1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "SpillPlacement.h" 20 #include "Spiller.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IndexedMap.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 34 #include "llvm/CodeGen/CalcSpillWeights.h" 35 #include "llvm/CodeGen/EdgeBundles.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 38 #include "llvm/CodeGen/LiveIntervalUnion.h" 39 #include "llvm/CodeGen/LiveRangeEdit.h" 40 #include "llvm/CodeGen/LiveRegMatrix.h" 41 #include "llvm/CodeGen/LiveStackAnalysis.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RegAllocRegistry.h" 54 #include "llvm/CodeGen/RegisterClassInfo.h" 55 #include "llvm/CodeGen/SlotIndexes.h" 56 #include "llvm/CodeGen/VirtRegMap.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/MC/MCRegisterInfo.h" 60 #include "llvm/Pass.h" 61 #include "llvm/Support/BlockFrequency.h" 62 #include "llvm/Support/BranchProbability.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/MathExtras.h" 66 #include "llvm/Support/Timer.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Target/TargetInstrInfo.h" 69 #include "llvm/Target/TargetMachine.h" 70 #include "llvm/Target/TargetRegisterInfo.h" 71 #include "llvm/Target/TargetSubtargetInfo.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <memory> 76 #include <queue> 77 #include <tuple> 78 #include <utility> 79 80 using namespace llvm; 81 82 #define DEBUG_TYPE "regalloc" 83 84 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 85 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 86 STATISTIC(NumEvicted, "Number of interferences evicted"); 87 88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 89 "split-spill-mode", cl::Hidden, 90 cl::desc("Spill mode for splitting live ranges"), 91 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 92 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 93 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 94 cl::init(SplitEditor::SM_Speed)); 95 96 static cl::opt<unsigned> 97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 98 cl::desc("Last chance recoloring max depth"), 99 cl::init(5)); 100 101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 102 "lcr-max-interf", cl::Hidden, 103 cl::desc("Last chance recoloring maximum number of considered" 104 " interference at a time"), 105 cl::init(8)); 106 107 static cl::opt<bool> 108 ExhaustiveSearch("exhaustive-register-search", cl::NotHidden, 109 cl::desc("Exhaustive Search for registers bypassing the depth " 110 "and interference cutoffs of last chance recoloring")); 111 112 static cl::opt<bool> EnableLocalReassignment( 113 "enable-local-reassign", cl::Hidden, 114 cl::desc("Local reassignment can yield better allocation decisions, but " 115 "may be compile time intensive"), 116 cl::init(false)); 117 118 static cl::opt<bool> EnableDeferredSpilling( 119 "enable-deferred-spilling", cl::Hidden, 120 cl::desc("Instead of spilling a variable right away, defer the actual " 121 "code insertion to the end of the allocation. That way the " 122 "allocator might still find a suitable coloring for this " 123 "variable because of other evicted variables."), 124 cl::init(false)); 125 126 // FIXME: Find a good default for this flag and remove the flag. 127 static cl::opt<unsigned> 128 CSRFirstTimeCost("regalloc-csr-first-time-cost", 129 cl::desc("Cost for first time use of callee-saved register."), 130 cl::init(0), cl::Hidden); 131 132 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 133 createGreedyRegisterAllocator); 134 135 namespace { 136 137 class RAGreedy : public MachineFunctionPass, 138 public RegAllocBase, 139 private LiveRangeEdit::Delegate { 140 // Convenient shortcuts. 141 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 142 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 143 using SmallVirtRegSet = SmallSet<unsigned, 16>; 144 145 // context 146 MachineFunction *MF; 147 148 // Shortcuts to some useful interface. 149 const TargetInstrInfo *TII; 150 const TargetRegisterInfo *TRI; 151 RegisterClassInfo RCI; 152 153 // analyses 154 SlotIndexes *Indexes; 155 MachineBlockFrequencyInfo *MBFI; 156 MachineDominatorTree *DomTree; 157 MachineLoopInfo *Loops; 158 MachineOptimizationRemarkEmitter *ORE; 159 EdgeBundles *Bundles; 160 SpillPlacement *SpillPlacer; 161 LiveDebugVariables *DebugVars; 162 AliasAnalysis *AA; 163 164 // state 165 std::unique_ptr<Spiller> SpillerInstance; 166 PQueue Queue; 167 unsigned NextCascade; 168 169 // Live ranges pass through a number of stages as we try to allocate them. 170 // Some of the stages may also create new live ranges: 171 // 172 // - Region splitting. 173 // - Per-block splitting. 174 // - Local splitting. 175 // - Spilling. 176 // 177 // Ranges produced by one of the stages skip the previous stages when they are 178 // dequeued. This improves performance because we can skip interference checks 179 // that are unlikely to give any results. It also guarantees that the live 180 // range splitting algorithm terminates, something that is otherwise hard to 181 // ensure. 182 enum LiveRangeStage { 183 /// Newly created live range that has never been queued. 184 RS_New, 185 186 /// Only attempt assignment and eviction. Then requeue as RS_Split. 187 RS_Assign, 188 189 /// Attempt live range splitting if assignment is impossible. 190 RS_Split, 191 192 /// Attempt more aggressive live range splitting that is guaranteed to make 193 /// progress. This is used for split products that may not be making 194 /// progress. 195 RS_Split2, 196 197 /// Live range will be spilled. No more splitting will be attempted. 198 RS_Spill, 199 200 201 /// Live range is in memory. Because of other evictions, it might get moved 202 /// in a register in the end. 203 RS_Memory, 204 205 /// There is nothing more we can do to this live range. Abort compilation 206 /// if it can't be assigned. 207 RS_Done 208 }; 209 210 // Enum CutOffStage to keep a track whether the register allocation failed 211 // because of the cutoffs encountered in last chance recoloring. 212 // Note: This is used as bitmask. New value should be next power of 2. 213 enum CutOffStage { 214 // No cutoffs encountered 215 CO_None = 0, 216 217 // lcr-max-depth cutoff encountered 218 CO_Depth = 1, 219 220 // lcr-max-interf cutoff encountered 221 CO_Interf = 2 222 }; 223 224 uint8_t CutOffInfo; 225 226 #ifndef NDEBUG 227 static const char *const StageName[]; 228 #endif 229 230 // RegInfo - Keep additional information about each live range. 231 struct RegInfo { 232 LiveRangeStage Stage = RS_New; 233 234 // Cascade - Eviction loop prevention. See canEvictInterference(). 235 unsigned Cascade = 0; 236 237 RegInfo() = default; 238 }; 239 240 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 241 242 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 243 return ExtraRegInfo[VirtReg.reg].Stage; 244 } 245 246 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 247 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 248 ExtraRegInfo[VirtReg.reg].Stage = Stage; 249 } 250 251 template<typename Iterator> 252 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 253 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 254 for (;Begin != End; ++Begin) { 255 unsigned Reg = *Begin; 256 if (ExtraRegInfo[Reg].Stage == RS_New) 257 ExtraRegInfo[Reg].Stage = NewStage; 258 } 259 } 260 261 /// Cost of evicting interference. 262 struct EvictionCost { 263 unsigned BrokenHints = 0; ///< Total number of broken hints. 264 float MaxWeight = 0; ///< Maximum spill weight evicted. 265 266 EvictionCost() = default; 267 268 bool isMax() const { return BrokenHints == ~0u; } 269 270 void setMax() { BrokenHints = ~0u; } 271 272 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 273 274 bool operator<(const EvictionCost &O) const { 275 return std::tie(BrokenHints, MaxWeight) < 276 std::tie(O.BrokenHints, O.MaxWeight); 277 } 278 }; 279 280 // splitting state. 281 std::unique_ptr<SplitAnalysis> SA; 282 std::unique_ptr<SplitEditor> SE; 283 284 /// Cached per-block interference maps 285 InterferenceCache IntfCache; 286 287 /// All basic blocks where the current register has uses. 288 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 289 290 /// Global live range splitting candidate info. 291 struct GlobalSplitCandidate { 292 // Register intended for assignment, or 0. 293 unsigned PhysReg; 294 295 // SplitKit interval index for this candidate. 296 unsigned IntvIdx; 297 298 // Interference for PhysReg. 299 InterferenceCache::Cursor Intf; 300 301 // Bundles where this candidate should be live. 302 BitVector LiveBundles; 303 SmallVector<unsigned, 8> ActiveBlocks; 304 305 void reset(InterferenceCache &Cache, unsigned Reg) { 306 PhysReg = Reg; 307 IntvIdx = 0; 308 Intf.setPhysReg(Cache, Reg); 309 LiveBundles.clear(); 310 ActiveBlocks.clear(); 311 } 312 313 // Set B[i] = C for every live bundle where B[i] was NoCand. 314 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 315 unsigned Count = 0; 316 for (unsigned i : LiveBundles.set_bits()) 317 if (B[i] == NoCand) { 318 B[i] = C; 319 Count++; 320 } 321 return Count; 322 } 323 }; 324 325 /// Candidate info for each PhysReg in AllocationOrder. 326 /// This vector never shrinks, but grows to the size of the largest register 327 /// class. 328 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 329 330 enum : unsigned { NoCand = ~0u }; 331 332 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 333 /// NoCand which indicates the stack interval. 334 SmallVector<unsigned, 32> BundleCand; 335 336 /// Callee-save register cost, calculated once per machine function. 337 BlockFrequency CSRCost; 338 339 /// Run or not the local reassignment heuristic. This information is 340 /// obtained from the TargetSubtargetInfo. 341 bool EnableLocalReassign; 342 343 /// Set of broken hints that may be reconciled later because of eviction. 344 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 345 346 public: 347 RAGreedy(); 348 349 /// Return the pass name. 350 StringRef getPassName() const override { return "Greedy Register Allocator"; } 351 352 /// RAGreedy analysis usage. 353 void getAnalysisUsage(AnalysisUsage &AU) const override; 354 void releaseMemory() override; 355 Spiller &spiller() override { return *SpillerInstance; } 356 void enqueue(LiveInterval *LI) override; 357 LiveInterval *dequeue() override; 358 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; 359 void aboutToRemoveInterval(LiveInterval &) override; 360 361 /// Perform register allocation. 362 bool runOnMachineFunction(MachineFunction &mf) override; 363 364 MachineFunctionProperties getRequiredProperties() const override { 365 return MachineFunctionProperties().set( 366 MachineFunctionProperties::Property::NoPHIs); 367 } 368 369 static char ID; 370 371 private: 372 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, 373 SmallVirtRegSet &, unsigned = 0); 374 375 bool LRE_CanEraseVirtReg(unsigned) override; 376 void LRE_WillShrinkVirtReg(unsigned) override; 377 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 378 void enqueue(PQueue &CurQueue, LiveInterval *LI); 379 LiveInterval *dequeue(PQueue &CurQueue); 380 381 BlockFrequency calcSpillCost(); 382 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 383 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 384 void growRegion(GlobalSplitCandidate &Cand); 385 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&); 386 bool calcCompactRegion(GlobalSplitCandidate&); 387 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 388 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 389 unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg); 390 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 391 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 392 void evictInterference(LiveInterval&, unsigned, 393 SmallVectorImpl<unsigned>&); 394 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 395 SmallLISet &RecoloringCandidates, 396 const SmallVirtRegSet &FixedRegisters); 397 398 unsigned tryAssign(LiveInterval&, AllocationOrder&, 399 SmallVectorImpl<unsigned>&); 400 unsigned tryEvict(LiveInterval&, AllocationOrder&, 401 SmallVectorImpl<unsigned>&, unsigned = ~0u); 402 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 403 SmallVectorImpl<unsigned>&); 404 /// Calculate cost of region splitting. 405 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 406 AllocationOrder &Order, 407 BlockFrequency &BestCost, 408 unsigned &NumCands, bool IgnoreCSR); 409 /// Perform region splitting. 410 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 411 bool HasCompact, 412 SmallVectorImpl<unsigned> &NewVRegs); 413 /// Check other options before using a callee-saved register for the first 414 /// time. 415 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 416 unsigned PhysReg, unsigned &CostPerUseLimit, 417 SmallVectorImpl<unsigned> &NewVRegs); 418 void initializeCSRCost(); 419 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 420 SmallVectorImpl<unsigned>&); 421 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 422 SmallVectorImpl<unsigned>&); 423 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 424 SmallVectorImpl<unsigned>&); 425 unsigned trySplit(LiveInterval&, AllocationOrder&, 426 SmallVectorImpl<unsigned>&); 427 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 428 SmallVectorImpl<unsigned> &, 429 SmallVirtRegSet &, unsigned); 430 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, 431 SmallVirtRegSet &, unsigned); 432 void tryHintRecoloring(LiveInterval &); 433 void tryHintsRecoloring(); 434 435 /// Model the information carried by one end of a copy. 436 struct HintInfo { 437 /// The frequency of the copy. 438 BlockFrequency Freq; 439 /// The virtual register or physical register. 440 unsigned Reg; 441 /// Its currently assigned register. 442 /// In case of a physical register Reg == PhysReg. 443 unsigned PhysReg; 444 445 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) 446 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 447 }; 448 using HintsInfo = SmallVector<HintInfo, 4>; 449 450 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 451 void collectHintInfo(unsigned, HintsInfo &); 452 453 bool isUnusedCalleeSavedReg(unsigned PhysReg) const; 454 455 /// Compute and report the number of spills and reloads for a loop. 456 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 457 unsigned &FoldedReloads, unsigned &Spills, 458 unsigned &FoldedSpills); 459 460 /// Report the number of spills and reloads for each loop. 461 void reportNumberOfSplillsReloads() { 462 for (MachineLoop *L : *Loops) { 463 unsigned Reloads, FoldedReloads, Spills, FoldedSpills; 464 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills, 465 FoldedSpills); 466 } 467 } 468 }; 469 470 } // end anonymous namespace 471 472 char RAGreedy::ID = 0; 473 char &llvm::RAGreedyID = RAGreedy::ID; 474 475 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 476 "Greedy Register Allocator", false, false) 477 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 478 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 479 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 480 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 481 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 482 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 483 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 484 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 485 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 486 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 487 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 488 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 489 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 490 INITIALIZE_PASS_END(RAGreedy, "greedy", 491 "Greedy Register Allocator", false, false) 492 493 #ifndef NDEBUG 494 const char *const RAGreedy::StageName[] = { 495 "RS_New", 496 "RS_Assign", 497 "RS_Split", 498 "RS_Split2", 499 "RS_Spill", 500 "RS_Memory", 501 "RS_Done" 502 }; 503 #endif 504 505 // Hysteresis to use when comparing floats. 506 // This helps stabilize decisions based on float comparisons. 507 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 508 509 FunctionPass* llvm::createGreedyRegisterAllocator() { 510 return new RAGreedy(); 511 } 512 513 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 514 } 515 516 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 517 AU.setPreservesCFG(); 518 AU.addRequired<MachineBlockFrequencyInfo>(); 519 AU.addPreserved<MachineBlockFrequencyInfo>(); 520 AU.addRequired<AAResultsWrapperPass>(); 521 AU.addPreserved<AAResultsWrapperPass>(); 522 AU.addRequired<LiveIntervals>(); 523 AU.addPreserved<LiveIntervals>(); 524 AU.addRequired<SlotIndexes>(); 525 AU.addPreserved<SlotIndexes>(); 526 AU.addRequired<LiveDebugVariables>(); 527 AU.addPreserved<LiveDebugVariables>(); 528 AU.addRequired<LiveStacks>(); 529 AU.addPreserved<LiveStacks>(); 530 AU.addRequired<MachineDominatorTree>(); 531 AU.addPreserved<MachineDominatorTree>(); 532 AU.addRequired<MachineLoopInfo>(); 533 AU.addPreserved<MachineLoopInfo>(); 534 AU.addRequired<VirtRegMap>(); 535 AU.addPreserved<VirtRegMap>(); 536 AU.addRequired<LiveRegMatrix>(); 537 AU.addPreserved<LiveRegMatrix>(); 538 AU.addRequired<EdgeBundles>(); 539 AU.addRequired<SpillPlacement>(); 540 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 541 MachineFunctionPass::getAnalysisUsage(AU); 542 } 543 544 //===----------------------------------------------------------------------===// 545 // LiveRangeEdit delegate methods 546 //===----------------------------------------------------------------------===// 547 548 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 549 if (VRM->hasPhys(VirtReg)) { 550 LiveInterval &LI = LIS->getInterval(VirtReg); 551 Matrix->unassign(LI); 552 aboutToRemoveInterval(LI); 553 return true; 554 } 555 // Unassigned virtreg is probably in the priority queue. 556 // RegAllocBase will erase it after dequeueing. 557 return false; 558 } 559 560 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 561 if (!VRM->hasPhys(VirtReg)) 562 return; 563 564 // Register is assigned, put it back on the queue for reassignment. 565 LiveInterval &LI = LIS->getInterval(VirtReg); 566 Matrix->unassign(LI); 567 enqueue(&LI); 568 } 569 570 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 571 // Cloning a register we haven't even heard about yet? Just ignore it. 572 if (!ExtraRegInfo.inBounds(Old)) 573 return; 574 575 // LRE may clone a virtual register because dead code elimination causes it to 576 // be split into connected components. The new components are much smaller 577 // than the original, so they should get a new chance at being assigned. 578 // same stage as the parent. 579 ExtraRegInfo[Old].Stage = RS_Assign; 580 ExtraRegInfo.grow(New); 581 ExtraRegInfo[New] = ExtraRegInfo[Old]; 582 } 583 584 void RAGreedy::releaseMemory() { 585 SpillerInstance.reset(); 586 ExtraRegInfo.clear(); 587 GlobalCand.clear(); 588 } 589 590 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 591 592 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 593 // Prioritize live ranges by size, assigning larger ranges first. 594 // The queue holds (size, reg) pairs. 595 const unsigned Size = LI->getSize(); 596 const unsigned Reg = LI->reg; 597 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 598 "Can only enqueue virtual registers"); 599 unsigned Prio; 600 601 ExtraRegInfo.grow(Reg); 602 if (ExtraRegInfo[Reg].Stage == RS_New) 603 ExtraRegInfo[Reg].Stage = RS_Assign; 604 605 if (ExtraRegInfo[Reg].Stage == RS_Split) { 606 // Unsplit ranges that couldn't be allocated immediately are deferred until 607 // everything else has been allocated. 608 Prio = Size; 609 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 610 // Memory operand should be considered last. 611 // Change the priority such that Memory operand are assigned in 612 // the reverse order that they came in. 613 // TODO: Make this a member variable and probably do something about hints. 614 static unsigned MemOp = 0; 615 Prio = MemOp++; 616 } else { 617 // Giant live ranges fall back to the global assignment heuristic, which 618 // prevents excessive spilling in pathological cases. 619 bool ReverseLocal = TRI->reverseLocalAssignment(); 620 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 621 bool ForceGlobal = !ReverseLocal && 622 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 623 624 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 625 LIS->intervalIsInOneMBB(*LI)) { 626 // Allocate original local ranges in linear instruction order. Since they 627 // are singly defined, this produces optimal coloring in the absence of 628 // global interference and other constraints. 629 if (!ReverseLocal) 630 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 631 else { 632 // Allocating bottom up may allow many short LRGs to be assigned first 633 // to one of the cheap registers. This could be much faster for very 634 // large blocks on targets with many physical registers. 635 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 636 } 637 Prio |= RC.AllocationPriority << 24; 638 } else { 639 // Allocate global and split ranges in long->short order. Long ranges that 640 // don't fit should be spilled (or split) ASAP so they don't create 641 // interference. Mark a bit to prioritize global above local ranges. 642 Prio = (1u << 29) + Size; 643 } 644 // Mark a higher bit to prioritize global and local above RS_Split. 645 Prio |= (1u << 31); 646 647 // Boost ranges that have a physical register hint. 648 if (VRM->hasKnownPreference(Reg)) 649 Prio |= (1u << 30); 650 } 651 // The virtual register number is a tie breaker for same-sized ranges. 652 // Give lower vreg numbers higher priority to assign them first. 653 CurQueue.push(std::make_pair(Prio, ~Reg)); 654 } 655 656 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 657 658 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 659 if (CurQueue.empty()) 660 return nullptr; 661 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 662 CurQueue.pop(); 663 return LI; 664 } 665 666 //===----------------------------------------------------------------------===// 667 // Direct Assignment 668 //===----------------------------------------------------------------------===// 669 670 /// tryAssign - Try to assign VirtReg to an available register. 671 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 672 AllocationOrder &Order, 673 SmallVectorImpl<unsigned> &NewVRegs) { 674 Order.rewind(); 675 unsigned PhysReg; 676 while ((PhysReg = Order.next())) 677 if (!Matrix->checkInterference(VirtReg, PhysReg)) 678 break; 679 if (!PhysReg || Order.isHint()) 680 return PhysReg; 681 682 // PhysReg is available, but there may be a better choice. 683 684 // If we missed a simple hint, try to cheaply evict interference from the 685 // preferred register. 686 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 687 if (Order.isHint(Hint)) { 688 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); 689 EvictionCost MaxCost; 690 MaxCost.setBrokenHints(1); 691 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 692 evictInterference(VirtReg, Hint, NewVRegs); 693 return Hint; 694 } 695 // Record the missed hint, we may be able to recover 696 // at the end if the surrounding allocation changed. 697 SetOfBrokenHints.insert(&VirtReg); 698 } 699 700 // Try to evict interference from a cheaper alternative. 701 unsigned Cost = TRI->getCostPerUse(PhysReg); 702 703 // Most registers have 0 additional cost. 704 if (!Cost) 705 return PhysReg; 706 707 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost 708 << '\n'); 709 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 710 return CheapReg ? CheapReg : PhysReg; 711 } 712 713 //===----------------------------------------------------------------------===// 714 // Interference eviction 715 //===----------------------------------------------------------------------===// 716 717 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { 718 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 719 unsigned PhysReg; 720 while ((PhysReg = Order.next())) { 721 if (PhysReg == PrevReg) 722 continue; 723 724 MCRegUnitIterator Units(PhysReg, TRI); 725 for (; Units.isValid(); ++Units) { 726 // Instantiate a "subquery", not to be confused with the Queries array. 727 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 728 if (subQ.checkInterference()) 729 break; 730 } 731 // If no units have interference, break out with the current PhysReg. 732 if (!Units.isValid()) 733 break; 734 } 735 if (PhysReg) 736 DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 737 << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI) 738 << '\n'); 739 return PhysReg; 740 } 741 742 /// shouldEvict - determine if A should evict the assigned live range B. The 743 /// eviction policy defined by this function together with the allocation order 744 /// defined by enqueue() decides which registers ultimately end up being split 745 /// and spilled. 746 /// 747 /// Cascade numbers are used to prevent infinite loops if this function is a 748 /// cyclic relation. 749 /// 750 /// @param A The live range to be assigned. 751 /// @param IsHint True when A is about to be assigned to its preferred 752 /// register. 753 /// @param B The live range to be evicted. 754 /// @param BreaksHint True when B is already assigned to its preferred register. 755 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 756 LiveInterval &B, bool BreaksHint) { 757 bool CanSplit = getStage(B) < RS_Spill; 758 759 // Be fairly aggressive about following hints as long as the evictee can be 760 // split. 761 if (CanSplit && IsHint && !BreaksHint) 762 return true; 763 764 if (A.weight > B.weight) { 765 DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); 766 return true; 767 } 768 return false; 769 } 770 771 /// canEvictInterference - Return true if all interferences between VirtReg and 772 /// PhysReg can be evicted. 773 /// 774 /// @param VirtReg Live range that is about to be assigned. 775 /// @param PhysReg Desired register for assignment. 776 /// @param IsHint True when PhysReg is VirtReg's preferred register. 777 /// @param MaxCost Only look for cheaper candidates and update with new cost 778 /// when returning true. 779 /// @returns True when interference can be evicted cheaper than MaxCost. 780 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 781 bool IsHint, EvictionCost &MaxCost) { 782 // It is only possible to evict virtual register interference. 783 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 784 return false; 785 786 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 787 788 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 789 // involved in an eviction before. If a cascade number was assigned, deny 790 // evicting anything with the same or a newer cascade number. This prevents 791 // infinite eviction loops. 792 // 793 // This works out so a register without a cascade number is allowed to evict 794 // anything, and it can be evicted by anything. 795 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 796 if (!Cascade) 797 Cascade = NextCascade; 798 799 EvictionCost Cost; 800 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 801 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 802 // If there is 10 or more interferences, chances are one is heavier. 803 if (Q.collectInterferingVRegs(10) >= 10) 804 return false; 805 806 // Check if any interfering live range is heavier than MaxWeight. 807 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 808 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 809 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && 810 "Only expecting virtual register interference from query"); 811 // Never evict spill products. They cannot split or spill. 812 if (getStage(*Intf) == RS_Done) 813 return false; 814 // Once a live range becomes small enough, it is urgent that we find a 815 // register for it. This is indicated by an infinite spill weight. These 816 // urgent live ranges get to evict almost anything. 817 // 818 // Also allow urgent evictions of unspillable ranges from a strictly 819 // larger allocation order. 820 bool Urgent = !VirtReg.isSpillable() && 821 (Intf->isSpillable() || 822 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 823 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 824 // Only evict older cascades or live ranges without a cascade. 825 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 826 if (Cascade <= IntfCascade) { 827 if (!Urgent) 828 return false; 829 // We permit breaking cascades for urgent evictions. It should be the 830 // last resort, though, so make it really expensive. 831 Cost.BrokenHints += 10; 832 } 833 // Would this break a satisfied hint? 834 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 835 // Update eviction cost. 836 Cost.BrokenHints += BreaksHint; 837 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 838 // Abort if this would be too expensive. 839 if (!(Cost < MaxCost)) 840 return false; 841 if (Urgent) 842 continue; 843 // Apply the eviction policy for non-urgent evictions. 844 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 845 return false; 846 // If !MaxCost.isMax(), then we're just looking for a cheap register. 847 // Evicting another local live range in this case could lead to suboptimal 848 // coloring. 849 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 850 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 851 return false; 852 } 853 } 854 } 855 MaxCost = Cost; 856 return true; 857 } 858 859 /// evictInterference - Evict any interferring registers that prevent VirtReg 860 /// from being assigned to Physreg. This assumes that canEvictInterference 861 /// returned true. 862 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 863 SmallVectorImpl<unsigned> &NewVRegs) { 864 // Make sure that VirtReg has a cascade number, and assign that cascade 865 // number to every evicted register. These live ranges than then only be 866 // evicted by a newer cascade, preventing infinite loops. 867 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 868 if (!Cascade) 869 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 870 871 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) 872 << " interference: Cascade " << Cascade << '\n'); 873 874 // Collect all interfering virtregs first. 875 SmallVector<LiveInterval*, 8> Intfs; 876 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 877 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 878 // We usually have the interfering VRegs cached so collectInterferingVRegs() 879 // should be fast, we may need to recalculate if when different physregs 880 // overlap the same register unit so we had different SubRanges queried 881 // against it. 882 Q.collectInterferingVRegs(); 883 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 884 Intfs.append(IVR.begin(), IVR.end()); 885 } 886 887 // Evict them second. This will invalidate the queries. 888 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 889 LiveInterval *Intf = Intfs[i]; 890 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 891 if (!VRM->hasPhys(Intf->reg)) 892 continue; 893 Matrix->unassign(*Intf); 894 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 895 VirtReg.isSpillable() < Intf->isSpillable()) && 896 "Cannot decrease cascade number, illegal eviction"); 897 ExtraRegInfo[Intf->reg].Cascade = Cascade; 898 ++NumEvicted; 899 NewVRegs.push_back(Intf->reg); 900 } 901 } 902 903 /// Returns true if the given \p PhysReg is a callee saved register and has not 904 /// been used for allocation yet. 905 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { 906 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 907 if (CSR == 0) 908 return false; 909 910 return !Matrix->isPhysRegUsed(PhysReg); 911 } 912 913 /// tryEvict - Try to evict all interferences for a physreg. 914 /// @param VirtReg Currently unassigned virtual register. 915 /// @param Order Physregs to try. 916 /// @return Physreg to assign VirtReg, or 0. 917 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 918 AllocationOrder &Order, 919 SmallVectorImpl<unsigned> &NewVRegs, 920 unsigned CostPerUseLimit) { 921 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 922 TimePassesIsEnabled); 923 924 // Keep track of the cheapest interference seen so far. 925 EvictionCost BestCost; 926 BestCost.setMax(); 927 unsigned BestPhys = 0; 928 unsigned OrderLimit = Order.getOrder().size(); 929 930 // When we are just looking for a reduced cost per use, don't break any 931 // hints, and only evict smaller spill weights. 932 if (CostPerUseLimit < ~0u) { 933 BestCost.BrokenHints = 0; 934 BestCost.MaxWeight = VirtReg.weight; 935 936 // Check of any registers in RC are below CostPerUseLimit. 937 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 938 unsigned MinCost = RegClassInfo.getMinCost(RC); 939 if (MinCost >= CostPerUseLimit) { 940 DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost 941 << ", no cheaper registers to be found.\n"); 942 return 0; 943 } 944 945 // It is normal for register classes to have a long tail of registers with 946 // the same cost. We don't need to look at them if they're too expensive. 947 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 948 OrderLimit = RegClassInfo.getLastCostChange(RC); 949 DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n"); 950 } 951 } 952 953 Order.rewind(); 954 while (unsigned PhysReg = Order.next(OrderLimit)) { 955 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 956 continue; 957 // The first use of a callee-saved register in a function has cost 1. 958 // Don't start using a CSR when the CostPerUseLimit is low. 959 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 960 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " 961 << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 962 << '\n'); 963 continue; 964 } 965 966 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 967 continue; 968 969 // Best so far. 970 BestPhys = PhysReg; 971 972 // Stop if the hint can be used. 973 if (Order.isHint()) 974 break; 975 } 976 977 if (!BestPhys) 978 return 0; 979 980 evictInterference(VirtReg, BestPhys, NewVRegs); 981 return BestPhys; 982 } 983 984 //===----------------------------------------------------------------------===// 985 // Region Splitting 986 //===----------------------------------------------------------------------===// 987 988 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 989 /// interference pattern in Physreg and its aliases. Add the constraints to 990 /// SpillPlacement and return the static cost of this split in Cost, assuming 991 /// that all preferences in SplitConstraints are met. 992 /// Return false if there are no bundles with positive bias. 993 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 994 BlockFrequency &Cost) { 995 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 996 997 // Reset interference dependent info. 998 SplitConstraints.resize(UseBlocks.size()); 999 BlockFrequency StaticCost = 0; 1000 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1001 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1002 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1003 1004 BC.Number = BI.MBB->getNumber(); 1005 Intf.moveToBlock(BC.Number); 1006 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1007 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1008 BC.ChangesValue = BI.FirstDef.isValid(); 1009 1010 if (!Intf.hasInterference()) 1011 continue; 1012 1013 // Number of spill code instructions to insert. 1014 unsigned Ins = 0; 1015 1016 // Interference for the live-in value. 1017 if (BI.LiveIn) { 1018 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1019 BC.Entry = SpillPlacement::MustSpill; 1020 ++Ins; 1021 } else if (Intf.first() < BI.FirstInstr) { 1022 BC.Entry = SpillPlacement::PrefSpill; 1023 ++Ins; 1024 } else if (Intf.first() < BI.LastInstr) { 1025 ++Ins; 1026 } 1027 } 1028 1029 // Interference for the live-out value. 1030 if (BI.LiveOut) { 1031 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1032 BC.Exit = SpillPlacement::MustSpill; 1033 ++Ins; 1034 } else if (Intf.last() > BI.LastInstr) { 1035 BC.Exit = SpillPlacement::PrefSpill; 1036 ++Ins; 1037 } else if (Intf.last() > BI.FirstInstr) { 1038 ++Ins; 1039 } 1040 } 1041 1042 // Accumulate the total frequency of inserted spill code. 1043 while (Ins--) 1044 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1045 } 1046 Cost = StaticCost; 1047 1048 // Add constraints for use-blocks. Note that these are the only constraints 1049 // that may add a positive bias, it is downhill from here. 1050 SpillPlacer->addConstraints(SplitConstraints); 1051 return SpillPlacer->scanActiveBundles(); 1052 } 1053 1054 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1055 /// live-through blocks in Blocks. 1056 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1057 ArrayRef<unsigned> Blocks) { 1058 const unsigned GroupSize = 8; 1059 SpillPlacement::BlockConstraint BCS[GroupSize]; 1060 unsigned TBS[GroupSize]; 1061 unsigned B = 0, T = 0; 1062 1063 for (unsigned i = 0; i != Blocks.size(); ++i) { 1064 unsigned Number = Blocks[i]; 1065 Intf.moveToBlock(Number); 1066 1067 if (!Intf.hasInterference()) { 1068 assert(T < GroupSize && "Array overflow"); 1069 TBS[T] = Number; 1070 if (++T == GroupSize) { 1071 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1072 T = 0; 1073 } 1074 continue; 1075 } 1076 1077 assert(B < GroupSize && "Array overflow"); 1078 BCS[B].Number = Number; 1079 1080 // Interference for the live-in value. 1081 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1082 BCS[B].Entry = SpillPlacement::MustSpill; 1083 else 1084 BCS[B].Entry = SpillPlacement::PrefSpill; 1085 1086 // Interference for the live-out value. 1087 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1088 BCS[B].Exit = SpillPlacement::MustSpill; 1089 else 1090 BCS[B].Exit = SpillPlacement::PrefSpill; 1091 1092 if (++B == GroupSize) { 1093 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1094 B = 0; 1095 } 1096 } 1097 1098 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1099 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1100 } 1101 1102 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1103 // Keep track of through blocks that have not been added to SpillPlacer. 1104 BitVector Todo = SA->getThroughBlocks(); 1105 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1106 unsigned AddedTo = 0; 1107 #ifndef NDEBUG 1108 unsigned Visited = 0; 1109 #endif 1110 1111 while (true) { 1112 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1113 // Find new through blocks in the periphery of PrefRegBundles. 1114 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1115 unsigned Bundle = NewBundles[i]; 1116 // Look at all blocks connected to Bundle in the full graph. 1117 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1118 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1119 I != E; ++I) { 1120 unsigned Block = *I; 1121 if (!Todo.test(Block)) 1122 continue; 1123 Todo.reset(Block); 1124 // This is a new through block. Add it to SpillPlacer later. 1125 ActiveBlocks.push_back(Block); 1126 #ifndef NDEBUG 1127 ++Visited; 1128 #endif 1129 } 1130 } 1131 // Any new blocks to add? 1132 if (ActiveBlocks.size() == AddedTo) 1133 break; 1134 1135 // Compute through constraints from the interference, or assume that all 1136 // through blocks prefer spilling when forming compact regions. 1137 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1138 if (Cand.PhysReg) 1139 addThroughConstraints(Cand.Intf, NewBlocks); 1140 else 1141 // Provide a strong negative bias on through blocks to prevent unwanted 1142 // liveness on loop backedges. 1143 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1144 AddedTo = ActiveBlocks.size(); 1145 1146 // Perhaps iterating can enable more bundles? 1147 SpillPlacer->iterate(); 1148 } 1149 DEBUG(dbgs() << ", v=" << Visited); 1150 } 1151 1152 /// calcCompactRegion - Compute the set of edge bundles that should be live 1153 /// when splitting the current live range into compact regions. Compact 1154 /// regions can be computed without looking at interference. They are the 1155 /// regions formed by removing all the live-through blocks from the live range. 1156 /// 1157 /// Returns false if the current live range is already compact, or if the 1158 /// compact regions would form single block regions anyway. 1159 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1160 // Without any through blocks, the live range is already compact. 1161 if (!SA->getNumThroughBlocks()) 1162 return false; 1163 1164 // Compact regions don't correspond to any physreg. 1165 Cand.reset(IntfCache, 0); 1166 1167 DEBUG(dbgs() << "Compact region bundles"); 1168 1169 // Use the spill placer to determine the live bundles. GrowRegion pretends 1170 // that all the through blocks have interference when PhysReg is unset. 1171 SpillPlacer->prepare(Cand.LiveBundles); 1172 1173 // The static split cost will be zero since Cand.Intf reports no interference. 1174 BlockFrequency Cost; 1175 if (!addSplitConstraints(Cand.Intf, Cost)) { 1176 DEBUG(dbgs() << ", none.\n"); 1177 return false; 1178 } 1179 1180 growRegion(Cand); 1181 SpillPlacer->finish(); 1182 1183 if (!Cand.LiveBundles.any()) { 1184 DEBUG(dbgs() << ", none.\n"); 1185 return false; 1186 } 1187 1188 DEBUG({ 1189 for (int i : Cand.LiveBundles.set_bits()) 1190 dbgs() << " EB#" << i; 1191 dbgs() << ".\n"; 1192 }); 1193 return true; 1194 } 1195 1196 /// calcSpillCost - Compute how expensive it would be to split the live range in 1197 /// SA around all use blocks instead of forming bundle regions. 1198 BlockFrequency RAGreedy::calcSpillCost() { 1199 BlockFrequency Cost = 0; 1200 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1201 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1202 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1203 unsigned Number = BI.MBB->getNumber(); 1204 // We normally only need one spill instruction - a load or a store. 1205 Cost += SpillPlacer->getBlockFrequency(Number); 1206 1207 // Unless the value is redefined in the block. 1208 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1209 Cost += SpillPlacer->getBlockFrequency(Number); 1210 } 1211 return Cost; 1212 } 1213 1214 /// calcGlobalSplitCost - Return the global split cost of following the split 1215 /// pattern in LiveBundles. This cost should be added to the local cost of the 1216 /// interference pattern in SplitConstraints. 1217 /// 1218 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) { 1219 BlockFrequency GlobalCost = 0; 1220 const BitVector &LiveBundles = Cand.LiveBundles; 1221 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1222 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1223 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1224 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1225 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1226 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1227 unsigned Ins = 0; 1228 1229 if (BI.LiveIn) 1230 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1231 if (BI.LiveOut) 1232 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1233 while (Ins--) 1234 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1235 } 1236 1237 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1238 unsigned Number = Cand.ActiveBlocks[i]; 1239 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1240 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1241 if (!RegIn && !RegOut) 1242 continue; 1243 if (RegIn && RegOut) { 1244 // We need double spill code if this block has interference. 1245 Cand.Intf.moveToBlock(Number); 1246 if (Cand.Intf.hasInterference()) { 1247 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1248 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1249 } 1250 continue; 1251 } 1252 // live-in / stack-out or stack-in live-out. 1253 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1254 } 1255 return GlobalCost; 1256 } 1257 1258 /// splitAroundRegion - Split the current live range around the regions 1259 /// determined by BundleCand and GlobalCand. 1260 /// 1261 /// Before calling this function, GlobalCand and BundleCand must be initialized 1262 /// so each bundle is assigned to a valid candidate, or NoCand for the 1263 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1264 /// objects must be initialized for the current live range, and intervals 1265 /// created for the used candidates. 1266 /// 1267 /// @param LREdit The LiveRangeEdit object handling the current split. 1268 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1269 /// must appear in this list. 1270 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1271 ArrayRef<unsigned> UsedCands) { 1272 // These are the intervals created for new global ranges. We may create more 1273 // intervals for local ranges. 1274 const unsigned NumGlobalIntvs = LREdit.size(); 1275 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 1276 assert(NumGlobalIntvs && "No global intervals configured"); 1277 1278 // Isolate even single instructions when dealing with a proper sub-class. 1279 // That guarantees register class inflation for the stack interval because it 1280 // is all copies. 1281 unsigned Reg = SA->getParent().reg; 1282 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1283 1284 // First handle all the blocks with uses. 1285 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1286 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1287 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1288 unsigned Number = BI.MBB->getNumber(); 1289 unsigned IntvIn = 0, IntvOut = 0; 1290 SlotIndex IntfIn, IntfOut; 1291 if (BI.LiveIn) { 1292 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1293 if (CandIn != NoCand) { 1294 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1295 IntvIn = Cand.IntvIdx; 1296 Cand.Intf.moveToBlock(Number); 1297 IntfIn = Cand.Intf.first(); 1298 } 1299 } 1300 if (BI.LiveOut) { 1301 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1302 if (CandOut != NoCand) { 1303 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1304 IntvOut = Cand.IntvIdx; 1305 Cand.Intf.moveToBlock(Number); 1306 IntfOut = Cand.Intf.last(); 1307 } 1308 } 1309 1310 // Create separate intervals for isolated blocks with multiple uses. 1311 if (!IntvIn && !IntvOut) { 1312 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); 1313 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1314 SE->splitSingleBlock(BI); 1315 continue; 1316 } 1317 1318 if (IntvIn && IntvOut) 1319 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1320 else if (IntvIn) 1321 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1322 else 1323 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1324 } 1325 1326 // Handle live-through blocks. The relevant live-through blocks are stored in 1327 // the ActiveBlocks list with each candidate. We need to filter out 1328 // duplicates. 1329 BitVector Todo = SA->getThroughBlocks(); 1330 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1331 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1332 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1333 unsigned Number = Blocks[i]; 1334 if (!Todo.test(Number)) 1335 continue; 1336 Todo.reset(Number); 1337 1338 unsigned IntvIn = 0, IntvOut = 0; 1339 SlotIndex IntfIn, IntfOut; 1340 1341 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1342 if (CandIn != NoCand) { 1343 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1344 IntvIn = Cand.IntvIdx; 1345 Cand.Intf.moveToBlock(Number); 1346 IntfIn = Cand.Intf.first(); 1347 } 1348 1349 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1350 if (CandOut != NoCand) { 1351 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1352 IntvOut = Cand.IntvIdx; 1353 Cand.Intf.moveToBlock(Number); 1354 IntfOut = Cand.Intf.last(); 1355 } 1356 if (!IntvIn && !IntvOut) 1357 continue; 1358 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1359 } 1360 } 1361 1362 ++NumGlobalSplits; 1363 1364 SmallVector<unsigned, 8> IntvMap; 1365 SE->finish(&IntvMap); 1366 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1367 1368 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1369 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1370 1371 // Sort out the new intervals created by splitting. We get four kinds: 1372 // - Remainder intervals should not be split again. 1373 // - Candidate intervals can be assigned to Cand.PhysReg. 1374 // - Block-local splits are candidates for local splitting. 1375 // - DCE leftovers should go back on the queue. 1376 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1377 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1378 1379 // Ignore old intervals from DCE. 1380 if (getStage(Reg) != RS_New) 1381 continue; 1382 1383 // Remainder interval. Don't try splitting again, spill if it doesn't 1384 // allocate. 1385 if (IntvMap[i] == 0) { 1386 setStage(Reg, RS_Spill); 1387 continue; 1388 } 1389 1390 // Global intervals. Allow repeated splitting as long as the number of live 1391 // blocks is strictly decreasing. 1392 if (IntvMap[i] < NumGlobalIntvs) { 1393 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1394 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1395 << " blocks as original.\n"); 1396 // Don't allow repeated splitting as a safe guard against looping. 1397 setStage(Reg, RS_Split2); 1398 } 1399 continue; 1400 } 1401 1402 // Other intervals are treated as new. This includes local intervals created 1403 // for blocks with multiple uses, and anything created by DCE. 1404 } 1405 1406 if (VerifyEnabled) 1407 MF->verify(this, "After splitting live range around region"); 1408 } 1409 1410 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1411 SmallVectorImpl<unsigned> &NewVRegs) { 1412 unsigned NumCands = 0; 1413 BlockFrequency BestCost; 1414 1415 // Check if we can split this live range around a compact region. 1416 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1417 if (HasCompact) { 1418 // Yes, keep GlobalCand[0] as the compact region candidate. 1419 NumCands = 1; 1420 BestCost = BlockFrequency::getMaxFrequency(); 1421 } else { 1422 // No benefit from the compact region, our fallback will be per-block 1423 // splitting. Make sure we find a solution that is cheaper than spilling. 1424 BestCost = calcSpillCost(); 1425 DEBUG(dbgs() << "Cost of isolating all blocks = "; 1426 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1427 } 1428 1429 unsigned BestCand = 1430 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1431 false/*IgnoreCSR*/); 1432 1433 // No solutions found, fall back to single block splitting. 1434 if (!HasCompact && BestCand == NoCand) 1435 return 0; 1436 1437 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1438 } 1439 1440 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1441 AllocationOrder &Order, 1442 BlockFrequency &BestCost, 1443 unsigned &NumCands, 1444 bool IgnoreCSR) { 1445 unsigned BestCand = NoCand; 1446 Order.rewind(); 1447 while (unsigned PhysReg = Order.next()) { 1448 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1449 continue; 1450 1451 // Discard bad candidates before we run out of interference cache cursors. 1452 // This will only affect register classes with a lot of registers (>32). 1453 if (NumCands == IntfCache.getMaxCursors()) { 1454 unsigned WorstCount = ~0u; 1455 unsigned Worst = 0; 1456 for (unsigned i = 0; i != NumCands; ++i) { 1457 if (i == BestCand || !GlobalCand[i].PhysReg) 1458 continue; 1459 unsigned Count = GlobalCand[i].LiveBundles.count(); 1460 if (Count < WorstCount) { 1461 Worst = i; 1462 WorstCount = Count; 1463 } 1464 } 1465 --NumCands; 1466 GlobalCand[Worst] = GlobalCand[NumCands]; 1467 if (BestCand == NumCands) 1468 BestCand = Worst; 1469 } 1470 1471 if (GlobalCand.size() <= NumCands) 1472 GlobalCand.resize(NumCands+1); 1473 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1474 Cand.reset(IntfCache, PhysReg); 1475 1476 SpillPlacer->prepare(Cand.LiveBundles); 1477 BlockFrequency Cost; 1478 if (!addSplitConstraints(Cand.Intf, Cost)) { 1479 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); 1480 continue; 1481 } 1482 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = "; 1483 MBFI->printBlockFreq(dbgs(), Cost)); 1484 if (Cost >= BestCost) { 1485 DEBUG({ 1486 if (BestCand == NoCand) 1487 dbgs() << " worse than no bundles\n"; 1488 else 1489 dbgs() << " worse than " 1490 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1491 }); 1492 continue; 1493 } 1494 growRegion(Cand); 1495 1496 SpillPlacer->finish(); 1497 1498 // No live bundles, defer to splitSingleBlocks(). 1499 if (!Cand.LiveBundles.any()) { 1500 DEBUG(dbgs() << " no bundles.\n"); 1501 continue; 1502 } 1503 1504 Cost += calcGlobalSplitCost(Cand); 1505 DEBUG({ 1506 dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost) 1507 << " with bundles"; 1508 for (int i : Cand.LiveBundles.set_bits()) 1509 dbgs() << " EB#" << i; 1510 dbgs() << ".\n"; 1511 }); 1512 if (Cost < BestCost) { 1513 BestCand = NumCands; 1514 BestCost = Cost; 1515 } 1516 ++NumCands; 1517 } 1518 return BestCand; 1519 } 1520 1521 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1522 bool HasCompact, 1523 SmallVectorImpl<unsigned> &NewVRegs) { 1524 SmallVector<unsigned, 8> UsedCands; 1525 // Prepare split editor. 1526 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1527 SE->reset(LREdit, SplitSpillMode); 1528 1529 // Assign all edge bundles to the preferred candidate, or NoCand. 1530 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1531 1532 // Assign bundles for the best candidate region. 1533 if (BestCand != NoCand) { 1534 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1535 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1536 UsedCands.push_back(BestCand); 1537 Cand.IntvIdx = SE->openIntv(); 1538 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in " 1539 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1540 (void)B; 1541 } 1542 } 1543 1544 // Assign bundles for the compact region. 1545 if (HasCompact) { 1546 GlobalSplitCandidate &Cand = GlobalCand.front(); 1547 assert(!Cand.PhysReg && "Compact region has no physreg"); 1548 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1549 UsedCands.push_back(0); 1550 Cand.IntvIdx = SE->openIntv(); 1551 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1552 << Cand.IntvIdx << ".\n"); 1553 (void)B; 1554 } 1555 } 1556 1557 splitAroundRegion(LREdit, UsedCands); 1558 return 0; 1559 } 1560 1561 //===----------------------------------------------------------------------===// 1562 // Per-Block Splitting 1563 //===----------------------------------------------------------------------===// 1564 1565 /// tryBlockSplit - Split a global live range around every block with uses. This 1566 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1567 /// they don't allocate. 1568 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1569 SmallVectorImpl<unsigned> &NewVRegs) { 1570 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1571 unsigned Reg = VirtReg.reg; 1572 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1573 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1574 SE->reset(LREdit, SplitSpillMode); 1575 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1576 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1577 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1578 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1579 SE->splitSingleBlock(BI); 1580 } 1581 // No blocks were split. 1582 if (LREdit.empty()) 1583 return 0; 1584 1585 // We did split for some blocks. 1586 SmallVector<unsigned, 8> IntvMap; 1587 SE->finish(&IntvMap); 1588 1589 // Tell LiveDebugVariables about the new ranges. 1590 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1591 1592 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1593 1594 // Sort out the new intervals created by splitting. The remainder interval 1595 // goes straight to spilling, the new local ranges get to stay RS_New. 1596 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1597 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 1598 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1599 setStage(LI, RS_Spill); 1600 } 1601 1602 if (VerifyEnabled) 1603 MF->verify(this, "After splitting live range around basic blocks"); 1604 return 0; 1605 } 1606 1607 //===----------------------------------------------------------------------===// 1608 // Per-Instruction Splitting 1609 //===----------------------------------------------------------------------===// 1610 1611 /// Get the number of allocatable registers that match the constraints of \p Reg 1612 /// on \p MI and that are also in \p SuperRC. 1613 static unsigned getNumAllocatableRegsForConstraints( 1614 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 1615 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1616 const RegisterClassInfo &RCI) { 1617 assert(SuperRC && "Invalid register class"); 1618 1619 const TargetRegisterClass *ConstrainedRC = 1620 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1621 /* ExploreBundle */ true); 1622 if (!ConstrainedRC) 1623 return 0; 1624 return RCI.getNumAllocatableRegs(ConstrainedRC); 1625 } 1626 1627 /// tryInstructionSplit - Split a live range around individual instructions. 1628 /// This is normally not worthwhile since the spiller is doing essentially the 1629 /// same thing. However, when the live range is in a constrained register 1630 /// class, it may help to insert copies such that parts of the live range can 1631 /// be moved to a larger register class. 1632 /// 1633 /// This is similar to spilling to a larger register class. 1634 unsigned 1635 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1636 SmallVectorImpl<unsigned> &NewVRegs) { 1637 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 1638 // There is no point to this if there are no larger sub-classes. 1639 if (!RegClassInfo.isProperSubClass(CurRC)) 1640 return 0; 1641 1642 // Always enable split spill mode, since we're effectively spilling to a 1643 // register. 1644 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1645 SE->reset(LREdit, SplitEditor::SM_Size); 1646 1647 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1648 if (Uses.size() <= 1) 1649 return 0; 1650 1651 DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n"); 1652 1653 const TargetRegisterClass *SuperRC = 1654 TRI->getLargestLegalSuperClass(CurRC, *MF); 1655 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 1656 // Split around every non-copy instruction if this split will relax 1657 // the constraints on the virtual register. 1658 // Otherwise, splitting just inserts uncoalescable copies that do not help 1659 // the allocation. 1660 for (unsigned i = 0; i != Uses.size(); ++i) { 1661 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 1662 if (MI->isFullCopy() || 1663 SuperRCNumAllocatableRegs == 1664 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, 1665 TRI, RCI)) { 1666 DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 1667 continue; 1668 } 1669 SE->openIntv(); 1670 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 1671 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 1672 SE->useIntv(SegStart, SegStop); 1673 } 1674 1675 if (LREdit.empty()) { 1676 DEBUG(dbgs() << "All uses were copies.\n"); 1677 return 0; 1678 } 1679 1680 SmallVector<unsigned, 8> IntvMap; 1681 SE->finish(&IntvMap); 1682 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 1683 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1684 1685 // Assign all new registers to RS_Spill. This was the last chance. 1686 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1687 return 0; 1688 } 1689 1690 //===----------------------------------------------------------------------===// 1691 // Local Splitting 1692 //===----------------------------------------------------------------------===// 1693 1694 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1695 /// in order to use PhysReg between two entries in SA->UseSlots. 1696 /// 1697 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 1698 /// 1699 void RAGreedy::calcGapWeights(unsigned PhysReg, 1700 SmallVectorImpl<float> &GapWeight) { 1701 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1702 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1703 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1704 const unsigned NumGaps = Uses.size()-1; 1705 1706 // Start and end points for the interference check. 1707 SlotIndex StartIdx = 1708 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1709 SlotIndex StopIdx = 1710 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1711 1712 GapWeight.assign(NumGaps, 0.0f); 1713 1714 // Add interference from each overlapping register. 1715 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1716 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1717 .checkInterference()) 1718 continue; 1719 1720 // We know that VirtReg is a continuous interval from FirstInstr to 1721 // LastInstr, so we don't need InterferenceQuery. 1722 // 1723 // Interference that overlaps an instruction is counted in both gaps 1724 // surrounding the instruction. The exception is interference before 1725 // StartIdx and after StopIdx. 1726 // 1727 LiveIntervalUnion::SegmentIter IntI = 1728 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1729 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1730 // Skip the gaps before IntI. 1731 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1732 if (++Gap == NumGaps) 1733 break; 1734 if (Gap == NumGaps) 1735 break; 1736 1737 // Update the gaps covered by IntI. 1738 const float weight = IntI.value()->weight; 1739 for (; Gap != NumGaps; ++Gap) { 1740 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1741 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1742 break; 1743 } 1744 if (Gap == NumGaps) 1745 break; 1746 } 1747 } 1748 1749 // Add fixed interference. 1750 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1751 const LiveRange &LR = LIS->getRegUnit(*Units); 1752 LiveRange::const_iterator I = LR.find(StartIdx); 1753 LiveRange::const_iterator E = LR.end(); 1754 1755 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1756 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1757 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1758 if (++Gap == NumGaps) 1759 break; 1760 if (Gap == NumGaps) 1761 break; 1762 1763 for (; Gap != NumGaps; ++Gap) { 1764 GapWeight[Gap] = huge_valf; 1765 if (Uses[Gap+1].getBaseIndex() >= I->end) 1766 break; 1767 } 1768 if (Gap == NumGaps) 1769 break; 1770 } 1771 } 1772 } 1773 1774 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1775 /// basic block. 1776 /// 1777 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1778 SmallVectorImpl<unsigned> &NewVRegs) { 1779 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1780 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1781 1782 // Note that it is possible to have an interval that is live-in or live-out 1783 // while only covering a single block - A phi-def can use undef values from 1784 // predecessors, and the block could be a single-block loop. 1785 // We don't bother doing anything clever about such a case, we simply assume 1786 // that the interval is continuous from FirstInstr to LastInstr. We should 1787 // make sure that we don't do anything illegal to such an interval, though. 1788 1789 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1790 if (Uses.size() <= 2) 1791 return 0; 1792 const unsigned NumGaps = Uses.size()-1; 1793 1794 DEBUG({ 1795 dbgs() << "tryLocalSplit: "; 1796 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 1797 dbgs() << ' ' << Uses[i]; 1798 dbgs() << '\n'; 1799 }); 1800 1801 // If VirtReg is live across any register mask operands, compute a list of 1802 // gaps with register masks. 1803 SmallVector<unsigned, 8> RegMaskGaps; 1804 if (Matrix->checkRegMaskInterference(VirtReg)) { 1805 // Get regmask slots for the whole block. 1806 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1807 DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1808 // Constrain to VirtReg's live range. 1809 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 1810 Uses.front().getRegSlot()) - RMS.begin(); 1811 unsigned re = RMS.size(); 1812 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 1813 // Look for Uses[i] <= RMS <= Uses[i+1]. 1814 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 1815 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 1816 continue; 1817 // Skip a regmask on the same instruction as the last use. It doesn't 1818 // overlap the live range. 1819 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 1820 break; 1821 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]); 1822 RegMaskGaps.push_back(i); 1823 // Advance ri to the next gap. A regmask on one of the uses counts in 1824 // both gaps. 1825 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 1826 ++ri; 1827 } 1828 DEBUG(dbgs() << '\n'); 1829 } 1830 1831 // Since we allow local split results to be split again, there is a risk of 1832 // creating infinite loops. It is tempting to require that the new live 1833 // ranges have less instructions than the original. That would guarantee 1834 // convergence, but it is too strict. A live range with 3 instructions can be 1835 // split 2+3 (including the COPY), and we want to allow that. 1836 // 1837 // Instead we use these rules: 1838 // 1839 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1840 // noop split, of course). 1841 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1842 // the new ranges must have fewer instructions than before the split. 1843 // 3. New ranges with the same number of instructions are marked RS_Split2, 1844 // smaller ranges are marked RS_New. 1845 // 1846 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1847 // excessive splitting and infinite loops. 1848 // 1849 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 1850 1851 // Best split candidate. 1852 unsigned BestBefore = NumGaps; 1853 unsigned BestAfter = 0; 1854 float BestDiff = 0; 1855 1856 const float blockFreq = 1857 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1858 (1.0f / MBFI->getEntryFreq()); 1859 SmallVector<float, 8> GapWeight; 1860 1861 Order.rewind(); 1862 while (unsigned PhysReg = Order.next()) { 1863 // Keep track of the largest spill weight that would need to be evicted in 1864 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 1865 calcGapWeights(PhysReg, GapWeight); 1866 1867 // Remove any gaps with regmask clobbers. 1868 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1869 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 1870 GapWeight[RegMaskGaps[i]] = huge_valf; 1871 1872 // Try to find the best sequence of gaps to close. 1873 // The new spill weight must be larger than any gap interference. 1874 1875 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1876 unsigned SplitBefore = 0, SplitAfter = 1; 1877 1878 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1879 // It is the spill weight that needs to be evicted. 1880 float MaxGap = GapWeight[0]; 1881 1882 while (true) { 1883 // Live before/after split? 1884 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1885 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1886 1887 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' 1888 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 1889 << " i=" << MaxGap); 1890 1891 // Stop before the interval gets so big we wouldn't be making progress. 1892 if (!LiveBefore && !LiveAfter) { 1893 DEBUG(dbgs() << " all\n"); 1894 break; 1895 } 1896 // Should the interval be extended or shrunk? 1897 bool Shrink = true; 1898 1899 // How many gaps would the new range have? 1900 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1901 1902 // Legally, without causing looping? 1903 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1904 1905 if (Legal && MaxGap < huge_valf) { 1906 // Estimate the new spill weight. Each instruction reads or writes the 1907 // register. Conservatively assume there are no read-modify-write 1908 // instructions. 1909 // 1910 // Try to guess the size of the new interval. 1911 const float EstWeight = normalizeSpillWeight( 1912 blockFreq * (NewGaps + 1), 1913 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1914 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1915 1); 1916 // Would this split be possible to allocate? 1917 // Never allocate all gaps, we wouldn't be making progress. 1918 DEBUG(dbgs() << " w=" << EstWeight); 1919 if (EstWeight * Hysteresis >= MaxGap) { 1920 Shrink = false; 1921 float Diff = EstWeight - MaxGap; 1922 if (Diff > BestDiff) { 1923 DEBUG(dbgs() << " (best)"); 1924 BestDiff = Hysteresis * Diff; 1925 BestBefore = SplitBefore; 1926 BestAfter = SplitAfter; 1927 } 1928 } 1929 } 1930 1931 // Try to shrink. 1932 if (Shrink) { 1933 if (++SplitBefore < SplitAfter) { 1934 DEBUG(dbgs() << " shrink\n"); 1935 // Recompute the max when necessary. 1936 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1937 MaxGap = GapWeight[SplitBefore]; 1938 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 1939 MaxGap = std::max(MaxGap, GapWeight[i]); 1940 } 1941 continue; 1942 } 1943 MaxGap = 0; 1944 } 1945 1946 // Try to extend the interval. 1947 if (SplitAfter >= NumGaps) { 1948 DEBUG(dbgs() << " end\n"); 1949 break; 1950 } 1951 1952 DEBUG(dbgs() << " extend\n"); 1953 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1954 } 1955 } 1956 1957 // Didn't find any candidates? 1958 if (BestBefore == NumGaps) 1959 return 0; 1960 1961 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 1962 << '-' << Uses[BestAfter] << ", " << BestDiff 1963 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 1964 1965 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1966 SE->reset(LREdit); 1967 1968 SE->openIntv(); 1969 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1970 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1971 SE->useIntv(SegStart, SegStop); 1972 SmallVector<unsigned, 8> IntvMap; 1973 SE->finish(&IntvMap); 1974 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 1975 1976 // If the new range has the same number of instructions as before, mark it as 1977 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1978 // leave the new intervals as RS_New so they can compete. 1979 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1980 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1981 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1982 if (NewGaps >= NumGaps) { 1983 DEBUG(dbgs() << "Tagging non-progress ranges: "); 1984 assert(!ProgressRequired && "Didn't make progress when it was required."); 1985 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 1986 if (IntvMap[i] == 1) { 1987 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 1988 DEBUG(dbgs() << PrintReg(LREdit.get(i))); 1989 } 1990 DEBUG(dbgs() << '\n'); 1991 } 1992 ++NumLocalSplits; 1993 1994 return 0; 1995 } 1996 1997 //===----------------------------------------------------------------------===// 1998 // Live Range Splitting 1999 //===----------------------------------------------------------------------===// 2000 2001 /// trySplit - Try to split VirtReg or one of its interferences, making it 2002 /// assignable. 2003 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2004 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2005 SmallVectorImpl<unsigned>&NewVRegs) { 2006 // Ranges must be Split2 or less. 2007 if (getStage(VirtReg) >= RS_Spill) 2008 return 0; 2009 2010 // Local intervals are handled separately. 2011 if (LIS->intervalIsInOneMBB(VirtReg)) { 2012 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2013 TimerGroupDescription, TimePassesIsEnabled); 2014 SA->analyze(&VirtReg); 2015 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2016 if (PhysReg || !NewVRegs.empty()) 2017 return PhysReg; 2018 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2019 } 2020 2021 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2022 TimerGroupDescription, TimePassesIsEnabled); 2023 2024 SA->analyze(&VirtReg); 2025 2026 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2027 // coalescer. That may cause the range to become allocatable which means that 2028 // tryRegionSplit won't be making progress. This check should be replaced with 2029 // an assertion when the coalescer is fixed. 2030 if (SA->didRepairRange()) { 2031 // VirtReg has changed, so all cached queries are invalid. 2032 Matrix->invalidateVirtRegs(); 2033 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 2034 return PhysReg; 2035 } 2036 2037 // First try to split around a region spanning multiple blocks. RS_Split2 2038 // ranges already made dubious progress with region splitting, so they go 2039 // straight to single block splitting. 2040 if (getStage(VirtReg) < RS_Split2) { 2041 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2042 if (PhysReg || !NewVRegs.empty()) 2043 return PhysReg; 2044 } 2045 2046 // Then isolate blocks. 2047 return tryBlockSplit(VirtReg, Order, NewVRegs); 2048 } 2049 2050 //===----------------------------------------------------------------------===// 2051 // Last Chance Recoloring 2052 //===----------------------------------------------------------------------===// 2053 2054 /// mayRecolorAllInterferences - Check if the virtual registers that 2055 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2056 /// recolored to free \p PhysReg. 2057 /// When true is returned, \p RecoloringCandidates has been augmented with all 2058 /// the live intervals that need to be recolored in order to free \p PhysReg 2059 /// for \p VirtReg. 2060 /// \p FixedRegisters contains all the virtual registers that cannot be 2061 /// recolored. 2062 bool 2063 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 2064 SmallLISet &RecoloringCandidates, 2065 const SmallVirtRegSet &FixedRegisters) { 2066 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2067 2068 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2069 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2070 // If there is LastChanceRecoloringMaxInterference or more interferences, 2071 // chances are one would not be recolorable. 2072 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2073 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2074 DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2075 CutOffInfo |= CO_Interf; 2076 return false; 2077 } 2078 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 2079 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 2080 // If Intf is done and sit on the same register class as VirtReg, 2081 // it would not be recolorable as it is in the same state as VirtReg. 2082 if ((getStage(*Intf) == RS_Done && 2083 MRI->getRegClass(Intf->reg) == CurRC) || 2084 FixedRegisters.count(Intf->reg)) { 2085 DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n"); 2086 return false; 2087 } 2088 RecoloringCandidates.insert(Intf); 2089 } 2090 } 2091 return true; 2092 } 2093 2094 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2095 /// its interferences. 2096 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2097 /// virtual register that was using it. The recoloring process may recursively 2098 /// use the last chance recoloring. Therefore, when a virtual register has been 2099 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2100 /// be last-chance-recolored again during this recoloring "session". 2101 /// E.g., 2102 /// Let 2103 /// vA can use {R1, R2 } 2104 /// vB can use { R2, R3} 2105 /// vC can use {R1 } 2106 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2107 /// instance) and they all interfere. 2108 /// 2109 /// vA is assigned R1 2110 /// vB is assigned R2 2111 /// vC tries to evict vA but vA is already done. 2112 /// Regular register allocation fails. 2113 /// 2114 /// Last chance recoloring kicks in: 2115 /// vC does as if vA was evicted => vC uses R1. 2116 /// vC is marked as fixed. 2117 /// vA needs to find a color. 2118 /// None are available. 2119 /// vA cannot evict vC: vC is a fixed virtual register now. 2120 /// vA does as if vB was evicted => vA uses R2. 2121 /// vB needs to find a color. 2122 /// R3 is available. 2123 /// Recoloring => vC = R1, vA = R2, vB = R3 2124 /// 2125 /// \p Order defines the preferred allocation order for \p VirtReg. 2126 /// \p NewRegs will contain any new virtual register that have been created 2127 /// (split, spill) during the process and that must be assigned. 2128 /// \p FixedRegisters contains all the virtual registers that cannot be 2129 /// recolored. 2130 /// \p Depth gives the current depth of the last chance recoloring. 2131 /// \return a physical register that can be used for VirtReg or ~0u if none 2132 /// exists. 2133 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2134 AllocationOrder &Order, 2135 SmallVectorImpl<unsigned> &NewVRegs, 2136 SmallVirtRegSet &FixedRegisters, 2137 unsigned Depth) { 2138 DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2139 // Ranges must be Done. 2140 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2141 "Last chance recoloring should really be last chance"); 2142 // Set the max depth to LastChanceRecoloringMaxDepth. 2143 // We may want to reconsider that if we end up with a too large search space 2144 // for target with hundreds of registers. 2145 // Indeed, in that case we may want to cut the search space earlier. 2146 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2147 DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2148 CutOffInfo |= CO_Depth; 2149 return ~0u; 2150 } 2151 2152 // Set of Live intervals that will need to be recolored. 2153 SmallLISet RecoloringCandidates; 2154 // Record the original mapping virtual register to physical register in case 2155 // the recoloring fails. 2156 DenseMap<unsigned, unsigned> VirtRegToPhysReg; 2157 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2158 // this recoloring "session". 2159 FixedRegisters.insert(VirtReg.reg); 2160 SmallVector<unsigned, 4> CurrentNewVRegs; 2161 2162 Order.rewind(); 2163 while (unsigned PhysReg = Order.next()) { 2164 DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2165 << PrintReg(PhysReg, TRI) << '\n'); 2166 RecoloringCandidates.clear(); 2167 VirtRegToPhysReg.clear(); 2168 CurrentNewVRegs.clear(); 2169 2170 // It is only possible to recolor virtual register interference. 2171 if (Matrix->checkInterference(VirtReg, PhysReg) > 2172 LiveRegMatrix::IK_VirtReg) { 2173 DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n"); 2174 2175 continue; 2176 } 2177 2178 // Early give up on this PhysReg if it is obvious we cannot recolor all 2179 // the interferences. 2180 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2181 FixedRegisters)) { 2182 DEBUG(dbgs() << "Some inteferences cannot be recolored.\n"); 2183 continue; 2184 } 2185 2186 // RecoloringCandidates contains all the virtual registers that interfer 2187 // with VirtReg on PhysReg (or one of its aliases). 2188 // Enqueue them for recoloring and perform the actual recoloring. 2189 PQueue RecoloringQueue; 2190 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2191 EndIt = RecoloringCandidates.end(); 2192 It != EndIt; ++It) { 2193 unsigned ItVirtReg = (*It)->reg; 2194 enqueue(RecoloringQueue, *It); 2195 assert(VRM->hasPhys(ItVirtReg) && 2196 "Interferences are supposed to be with allocated vairables"); 2197 2198 // Record the current allocation. 2199 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2200 // unset the related struct. 2201 Matrix->unassign(**It); 2202 } 2203 2204 // Do as if VirtReg was assigned to PhysReg so that the underlying 2205 // recoloring has the right information about the interferes and 2206 // available colors. 2207 Matrix->assign(VirtReg, PhysReg); 2208 2209 // Save the current recoloring state. 2210 // If we cannot recolor all the interferences, we will have to start again 2211 // at this point for the next physical register. 2212 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2213 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2214 FixedRegisters, Depth)) { 2215 // Push the queued vregs into the main queue. 2216 for (unsigned NewVReg : CurrentNewVRegs) 2217 NewVRegs.push_back(NewVReg); 2218 // Do not mess up with the global assignment process. 2219 // I.e., VirtReg must be unassigned. 2220 Matrix->unassign(VirtReg); 2221 return PhysReg; 2222 } 2223 2224 DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2225 << PrintReg(PhysReg, TRI) << '\n'); 2226 2227 // The recoloring attempt failed, undo the changes. 2228 FixedRegisters = SaveFixedRegisters; 2229 Matrix->unassign(VirtReg); 2230 2231 // For a newly created vreg which is also in RecoloringCandidates, 2232 // don't add it to NewVRegs because its physical register will be restored 2233 // below. Other vregs in CurrentNewVRegs are created by calling 2234 // selectOrSplit and should be added into NewVRegs. 2235 for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(), 2236 End = CurrentNewVRegs.end(); 2237 Next != End; ++Next) { 2238 if (RecoloringCandidates.count(&LIS->getInterval(*Next))) 2239 continue; 2240 NewVRegs.push_back(*Next); 2241 } 2242 2243 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2244 EndIt = RecoloringCandidates.end(); 2245 It != EndIt; ++It) { 2246 unsigned ItVirtReg = (*It)->reg; 2247 if (VRM->hasPhys(ItVirtReg)) 2248 Matrix->unassign(**It); 2249 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2250 Matrix->assign(**It, ItPhysReg); 2251 } 2252 } 2253 2254 // Last chance recoloring did not worked either, give up. 2255 return ~0u; 2256 } 2257 2258 /// tryRecoloringCandidates - Try to assign a new color to every register 2259 /// in \RecoloringQueue. 2260 /// \p NewRegs will contain any new virtual register created during the 2261 /// recoloring process. 2262 /// \p FixedRegisters[in/out] contains all the registers that have been 2263 /// recolored. 2264 /// \return true if all virtual registers in RecoloringQueue were successfully 2265 /// recolored, false otherwise. 2266 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2267 SmallVectorImpl<unsigned> &NewVRegs, 2268 SmallVirtRegSet &FixedRegisters, 2269 unsigned Depth) { 2270 while (!RecoloringQueue.empty()) { 2271 LiveInterval *LI = dequeue(RecoloringQueue); 2272 DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2273 unsigned PhysReg; 2274 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2275 // When splitting happens, the live-range may actually be empty. 2276 // In that case, this is okay to continue the recoloring even 2277 // if we did not find an alternative color for it. Indeed, 2278 // there will not be anything to color for LI in the end. 2279 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2280 return false; 2281 2282 if (!PhysReg) { 2283 assert(LI->empty() && "Only empty live-range do not require a register"); 2284 DEBUG(dbgs() << "Recoloring of " << *LI << " succeeded. Empty LI.\n"); 2285 continue; 2286 } 2287 DEBUG(dbgs() << "Recoloring of " << *LI 2288 << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n'); 2289 2290 Matrix->assign(*LI, PhysReg); 2291 FixedRegisters.insert(LI->reg); 2292 } 2293 return true; 2294 } 2295 2296 //===----------------------------------------------------------------------===// 2297 // Main Entry Point 2298 //===----------------------------------------------------------------------===// 2299 2300 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2301 SmallVectorImpl<unsigned> &NewVRegs) { 2302 CutOffInfo = CO_None; 2303 LLVMContext &Ctx = MF->getFunction()->getContext(); 2304 SmallVirtRegSet FixedRegisters; 2305 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2306 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2307 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2308 if (CutOffEncountered == CO_Depth) 2309 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2310 "reached. Use -fexhaustive-register-search to skip " 2311 "cutoffs"); 2312 else if (CutOffEncountered == CO_Interf) 2313 Ctx.emitError("register allocation failed: maximum interference for " 2314 "recoloring reached. Use -fexhaustive-register-search " 2315 "to skip cutoffs"); 2316 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2317 Ctx.emitError("register allocation failed: maximum interference and " 2318 "depth for recoloring reached. Use " 2319 "-fexhaustive-register-search to skip cutoffs"); 2320 } 2321 return Reg; 2322 } 2323 2324 /// Using a CSR for the first time has a cost because it causes push|pop 2325 /// to be added to prologue|epilogue. Splitting a cold section of the live 2326 /// range can have lower cost than using the CSR for the first time; 2327 /// Spilling a live range in the cold path can have lower cost than using 2328 /// the CSR for the first time. Returns the physical register if we decide 2329 /// to use the CSR; otherwise return 0. 2330 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2331 AllocationOrder &Order, 2332 unsigned PhysReg, 2333 unsigned &CostPerUseLimit, 2334 SmallVectorImpl<unsigned> &NewVRegs) { 2335 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2336 // We choose spill over using the CSR for the first time if the spill cost 2337 // is lower than CSRCost. 2338 SA->analyze(&VirtReg); 2339 if (calcSpillCost() >= CSRCost) 2340 return PhysReg; 2341 2342 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2343 // we will not use a callee-saved register in tryEvict. 2344 CostPerUseLimit = 1; 2345 return 0; 2346 } 2347 if (getStage(VirtReg) < RS_Split) { 2348 // We choose pre-splitting over using the CSR for the first time if 2349 // the cost of splitting is lower than CSRCost. 2350 SA->analyze(&VirtReg); 2351 unsigned NumCands = 0; 2352 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2353 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2354 NumCands, true /*IgnoreCSR*/); 2355 if (BestCand == NoCand) 2356 // Use the CSR if we can't find a region split below CSRCost. 2357 return PhysReg; 2358 2359 // Perform the actual pre-splitting. 2360 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2361 return 0; 2362 } 2363 return PhysReg; 2364 } 2365 2366 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2367 // Do not keep invalid information around. 2368 SetOfBrokenHints.remove(&LI); 2369 } 2370 2371 void RAGreedy::initializeCSRCost() { 2372 // We use the larger one out of the command-line option and the value report 2373 // by TRI. 2374 CSRCost = BlockFrequency( 2375 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2376 if (!CSRCost.getFrequency()) 2377 return; 2378 2379 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2380 uint64_t ActualEntry = MBFI->getEntryFreq(); 2381 if (!ActualEntry) { 2382 CSRCost = 0; 2383 return; 2384 } 2385 uint64_t FixedEntry = 1 << 14; 2386 if (ActualEntry < FixedEntry) 2387 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2388 else if (ActualEntry <= UINT32_MAX) 2389 // Invert the fraction and divide. 2390 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2391 else 2392 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2393 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2394 } 2395 2396 /// \brief Collect the hint info for \p Reg. 2397 /// The results are stored into \p Out. 2398 /// \p Out is not cleared before being populated. 2399 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2400 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2401 if (!Instr.isFullCopy()) 2402 continue; 2403 // Look for the other end of the copy. 2404 unsigned OtherReg = Instr.getOperand(0).getReg(); 2405 if (OtherReg == Reg) { 2406 OtherReg = Instr.getOperand(1).getReg(); 2407 if (OtherReg == Reg) 2408 continue; 2409 } 2410 // Get the current assignment. 2411 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg) 2412 ? OtherReg 2413 : VRM->getPhys(OtherReg); 2414 // Push the collected information. 2415 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2416 OtherPhysReg)); 2417 } 2418 } 2419 2420 /// \brief Using the given \p List, compute the cost of the broken hints if 2421 /// \p PhysReg was used. 2422 /// \return The cost of \p List for \p PhysReg. 2423 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2424 unsigned PhysReg) { 2425 BlockFrequency Cost = 0; 2426 for (const HintInfo &Info : List) { 2427 if (Info.PhysReg != PhysReg) 2428 Cost += Info.Freq; 2429 } 2430 return Cost; 2431 } 2432 2433 /// \brief Using the register assigned to \p VirtReg, try to recolor 2434 /// all the live ranges that are copy-related with \p VirtReg. 2435 /// The recoloring is then propagated to all the live-ranges that have 2436 /// been recolored and so on, until no more copies can be coalesced or 2437 /// it is not profitable. 2438 /// For a given live range, profitability is determined by the sum of the 2439 /// frequencies of the non-identity copies it would introduce with the old 2440 /// and new register. 2441 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2442 // We have a broken hint, check if it is possible to fix it by 2443 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2444 // some register and PhysReg may be available for the other live-ranges. 2445 SmallSet<unsigned, 4> Visited; 2446 SmallVector<unsigned, 2> RecoloringCandidates; 2447 HintsInfo Info; 2448 unsigned Reg = VirtReg.reg; 2449 unsigned PhysReg = VRM->getPhys(Reg); 2450 // Start the recoloring algorithm from the input live-interval, then 2451 // it will propagate to the ones that are copy-related with it. 2452 Visited.insert(Reg); 2453 RecoloringCandidates.push_back(Reg); 2454 2455 DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '(' 2456 << PrintReg(PhysReg, TRI) << ")\n"); 2457 2458 do { 2459 Reg = RecoloringCandidates.pop_back_val(); 2460 2461 // We cannot recolor physcal register. 2462 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 2463 continue; 2464 2465 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2466 2467 // Get the live interval mapped with this virtual register to be able 2468 // to check for the interference with the new color. 2469 LiveInterval &LI = LIS->getInterval(Reg); 2470 unsigned CurrPhys = VRM->getPhys(Reg); 2471 // Check that the new color matches the register class constraints and 2472 // that it is free for this live range. 2473 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2474 Matrix->checkInterference(LI, PhysReg))) 2475 continue; 2476 2477 DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI) 2478 << ") is recolorable.\n"); 2479 2480 // Gather the hint info. 2481 Info.clear(); 2482 collectHintInfo(Reg, Info); 2483 // Check if recoloring the live-range will increase the cost of the 2484 // non-identity copies. 2485 if (CurrPhys != PhysReg) { 2486 DEBUG(dbgs() << "Checking profitability:\n"); 2487 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2488 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2489 DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2490 << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n'); 2491 if (OldCopiesCost < NewCopiesCost) { 2492 DEBUG(dbgs() << "=> Not profitable.\n"); 2493 continue; 2494 } 2495 // At this point, the cost is either cheaper or equal. If it is 2496 // equal, we consider this is profitable because it may expose 2497 // more recoloring opportunities. 2498 DEBUG(dbgs() << "=> Profitable.\n"); 2499 // Recolor the live-range. 2500 Matrix->unassign(LI); 2501 Matrix->assign(LI, PhysReg); 2502 } 2503 // Push all copy-related live-ranges to keep reconciling the broken 2504 // hints. 2505 for (const HintInfo &HI : Info) { 2506 if (Visited.insert(HI.Reg).second) 2507 RecoloringCandidates.push_back(HI.Reg); 2508 } 2509 } while (!RecoloringCandidates.empty()); 2510 } 2511 2512 /// \brief Try to recolor broken hints. 2513 /// Broken hints may be repaired by recoloring when an evicted variable 2514 /// freed up a register for a larger live-range. 2515 /// Consider the following example: 2516 /// BB1: 2517 /// a = 2518 /// b = 2519 /// BB2: 2520 /// ... 2521 /// = b 2522 /// = a 2523 /// Let us assume b gets split: 2524 /// BB1: 2525 /// a = 2526 /// b = 2527 /// BB2: 2528 /// c = b 2529 /// ... 2530 /// d = c 2531 /// = d 2532 /// = a 2533 /// Because of how the allocation work, b, c, and d may be assigned different 2534 /// colors. Now, if a gets evicted later: 2535 /// BB1: 2536 /// a = 2537 /// st a, SpillSlot 2538 /// b = 2539 /// BB2: 2540 /// c = b 2541 /// ... 2542 /// d = c 2543 /// = d 2544 /// e = ld SpillSlot 2545 /// = e 2546 /// This is likely that we can assign the same register for b, c, and d, 2547 /// getting rid of 2 copies. 2548 void RAGreedy::tryHintsRecoloring() { 2549 for (LiveInterval *LI : SetOfBrokenHints) { 2550 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) && 2551 "Recoloring is possible only for virtual registers"); 2552 // Some dead defs may be around (e.g., because of debug uses). 2553 // Ignore those. 2554 if (!VRM->hasPhys(LI->reg)) 2555 continue; 2556 tryHintRecoloring(*LI); 2557 } 2558 } 2559 2560 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2561 SmallVectorImpl<unsigned> &NewVRegs, 2562 SmallVirtRegSet &FixedRegisters, 2563 unsigned Depth) { 2564 unsigned CostPerUseLimit = ~0u; 2565 // First try assigning a free register. 2566 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 2567 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) { 2568 // When NewVRegs is not empty, we may have made decisions such as evicting 2569 // a virtual register, go with the earlier decisions and use the physical 2570 // register. 2571 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 2572 NewVRegs.empty()) { 2573 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2574 CostPerUseLimit, NewVRegs); 2575 if (CSRReg || !NewVRegs.empty()) 2576 // Return now if we decide to use a CSR or create new vregs due to 2577 // pre-splitting. 2578 return CSRReg; 2579 } else 2580 return PhysReg; 2581 } 2582 2583 LiveRangeStage Stage = getStage(VirtReg); 2584 DEBUG(dbgs() << StageName[Stage] 2585 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 2586 2587 // Try to evict a less worthy live range, but only for ranges from the primary 2588 // queue. The RS_Split ranges already failed to do this, and they should not 2589 // get a second chance until they have been split. 2590 if (Stage != RS_Split) 2591 if (unsigned PhysReg = 2592 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) { 2593 unsigned Hint = MRI->getSimpleHint(VirtReg.reg); 2594 // If VirtReg has a hint and that hint is broken record this 2595 // virtual register as a recoloring candidate for broken hint. 2596 // Indeed, since we evicted a variable in its neighborhood it is 2597 // likely we can at least partially recolor some of the 2598 // copy-related live-ranges. 2599 if (Hint && Hint != PhysReg) 2600 SetOfBrokenHints.insert(&VirtReg); 2601 return PhysReg; 2602 } 2603 2604 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2605 2606 // The first time we see a live range, don't try to split or spill. 2607 // Wait until the second time, when all smaller ranges have been allocated. 2608 // This gives a better picture of the interference to split around. 2609 if (Stage < RS_Split) { 2610 setStage(VirtReg, RS_Split); 2611 DEBUG(dbgs() << "wait for second round\n"); 2612 NewVRegs.push_back(VirtReg.reg); 2613 return 0; 2614 } 2615 2616 if (Stage < RS_Spill) { 2617 // Try splitting VirtReg or interferences. 2618 unsigned NewVRegSizeBefore = NewVRegs.size(); 2619 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 2620 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) 2621 return PhysReg; 2622 } 2623 2624 // If we couldn't allocate a register from spilling, there is probably some 2625 // invalid inline assembly. The base class wil report it. 2626 if (Stage >= RS_Done || !VirtReg.isSpillable()) 2627 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2628 Depth); 2629 2630 // Finally spill VirtReg itself. 2631 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) { 2632 // TODO: This is experimental and in particular, we do not model 2633 // the live range splitting done by spilling correctly. 2634 // We would need a deep integration with the spiller to do the 2635 // right thing here. Anyway, that is still good for early testing. 2636 setStage(VirtReg, RS_Memory); 2637 DEBUG(dbgs() << "Do as if this register is in memory\n"); 2638 NewVRegs.push_back(VirtReg.reg); 2639 } else { 2640 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2641 TimerGroupDescription, TimePassesIsEnabled); 2642 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2643 spiller().spill(LRE); 2644 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2645 2646 if (VerifyEnabled) 2647 MF->verify(this, "After spilling"); 2648 } 2649 2650 // The live virtual register requesting allocation was spilled, so tell 2651 // the caller not to allocate anything during this round. 2652 return 0; 2653 } 2654 2655 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 2656 unsigned &FoldedReloads, 2657 unsigned &Spills, 2658 unsigned &FoldedSpills) { 2659 Reloads = 0; 2660 FoldedReloads = 0; 2661 Spills = 0; 2662 FoldedSpills = 0; 2663 2664 // Sum up the spill and reloads in subloops. 2665 for (MachineLoop *SubLoop : *L) { 2666 unsigned SubReloads; 2667 unsigned SubFoldedReloads; 2668 unsigned SubSpills; 2669 unsigned SubFoldedSpills; 2670 2671 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads, 2672 SubSpills, SubFoldedSpills); 2673 Reloads += SubReloads; 2674 FoldedReloads += SubFoldedReloads; 2675 Spills += SubSpills; 2676 FoldedSpills += SubFoldedSpills; 2677 } 2678 2679 const MachineFrameInfo &MFI = MF->getFrameInfo(); 2680 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 2681 int FI; 2682 2683 for (MachineBasicBlock *MBB : L->getBlocks()) 2684 // Handle blocks that were not included in subloops. 2685 if (Loops->getLoopFor(MBB) == L) 2686 for (MachineInstr &MI : *MBB) { 2687 const MachineMemOperand *MMO; 2688 2689 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) 2690 ++Reloads; 2691 else if (TII->hasLoadFromStackSlot(MI, MMO, FI) && 2692 MFI.isSpillSlotObjectIndex(FI)) 2693 ++FoldedReloads; 2694 else if (TII->isStoreToStackSlot(MI, FI) && 2695 MFI.isSpillSlotObjectIndex(FI)) 2696 ++Spills; 2697 else if (TII->hasStoreToStackSlot(MI, MMO, FI) && 2698 MFI.isSpillSlotObjectIndex(FI)) 2699 ++FoldedSpills; 2700 } 2701 2702 if (Reloads || FoldedReloads || Spills || FoldedSpills) { 2703 using namespace ore; 2704 2705 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", 2706 L->getStartLoc(), L->getHeader()); 2707 if (Spills) 2708 R << NV("NumSpills", Spills) << " spills "; 2709 if (FoldedSpills) 2710 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 2711 if (Reloads) 2712 R << NV("NumReloads", Reloads) << " reloads "; 2713 if (FoldedReloads) 2714 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 2715 ORE->emit(R << "generated in loop"); 2716 } 2717 } 2718 2719 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2720 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2721 << "********** Function: " << mf.getName() << '\n'); 2722 2723 MF = &mf; 2724 TRI = MF->getSubtarget().getRegisterInfo(); 2725 TII = MF->getSubtarget().getInstrInfo(); 2726 RCI.runOnMachineFunction(mf); 2727 2728 EnableLocalReassign = EnableLocalReassignment || 2729 MF->getSubtarget().enableRALocalReassignment( 2730 MF->getTarget().getOptLevel()); 2731 2732 if (VerifyEnabled) 2733 MF->verify(this, "Before greedy register allocator"); 2734 2735 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2736 getAnalysis<LiveIntervals>(), 2737 getAnalysis<LiveRegMatrix>()); 2738 Indexes = &getAnalysis<SlotIndexes>(); 2739 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2740 DomTree = &getAnalysis<MachineDominatorTree>(); 2741 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2742 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 2743 Loops = &getAnalysis<MachineLoopInfo>(); 2744 Bundles = &getAnalysis<EdgeBundles>(); 2745 SpillPlacer = &getAnalysis<SpillPlacement>(); 2746 DebugVars = &getAnalysis<LiveDebugVariables>(); 2747 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2748 2749 initializeCSRCost(); 2750 2751 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); 2752 2753 DEBUG(LIS->dump()); 2754 2755 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2756 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); 2757 ExtraRegInfo.clear(); 2758 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2759 NextCascade = 1; 2760 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2761 GlobalCand.resize(32); // This will grow as needed. 2762 SetOfBrokenHints.clear(); 2763 2764 allocatePhysRegs(); 2765 tryHintsRecoloring(); 2766 postOptimization(); 2767 reportNumberOfSplillsReloads(); 2768 2769 releaseMemory(); 2770 return true; 2771 } 2772