uses[Gap+1].getBaseIndex() >= I->end) 2206 break; 2207 } 2208 if (Gap == NumGaps) 2209 break; 2210 } 2211 } 2212 } 2213 2214 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2215 /// basic block. 2216 /// 2217 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2218 SmallVectorImpl<Register> &NewVRegs) { 2219 // TODO: the function currently only handles a single UseBlock; it should be 2220 // possible to generalize. 2221 if (SA->getUseBlocks().size() != 1) 2222 return 0; 2223 2224 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2225 2226 // Note that it is possible to have an interval that is live-in or live-out 2227 // while only covering a single block - A phi-def can use undef values from 2228 // predecessors, and the block could be a single-block loop. 2229 // We don't bother doing anything clever about such a case, we simply assume 2230 // that the interval is continuous from FirstInstr to LastInstr. We should 2231 // make sure that we don't do anything illegal to such an interval, though. 2232 2233 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2234 if (Uses.size() <= 2) 2235 return 0; 2236 const unsigned NumGaps = Uses.size()-1; 2237 2238 LLVM_DEBUG({ 2239 dbgs() << "tryLocalSplit: "; 2240 for (const auto &Use : Uses) 2241 dbgs() << ' ' << Use; 2242 dbgs() << '\n'; 2243 }); 2244 2245 // If VirtReg is live across any register mask operands, compute a list of 2246 // gaps with register masks. 2247 SmallVector<unsigned, 8> RegMaskGaps; 2248 if (Matrix->checkRegMaskInterference(VirtReg)) { 2249 // Get regmask slots for the whole block. 2250 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2251 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2252 // Constrain to VirtReg's live range. 2253 unsigned RI = 2254 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 2255 unsigned RE = RMS.size(); 2256 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 2257 // Look for Uses[I] <= RMS <= Uses[I + 1]. 2258 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 2259 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 2260 continue; 2261 // Skip a regmask on the same instruction as the last use. It doesn't 2262 // overlap the live range. 2263 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 2264 break; 2265 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 2266 << Uses[I + 1]); 2267 RegMaskGaps.push_back(I); 2268 // Advance ri to the next gap. A regmask on one of the uses counts in 2269 // both gaps. 2270 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 2271 ++RI; 2272 } 2273 LLVM_DEBUG(dbgs() << '\n'); 2274 } 2275 2276 // Since we allow local split results to be split again, there is a risk of 2277 // creating infinite loops. It is tempting to require that the new live 2278 // ranges have less instructions than the original. That would guarantee 2279 // convergence, but it is too strict. A live range with 3 instructions can be 2280 // split 2+3 (including the COPY), and we want to allow that. 2281 // 2282 // Instead we use these rules: 2283 // 2284 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2285 // noop split, of course). 2286 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2287 // the new ranges must have fewer instructions than before the split. 2288 // 3. New ranges with the same number of instructions are marked RS_Split2, 2289 // smaller ranges are marked RS_New. 2290 // 2291 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2292 // excessive splitting and infinite loops. 2293 // 2294 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2295 2296 // Best split candidate. 2297 unsigned BestBefore = NumGaps; 2298 unsigned BestAfter = 0; 2299 float BestDiff = 0; 2300 2301 const float blockFreq = 2302 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2303 (1.0f / MBFI->getEntryFreq()); 2304 SmallVector<float, 8> GapWeight; 2305 2306 for (MCPhysReg PhysReg : Order) { 2307 assert(PhysReg); 2308 // Keep track of the largest spill weight that would need to be evicted in 2309 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 2310 calcGapWeights(PhysReg, GapWeight); 2311 2312 // Remove any gaps with regmask clobbers. 2313 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2314 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 2315 GapWeight[RegMaskGaps[I]] = huge_valf; 2316 2317 // Try to find the best sequence of gaps to close. 2318 // The new spill weight must be larger than any gap interference. 2319 2320 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2321 unsigned SplitBefore = 0, SplitAfter = 1; 2322 2323 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2324 // It is the spill weight that needs to be evicted. 2325 float MaxGap = GapWeight[0]; 2326 2327 while (true) { 2328 // Live before/after split? 2329 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2330 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2331 2332 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2333 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 2334 2335 // Stop before the interval gets so big we wouldn't be making progress. 2336 if (!LiveBefore && !LiveAfter) { 2337 LLVM_DEBUG(dbgs() << " all\n"); 2338 break; 2339 } 2340 // Should the interval be extended or shrunk? 2341 bool Shrink = true; 2342 2343 // How many gaps would the new range have? 2344 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2345 2346 // Legally, without causing looping? 2347 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2348 2349 if (Legal && MaxGap < huge_valf) { 2350 // Estimate the new spill weight. Each instruction reads or writes the 2351 // register. Conservatively assume there are no read-modify-write 2352 // instructions. 2353 // 2354 // Try to guess the size of the new interval. 2355 const float EstWeight = normalizeSpillWeight( 2356 blockFreq * (NewGaps + 1), 2357 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2358 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2359 1); 2360 // Would this split be possible to allocate? 2361 // Never allocate all gaps, we wouldn't be making progress. 2362 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2363 if (EstWeight * Hysteresis >= MaxGap) { 2364 Shrink = false; 2365 float Diff = EstWeight - MaxGap; 2366 if (Diff > BestDiff) { 2367 LLVM_DEBUG(dbgs() << " (best)"); 2368 BestDiff = Hysteresis * Diff; 2369 BestBefore = SplitBefore; 2370 BestAfter = SplitAfter; 2371 } 2372 } 2373 } 2374 2375 // Try to shrink. 2376 if (Shrink) { 2377 if (++SplitBefore < SplitAfter) { 2378 LLVM_DEBUG(dbgs() << " shrink\n"); 2379 // Recompute the max when necessary. 2380 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2381 MaxGap = GapWeight[SplitBefore]; 2382 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 2383 MaxGap = std::max(MaxGap, GapWeight[I]); 2384 } 2385 continue; 2386 } 2387 MaxGap = 0; 2388 } 2389 2390 // Try to extend the interval. 2391 if (SplitAfter >= NumGaps) { 2392 LLVM_DEBUG(dbgs() << " end\n"); 2393 break; 2394 } 2395 2396 LLVM_DEBUG(dbgs() << " extend\n"); 2397 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2398 } 2399 } 2400 2401 // Didn't find any candidates? 2402 if (BestBefore == NumGaps) 2403 return 0; 2404 2405 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2406 << Uses[BestAfter] << ", " << BestDiff << ", " 2407 << (BestAfter - BestBefore + 1) << " instrs\n"); 2408 2409 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2410 SE->reset(LREdit); 2411 2412 SE->openIntv(); 2413 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2414 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2415 SE->useIntv(SegStart, SegStop); 2416 SmallVector<unsigned, 8> IntvMap; 2417 SE->finish(&IntvMap); 2418 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2419 2420 // If the new range has the same number of instructions as before, mark it as 2421 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2422 // leave the new intervals as RS_New so they can compete. 2423 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2424 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2425 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2426 if (NewGaps >= NumGaps) { 2427 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: "); 2428 assert(!ProgressRequired && "Didn't make progress when it was required."); 2429 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 2430 if (IntvMap[I] == 1) { 2431 setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 2432 LLVM_DEBUG(dbgs() << printReg(LREdit.get(I))); 2433 } 2434 LLVM_DEBUG(dbgs() << '\n'); 2435 } 2436 ++NumLocalSplits; 2437 2438 return 0; 2439 } 2440 2441 //===----------------------------------------------------------------------===// 2442 // Live Range Splitting 2443 //===----------------------------------------------------------------------===// 2444 2445 /// trySplit - Try to split VirtReg or one of its interferences, making it 2446 /// assignable. 2447 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2448 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2449 SmallVectorImpl<Register> &NewVRegs, 2450 const SmallVirtRegSet &FixedRegisters) { 2451 // Ranges must be Split2 or less. 2452 if (getStage(VirtReg) >= RS_Spill) 2453 return 0; 2454 2455 // Local intervals are handled separately. 2456 if (LIS->intervalIsInOneMBB(VirtReg)) { 2457 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2458 TimerGroupDescription, TimePassesIsEnabled); 2459 SA->analyze(&VirtReg); 2460 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2461 if (PhysReg || !NewVRegs.empty()) 2462 return PhysReg; 2463 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2464 } 2465 2466 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2467 TimerGroupDescription, TimePassesIsEnabled); 2468 2469 SA->analyze(&VirtReg); 2470 2471 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2472 // coalescer. That may cause the range to become allocatable which means that 2473 // tryRegionSplit won't be making progress. This check should be replaced with 2474 // an assertion when the coalescer is fixed. 2475 if (SA->didRepairRange()) { 2476 // VirtReg has changed, so all cached queries are invalid. 2477 Matrix->invalidateVirtRegs(); 2478 if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) 2479 return PhysReg; 2480 } 2481 2482 // First try to split around a region spanning multiple blocks. RS_Split2 2483 // ranges already made dubious progress with region splitting, so they go 2484 // straight to single block splitting. 2485 if (getStage(VirtReg) < RS_Split2) { 2486 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2487 if (PhysReg || !NewVRegs.empty()) 2488 return PhysReg; 2489 } 2490 2491 // Then isolate blocks. 2492 return tryBlockSplit(VirtReg, Order, NewVRegs); 2493 } 2494 2495 //===----------------------------------------------------------------------===// 2496 // Last Chance Recoloring 2497 //===----------------------------------------------------------------------===// 2498 2499 /// Return true if \p reg has any tied def operand. 2500 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2501 for (const MachineOperand &MO : MRI->def_operands(reg)) 2502 if (MO.isTied()) 2503 return true; 2504 2505 return false; 2506 } 2507 2508 /// mayRecolorAllInterferences - Check if the virtual registers that 2509 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2510 /// recolored to free \p PhysReg. 2511 /// When true is returned, \p RecoloringCandidates has been augmented with all 2512 /// the live intervals that need to be recolored in order to free \p PhysReg 2513 /// for \p VirtReg. 2514 /// \p FixedRegisters contains all the virtual registers that cannot be 2515 /// recolored. 2516 bool RAGreedy::mayRecolorAllInterferences( 2517 MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates, 2518 const SmallVirtRegSet &FixedRegisters) { 2519 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2520 2521 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2522 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2523 // If there is LastChanceRecoloringMaxInterference or more interferences, 2524 // chances are one would not be recolorable. 2525 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2526 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2527 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2528 CutOffInfo |= CO_Interf; 2529 return false; 2530 } 2531 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 2532 // If Intf is done and sit on the same register class as VirtReg, 2533 // it would not be recolorable as it is in the same state as VirtReg. 2534 // However, if VirtReg has tied defs and Intf doesn't, then 2535 // there is still a point in examining if it can be recolorable. 2536 if (((getStage(*Intf) == RS_Done && 2537 MRI->getRegClass(Intf->reg()) == CurRC) && 2538 !(hasTiedDef(MRI, VirtReg.reg()) && 2539 !hasTiedDef(MRI, Intf->reg()))) || 2540 FixedRegisters.count(Intf->reg())) { 2541 LLVM_DEBUG( 2542 dbgs() << "Early abort: the interference is not recolorable.\n"); 2543 return false; 2544 } 2545 RecoloringCandidates.insert(Intf); 2546 } 2547 } 2548 return true; 2549 } 2550 2551 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2552 /// its interferences. 2553 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2554 /// virtual register that was using it. The recoloring process may recursively 2555 /// use the last chance recoloring. Therefore, when a virtual register has been 2556 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2557 /// be last-chance-recolored again during this recoloring "session". 2558 /// E.g., 2559 /// Let 2560 /// vA can use {R1, R2 } 2561 /// vB can use { R2, R3} 2562 /// vC can use {R1 } 2563 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2564 /// instance) and they all interfere. 2565 /// 2566 /// vA is assigned R1 2567 /// vB is assigned R2 2568 /// vC tries to evict vA but vA is already done. 2569 /// Regular register allocation fails. 2570 /// 2571 /// Last chance recoloring kicks in: 2572 /// vC does as if vA was evicted => vC uses R1. 2573 /// vC is marked as fixed. 2574 /// vA needs to find a color. 2575 /// None are available. 2576 /// vA cannot evict vC: vC is a fixed virtual register now. 2577 /// vA does as if vB was evicted => vA uses R2. 2578 /// vB needs to find a color. 2579 /// R3 is available. 2580 /// Recoloring => vC = R1, vA = R2, vB = R3 2581 /// 2582 /// \p Order defines the preferred allocation order for \p VirtReg. 2583 /// \p NewRegs will contain any new virtual register that have been created 2584 /// (split, spill) during the process and that must be assigned. 2585 /// \p FixedRegisters contains all the virtual registers that cannot be 2586 /// recolored. 2587 /// \p Depth gives the current depth of the last chance recoloring. 2588 /// \return a physical register that can be used for VirtReg or ~0u if none 2589 /// exists. 2590 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2591 AllocationOrder &Order, 2592 SmallVectorImpl<Register> &NewVRegs, 2593 SmallVirtRegSet &FixedRegisters, 2594 unsigned Depth) { 2595 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 2596 return ~0u; 2597 2598 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2599 // Ranges must be Done. 2600 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2601 "Last chance recoloring should really be last chance"); 2602 // Set the max depth to LastChanceRecoloringMaxDepth. 2603 // We may want to reconsider that if we end up with a too large search space 2604 // for target with hundreds of registers. 2605 // Indeed, in that case we may want to cut the search space earlier. 2606 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2607 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2608 CutOffInfo |= CO_Depth; 2609 return ~0u; 2610 } 2611 2612 // Set of Live intervals that will need to be recolored. 2613 SmallLISet RecoloringCandidates; 2614 // Record the original mapping virtual register to physical register in case 2615 // the recoloring fails. 2616 DenseMap<Register, MCRegister> VirtRegToPhysReg; 2617 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2618 // this recoloring "session". 2619 assert(!FixedRegisters.count(VirtReg.reg())); 2620 FixedRegisters.insert(VirtReg.reg()); 2621 SmallVector<Register, 4> CurrentNewVRegs; 2622 2623 for (MCRegister PhysReg : Order) { 2624 assert(PhysReg.isValid()); 2625 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2626 << printReg(PhysReg, TRI) << '\n'); 2627 RecoloringCandidates.clear(); 2628 VirtRegToPhysReg.clear(); 2629 CurrentNewVRegs.clear(); 2630 2631 // It is only possible to recolor virtual register interference. 2632 if (Matrix->checkInterference(VirtReg, PhysReg) > 2633 LiveRegMatrix::IK_VirtReg) { 2634 LLVM_DEBUG( 2635 dbgs() << "Some interferences are not with virtual registers.\n"); 2636 2637 continue; 2638 } 2639 2640 // Early give up on this PhysReg if it is obvious we cannot recolor all 2641 // the interferences. 2642 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2643 FixedRegisters)) { 2644 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2645 continue; 2646 } 2647 2648 // RecoloringCandidates contains all the virtual registers that interfer 2649 // with VirtReg on PhysReg (or one of its aliases). 2650 // Enqueue them for recoloring and perform the actual recoloring. 2651 PQueue RecoloringQueue; 2652 for (LiveInterval *RC : RecoloringCandidates) { 2653 Register ItVirtReg = RC->reg(); 2654 enqueue(RecoloringQueue, RC); 2655 assert(VRM->hasPhys(ItVirtReg) && 2656 "Interferences are supposed to be with allocated variables"); 2657 2658 // Record the current allocation. 2659 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2660 // unset the related struct. 2661 Matrix->unassign(*RC); 2662 } 2663 2664 // Do as if VirtReg was assigned to PhysReg so that the underlying 2665 // recoloring has the right information about the interferes and 2666 // available colors. 2667 Matrix->assign(VirtReg, PhysReg); 2668 2669 // Save the current recoloring state. 2670 // If we cannot recolor all the interferences, we will have to start again 2671 // at this point for the next physical register. 2672 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2673 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2674 FixedRegisters, Depth)) { 2675 // Push the queued vregs into the main queue. 2676 for (Register NewVReg : CurrentNewVRegs) 2677 NewVRegs.push_back(NewVReg); 2678 // Do not mess up with the global assignment process. 2679 // I.e., VirtReg must be unassigned. 2680 Matrix->unassign(VirtReg); 2681 return PhysReg; 2682 } 2683 2684 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2685 << printReg(PhysReg, TRI) << '\n'); 2686 2687 // The recoloring attempt failed, undo the changes. 2688 FixedRegisters = SaveFixedRegisters; 2689 Matrix->unassign(VirtReg); 2690 2691 // For a newly created vreg which is also in RecoloringCandidates, 2692 // don't add it to NewVRegs because its physical register will be restored 2693 // below. Other vregs in CurrentNewVRegs are created by calling 2694 // selectOrSplit and should be added into NewVRegs. 2695 for (Register &R : CurrentNewVRegs) { 2696 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2697 continue; 2698 NewVRegs.push_back(R); 2699 } 2700 2701 for (LiveInterval *RC : RecoloringCandidates) { 2702 Register ItVirtReg = RC->reg(); 2703 if (VRM->hasPhys(ItVirtReg)) 2704 Matrix->unassign(*RC); 2705 MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2706 Matrix->assign(*RC, ItPhysReg); 2707 } 2708 } 2709 2710 // Last chance recoloring did not worked either, give up. 2711 return ~0u; 2712 } 2713 2714 /// tryRecoloringCandidates - Try to assign a new color to every register 2715 /// in \RecoloringQueue. 2716 /// \p NewRegs will contain any new virtual register created during the 2717 /// recoloring process. 2718 /// \p FixedRegisters[in/out] contains all the registers that have been 2719 /// recolored. 2720 /// \return true if all virtual registers in RecoloringQueue were successfully 2721 /// recolored, false otherwise. 2722 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2723 SmallVectorImpl<Register> &NewVRegs, 2724 SmallVirtRegSet &FixedRegisters, 2725 unsigned Depth) { 2726 while (!RecoloringQueue.empty()) { 2727 LiveInterval *LI = dequeue(RecoloringQueue); 2728 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2729 MCRegister PhysReg = 2730 selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2731 // When splitting happens, the live-range may actually be empty. 2732 // In that case, this is okay to continue the recoloring even 2733 // if we did not find an alternative color for it. Indeed, 2734 // there will not be anything to color for LI in the end. 2735 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2736 return false; 2737 2738 if (!PhysReg) { 2739 assert(LI->empty() && "Only empty live-range do not require a register"); 2740 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2741 << " succeeded. Empty LI.\n"); 2742 continue; 2743 } 2744 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2745 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2746 2747 Matrix->assign(*LI, PhysReg); 2748 FixedRegisters.insert(LI->reg()); 2749 } 2750 return true; 2751 } 2752 2753 //===----------------------------------------------------------------------===// 2754 // Main Entry Point 2755 //===----------------------------------------------------------------------===// 2756 2757 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2758 SmallVectorImpl<Register> &NewVRegs) { 2759 CutOffInfo = CO_None; 2760 LLVMContext &Ctx = MF->getFunction().getContext(); 2761 SmallVirtRegSet FixedRegisters; 2762 MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2763 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2764 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2765 if (CutOffEncountered == CO_Depth) 2766 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2767 "reached. Use -fexhaustive-register-search to skip " 2768 "cutoffs"); 2769 else if (CutOffEncountered == CO_Interf) 2770 Ctx.emitError("register allocation failed: maximum interference for " 2771 "recoloring reached. Use -fexhaustive-register-search " 2772 "to skip cutoffs"); 2773 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2774 Ctx.emitError("register allocation failed: maximum interference and " 2775 "depth for recoloring reached. Use " 2776 "-fexhaustive-register-search to skip cutoffs"); 2777 } 2778 return Reg; 2779 } 2780 2781 /// Using a CSR for the first time has a cost because it causes push|pop 2782 /// to be added to prologue|epilogue. Splitting a cold section of the live 2783 /// range can have lower cost than using the CSR for the first time; 2784 /// Spilling a live range in the cold path can have lower cost than using 2785 /// the CSR for the first time. Returns the physical register if we decide 2786 /// to use the CSR; otherwise return 0. 2787 MCRegister 2788 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 2789 MCRegister PhysReg, uint8_t &CostPerUseLimit, 2790 SmallVectorImpl<Register> &NewVRegs) { 2791 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2792 // We choose spill over using the CSR for the first time if the spill cost 2793 // is lower than CSRCost. 2794 SA->analyze(&VirtReg); 2795 if (calcSpillCost() >= CSRCost) 2796 return PhysReg; 2797 2798 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2799 // we will not use a callee-saved register in tryEvict. 2800 CostPerUseLimit = 1; 2801 return 0; 2802 } 2803 if (getStage(VirtReg) < RS_Split) { 2804 // We choose pre-splitting over using the CSR for the first time if 2805 // the cost of splitting is lower than CSRCost. 2806 SA->analyze(&VirtReg); 2807 unsigned NumCands = 0; 2808 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2809 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2810 NumCands, true /*IgnoreCSR*/); 2811 if (BestCand == NoCand) 2812 // Use the CSR if we can't find a region split below CSRCost. 2813 return PhysReg; 2814 2815 // Perform the actual pre-splitting. 2816 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2817 return 0; 2818 } 2819 return PhysReg; 2820 } 2821 2822 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2823 // Do not keep invalid information around. 2824 SetOfBrokenHints.remove(&LI); 2825 } 2826 2827 void RAGreedy::initializeCSRCost() { 2828 // We use the larger one out of the command-line option and the value report 2829 // by TRI. 2830 CSRCost = BlockFrequency( 2831 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2832 if (!CSRCost.getFrequency()) 2833 return; 2834 2835 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2836 uint64_t ActualEntry = MBFI->getEntryFreq(); 2837 if (!ActualEntry) { 2838 CSRCost = 0; 2839 return; 2840 } 2841 uint64_t FixedEntry = 1 << 14; 2842 if (ActualEntry < FixedEntry) 2843 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2844 else if (ActualEntry <= UINT32_MAX) 2845 // Invert the fraction and divide. 2846 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2847 else 2848 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2849 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2850 } 2851 2852 /// Collect the hint info for \p Reg. 2853 /// The results are stored into \p Out. 2854 /// \p Out is not cleared before being populated. 2855 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2856 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2857 if (!Instr.isFullCopy()) 2858 continue; 2859 // Look for the other end of the copy. 2860 Register OtherReg = Instr.getOperand(0).getReg(); 2861 if (OtherReg == Reg) { 2862 OtherReg = Instr.getOperand(1).getReg(); 2863 if (OtherReg == Reg) 2864 continue; 2865 } 2866 // Get the current assignment. 2867 MCRegister OtherPhysReg = 2868 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2869 // Push the collected information. 2870 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2871 OtherPhysReg)); 2872 } 2873 } 2874 2875 /// Using the given \p List, compute the cost of the broken hints if 2876 /// \p PhysReg was used. 2877 /// \return The cost of \p List for \p PhysReg. 2878 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2879 MCRegister PhysReg) { 2880 BlockFrequency Cost = 0; 2881 for (const HintInfo &Info : List) { 2882 if (Info.PhysReg != PhysReg) 2883 Cost += Info.Freq; 2884 } 2885 return Cost; 2886 } 2887 2888 /// Using the register assigned to \p VirtReg, try to recolor 2889 /// all the live ranges that are copy-related with \p VirtReg. 2890 /// The recoloring is then propagated to all the live-ranges that have 2891 /// been recolored and so on, until no more copies can be coalesced or 2892 /// it is not profitable. 2893 /// For a given live range, profitability is determined by the sum of the 2894 /// frequencies of the non-identity copies it would introduce with the old 2895 /// and new register. 2896 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2897 // We have a broken hint, check if it is possible to fix it by 2898 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2899 // some register and PhysReg may be available for the other live-ranges. 2900 SmallSet<Register, 4> Visited; 2901 SmallVector<unsigned, 2> RecoloringCandidates; 2902 HintsInfo Info; 2903 Register Reg = VirtReg.reg(); 2904 MCRegister PhysReg = VRM->getPhys(Reg); 2905 // Start the recoloring algorithm from the input live-interval, then 2906 // it will propagate to the ones that are copy-related with it. 2907 Visited.insert(Reg); 2908 RecoloringCandidates.push_back(Reg); 2909 2910 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2911 << '(' << printReg(PhysReg, TRI) << ")\n"); 2912 2913 do { 2914 Reg = RecoloringCandidates.pop_back_val(); 2915 2916 // We cannot recolor physical register. 2917 if (Register::isPhysicalRegister(Reg)) 2918 continue; 2919 2920 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2921 2922 // Get the live interval mapped with this virtual register to be able 2923 // to check for the interference with the new color. 2924 LiveInterval &LI = LIS->getInterval(Reg); 2925 MCRegister CurrPhys = VRM->getPhys(Reg); 2926 // Check that the new color matches the register class constraints and 2927 // that it is free for this live range. 2928 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2929 Matrix->checkInterference(LI, PhysReg))) 2930 continue; 2931 2932 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2933 << ") is recolorable.\n"); 2934 2935 // Gather the hint info. 2936 Info.clear(); 2937 collectHintInfo(Reg, Info); 2938 // Check if recoloring the live-range will increase the cost of the 2939 // non-identity copies. 2940 if (CurrPhys != PhysReg) { 2941 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2942 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2943 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2944 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2945 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2946 << '\n'); 2947 if (OldCopiesCost < NewCopiesCost) { 2948 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2949 continue; 2950 } 2951 // At this point, the cost is either cheaper or equal. If it is 2952 // equal, we consider this is profitable because it may expose 2953 // more recoloring opportunities. 2954 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2955 // Recolor the live-range. 2956 Matrix->unassign(LI); 2957 Matrix->assign(LI, PhysReg); 2958 } 2959 // Push all copy-related live-ranges to keep reconciling the broken 2960 // hints. 2961 for (const HintInfo &HI : Info) { 2962 if (Visited.insert(HI.Reg).second) 2963 RecoloringCandidates.push_back(HI.Reg); 2964 } 2965 } while (!RecoloringCandidates.empty()); 2966 } 2967 2968 /// Try to recolor broken hints. 2969 /// Broken hints may be repaired by recoloring when an evicted variable 2970 /// freed up a register for a larger live-range. 2971 /// Consider the following example: 2972 /// BB1: 2973 /// a = 2974 /// b = 2975 /// BB2: 2976 /// ... 2977 /// = b 2978 /// = a 2979 /// Let us assume b gets split: 2980 /// BB1: 2981 /// a = 2982 /// b = 2983 /// BB2: 2984 /// c = b 2985 /// ... 2986 /// d = c 2987 /// = d 2988 /// = a 2989 /// Because of how the allocation work, b, c, and d may be assigned different 2990 /// colors. Now, if a gets evicted later: 2991 /// BB1: 2992 /// a = 2993 /// st a, SpillSlot 2994 /// b = 2995 /// BB2: 2996 /// c = b 2997 /// ... 2998 /// d = c 2999 /// = d 3000 /// e = ld SpillSlot 3001 /// = e 3002 /// This is likely that we can assign the same register for b, c, and d, 3003 /// getting rid of 2 copies. 3004 void RAGreedy::tryHintsRecoloring() { 3005 for (LiveInterval *LI : SetOfBrokenHints) { 3006 assert(Register::isVirtualRegister(LI->reg()) && 3007 "Recoloring is possible only for virtual registers"); 3008 // Some dead defs may be around (e.g., because of debug uses). 3009 // Ignore those. 3010 if (!VRM->hasPhys(LI->reg())) 3011 continue; 3012 tryHintRecoloring(*LI); 3013 } 3014 } 3015 3016 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 3017 SmallVectorImpl<Register> &NewVRegs, 3018 SmallVirtRegSet &FixedRegisters, 3019 unsigned Depth) { 3020 uint8_t CostPerUseLimit = uint8_t(~0u); 3021 // First try assigning a free register. 3022 auto Order = 3023 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 3024 if (MCRegister PhysReg = 3025 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 3026 // If VirtReg got an assignment, the eviction info is no longre relevant. 3027 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3028 // When NewVRegs is not empty, we may have made decisions such as evicting 3029 // a virtual register, go with the earlier decisions and use the physical 3030 // register. 3031 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3032 NewVRegs.empty()) { 3033 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3034 CostPerUseLimit, NewVRegs); 3035 if (CSRReg || !NewVRegs.empty()) 3036 // Return now if we decide to use a CSR or create new vregs due to 3037 // pre-splitting. 3038 return CSRReg; 3039 } else 3040 return PhysReg; 3041 } 3042 3043 LiveRangeStage Stage = getStage(VirtReg); 3044 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3045 << ExtraRegInfo[VirtReg.reg()].Cascade << '\n'); 3046 3047 // Try to evict a less worthy live range, but only for ranges from the primary 3048 // queue. The RS_Split ranges already failed to do this, and they should not 3049 // get a second chance until they have been split. 3050 if (Stage != RS_Split) 3051 if (Register PhysReg = 3052 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 3053 FixedRegisters)) { 3054 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 3055 // If VirtReg has a hint and that hint is broken record this 3056 // virtual register as a recoloring candidate for broken hint. 3057 // Indeed, since we evicted a variable in its neighborhood it is 3058 // likely we can at least partially recolor some of the 3059 // copy-related live-ranges. 3060 if (Hint && Hint != PhysReg) 3061 SetOfBrokenHints.insert(&VirtReg); 3062 // If VirtReg eviction someone, the eviction info for it as an evictee is 3063 // no longre relevant. 3064 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3065 return PhysReg; 3066 } 3067 3068 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3069 3070 // The first time we see a live range, don't try to split or spill. 3071 // Wait until the second time, when all smaller ranges have been allocated. 3072 // This gives a better picture of the interference to split around. 3073 if (Stage < RS_Split) { 3074 setStage(VirtReg, RS_Split); 3075 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3076 NewVRegs.push_back(VirtReg.reg()); 3077 return 0; 3078 } 3079 3080 if (Stage < RS_Spill) { 3081 // Try splitting VirtReg or interferences. 3082 unsigned NewVRegSizeBefore = NewVRegs.size(); 3083 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 3084 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3085 // If VirtReg got split, the eviction info is no longer relevant. 3086 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3087 return PhysReg; 3088 } 3089 } 3090 3091 // If we couldn't allocate a register from spilling, there is probably some 3092 // invalid inline assembly. The base class will report it. 3093 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3094 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3095 Depth); 3096 3097 // Finally spill VirtReg itself. 3098 if ((EnableDeferredSpilling || 3099 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 3100 getStage(VirtReg) < RS_Memory) { 3101 // TODO: This is experimental and in particular, we do not model 3102 // the live range splitting done by spilling correctly. 3103 // We would need a deep integration with the spiller to do the 3104 // right thing here. Anyway, that is still good for early testing. 3105 setStage(VirtReg, RS_Memory); 3106 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3107 NewVRegs.push_back(VirtReg.reg()); 3108 } else { 3109 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3110 TimerGroupDescription, TimePassesIsEnabled); 3111 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3112 spiller().spill(LRE); 3113 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3114 3115 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 3116 // the new regs are kept in LDV (still mapping to the old register), until 3117 // we rewrite spilled locations in LDV at a later stage. 3118 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 3119 3120 if (VerifyEnabled) 3121 MF->verify(this, "After spilling"); 3122 } 3123 3124 // The live virtual register requesting allocation was spilled, so tell 3125 // the caller not to allocate anything during this round. 3126 return 0; 3127 } 3128 3129 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 3130 unsigned &FoldedReloads, 3131 unsigned &Spills, 3132 unsigned &FoldedSpills) { 3133 Reloads = 0; 3134 FoldedReloads = 0; 3135 Spills = 0; 3136 FoldedSpills = 0; 3137 3138 // Sum up the spill and reloads in subloops. 3139 for (MachineLoop *SubLoop : *L) { 3140 unsigned SubReloads; 3141 unsigned SubFoldedReloads; 3142 unsigned SubSpills; 3143 unsigned SubFoldedSpills; 3144 3145 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads, 3146 SubSpills, SubFoldedSpills); 3147 Reloads += SubReloads; 3148 FoldedReloads += SubFoldedReloads; 3149 Spills += SubSpills; 3150 FoldedSpills += SubFoldedSpills; 3151 } 3152 3153 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3154 int FI; 3155 3156 for (MachineBasicBlock *MBB : L->getBlocks()) 3157 // Handle blocks that were not included in subloops. 3158 if (Loops->getLoopFor(MBB) == L) 3159 for (MachineInstr &MI : *MBB) { 3160 SmallVector<const MachineMemOperand *, 2> Accesses; 3161 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3162 return MFI.isSpillSlotObjectIndex( 3163 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 3164 ->getFrameIndex()); 3165 }; 3166 3167 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) 3168 ++Reloads; 3169 else if (TII->hasLoadFromStackSlot(MI, Accesses) && 3170 llvm::any_of(Accesses, isSpillSlotAccess)) 3171 ++FoldedReloads; 3172 else if (TII->isStoreToStackSlot(MI, FI) && 3173 MFI.isSpillSlotObjectIndex(FI)) 3174 ++Spills; 3175 else if (TII->hasStoreToStackSlot(MI, Accesses) && 3176 llvm::any_of(Accesses, isSpillSlotAccess)) 3177 ++FoldedSpills; 3178 } 3179 3180 if (Reloads || FoldedReloads || Spills || FoldedSpills) { 3181 using namespace ore; 3182 3183 ORE->emit([&]() { 3184 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", 3185 L->getStartLoc(), L->getHeader()); 3186 if (Spills) 3187 R << NV("NumSpills", Spills) << " spills "; 3188 if (FoldedSpills) 3189 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3190 if (Reloads) 3191 R << NV("NumReloads", Reloads) << " reloads "; 3192 if (FoldedReloads) 3193 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3194 R << "generated in loop"; 3195 return R; 3196 }); 3197 } 3198 } 3199 3200 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3201 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3202 << "********** Function: " << mf.getName() << '\n'); 3203 3204 MF = &mf; 3205 TRI = MF->getSubtarget().getRegisterInfo(); 3206 TII = MF->getSubtarget().getInstrInfo(); 3207 RCI.runOnMachineFunction(mf); 3208 3209 EnableLocalReassign = EnableLocalReassignment || 3210 MF->getSubtarget().enableRALocalReassignment( 3211 MF->getTarget().getOptLevel()); 3212 3213 EnableAdvancedRASplitCost = 3214 ConsiderLocalIntervalCost.getNumOccurrences() 3215 ? ConsiderLocalIntervalCost 3216 : MF->getSubtarget().enableAdvancedRASplitCost(); 3217 3218 if (VerifyEnabled) 3219 MF->verify(this, "Before greedy register allocator"); 3220 3221 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3222 getAnalysis<LiveIntervals>(), 3223 getAnalysis<LiveRegMatrix>()); 3224 Indexes = &getAnalysis<SlotIndexes>(); 3225 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3226 DomTree = &getAnalysis<MachineDominatorTree>(); 3227 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3228 Loops = &getAnalysis<MachineLoopInfo>(); 3229 Bundles = &getAnalysis<EdgeBundles>(); 3230 SpillPlacer = &getAnalysis<SpillPlacement>(); 3231 DebugVars = &getAnalysis<LiveDebugVariables>(); 3232 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3233 3234 initializeCSRCost(); 3235 3236 RegCosts = TRI->getRegisterCosts(*MF); 3237 3238 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 3239 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 3240 3241 VRAI->calculateSpillWeightsAndHints(); 3242 3243 LLVM_DEBUG(LIS->dump()); 3244 3245 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3246 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 3247 ExtraRegInfo.clear(); 3248 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3249 NextCascade = 1; 3250 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3251 GlobalCand.resize(32); // This will grow as needed. 3252 SetOfBrokenHints.clear(); 3253 LastEvicted.clear(); 3254 3255 allocatePhysRegs(); 3256 tryHintsRecoloring(); 3257 3258 if (VerifyEnabled) 3259 MF->verify(this, "Before post optimization"); 3260 postOptimization(); 3261 reportNumberOfSplillsReloads(); 3262 3263 releaseMemory(); 3264 return true; 3265 } 3266