1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RegAllocGreedy.h"
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "RegAllocEvictionAdvisor.h"
20 #include "SpillPlacement.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/DebugInfoMetadata.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/MC/MCRegisterInfo.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/BlockFrequency.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/Timer.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <utility>
77 
78 using namespace llvm;
79 
80 #define DEBUG_TYPE "regalloc"
81 
82 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
83 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
84 STATISTIC(NumEvicted,      "Number of interferences evicted");
85 
86 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
87     "split-spill-mode", cl::Hidden,
88     cl::desc("Spill mode for splitting live ranges"),
89     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
90                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
91                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
92     cl::init(SplitEditor::SM_Speed));
93 
94 static cl::opt<unsigned>
95 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
96                              cl::desc("Last chance recoloring max depth"),
97                              cl::init(5));
98 
99 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
100     "lcr-max-interf", cl::Hidden,
101     cl::desc("Last chance recoloring maximum number of considered"
102              " interference at a time"),
103     cl::init(8));
104 
105 static cl::opt<bool> ExhaustiveSearch(
106     "exhaustive-register-search", cl::NotHidden,
107     cl::desc("Exhaustive Search for registers bypassing the depth "
108              "and interference cutoffs of last chance recoloring"),
109     cl::Hidden);
110 
111 static cl::opt<bool> EnableDeferredSpilling(
112     "enable-deferred-spilling", cl::Hidden,
113     cl::desc("Instead of spilling a variable right away, defer the actual "
114              "code insertion to the end of the allocation. That way the "
115              "allocator might still find a suitable coloring for this "
116              "variable because of other evicted variables."),
117     cl::init(false));
118 
119 // FIXME: Find a good default for this flag and remove the flag.
120 static cl::opt<unsigned>
121 CSRFirstTimeCost("regalloc-csr-first-time-cost",
122               cl::desc("Cost for first time use of callee-saved register."),
123               cl::init(0), cl::Hidden);
124 
125 static cl::opt<unsigned long> GrowRegionComplexityBudget(
126     "grow-region-complexity-budget",
127     cl::desc("growRegion() does not scale with the number of BB edges, so "
128              "limit its budget and bail out once we reach the limit."),
129     cl::init(10000), cl::Hidden);
130 
131 static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness(
132     "greedy-regclass-priority-trumps-globalness",
133     cl::desc("Change the greedy register allocator's live range priority "
134              "calculation to make the AllocationPriority of the register class "
135              "more important then whether the range is global"),
136     cl::Hidden);
137 
138 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
139                                        createGreedyRegisterAllocator);
140 
141 char RAGreedy::ID = 0;
142 char &llvm::RAGreedyID = RAGreedy::ID;
143 
144 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
145                 "Greedy Register Allocator", false, false)
146 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
147 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
148 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
149 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
150 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
151 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
152 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
153 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
154 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
155 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
156 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
157 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
158 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
159 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
160 INITIALIZE_PASS_END(RAGreedy, "greedy",
161                 "Greedy Register Allocator", false, false)
162 
163 #ifndef NDEBUG
164 const char *const RAGreedy::StageName[] = {
165     "RS_New",
166     "RS_Assign",
167     "RS_Split",
168     "RS_Split2",
169     "RS_Spill",
170     "RS_Memory",
171     "RS_Done"
172 };
173 #endif
174 
175 // Hysteresis to use when comparing floats.
176 // This helps stabilize decisions based on float comparisons.
177 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
178 
179 FunctionPass* llvm::createGreedyRegisterAllocator() {
180   return new RAGreedy();
181 }
182 
183 namespace llvm {
184 FunctionPass* createGreedyRegisterAllocator(
185   std::function<bool(const TargetRegisterInfo &TRI,
186                      const TargetRegisterClass &RC)> Ftor);
187 
188 }
189 
190 FunctionPass* llvm::createGreedyRegisterAllocator(
191   std::function<bool(const TargetRegisterInfo &TRI,
192                      const TargetRegisterClass &RC)> Ftor) {
193   return new RAGreedy(Ftor);
194 }
195 
196 RAGreedy::RAGreedy(RegClassFilterFunc F):
197   MachineFunctionPass(ID),
198   RegAllocBase(F) {
199 }
200 
201 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
202   AU.setPreservesCFG();
203   AU.addRequired<MachineBlockFrequencyInfo>();
204   AU.addPreserved<MachineBlockFrequencyInfo>();
205   AU.addRequired<AAResultsWrapperPass>();
206   AU.addPreserved<AAResultsWrapperPass>();
207   AU.addRequired<LiveIntervals>();
208   AU.addPreserved<LiveIntervals>();
209   AU.addRequired<SlotIndexes>();
210   AU.addPreserved<SlotIndexes>();
211   AU.addRequired<LiveDebugVariables>();
212   AU.addPreserved<LiveDebugVariables>();
213   AU.addRequired<LiveStacks>();
214   AU.addPreserved<LiveStacks>();
215   AU.addRequired<MachineDominatorTree>();
216   AU.addPreserved<MachineDominatorTree>();
217   AU.addRequired<MachineLoopInfo>();
218   AU.addPreserved<MachineLoopInfo>();
219   AU.addRequired<VirtRegMap>();
220   AU.addPreserved<VirtRegMap>();
221   AU.addRequired<LiveRegMatrix>();
222   AU.addPreserved<LiveRegMatrix>();
223   AU.addRequired<EdgeBundles>();
224   AU.addRequired<SpillPlacement>();
225   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
226   AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
227   MachineFunctionPass::getAnalysisUsage(AU);
228 }
229 
230 //===----------------------------------------------------------------------===//
231 //                     LiveRangeEdit delegate methods
232 //===----------------------------------------------------------------------===//
233 
234 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
235   LiveInterval &LI = LIS->getInterval(VirtReg);
236   if (VRM->hasPhys(VirtReg)) {
237     Matrix->unassign(LI);
238     aboutToRemoveInterval(LI);
239     return true;
240   }
241   // Unassigned virtreg is probably in the priority queue.
242   // RegAllocBase will erase it after dequeueing.
243   // Nonetheless, clear the live-range so that the debug
244   // dump will show the right state for that VirtReg.
245   LI.clear();
246   return false;
247 }
248 
249 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
250   if (!VRM->hasPhys(VirtReg))
251     return;
252 
253   // Register is assigned, put it back on the queue for reassignment.
254   LiveInterval &LI = LIS->getInterval(VirtReg);
255   Matrix->unassign(LI);
256   RegAllocBase::enqueue(&LI);
257 }
258 
259 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
260   ExtraInfo->LRE_DidCloneVirtReg(New, Old);
261 }
262 
263 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
264   // Cloning a register we haven't even heard about yet?  Just ignore it.
265   if (!Info.inBounds(Old))
266     return;
267 
268   // LRE may clone a virtual register because dead code elimination causes it to
269   // be split into connected components. The new components are much smaller
270   // than the original, so they should get a new chance at being assigned.
271   // same stage as the parent.
272   Info[Old].Stage = RS_Assign;
273   Info.grow(New.id());
274   Info[New] = Info[Old];
275 }
276 
277 void RAGreedy::releaseMemory() {
278   SpillerInstance.reset();
279   GlobalCand.clear();
280 }
281 
282 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); }
283 
284 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) {
285   // Prioritize live ranges by size, assigning larger ranges first.
286   // The queue holds (size, reg) pairs.
287   const unsigned Size = LI->getSize();
288   const Register Reg = LI->reg();
289   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
290   unsigned Prio;
291 
292   auto Stage = ExtraInfo->getOrInitStage(Reg);
293   if (Stage == RS_New) {
294     Stage = RS_Assign;
295     ExtraInfo->setStage(Reg, Stage);
296   }
297   if (Stage == RS_Split) {
298     // Unsplit ranges that couldn't be allocated immediately are deferred until
299     // everything else has been allocated.
300     Prio = Size;
301   } else if (Stage == RS_Memory) {
302     // Memory operand should be considered last.
303     // Change the priority such that Memory operand are assigned in
304     // the reverse order that they came in.
305     // TODO: Make this a member variable and probably do something about hints.
306     static unsigned MemOp = 0;
307     Prio = MemOp++;
308   } else {
309     // Giant live ranges fall back to the global assignment heuristic, which
310     // prevents excessive spilling in pathological cases.
311     bool ReverseLocal = TRI->reverseLocalAssignment();
312     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
313     bool ForceGlobal = !ReverseLocal &&
314       (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC));
315     unsigned GlobalBit = 0;
316 
317     if (Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
318         LIS->intervalIsInOneMBB(*LI)) {
319       // Allocate original local ranges in linear instruction order. Since they
320       // are singly defined, this produces optimal coloring in the absence of
321       // global interference and other constraints.
322       if (!ReverseLocal)
323         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
324       else {
325         // Allocating bottom up may allow many short LRGs to be assigned first
326         // to one of the cheap registers. This could be much faster for very
327         // large blocks on targets with many physical registers.
328         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
329       }
330     } else {
331       // Allocate global and split ranges in long->short order. Long ranges that
332       // don't fit should be spilled (or split) ASAP so they don't create
333       // interference.  Mark a bit to prioritize global above local ranges.
334       Prio = Size;
335       GlobalBit = 1;
336     }
337     if (RegClassPriorityTrumpsGlobalness)
338       Prio |= RC.AllocationPriority << 25 | GlobalBit << 24;
339     else
340       Prio |= GlobalBit << 29 | RC.AllocationPriority << 24;
341 
342     // Mark a higher bit to prioritize global and local above RS_Split.
343     Prio |= (1u << 31);
344 
345     // Boost ranges that have a physical register hint.
346     if (VRM->hasKnownPreference(Reg))
347       Prio |= (1u << 30);
348   }
349   // The virtual register number is a tie breaker for same-sized ranges.
350   // Give lower vreg numbers higher priority to assign them first.
351   CurQueue.push(std::make_pair(Prio, ~Reg));
352 }
353 
354 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
355 
356 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
357   if (CurQueue.empty())
358     return nullptr;
359   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
360   CurQueue.pop();
361   return LI;
362 }
363 
364 //===----------------------------------------------------------------------===//
365 //                            Direct Assignment
366 //===----------------------------------------------------------------------===//
367 
368 /// tryAssign - Try to assign VirtReg to an available register.
369 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg,
370                                AllocationOrder &Order,
371                                SmallVectorImpl<Register> &NewVRegs,
372                                const SmallVirtRegSet &FixedRegisters) {
373   MCRegister PhysReg;
374   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
375     assert(*I);
376     if (!Matrix->checkInterference(VirtReg, *I)) {
377       if (I.isHint())
378         return *I;
379       else
380         PhysReg = *I;
381     }
382   }
383   if (!PhysReg.isValid())
384     return PhysReg;
385 
386   // PhysReg is available, but there may be a better choice.
387 
388   // If we missed a simple hint, try to cheaply evict interference from the
389   // preferred register.
390   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
391     if (Order.isHint(Hint)) {
392       MCRegister PhysHint = Hint.asMCReg();
393       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
394 
395       if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
396                                                  FixedRegisters)) {
397         evictInterference(VirtReg, PhysHint, NewVRegs);
398         return PhysHint;
399       }
400       // Record the missed hint, we may be able to recover
401       // at the end if the surrounding allocation changed.
402       SetOfBrokenHints.insert(&VirtReg);
403     }
404 
405   // Try to evict interference from a cheaper alternative.
406   uint8_t Cost = RegCosts[PhysReg];
407 
408   // Most registers have 0 additional cost.
409   if (!Cost)
410     return PhysReg;
411 
412   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
413                     << (unsigned)Cost << '\n');
414   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
415   return CheapReg ? CheapReg : PhysReg;
416 }
417 
418 //===----------------------------------------------------------------------===//
419 //                         Interference eviction
420 //===----------------------------------------------------------------------===//
421 
422 Register RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg,
423                                               Register PrevReg) const {
424   auto Order =
425       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
426   MCRegister PhysReg;
427   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
428     if ((*I).id() == PrevReg.id())
429       continue;
430 
431     MCRegUnitIterator Units(*I, TRI);
432     for (; Units.isValid(); ++Units) {
433       // Instantiate a "subquery", not to be confused with the Queries array.
434       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
435       if (subQ.checkInterference())
436         break;
437     }
438     // If no units have interference, break out with the current PhysReg.
439     if (!Units.isValid())
440       PhysReg = *I;
441   }
442   if (PhysReg)
443     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
444                       << printReg(PrevReg, TRI) << " to "
445                       << printReg(PhysReg, TRI) << '\n');
446   return PhysReg;
447 }
448 
449 /// Return true if all interferences between VirtReg and PhysReg between
450 /// Start and End can be evicted.
451 ///
452 /// \param VirtReg Live range that is about to be assigned.
453 /// \param PhysReg Desired register for assignment.
454 /// \param Start   Start of range to look for interferences.
455 /// \param End     End of range to look for interferences.
456 /// \param MaxCost Only look for cheaper candidates and update with new cost
457 ///                when returning true.
458 /// \return True when interference can be evicted cheaper than MaxCost.
459 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg,
460                                            MCRegister PhysReg, SlotIndex Start,
461                                            SlotIndex End,
462                                            EvictionCost &MaxCost) const {
463   EvictionCost Cost;
464 
465   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
466     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
467 
468     // Check if any interfering live range is heavier than MaxWeight.
469     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
470       // Check if interference overlast the segment in interest.
471       if (!Intf->overlaps(Start, End))
472         continue;
473 
474       // Never evict spill products. They cannot split or spill.
475       if (ExtraInfo->getStage(*Intf) == RS_Done)
476         return false;
477 
478       // Would this break a satisfied hint?
479       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
480       // Update eviction cost.
481       Cost.BrokenHints += BreaksHint;
482       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
483       // Abort if this would be too expensive.
484       if (!(Cost < MaxCost))
485         return false;
486     }
487   }
488 
489   if (Cost.MaxWeight == 0)
490     return false;
491 
492   MaxCost = Cost;
493   return true;
494 }
495 
496 /// Return the physical register that will be best
497 /// candidate for eviction by a local split interval that will be created
498 /// between Start and End.
499 ///
500 /// \param Order            The allocation order
501 /// \param VirtReg          Live range that is about to be assigned.
502 /// \param Start            Start of range to look for interferences
503 /// \param End              End of range to look for interferences
504 /// \param BestEvictweight  The eviction cost of that eviction
505 /// \return The PhysReg which is the best candidate for eviction and the
506 /// eviction cost in BestEvictweight
507 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
508                                               const LiveInterval &VirtReg,
509                                               SlotIndex Start, SlotIndex End,
510                                               float *BestEvictweight) const {
511   EvictionCost BestEvictCost;
512   BestEvictCost.setMax();
513   BestEvictCost.MaxWeight = VirtReg.weight();
514   MCRegister BestEvicteePhys;
515 
516   // Go over all physical registers and find the best candidate for eviction
517   for (MCRegister PhysReg : Order.getOrder()) {
518 
519     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
520                                      BestEvictCost))
521       continue;
522 
523     // Best so far.
524     BestEvicteePhys = PhysReg;
525   }
526   *BestEvictweight = BestEvictCost.MaxWeight;
527   return BestEvicteePhys;
528 }
529 
530 /// evictInterference - Evict any interferring registers that prevent VirtReg
531 /// from being assigned to Physreg. This assumes that canEvictInterference
532 /// returned true.
533 void RAGreedy::evictInterference(const LiveInterval &VirtReg,
534                                  MCRegister PhysReg,
535                                  SmallVectorImpl<Register> &NewVRegs) {
536   // Make sure that VirtReg has a cascade number, and assign that cascade
537   // number to every evicted register. These live ranges than then only be
538   // evicted by a newer cascade, preventing infinite loops.
539   unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
540 
541   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
542                     << " interference: Cascade " << Cascade << '\n');
543 
544   // Collect all interfering virtregs first.
545   SmallVector<const LiveInterval *, 8> Intfs;
546   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
547     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
548     // We usually have the interfering VRegs cached so collectInterferingVRegs()
549     // should be fast, we may need to recalculate if when different physregs
550     // overlap the same register unit so we had different SubRanges queried
551     // against it.
552     ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs();
553     Intfs.append(IVR.begin(), IVR.end());
554   }
555 
556   // Evict them second. This will invalidate the queries.
557   for (const LiveInterval *Intf : Intfs) {
558     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
559     if (!VRM->hasPhys(Intf->reg()))
560       continue;
561 
562     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
563 
564     Matrix->unassign(*Intf);
565     assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
566             VirtReg.isSpillable() < Intf->isSpillable()) &&
567            "Cannot decrease cascade number, illegal eviction");
568     ExtraInfo->setCascade(Intf->reg(), Cascade);
569     ++NumEvicted;
570     NewVRegs.push_back(Intf->reg());
571   }
572 }
573 
574 /// Returns true if the given \p PhysReg is a callee saved register and has not
575 /// been used for allocation yet.
576 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
577   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
578   if (!CSR)
579     return false;
580 
581   return !Matrix->isPhysRegUsed(PhysReg);
582 }
583 
584 Optional<unsigned>
585 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg,
586                                        const AllocationOrder &Order,
587                                        unsigned CostPerUseLimit) const {
588   unsigned OrderLimit = Order.getOrder().size();
589 
590   if (CostPerUseLimit < uint8_t(~0u)) {
591     // Check of any registers in RC are below CostPerUseLimit.
592     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
593     uint8_t MinCost = RegClassInfo.getMinCost(RC);
594     if (MinCost >= CostPerUseLimit) {
595       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
596                         << MinCost << ", no cheaper registers to be found.\n");
597       return None;
598     }
599 
600     // It is normal for register classes to have a long tail of registers with
601     // the same cost. We don't need to look at them if they're too expensive.
602     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
603       OrderLimit = RegClassInfo.getLastCostChange(RC);
604       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
605                         << " regs.\n");
606     }
607   }
608   return OrderLimit;
609 }
610 
611 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit,
612                                                  MCRegister PhysReg) const {
613   if (RegCosts[PhysReg] >= CostPerUseLimit)
614     return false;
615   // The first use of a callee-saved register in a function has cost 1.
616   // Don't start using a CSR when the CostPerUseLimit is low.
617   if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
618     LLVM_DEBUG(
619         dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
620                << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
621                << '\n');
622     return false;
623   }
624   return true;
625 }
626 
627 /// tryEvict - Try to evict all interferences for a physreg.
628 /// @param  VirtReg Currently unassigned virtual register.
629 /// @param  Order   Physregs to try.
630 /// @return         Physreg to assign VirtReg, or 0.
631 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg,
632                               AllocationOrder &Order,
633                               SmallVectorImpl<Register> &NewVRegs,
634                               uint8_t CostPerUseLimit,
635                               const SmallVirtRegSet &FixedRegisters) {
636   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
637                      TimePassesIsEnabled);
638 
639   MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
640       VirtReg, Order, CostPerUseLimit, FixedRegisters);
641   if (BestPhys.isValid())
642     evictInterference(VirtReg, BestPhys, NewVRegs);
643   return BestPhys;
644 }
645 
646 //===----------------------------------------------------------------------===//
647 //                              Region Splitting
648 //===----------------------------------------------------------------------===//
649 
650 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
651 /// interference pattern in Physreg and its aliases. Add the constraints to
652 /// SpillPlacement and return the static cost of this split in Cost, assuming
653 /// that all preferences in SplitConstraints are met.
654 /// Return false if there are no bundles with positive bias.
655 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
656                                    BlockFrequency &Cost) {
657   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
658 
659   // Reset interference dependent info.
660   SplitConstraints.resize(UseBlocks.size());
661   BlockFrequency StaticCost = 0;
662   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
663     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
664     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
665 
666     BC.Number = BI.MBB->getNumber();
667     Intf.moveToBlock(BC.Number);
668     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
669     BC.Exit = (BI.LiveOut &&
670                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
671                   ? SpillPlacement::PrefReg
672                   : SpillPlacement::DontCare;
673     BC.ChangesValue = BI.FirstDef.isValid();
674 
675     if (!Intf.hasInterference())
676       continue;
677 
678     // Number of spill code instructions to insert.
679     unsigned Ins = 0;
680 
681     // Interference for the live-in value.
682     if (BI.LiveIn) {
683       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
684         BC.Entry = SpillPlacement::MustSpill;
685         ++Ins;
686       } else if (Intf.first() < BI.FirstInstr) {
687         BC.Entry = SpillPlacement::PrefSpill;
688         ++Ins;
689       } else if (Intf.first() < BI.LastInstr) {
690         ++Ins;
691       }
692 
693       // Abort if the spill cannot be inserted at the MBB' start
694       if (((BC.Entry == SpillPlacement::MustSpill) ||
695            (BC.Entry == SpillPlacement::PrefSpill)) &&
696           SlotIndex::isEarlierInstr(BI.FirstInstr,
697                                     SA->getFirstSplitPoint(BC.Number)))
698         return false;
699     }
700 
701     // Interference for the live-out value.
702     if (BI.LiveOut) {
703       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
704         BC.Exit = SpillPlacement::MustSpill;
705         ++Ins;
706       } else if (Intf.last() > BI.LastInstr) {
707         BC.Exit = SpillPlacement::PrefSpill;
708         ++Ins;
709       } else if (Intf.last() > BI.FirstInstr) {
710         ++Ins;
711       }
712     }
713 
714     // Accumulate the total frequency of inserted spill code.
715     while (Ins--)
716       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
717   }
718   Cost = StaticCost;
719 
720   // Add constraints for use-blocks. Note that these are the only constraints
721   // that may add a positive bias, it is downhill from here.
722   SpillPlacer->addConstraints(SplitConstraints);
723   return SpillPlacer->scanActiveBundles();
724 }
725 
726 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
727 /// live-through blocks in Blocks.
728 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
729                                      ArrayRef<unsigned> Blocks) {
730   const unsigned GroupSize = 8;
731   SpillPlacement::BlockConstraint BCS[GroupSize];
732   unsigned TBS[GroupSize];
733   unsigned B = 0, T = 0;
734 
735   for (unsigned Number : Blocks) {
736     Intf.moveToBlock(Number);
737 
738     if (!Intf.hasInterference()) {
739       assert(T < GroupSize && "Array overflow");
740       TBS[T] = Number;
741       if (++T == GroupSize) {
742         SpillPlacer->addLinks(makeArrayRef(TBS, T));
743         T = 0;
744       }
745       continue;
746     }
747 
748     assert(B < GroupSize && "Array overflow");
749     BCS[B].Number = Number;
750 
751     // Abort if the spill cannot be inserted at the MBB' start
752     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
753     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
754     if (FirstNonDebugInstr != MBB->end() &&
755         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
756                                   SA->getFirstSplitPoint(Number)))
757       return false;
758     // Interference for the live-in value.
759     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
760       BCS[B].Entry = SpillPlacement::MustSpill;
761     else
762       BCS[B].Entry = SpillPlacement::PrefSpill;
763 
764     // Interference for the live-out value.
765     if (Intf.last() >= SA->getLastSplitPoint(Number))
766       BCS[B].Exit = SpillPlacement::MustSpill;
767     else
768       BCS[B].Exit = SpillPlacement::PrefSpill;
769 
770     if (++B == GroupSize) {
771       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
772       B = 0;
773     }
774   }
775 
776   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
777   SpillPlacer->addLinks(makeArrayRef(TBS, T));
778   return true;
779 }
780 
781 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
782   // Keep track of through blocks that have not been added to SpillPlacer.
783   BitVector Todo = SA->getThroughBlocks();
784   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
785   unsigned AddedTo = 0;
786 #ifndef NDEBUG
787   unsigned Visited = 0;
788 #endif
789 
790   unsigned long Budget = GrowRegionComplexityBudget;
791   while (true) {
792     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
793     // Find new through blocks in the periphery of PrefRegBundles.
794     for (unsigned Bundle : NewBundles) {
795       // Look at all blocks connected to Bundle in the full graph.
796       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
797       // Limit compilation time by bailing out after we use all our budget.
798       if (Blocks.size() >= Budget)
799         return false;
800       Budget -= Blocks.size();
801       for (unsigned Block : Blocks) {
802         if (!Todo.test(Block))
803           continue;
804         Todo.reset(Block);
805         // This is a new through block. Add it to SpillPlacer later.
806         ActiveBlocks.push_back(Block);
807 #ifndef NDEBUG
808         ++Visited;
809 #endif
810       }
811     }
812     // Any new blocks to add?
813     if (ActiveBlocks.size() == AddedTo)
814       break;
815 
816     // Compute through constraints from the interference, or assume that all
817     // through blocks prefer spilling when forming compact regions.
818     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
819     if (Cand.PhysReg) {
820       if (!addThroughConstraints(Cand.Intf, NewBlocks))
821         return false;
822     } else
823       // Provide a strong negative bias on through blocks to prevent unwanted
824       // liveness on loop backedges.
825       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
826     AddedTo = ActiveBlocks.size();
827 
828     // Perhaps iterating can enable more bundles?
829     SpillPlacer->iterate();
830   }
831   LLVM_DEBUG(dbgs() << ", v=" << Visited);
832   return true;
833 }
834 
835 /// calcCompactRegion - Compute the set of edge bundles that should be live
836 /// when splitting the current live range into compact regions.  Compact
837 /// regions can be computed without looking at interference.  They are the
838 /// regions formed by removing all the live-through blocks from the live range.
839 ///
840 /// Returns false if the current live range is already compact, or if the
841 /// compact regions would form single block regions anyway.
842 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
843   // Without any through blocks, the live range is already compact.
844   if (!SA->getNumThroughBlocks())
845     return false;
846 
847   // Compact regions don't correspond to any physreg.
848   Cand.reset(IntfCache, MCRegister::NoRegister);
849 
850   LLVM_DEBUG(dbgs() << "Compact region bundles");
851 
852   // Use the spill placer to determine the live bundles. GrowRegion pretends
853   // that all the through blocks have interference when PhysReg is unset.
854   SpillPlacer->prepare(Cand.LiveBundles);
855 
856   // The static split cost will be zero since Cand.Intf reports no interference.
857   BlockFrequency Cost;
858   if (!addSplitConstraints(Cand.Intf, Cost)) {
859     LLVM_DEBUG(dbgs() << ", none.\n");
860     return false;
861   }
862 
863   if (!growRegion(Cand)) {
864     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
865     return false;
866   }
867 
868   SpillPlacer->finish();
869 
870   if (!Cand.LiveBundles.any()) {
871     LLVM_DEBUG(dbgs() << ", none.\n");
872     return false;
873   }
874 
875   LLVM_DEBUG({
876     for (int I : Cand.LiveBundles.set_bits())
877       dbgs() << " EB#" << I;
878     dbgs() << ".\n";
879   });
880   return true;
881 }
882 
883 /// calcSpillCost - Compute how expensive it would be to split the live range in
884 /// SA around all use blocks instead of forming bundle regions.
885 BlockFrequency RAGreedy::calcSpillCost() {
886   BlockFrequency Cost = 0;
887   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
888   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
889     unsigned Number = BI.MBB->getNumber();
890     // We normally only need one spill instruction - a load or a store.
891     Cost += SpillPlacer->getBlockFrequency(Number);
892 
893     // Unless the value is redefined in the block.
894     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
895       Cost += SpillPlacer->getBlockFrequency(Number);
896   }
897   return Cost;
898 }
899 
900 /// Check if splitting Evictee will create a local split interval in
901 /// basic block number BBNumber that may cause a bad eviction chain. This is
902 /// intended to prevent bad eviction sequences like:
903 /// movl	%ebp, 8(%esp)           # 4-byte Spill
904 /// movl	%ecx, %ebp
905 /// movl	%ebx, %ecx
906 /// movl	%edi, %ebx
907 /// movl	%edx, %edi
908 /// cltd
909 /// idivl	%esi
910 /// movl	%edi, %edx
911 /// movl	%ebx, %edi
912 /// movl	%ecx, %ebx
913 /// movl	%ebp, %ecx
914 /// movl	16(%esp), %ebp          # 4 - byte Reload
915 ///
916 /// Such sequences are created in 2 scenarios:
917 ///
918 /// Scenario #1:
919 /// %0 is evicted from physreg0 by %1.
920 /// Evictee %0 is intended for region splitting with split candidate
921 /// physreg0 (the reg %0 was evicted from).
922 /// Region splitting creates a local interval because of interference with the
923 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
924 /// and "by stack" intervals and local interval created when interference
925 /// occurs).
926 /// One of the split intervals ends up evicting %2 from physreg1.
927 /// Evictee %2 is intended for region splitting with split candidate
928 /// physreg1.
929 /// One of the split intervals ends up evicting %3 from physreg2, etc.
930 ///
931 /// Scenario #2
932 /// %0 is evicted from physreg0 by %1.
933 /// %2 is evicted from physreg2 by %3 etc.
934 /// Evictee %0 is intended for region splitting with split candidate
935 /// physreg1.
936 /// Region splitting creates a local interval because of interference with the
937 /// evictor %1.
938 /// One of the split intervals ends up evicting back original evictor %1
939 /// from physreg0 (the reg %0 was evicted from).
940 /// Another evictee %2 is intended for region splitting with split candidate
941 /// physreg1.
942 /// One of the split intervals ends up evicting %3 from physreg2, etc.
943 ///
944 /// \param Evictee  The register considered to be split.
945 /// \param Cand     The split candidate that determines the physical register
946 ///                 we are splitting for and the interferences.
947 /// \param BBNumber The number of a BB for which the region split process will
948 ///                 create a local split interval.
949 /// \param Order    The physical registers that may get evicted by a split
950 ///                 artifact of Evictee.
951 /// \return True if splitting Evictee may cause a bad eviction chain, false
952 /// otherwise.
953 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
954                                           GlobalSplitCandidate &Cand,
955                                           unsigned BBNumber,
956                                           const AllocationOrder &Order) {
957   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
958   unsigned Evictor = VregEvictorInfo.first;
959   MCRegister PhysReg = VregEvictorInfo.second;
960 
961   // No actual evictor.
962   if (!Evictor || !PhysReg)
963     return false;
964 
965   float MaxWeight = 0;
966   MCRegister FutureEvictedPhysReg =
967       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
968                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
969 
970   // The bad eviction chain occurs when either the split candidate is the
971   // evicting reg or one of the split artifact will evict the evicting reg.
972   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
973     return false;
974 
975   Cand.Intf.moveToBlock(BBNumber);
976 
977   // Check to see if the Evictor contains interference (with Evictee) in the
978   // given BB. If so, this interference caused the eviction of Evictee from
979   // PhysReg. This suggest that we will create a local interval during the
980   // region split to avoid this interference This local interval may cause a bad
981   // eviction chain.
982   if (!LIS->hasInterval(Evictor))
983     return false;
984   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
985   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
986     return false;
987 
988   // Now, check to see if the local interval we will create is going to be
989   // expensive enough to evict somebody If so, this may cause a bad eviction
990   // chain.
991   float splitArtifactWeight =
992       VRAI->futureWeight(LIS->getInterval(Evictee),
993                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
994   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
995     return false;
996 
997   return true;
998 }
999 
1000 /// calcGlobalSplitCost - Return the global split cost of following the split
1001 /// pattern in LiveBundles. This cost should be added to the local cost of the
1002 /// interference pattern in SplitConstraints.
1003 ///
1004 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1005                                              const AllocationOrder &Order) {
1006   BlockFrequency GlobalCost = 0;
1007   const BitVector &LiveBundles = Cand.LiveBundles;
1008   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1009   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1010     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1011     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1012     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1013     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1014     unsigned Ins = 0;
1015 
1016     Cand.Intf.moveToBlock(BC.Number);
1017 
1018     if (BI.LiveIn)
1019       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1020     if (BI.LiveOut)
1021       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1022     while (Ins--)
1023       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1024   }
1025 
1026   for (unsigned Number : Cand.ActiveBlocks) {
1027     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1028     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1029     if (!RegIn && !RegOut)
1030       continue;
1031     if (RegIn && RegOut) {
1032       // We need double spill code if this block has interference.
1033       Cand.Intf.moveToBlock(Number);
1034       if (Cand.Intf.hasInterference()) {
1035         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1036         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1037       }
1038       continue;
1039     }
1040     // live-in / stack-out or stack-in live-out.
1041     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1042   }
1043   return GlobalCost;
1044 }
1045 
1046 /// splitAroundRegion - Split the current live range around the regions
1047 /// determined by BundleCand and GlobalCand.
1048 ///
1049 /// Before calling this function, GlobalCand and BundleCand must be initialized
1050 /// so each bundle is assigned to a valid candidate, or NoCand for the
1051 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1052 /// objects must be initialized for the current live range, and intervals
1053 /// created for the used candidates.
1054 ///
1055 /// @param LREdit    The LiveRangeEdit object handling the current split.
1056 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1057 ///                  must appear in this list.
1058 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1059                                  ArrayRef<unsigned> UsedCands) {
1060   // These are the intervals created for new global ranges. We may create more
1061   // intervals for local ranges.
1062   const unsigned NumGlobalIntvs = LREdit.size();
1063   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1064                     << " globals.\n");
1065   assert(NumGlobalIntvs && "No global intervals configured");
1066 
1067   // Isolate even single instructions when dealing with a proper sub-class.
1068   // That guarantees register class inflation for the stack interval because it
1069   // is all copies.
1070   Register Reg = SA->getParent().reg();
1071   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1072 
1073   // First handle all the blocks with uses.
1074   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1075   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1076     unsigned Number = BI.MBB->getNumber();
1077     unsigned IntvIn = 0, IntvOut = 0;
1078     SlotIndex IntfIn, IntfOut;
1079     if (BI.LiveIn) {
1080       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1081       if (CandIn != NoCand) {
1082         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1083         IntvIn = Cand.IntvIdx;
1084         Cand.Intf.moveToBlock(Number);
1085         IntfIn = Cand.Intf.first();
1086       }
1087     }
1088     if (BI.LiveOut) {
1089       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1090       if (CandOut != NoCand) {
1091         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1092         IntvOut = Cand.IntvIdx;
1093         Cand.Intf.moveToBlock(Number);
1094         IntfOut = Cand.Intf.last();
1095       }
1096     }
1097 
1098     // Create separate intervals for isolated blocks with multiple uses.
1099     if (!IntvIn && !IntvOut) {
1100       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1101       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1102         SE->splitSingleBlock(BI);
1103       continue;
1104     }
1105 
1106     if (IntvIn && IntvOut)
1107       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1108     else if (IntvIn)
1109       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1110     else
1111       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1112   }
1113 
1114   // Handle live-through blocks. The relevant live-through blocks are stored in
1115   // the ActiveBlocks list with each candidate. We need to filter out
1116   // duplicates.
1117   BitVector Todo = SA->getThroughBlocks();
1118   for (unsigned UsedCand : UsedCands) {
1119     ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
1120     for (unsigned Number : Blocks) {
1121       if (!Todo.test(Number))
1122         continue;
1123       Todo.reset(Number);
1124 
1125       unsigned IntvIn = 0, IntvOut = 0;
1126       SlotIndex IntfIn, IntfOut;
1127 
1128       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1129       if (CandIn != NoCand) {
1130         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1131         IntvIn = Cand.IntvIdx;
1132         Cand.Intf.moveToBlock(Number);
1133         IntfIn = Cand.Intf.first();
1134       }
1135 
1136       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1137       if (CandOut != NoCand) {
1138         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1139         IntvOut = Cand.IntvIdx;
1140         Cand.Intf.moveToBlock(Number);
1141         IntfOut = Cand.Intf.last();
1142       }
1143       if (!IntvIn && !IntvOut)
1144         continue;
1145       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1146     }
1147   }
1148 
1149   ++NumGlobalSplits;
1150 
1151   SmallVector<unsigned, 8> IntvMap;
1152   SE->finish(&IntvMap);
1153   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1154 
1155   unsigned OrigBlocks = SA->getNumLiveBlocks();
1156 
1157   // Sort out the new intervals created by splitting. We get four kinds:
1158   // - Remainder intervals should not be split again.
1159   // - Candidate intervals can be assigned to Cand.PhysReg.
1160   // - Block-local splits are candidates for local splitting.
1161   // - DCE leftovers should go back on the queue.
1162   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1163     const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1164 
1165     // Ignore old intervals from DCE.
1166     if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
1167       continue;
1168 
1169     // Remainder interval. Don't try splitting again, spill if it doesn't
1170     // allocate.
1171     if (IntvMap[I] == 0) {
1172       ExtraInfo->setStage(Reg, RS_Spill);
1173       continue;
1174     }
1175 
1176     // Global intervals. Allow repeated splitting as long as the number of live
1177     // blocks is strictly decreasing.
1178     if (IntvMap[I] < NumGlobalIntvs) {
1179       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1180         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1181                           << " blocks as original.\n");
1182         // Don't allow repeated splitting as a safe guard against looping.
1183         ExtraInfo->setStage(Reg, RS_Split2);
1184       }
1185       continue;
1186     }
1187 
1188     // Other intervals are treated as new. This includes local intervals created
1189     // for blocks with multiple uses, and anything created by DCE.
1190   }
1191 
1192   if (VerifyEnabled)
1193     MF->verify(this, "After splitting live range around region");
1194 }
1195 
1196 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg,
1197                                     AllocationOrder &Order,
1198                                     SmallVectorImpl<Register> &NewVRegs) {
1199   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1200     return MCRegister::NoRegister;
1201   unsigned NumCands = 0;
1202   BlockFrequency SpillCost = calcSpillCost();
1203   BlockFrequency BestCost;
1204 
1205   // Check if we can split this live range around a compact region.
1206   bool HasCompact = calcCompactRegion(GlobalCand.front());
1207   if (HasCompact) {
1208     // Yes, keep GlobalCand[0] as the compact region candidate.
1209     NumCands = 1;
1210     BestCost = BlockFrequency::getMaxFrequency();
1211   } else {
1212     // No benefit from the compact region, our fallback will be per-block
1213     // splitting. Make sure we find a solution that is cheaper than spilling.
1214     BestCost = SpillCost;
1215     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1216                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1217   }
1218 
1219   unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
1220                                                NumCands, false /*IgnoreCSR*/);
1221 
1222   // No solutions found, fall back to single block splitting.
1223   if (!HasCompact && BestCand == NoCand)
1224     return MCRegister::NoRegister;
1225 
1226   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1227 }
1228 
1229 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg,
1230                                             AllocationOrder &Order,
1231                                             BlockFrequency &BestCost,
1232                                             unsigned &NumCands,
1233                                             bool IgnoreCSR) {
1234   unsigned BestCand = NoCand;
1235   for (MCPhysReg PhysReg : Order) {
1236     assert(PhysReg);
1237     if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
1238       continue;
1239 
1240     // Discard bad candidates before we run out of interference cache cursors.
1241     // This will only affect register classes with a lot of registers (>32).
1242     if (NumCands == IntfCache.getMaxCursors()) {
1243       unsigned WorstCount = ~0u;
1244       unsigned Worst = 0;
1245       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1246         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1247           continue;
1248         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1249         if (Count < WorstCount) {
1250           Worst = CandIndex;
1251           WorstCount = Count;
1252         }
1253       }
1254       --NumCands;
1255       GlobalCand[Worst] = GlobalCand[NumCands];
1256       if (BestCand == NumCands)
1257         BestCand = Worst;
1258     }
1259 
1260     if (GlobalCand.size() <= NumCands)
1261       GlobalCand.resize(NumCands+1);
1262     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1263     Cand.reset(IntfCache, PhysReg);
1264 
1265     SpillPlacer->prepare(Cand.LiveBundles);
1266     BlockFrequency Cost;
1267     if (!addSplitConstraints(Cand.Intf, Cost)) {
1268       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1269       continue;
1270     }
1271     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1272                MBFI->printBlockFreq(dbgs(), Cost));
1273     if (Cost >= BestCost) {
1274       LLVM_DEBUG({
1275         if (BestCand == NoCand)
1276           dbgs() << " worse than no bundles\n";
1277         else
1278           dbgs() << " worse than "
1279                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1280       });
1281       continue;
1282     }
1283     if (!growRegion(Cand)) {
1284       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1285       continue;
1286     }
1287 
1288     SpillPlacer->finish();
1289 
1290     // No live bundles, defer to splitSingleBlocks().
1291     if (!Cand.LiveBundles.any()) {
1292       LLVM_DEBUG(dbgs() << " no bundles.\n");
1293       continue;
1294     }
1295 
1296     Cost += calcGlobalSplitCost(Cand, Order);
1297     LLVM_DEBUG({
1298       dbgs() << ", total = ";
1299       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1300       for (int I : Cand.LiveBundles.set_bits())
1301         dbgs() << " EB#" << I;
1302       dbgs() << ".\n";
1303     });
1304     if (Cost < BestCost) {
1305       BestCand = NumCands;
1306       BestCost = Cost;
1307     }
1308     ++NumCands;
1309   }
1310 
1311   return BestCand;
1312 }
1313 
1314 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand,
1315                                  bool HasCompact,
1316                                  SmallVectorImpl<Register> &NewVRegs) {
1317   SmallVector<unsigned, 8> UsedCands;
1318   // Prepare split editor.
1319   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1320   SE->reset(LREdit, SplitSpillMode);
1321 
1322   // Assign all edge bundles to the preferred candidate, or NoCand.
1323   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1324 
1325   // Assign bundles for the best candidate region.
1326   if (BestCand != NoCand) {
1327     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1328     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1329       UsedCands.push_back(BestCand);
1330       Cand.IntvIdx = SE->openIntv();
1331       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1332                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1333       (void)B;
1334     }
1335   }
1336 
1337   // Assign bundles for the compact region.
1338   if (HasCompact) {
1339     GlobalSplitCandidate &Cand = GlobalCand.front();
1340     assert(!Cand.PhysReg && "Compact region has no physreg");
1341     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1342       UsedCands.push_back(0);
1343       Cand.IntvIdx = SE->openIntv();
1344       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1345                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1346       (void)B;
1347     }
1348   }
1349 
1350   splitAroundRegion(LREdit, UsedCands);
1351   return 0;
1352 }
1353 
1354 //===----------------------------------------------------------------------===//
1355 //                            Per-Block Splitting
1356 //===----------------------------------------------------------------------===//
1357 
1358 /// tryBlockSplit - Split a global live range around every block with uses. This
1359 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1360 /// they don't allocate.
1361 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg,
1362                                  AllocationOrder &Order,
1363                                  SmallVectorImpl<Register> &NewVRegs) {
1364   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1365   Register Reg = VirtReg.reg();
1366   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1367   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1368   SE->reset(LREdit, SplitSpillMode);
1369   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1370   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1371     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1372       SE->splitSingleBlock(BI);
1373   }
1374   // No blocks were split.
1375   if (LREdit.empty())
1376     return 0;
1377 
1378   // We did split for some blocks.
1379   SmallVector<unsigned, 8> IntvMap;
1380   SE->finish(&IntvMap);
1381 
1382   // Tell LiveDebugVariables about the new ranges.
1383   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1384 
1385   // Sort out the new intervals created by splitting. The remainder interval
1386   // goes straight to spilling, the new local ranges get to stay RS_New.
1387   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1388     const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
1389     if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
1390       ExtraInfo->setStage(LI, RS_Spill);
1391   }
1392 
1393   if (VerifyEnabled)
1394     MF->verify(this, "After splitting live range around basic blocks");
1395   return 0;
1396 }
1397 
1398 //===----------------------------------------------------------------------===//
1399 //                         Per-Instruction Splitting
1400 //===----------------------------------------------------------------------===//
1401 
1402 /// Get the number of allocatable registers that match the constraints of \p Reg
1403 /// on \p MI and that are also in \p SuperRC.
1404 static unsigned getNumAllocatableRegsForConstraints(
1405     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
1406     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1407     const RegisterClassInfo &RCI) {
1408   assert(SuperRC && "Invalid register class");
1409 
1410   const TargetRegisterClass *ConstrainedRC =
1411       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1412                                              /* ExploreBundle */ true);
1413   if (!ConstrainedRC)
1414     return 0;
1415   return RCI.getNumAllocatableRegs(ConstrainedRC);
1416 }
1417 
1418 /// tryInstructionSplit - Split a live range around individual instructions.
1419 /// This is normally not worthwhile since the spiller is doing essentially the
1420 /// same thing. However, when the live range is in a constrained register
1421 /// class, it may help to insert copies such that parts of the live range can
1422 /// be moved to a larger register class.
1423 ///
1424 /// This is similar to spilling to a larger register class.
1425 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg,
1426                                        AllocationOrder &Order,
1427                                        SmallVectorImpl<Register> &NewVRegs) {
1428   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1429   // There is no point to this if there are no larger sub-classes.
1430   if (!RegClassInfo.isProperSubClass(CurRC))
1431     return 0;
1432 
1433   // Always enable split spill mode, since we're effectively spilling to a
1434   // register.
1435   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1436   SE->reset(LREdit, SplitEditor::SM_Size);
1437 
1438   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1439   if (Uses.size() <= 1)
1440     return 0;
1441 
1442   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
1443                     << " individual instrs.\n");
1444 
1445   const TargetRegisterClass *SuperRC =
1446       TRI->getLargestLegalSuperClass(CurRC, *MF);
1447   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
1448   // Split around every non-copy instruction if this split will relax
1449   // the constraints on the virtual register.
1450   // Otherwise, splitting just inserts uncoalescable copies that do not help
1451   // the allocation.
1452   for (const SlotIndex Use : Uses) {
1453     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
1454       if (MI->isFullCopy() ||
1455           SuperRCNumAllocatableRegs ==
1456               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
1457                                                   TII, TRI, RCI)) {
1458         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
1459         continue;
1460       }
1461     SE->openIntv();
1462     SlotIndex SegStart = SE->enterIntvBefore(Use);
1463     SlotIndex SegStop = SE->leaveIntvAfter(Use);
1464     SE->useIntv(SegStart, SegStop);
1465   }
1466 
1467   if (LREdit.empty()) {
1468     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
1469     return 0;
1470   }
1471 
1472   SmallVector<unsigned, 8> IntvMap;
1473   SE->finish(&IntvMap);
1474   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1475   // Assign all new registers to RS_Spill. This was the last chance.
1476   ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1477   return 0;
1478 }
1479 
1480 //===----------------------------------------------------------------------===//
1481 //                             Local Splitting
1482 //===----------------------------------------------------------------------===//
1483 
1484 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1485 /// in order to use PhysReg between two entries in SA->UseSlots.
1486 ///
1487 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
1488 ///
1489 void RAGreedy::calcGapWeights(MCRegister PhysReg,
1490                               SmallVectorImpl<float> &GapWeight) {
1491   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1492   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1493   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1494   const unsigned NumGaps = Uses.size()-1;
1495 
1496   // Start and end points for the interference check.
1497   SlotIndex StartIdx =
1498     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1499   SlotIndex StopIdx =
1500     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1501 
1502   GapWeight.assign(NumGaps, 0.0f);
1503 
1504   // Add interference from each overlapping register.
1505   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1506     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1507           .checkInterference())
1508       continue;
1509 
1510     // We know that VirtReg is a continuous interval from FirstInstr to
1511     // LastInstr, so we don't need InterferenceQuery.
1512     //
1513     // Interference that overlaps an instruction is counted in both gaps
1514     // surrounding the instruction. The exception is interference before
1515     // StartIdx and after StopIdx.
1516     //
1517     LiveIntervalUnion::SegmentIter IntI =
1518       Matrix->getLiveUnions()[*Units] .find(StartIdx);
1519     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1520       // Skip the gaps before IntI.
1521       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1522         if (++Gap == NumGaps)
1523           break;
1524       if (Gap == NumGaps)
1525         break;
1526 
1527       // Update the gaps covered by IntI.
1528       const float weight = IntI.value()->weight();
1529       for (; Gap != NumGaps; ++Gap) {
1530         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1531         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1532           break;
1533       }
1534       if (Gap == NumGaps)
1535         break;
1536     }
1537   }
1538 
1539   // Add fixed interference.
1540   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1541     const LiveRange &LR = LIS->getRegUnit(*Units);
1542     LiveRange::const_iterator I = LR.find(StartIdx);
1543     LiveRange::const_iterator E = LR.end();
1544 
1545     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1546     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1547       while (Uses[Gap+1].getBoundaryIndex() < I->start)
1548         if (++Gap == NumGaps)
1549           break;
1550       if (Gap == NumGaps)
1551         break;
1552 
1553       for (; Gap != NumGaps; ++Gap) {
1554         GapWeight[Gap] = huge_valf;
1555         if (Uses[Gap+1].getBaseIndex() >= I->end)
1556           break;
1557       }
1558       if (Gap == NumGaps)
1559         break;
1560     }
1561   }
1562 }
1563 
1564 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1565 /// basic block.
1566 ///
1567 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg,
1568                                  AllocationOrder &Order,
1569                                  SmallVectorImpl<Register> &NewVRegs) {
1570   // TODO: the function currently only handles a single UseBlock; it should be
1571   // possible to generalize.
1572   if (SA->getUseBlocks().size() != 1)
1573     return 0;
1574 
1575   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1576 
1577   // Note that it is possible to have an interval that is live-in or live-out
1578   // while only covering a single block - A phi-def can use undef values from
1579   // predecessors, and the block could be a single-block loop.
1580   // We don't bother doing anything clever about such a case, we simply assume
1581   // that the interval is continuous from FirstInstr to LastInstr. We should
1582   // make sure that we don't do anything illegal to such an interval, though.
1583 
1584   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1585   if (Uses.size() <= 2)
1586     return 0;
1587   const unsigned NumGaps = Uses.size()-1;
1588 
1589   LLVM_DEBUG({
1590     dbgs() << "tryLocalSplit: ";
1591     for (const auto &Use : Uses)
1592       dbgs() << ' ' << Use;
1593     dbgs() << '\n';
1594   });
1595 
1596   // If VirtReg is live across any register mask operands, compute a list of
1597   // gaps with register masks.
1598   SmallVector<unsigned, 8> RegMaskGaps;
1599   if (Matrix->checkRegMaskInterference(VirtReg)) {
1600     // Get regmask slots for the whole block.
1601     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1602     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1603     // Constrain to VirtReg's live range.
1604     unsigned RI =
1605         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
1606     unsigned RE = RMS.size();
1607     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
1608       // Look for Uses[I] <= RMS <= Uses[I + 1].
1609       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
1610       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
1611         continue;
1612       // Skip a regmask on the same instruction as the last use. It doesn't
1613       // overlap the live range.
1614       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
1615         break;
1616       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
1617                         << Uses[I + 1]);
1618       RegMaskGaps.push_back(I);
1619       // Advance ri to the next gap. A regmask on one of the uses counts in
1620       // both gaps.
1621       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
1622         ++RI;
1623     }
1624     LLVM_DEBUG(dbgs() << '\n');
1625   }
1626 
1627   // Since we allow local split results to be split again, there is a risk of
1628   // creating infinite loops. It is tempting to require that the new live
1629   // ranges have less instructions than the original. That would guarantee
1630   // convergence, but it is too strict. A live range with 3 instructions can be
1631   // split 2+3 (including the COPY), and we want to allow that.
1632   //
1633   // Instead we use these rules:
1634   //
1635   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1636   //    noop split, of course).
1637   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1638   //    the new ranges must have fewer instructions than before the split.
1639   // 3. New ranges with the same number of instructions are marked RS_Split2,
1640   //    smaller ranges are marked RS_New.
1641   //
1642   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1643   // excessive splitting and infinite loops.
1644   //
1645   bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
1646 
1647   // Best split candidate.
1648   unsigned BestBefore = NumGaps;
1649   unsigned BestAfter = 0;
1650   float BestDiff = 0;
1651 
1652   const float blockFreq =
1653     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1654     (1.0f / MBFI->getEntryFreq());
1655   SmallVector<float, 8> GapWeight;
1656 
1657   for (MCPhysReg PhysReg : Order) {
1658     assert(PhysReg);
1659     // Keep track of the largest spill weight that would need to be evicted in
1660     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
1661     calcGapWeights(PhysReg, GapWeight);
1662 
1663     // Remove any gaps with regmask clobbers.
1664     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1665       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
1666         GapWeight[RegMaskGaps[I]] = huge_valf;
1667 
1668     // Try to find the best sequence of gaps to close.
1669     // The new spill weight must be larger than any gap interference.
1670 
1671     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1672     unsigned SplitBefore = 0, SplitAfter = 1;
1673 
1674     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1675     // It is the spill weight that needs to be evicted.
1676     float MaxGap = GapWeight[0];
1677 
1678     while (true) {
1679       // Live before/after split?
1680       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1681       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1682 
1683       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
1684                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
1685 
1686       // Stop before the interval gets so big we wouldn't be making progress.
1687       if (!LiveBefore && !LiveAfter) {
1688         LLVM_DEBUG(dbgs() << " all\n");
1689         break;
1690       }
1691       // Should the interval be extended or shrunk?
1692       bool Shrink = true;
1693 
1694       // How many gaps would the new range have?
1695       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1696 
1697       // Legally, without causing looping?
1698       bool Legal = !ProgressRequired || NewGaps < NumGaps;
1699 
1700       if (Legal && MaxGap < huge_valf) {
1701         // Estimate the new spill weight. Each instruction reads or writes the
1702         // register. Conservatively assume there are no read-modify-write
1703         // instructions.
1704         //
1705         // Try to guess the size of the new interval.
1706         const float EstWeight = normalizeSpillWeight(
1707             blockFreq * (NewGaps + 1),
1708             Uses[SplitBefore].distance(Uses[SplitAfter]) +
1709                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1710             1);
1711         // Would this split be possible to allocate?
1712         // Never allocate all gaps, we wouldn't be making progress.
1713         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
1714         if (EstWeight * Hysteresis >= MaxGap) {
1715           Shrink = false;
1716           float Diff = EstWeight - MaxGap;
1717           if (Diff > BestDiff) {
1718             LLVM_DEBUG(dbgs() << " (best)");
1719             BestDiff = Hysteresis * Diff;
1720             BestBefore = SplitBefore;
1721             BestAfter = SplitAfter;
1722           }
1723         }
1724       }
1725 
1726       // Try to shrink.
1727       if (Shrink) {
1728         if (++SplitBefore < SplitAfter) {
1729           LLVM_DEBUG(dbgs() << " shrink\n");
1730           // Recompute the max when necessary.
1731           if (GapWeight[SplitBefore - 1] >= MaxGap) {
1732             MaxGap = GapWeight[SplitBefore];
1733             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
1734               MaxGap = std::max(MaxGap, GapWeight[I]);
1735           }
1736           continue;
1737         }
1738         MaxGap = 0;
1739       }
1740 
1741       // Try to extend the interval.
1742       if (SplitAfter >= NumGaps) {
1743         LLVM_DEBUG(dbgs() << " end\n");
1744         break;
1745       }
1746 
1747       LLVM_DEBUG(dbgs() << " extend\n");
1748       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1749     }
1750   }
1751 
1752   // Didn't find any candidates?
1753   if (BestBefore == NumGaps)
1754     return 0;
1755 
1756   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
1757                     << Uses[BestAfter] << ", " << BestDiff << ", "
1758                     << (BestAfter - BestBefore + 1) << " instrs\n");
1759 
1760   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1761   SE->reset(LREdit);
1762 
1763   SE->openIntv();
1764   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1765   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1766   SE->useIntv(SegStart, SegStop);
1767   SmallVector<unsigned, 8> IntvMap;
1768   SE->finish(&IntvMap);
1769   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1770   // If the new range has the same number of instructions as before, mark it as
1771   // RS_Split2 so the next split will be forced to make progress. Otherwise,
1772   // leave the new intervals as RS_New so they can compete.
1773   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1774   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1775   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1776   if (NewGaps >= NumGaps) {
1777     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1778     assert(!ProgressRequired && "Didn't make progress when it was required.");
1779     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
1780       if (IntvMap[I] == 1) {
1781         ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
1782         LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
1783       }
1784     LLVM_DEBUG(dbgs() << '\n');
1785   }
1786   ++NumLocalSplits;
1787 
1788   return 0;
1789 }
1790 
1791 //===----------------------------------------------------------------------===//
1792 //                          Live Range Splitting
1793 //===----------------------------------------------------------------------===//
1794 
1795 /// trySplit - Try to split VirtReg or one of its interferences, making it
1796 /// assignable.
1797 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1798 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order,
1799                             SmallVectorImpl<Register> &NewVRegs,
1800                             const SmallVirtRegSet &FixedRegisters) {
1801   // Ranges must be Split2 or less.
1802   if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
1803     return 0;
1804 
1805   // Local intervals are handled separately.
1806   if (LIS->intervalIsInOneMBB(VirtReg)) {
1807     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
1808                        TimerGroupDescription, TimePassesIsEnabled);
1809     SA->analyze(&VirtReg);
1810     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1811     if (PhysReg || !NewVRegs.empty())
1812       return PhysReg;
1813     return tryInstructionSplit(VirtReg, Order, NewVRegs);
1814   }
1815 
1816   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
1817                      TimerGroupDescription, TimePassesIsEnabled);
1818 
1819   SA->analyze(&VirtReg);
1820 
1821   // First try to split around a region spanning multiple blocks. RS_Split2
1822   // ranges already made dubious progress with region splitting, so they go
1823   // straight to single block splitting.
1824   if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
1825     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1826     if (PhysReg || !NewVRegs.empty())
1827       return PhysReg;
1828   }
1829 
1830   // Then isolate blocks.
1831   return tryBlockSplit(VirtReg, Order, NewVRegs);
1832 }
1833 
1834 //===----------------------------------------------------------------------===//
1835 //                          Last Chance Recoloring
1836 //===----------------------------------------------------------------------===//
1837 
1838 /// Return true if \p reg has any tied def operand.
1839 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
1840   for (const MachineOperand &MO : MRI->def_operands(reg))
1841     if (MO.isTied())
1842       return true;
1843 
1844   return false;
1845 }
1846 
1847 /// Return true if the existing assignment of \p Intf overlaps, but is not the
1848 /// same, as \p PhysReg.
1849 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI,
1850                                          const VirtRegMap &VRM,
1851                                          MCRegister PhysReg,
1852                                          const LiveInterval &Intf) {
1853   MCRegister AssignedReg = VRM.getPhys(Intf.reg());
1854   if (PhysReg == AssignedReg)
1855     return false;
1856   return TRI.regsOverlap(PhysReg, AssignedReg);
1857 }
1858 
1859 /// mayRecolorAllInterferences - Check if the virtual registers that
1860 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1861 /// recolored to free \p PhysReg.
1862 /// When true is returned, \p RecoloringCandidates has been augmented with all
1863 /// the live intervals that need to be recolored in order to free \p PhysReg
1864 /// for \p VirtReg.
1865 /// \p FixedRegisters contains all the virtual registers that cannot be
1866 /// recolored.
1867 bool RAGreedy::mayRecolorAllInterferences(
1868     MCRegister PhysReg, const LiveInterval &VirtReg,
1869     SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) {
1870   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1871 
1872   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1873     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1874     // If there is LastChanceRecoloringMaxInterference or more interferences,
1875     // chances are one would not be recolorable.
1876     if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
1877             LastChanceRecoloringMaxInterference &&
1878         !ExhaustiveSearch) {
1879       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1880       CutOffInfo |= CO_Interf;
1881       return false;
1882     }
1883     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1884       // If Intf is done and sits on the same register class as VirtReg, it
1885       // would not be recolorable as it is in the same state as
1886       // VirtReg. However there are at least two exceptions.
1887       //
1888       // If VirtReg has tied defs and Intf doesn't, then
1889       // there is still a point in examining if it can be recolorable.
1890       //
1891       // Additionally, if the register class has overlapping tuple members, it
1892       // may still be recolorable using a different tuple. This is more likely
1893       // if the existing assignment aliases with the candidate.
1894       //
1895       if (((ExtraInfo->getStage(*Intf) == RS_Done &&
1896             MRI->getRegClass(Intf->reg()) == CurRC &&
1897             !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) &&
1898            !(hasTiedDef(MRI, VirtReg.reg()) &&
1899              !hasTiedDef(MRI, Intf->reg()))) ||
1900           FixedRegisters.count(Intf->reg())) {
1901         LLVM_DEBUG(
1902             dbgs() << "Early abort: the interference is not recolorable.\n");
1903         return false;
1904       }
1905       RecoloringCandidates.insert(Intf);
1906     }
1907   }
1908   return true;
1909 }
1910 
1911 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1912 /// its interferences.
1913 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
1914 /// virtual register that was using it. The recoloring process may recursively
1915 /// use the last chance recoloring. Therefore, when a virtual register has been
1916 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
1917 /// be last-chance-recolored again during this recoloring "session".
1918 /// E.g.,
1919 /// Let
1920 /// vA can use {R1, R2    }
1921 /// vB can use {    R2, R3}
1922 /// vC can use {R1        }
1923 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
1924 /// instance) and they all interfere.
1925 ///
1926 /// vA is assigned R1
1927 /// vB is assigned R2
1928 /// vC tries to evict vA but vA is already done.
1929 /// Regular register allocation fails.
1930 ///
1931 /// Last chance recoloring kicks in:
1932 /// vC does as if vA was evicted => vC uses R1.
1933 /// vC is marked as fixed.
1934 /// vA needs to find a color.
1935 /// None are available.
1936 /// vA cannot evict vC: vC is a fixed virtual register now.
1937 /// vA does as if vB was evicted => vA uses R2.
1938 /// vB needs to find a color.
1939 /// R3 is available.
1940 /// Recoloring => vC = R1, vA = R2, vB = R3
1941 ///
1942 /// \p Order defines the preferred allocation order for \p VirtReg.
1943 /// \p NewRegs will contain any new virtual register that have been created
1944 /// (split, spill) during the process and that must be assigned.
1945 /// \p FixedRegisters contains all the virtual registers that cannot be
1946 /// recolored.
1947 ///
1948 /// \p RecolorStack tracks the original assignments of successfully recolored
1949 /// registers.
1950 ///
1951 /// \p Depth gives the current depth of the last chance recoloring.
1952 /// \return a physical register that can be used for VirtReg or ~0u if none
1953 /// exists.
1954 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg,
1955                                            AllocationOrder &Order,
1956                                            SmallVectorImpl<Register> &NewVRegs,
1957                                            SmallVirtRegSet &FixedRegisters,
1958                                            RecoloringStack &RecolorStack,
1959                                            unsigned Depth) {
1960   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
1961     return ~0u;
1962 
1963   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
1964 
1965   const ssize_t EntryStackSize = RecolorStack.size();
1966 
1967   // Ranges must be Done.
1968   assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
1969          "Last chance recoloring should really be last chance");
1970   // Set the max depth to LastChanceRecoloringMaxDepth.
1971   // We may want to reconsider that if we end up with a too large search space
1972   // for target with hundreds of registers.
1973   // Indeed, in that case we may want to cut the search space earlier.
1974   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
1975     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
1976     CutOffInfo |= CO_Depth;
1977     return ~0u;
1978   }
1979 
1980   // Set of Live intervals that will need to be recolored.
1981   SmallLISet RecoloringCandidates;
1982 
1983   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
1984   // this recoloring "session".
1985   assert(!FixedRegisters.count(VirtReg.reg()));
1986   FixedRegisters.insert(VirtReg.reg());
1987   SmallVector<Register, 4> CurrentNewVRegs;
1988 
1989   for (MCRegister PhysReg : Order) {
1990     assert(PhysReg.isValid());
1991     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
1992                       << printReg(PhysReg, TRI) << '\n');
1993     RecoloringCandidates.clear();
1994     CurrentNewVRegs.clear();
1995 
1996     // It is only possible to recolor virtual register interference.
1997     if (Matrix->checkInterference(VirtReg, PhysReg) >
1998         LiveRegMatrix::IK_VirtReg) {
1999       LLVM_DEBUG(
2000           dbgs() << "Some interferences are not with virtual registers.\n");
2001 
2002       continue;
2003     }
2004 
2005     // Early give up on this PhysReg if it is obvious we cannot recolor all
2006     // the interferences.
2007     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2008                                     FixedRegisters)) {
2009       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2010       continue;
2011     }
2012 
2013     // RecoloringCandidates contains all the virtual registers that interfere
2014     // with VirtReg on PhysReg (or one of its aliases). Enqueue them for
2015     // recoloring and perform the actual recoloring.
2016     PQueue RecoloringQueue;
2017     for (const LiveInterval *RC : RecoloringCandidates) {
2018       Register ItVirtReg = RC->reg();
2019       enqueue(RecoloringQueue, RC);
2020       assert(VRM->hasPhys(ItVirtReg) &&
2021              "Interferences are supposed to be with allocated variables");
2022 
2023       // Record the current allocation.
2024       RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg)));
2025 
2026       // unset the related struct.
2027       Matrix->unassign(*RC);
2028     }
2029 
2030     // Do as if VirtReg was assigned to PhysReg so that the underlying
2031     // recoloring has the right information about the interferes and
2032     // available colors.
2033     Matrix->assign(VirtReg, PhysReg);
2034 
2035     // Save the current recoloring state.
2036     // If we cannot recolor all the interferences, we will have to start again
2037     // at this point for the next physical register.
2038     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2039     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2040                                 FixedRegisters, RecolorStack, Depth)) {
2041       // Push the queued vregs into the main queue.
2042       for (Register NewVReg : CurrentNewVRegs)
2043         NewVRegs.push_back(NewVReg);
2044       // Do not mess up with the global assignment process.
2045       // I.e., VirtReg must be unassigned.
2046       Matrix->unassign(VirtReg);
2047       return PhysReg;
2048     }
2049 
2050     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2051                       << printReg(PhysReg, TRI) << '\n');
2052 
2053     // The recoloring attempt failed, undo the changes.
2054     FixedRegisters = SaveFixedRegisters;
2055     Matrix->unassign(VirtReg);
2056 
2057     // For a newly created vreg which is also in RecoloringCandidates,
2058     // don't add it to NewVRegs because its physical register will be restored
2059     // below. Other vregs in CurrentNewVRegs are created by calling
2060     // selectOrSplit and should be added into NewVRegs.
2061     for (Register &R : CurrentNewVRegs) {
2062       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2063         continue;
2064       NewVRegs.push_back(R);
2065     }
2066 
2067     // Roll back our unsuccessful recoloring. Also roll back any successful
2068     // recolorings in any recursive recoloring attempts, since it's possible
2069     // they would have introduced conflicts with assignments we will be
2070     // restoring further up the stack. Perform all unassignments prior to
2071     // reassigning, since sub-recolorings may have conflicted with the registers
2072     // we are going to restore to their original assignments.
2073     for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) {
2074       const LiveInterval *LI;
2075       MCRegister PhysReg;
2076       std::tie(LI, PhysReg) = RecolorStack[I];
2077 
2078       if (VRM->hasPhys(LI->reg()))
2079         Matrix->unassign(*LI);
2080     }
2081 
2082     for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) {
2083       const LiveInterval *LI;
2084       MCRegister PhysReg;
2085       std::tie(LI, PhysReg) = RecolorStack[I];
2086       Matrix->assign(*LI, PhysReg);
2087     }
2088 
2089     // Pop the stack of recoloring attempts.
2090     RecolorStack.resize(EntryStackSize);
2091   }
2092 
2093   // Last chance recoloring did not worked either, give up.
2094   return ~0u;
2095 }
2096 
2097 /// tryRecoloringCandidates - Try to assign a new color to every register
2098 /// in \RecoloringQueue.
2099 /// \p NewRegs will contain any new virtual register created during the
2100 /// recoloring process.
2101 /// \p FixedRegisters[in/out] contains all the registers that have been
2102 /// recolored.
2103 /// \return true if all virtual registers in RecoloringQueue were successfully
2104 /// recolored, false otherwise.
2105 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2106                                        SmallVectorImpl<Register> &NewVRegs,
2107                                        SmallVirtRegSet &FixedRegisters,
2108                                        RecoloringStack &RecolorStack,
2109                                        unsigned Depth) {
2110   while (!RecoloringQueue.empty()) {
2111     const LiveInterval *LI = dequeue(RecoloringQueue);
2112     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2113     MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters,
2114                                            RecolorStack, Depth + 1);
2115     // When splitting happens, the live-range may actually be empty.
2116     // In that case, this is okay to continue the recoloring even
2117     // if we did not find an alternative color for it. Indeed,
2118     // there will not be anything to color for LI in the end.
2119     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2120       return false;
2121 
2122     if (!PhysReg) {
2123       assert(LI->empty() && "Only empty live-range do not require a register");
2124       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2125                         << " succeeded. Empty LI.\n");
2126       continue;
2127     }
2128     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2129                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2130 
2131     Matrix->assign(*LI, PhysReg);
2132     FixedRegisters.insert(LI->reg());
2133   }
2134   return true;
2135 }
2136 
2137 //===----------------------------------------------------------------------===//
2138 //                            Main Entry Point
2139 //===----------------------------------------------------------------------===//
2140 
2141 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg,
2142                                    SmallVectorImpl<Register> &NewVRegs) {
2143   CutOffInfo = CO_None;
2144   LLVMContext &Ctx = MF->getFunction().getContext();
2145   SmallVirtRegSet FixedRegisters;
2146   RecoloringStack RecolorStack;
2147   MCRegister Reg =
2148       selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack);
2149   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2150     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2151     if (CutOffEncountered == CO_Depth)
2152       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2153                     "reached. Use -fexhaustive-register-search to skip "
2154                     "cutoffs");
2155     else if (CutOffEncountered == CO_Interf)
2156       Ctx.emitError("register allocation failed: maximum interference for "
2157                     "recoloring reached. Use -fexhaustive-register-search "
2158                     "to skip cutoffs");
2159     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2160       Ctx.emitError("register allocation failed: maximum interference and "
2161                     "depth for recoloring reached. Use "
2162                     "-fexhaustive-register-search to skip cutoffs");
2163   }
2164   return Reg;
2165 }
2166 
2167 /// Using a CSR for the first time has a cost because it causes push|pop
2168 /// to be added to prologue|epilogue. Splitting a cold section of the live
2169 /// range can have lower cost than using the CSR for the first time;
2170 /// Spilling a live range in the cold path can have lower cost than using
2171 /// the CSR for the first time. Returns the physical register if we decide
2172 /// to use the CSR; otherwise return 0.
2173 MCRegister RAGreedy::tryAssignCSRFirstTime(
2174     const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg,
2175     uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) {
2176   if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2177     // We choose spill over using the CSR for the first time if the spill cost
2178     // is lower than CSRCost.
2179     SA->analyze(&VirtReg);
2180     if (calcSpillCost() >= CSRCost)
2181       return PhysReg;
2182 
2183     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2184     // we will not use a callee-saved register in tryEvict.
2185     CostPerUseLimit = 1;
2186     return 0;
2187   }
2188   if (ExtraInfo->getStage(VirtReg) < RS_Split) {
2189     // We choose pre-splitting over using the CSR for the first time if
2190     // the cost of splitting is lower than CSRCost.
2191     SA->analyze(&VirtReg);
2192     unsigned NumCands = 0;
2193     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2194     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2195                                                  NumCands, true /*IgnoreCSR*/);
2196     if (BestCand == NoCand)
2197       // Use the CSR if we can't find a region split below CSRCost.
2198       return PhysReg;
2199 
2200     // Perform the actual pre-splitting.
2201     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2202     return 0;
2203   }
2204   return PhysReg;
2205 }
2206 
2207 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) {
2208   // Do not keep invalid information around.
2209   SetOfBrokenHints.remove(&LI);
2210 }
2211 
2212 void RAGreedy::initializeCSRCost() {
2213   // We use the larger one out of the command-line option and the value report
2214   // by TRI.
2215   CSRCost = BlockFrequency(
2216       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2217   if (!CSRCost.getFrequency())
2218     return;
2219 
2220   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2221   uint64_t ActualEntry = MBFI->getEntryFreq();
2222   if (!ActualEntry) {
2223     CSRCost = 0;
2224     return;
2225   }
2226   uint64_t FixedEntry = 1 << 14;
2227   if (ActualEntry < FixedEntry)
2228     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2229   else if (ActualEntry <= UINT32_MAX)
2230     // Invert the fraction and divide.
2231     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2232   else
2233     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2234     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2235 }
2236 
2237 /// Collect the hint info for \p Reg.
2238 /// The results are stored into \p Out.
2239 /// \p Out is not cleared before being populated.
2240 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2241   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2242     if (!Instr.isFullCopy())
2243       continue;
2244     // Look for the other end of the copy.
2245     Register OtherReg = Instr.getOperand(0).getReg();
2246     if (OtherReg == Reg) {
2247       OtherReg = Instr.getOperand(1).getReg();
2248       if (OtherReg == Reg)
2249         continue;
2250     }
2251     // Get the current assignment.
2252     MCRegister OtherPhysReg =
2253         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2254     // Push the collected information.
2255     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2256                            OtherPhysReg));
2257   }
2258 }
2259 
2260 /// Using the given \p List, compute the cost of the broken hints if
2261 /// \p PhysReg was used.
2262 /// \return The cost of \p List for \p PhysReg.
2263 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2264                                            MCRegister PhysReg) {
2265   BlockFrequency Cost = 0;
2266   for (const HintInfo &Info : List) {
2267     if (Info.PhysReg != PhysReg)
2268       Cost += Info.Freq;
2269   }
2270   return Cost;
2271 }
2272 
2273 /// Using the register assigned to \p VirtReg, try to recolor
2274 /// all the live ranges that are copy-related with \p VirtReg.
2275 /// The recoloring is then propagated to all the live-ranges that have
2276 /// been recolored and so on, until no more copies can be coalesced or
2277 /// it is not profitable.
2278 /// For a given live range, profitability is determined by the sum of the
2279 /// frequencies of the non-identity copies it would introduce with the old
2280 /// and new register.
2281 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) {
2282   // We have a broken hint, check if it is possible to fix it by
2283   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2284   // some register and PhysReg may be available for the other live-ranges.
2285   SmallSet<Register, 4> Visited;
2286   SmallVector<unsigned, 2> RecoloringCandidates;
2287   HintsInfo Info;
2288   Register Reg = VirtReg.reg();
2289   MCRegister PhysReg = VRM->getPhys(Reg);
2290   // Start the recoloring algorithm from the input live-interval, then
2291   // it will propagate to the ones that are copy-related with it.
2292   Visited.insert(Reg);
2293   RecoloringCandidates.push_back(Reg);
2294 
2295   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2296                     << '(' << printReg(PhysReg, TRI) << ")\n");
2297 
2298   do {
2299     Reg = RecoloringCandidates.pop_back_val();
2300 
2301     // We cannot recolor physical register.
2302     if (Register::isPhysicalRegister(Reg))
2303       continue;
2304 
2305     // This may be a skipped class
2306     if (!VRM->hasPhys(Reg)) {
2307       assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2308              "We have an unallocated variable which should have been handled");
2309       continue;
2310     }
2311 
2312     // Get the live interval mapped with this virtual register to be able
2313     // to check for the interference with the new color.
2314     LiveInterval &LI = LIS->getInterval(Reg);
2315     MCRegister CurrPhys = VRM->getPhys(Reg);
2316     // Check that the new color matches the register class constraints and
2317     // that it is free for this live range.
2318     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2319                                 Matrix->checkInterference(LI, PhysReg)))
2320       continue;
2321 
2322     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2323                       << ") is recolorable.\n");
2324 
2325     // Gather the hint info.
2326     Info.clear();
2327     collectHintInfo(Reg, Info);
2328     // Check if recoloring the live-range will increase the cost of the
2329     // non-identity copies.
2330     if (CurrPhys != PhysReg) {
2331       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2332       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2333       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2334       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2335                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2336                         << '\n');
2337       if (OldCopiesCost < NewCopiesCost) {
2338         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2339         continue;
2340       }
2341       // At this point, the cost is either cheaper or equal. If it is
2342       // equal, we consider this is profitable because it may expose
2343       // more recoloring opportunities.
2344       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2345       // Recolor the live-range.
2346       Matrix->unassign(LI);
2347       Matrix->assign(LI, PhysReg);
2348     }
2349     // Push all copy-related live-ranges to keep reconciling the broken
2350     // hints.
2351     for (const HintInfo &HI : Info) {
2352       if (Visited.insert(HI.Reg).second)
2353         RecoloringCandidates.push_back(HI.Reg);
2354     }
2355   } while (!RecoloringCandidates.empty());
2356 }
2357 
2358 /// Try to recolor broken hints.
2359 /// Broken hints may be repaired by recoloring when an evicted variable
2360 /// freed up a register for a larger live-range.
2361 /// Consider the following example:
2362 /// BB1:
2363 ///   a =
2364 ///   b =
2365 /// BB2:
2366 ///   ...
2367 ///   = b
2368 ///   = a
2369 /// Let us assume b gets split:
2370 /// BB1:
2371 ///   a =
2372 ///   b =
2373 /// BB2:
2374 ///   c = b
2375 ///   ...
2376 ///   d = c
2377 ///   = d
2378 ///   = a
2379 /// Because of how the allocation work, b, c, and d may be assigned different
2380 /// colors. Now, if a gets evicted later:
2381 /// BB1:
2382 ///   a =
2383 ///   st a, SpillSlot
2384 ///   b =
2385 /// BB2:
2386 ///   c = b
2387 ///   ...
2388 ///   d = c
2389 ///   = d
2390 ///   e = ld SpillSlot
2391 ///   = e
2392 /// This is likely that we can assign the same register for b, c, and d,
2393 /// getting rid of 2 copies.
2394 void RAGreedy::tryHintsRecoloring() {
2395   for (const LiveInterval *LI : SetOfBrokenHints) {
2396     assert(Register::isVirtualRegister(LI->reg()) &&
2397            "Recoloring is possible only for virtual registers");
2398     // Some dead defs may be around (e.g., because of debug uses).
2399     // Ignore those.
2400     if (!VRM->hasPhys(LI->reg()))
2401       continue;
2402     tryHintRecoloring(*LI);
2403   }
2404 }
2405 
2406 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg,
2407                                        SmallVectorImpl<Register> &NewVRegs,
2408                                        SmallVirtRegSet &FixedRegisters,
2409                                        RecoloringStack &RecolorStack,
2410                                        unsigned Depth) {
2411   uint8_t CostPerUseLimit = uint8_t(~0u);
2412   // First try assigning a free register.
2413   auto Order =
2414       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
2415   if (MCRegister PhysReg =
2416           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
2417     // If VirtReg got an assignment, the eviction info is no longer relevant.
2418     LastEvicted.clearEvicteeInfo(VirtReg.reg());
2419     // When NewVRegs is not empty, we may have made decisions such as evicting
2420     // a virtual register, go with the earlier decisions and use the physical
2421     // register.
2422     if (CSRCost.getFrequency() &&
2423         EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
2424       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2425                                                 CostPerUseLimit, NewVRegs);
2426       if (CSRReg || !NewVRegs.empty())
2427         // Return now if we decide to use a CSR or create new vregs due to
2428         // pre-splitting.
2429         return CSRReg;
2430     } else
2431       return PhysReg;
2432   }
2433 
2434   LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
2435   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2436                     << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
2437 
2438   // Try to evict a less worthy live range, but only for ranges from the primary
2439   // queue. The RS_Split ranges already failed to do this, and they should not
2440   // get a second chance until they have been split.
2441   if (Stage != RS_Split)
2442     if (Register PhysReg =
2443             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
2444                      FixedRegisters)) {
2445       Register Hint = MRI->getSimpleHint(VirtReg.reg());
2446       // If VirtReg has a hint and that hint is broken record this
2447       // virtual register as a recoloring candidate for broken hint.
2448       // Indeed, since we evicted a variable in its neighborhood it is
2449       // likely we can at least partially recolor some of the
2450       // copy-related live-ranges.
2451       if (Hint && Hint != PhysReg)
2452         SetOfBrokenHints.insert(&VirtReg);
2453       // If VirtReg eviction someone, the eviction info for it as an evictee is
2454       // no longer relevant.
2455       LastEvicted.clearEvicteeInfo(VirtReg.reg());
2456       return PhysReg;
2457     }
2458 
2459   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2460 
2461   // The first time we see a live range, don't try to split or spill.
2462   // Wait until the second time, when all smaller ranges have been allocated.
2463   // This gives a better picture of the interference to split around.
2464   if (Stage < RS_Split) {
2465     ExtraInfo->setStage(VirtReg, RS_Split);
2466     LLVM_DEBUG(dbgs() << "wait for second round\n");
2467     NewVRegs.push_back(VirtReg.reg());
2468     return 0;
2469   }
2470 
2471   if (Stage < RS_Spill) {
2472     // Try splitting VirtReg or interferences.
2473     unsigned NewVRegSizeBefore = NewVRegs.size();
2474     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
2475     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
2476       // If VirtReg got split, the eviction info is no longer relevant.
2477       LastEvicted.clearEvicteeInfo(VirtReg.reg());
2478       return PhysReg;
2479     }
2480   }
2481 
2482   // If we couldn't allocate a register from spilling, there is probably some
2483   // invalid inline assembly. The base class will report it.
2484   if (Stage >= RS_Done || !VirtReg.isSpillable()) {
2485     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2486                                    RecolorStack, Depth);
2487   }
2488 
2489   // Finally spill VirtReg itself.
2490   if ((EnableDeferredSpilling ||
2491        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
2492       ExtraInfo->getStage(VirtReg) < RS_Memory) {
2493     // TODO: This is experimental and in particular, we do not model
2494     // the live range splitting done by spilling correctly.
2495     // We would need a deep integration with the spiller to do the
2496     // right thing here. Anyway, that is still good for early testing.
2497     ExtraInfo->setStage(VirtReg, RS_Memory);
2498     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2499     NewVRegs.push_back(VirtReg.reg());
2500   } else {
2501     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
2502                        TimerGroupDescription, TimePassesIsEnabled);
2503     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2504     spiller().spill(LRE);
2505     ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2506 
2507     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
2508     // the new regs are kept in LDV (still mapping to the old register), until
2509     // we rewrite spilled locations in LDV at a later stage.
2510     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
2511 
2512     if (VerifyEnabled)
2513       MF->verify(this, "After spilling");
2514   }
2515 
2516   // The live virtual register requesting allocation was spilled, so tell
2517   // the caller not to allocate anything during this round.
2518   return 0;
2519 }
2520 
2521 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
2522   using namespace ore;
2523   if (Spills) {
2524     R << NV("NumSpills", Spills) << " spills ";
2525     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
2526   }
2527   if (FoldedSpills) {
2528     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2529     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
2530       << " total folded spills cost ";
2531   }
2532   if (Reloads) {
2533     R << NV("NumReloads", Reloads) << " reloads ";
2534     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
2535   }
2536   if (FoldedReloads) {
2537     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2538     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
2539       << " total folded reloads cost ";
2540   }
2541   if (ZeroCostFoldedReloads)
2542     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
2543       << " zero cost folded reloads ";
2544   if (Copies) {
2545     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
2546     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
2547   }
2548 }
2549 
2550 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
2551   RAGreedyStats Stats;
2552   const MachineFrameInfo &MFI = MF->getFrameInfo();
2553   int FI;
2554 
2555   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
2556     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
2557         A->getPseudoValue())->getFrameIndex());
2558   };
2559   auto isPatchpointInstr = [](const MachineInstr &MI) {
2560     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
2561            MI.getOpcode() == TargetOpcode::STACKMAP ||
2562            MI.getOpcode() == TargetOpcode::STATEPOINT;
2563   };
2564   for (MachineInstr &MI : MBB) {
2565     if (MI.isCopy()) {
2566       MachineOperand &Dest = MI.getOperand(0);
2567       MachineOperand &Src = MI.getOperand(1);
2568       if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() &&
2569           Src.getReg().isVirtual())
2570         ++Stats.Copies;
2571       continue;
2572     }
2573 
2574     SmallVector<const MachineMemOperand *, 2> Accesses;
2575     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2576       ++Stats.Reloads;
2577       continue;
2578     }
2579     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2580       ++Stats.Spills;
2581       continue;
2582     }
2583     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
2584         llvm::any_of(Accesses, isSpillSlotAccess)) {
2585       if (!isPatchpointInstr(MI)) {
2586         Stats.FoldedReloads += Accesses.size();
2587         continue;
2588       }
2589       // For statepoint there may be folded and zero cost folded stack reloads.
2590       std::pair<unsigned, unsigned> NonZeroCostRange =
2591           TII->getPatchpointUnfoldableRange(MI);
2592       SmallSet<unsigned, 16> FoldedReloads;
2593       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
2594       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
2595         MachineOperand &MO = MI.getOperand(Idx);
2596         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
2597           continue;
2598         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
2599           FoldedReloads.insert(MO.getIndex());
2600         else
2601           ZeroCostFoldedReloads.insert(MO.getIndex());
2602       }
2603       // If stack slot is used in folded reload it is not zero cost then.
2604       for (unsigned Slot : FoldedReloads)
2605         ZeroCostFoldedReloads.erase(Slot);
2606       Stats.FoldedReloads += FoldedReloads.size();
2607       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
2608       continue;
2609     }
2610     Accesses.clear();
2611     if (TII->hasStoreToStackSlot(MI, Accesses) &&
2612         llvm::any_of(Accesses, isSpillSlotAccess)) {
2613       Stats.FoldedSpills += Accesses.size();
2614     }
2615   }
2616   // Set cost of collected statistic by multiplication to relative frequency of
2617   // this basic block.
2618   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
2619   Stats.ReloadsCost = RelFreq * Stats.Reloads;
2620   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
2621   Stats.SpillsCost = RelFreq * Stats.Spills;
2622   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
2623   Stats.CopiesCost = RelFreq * Stats.Copies;
2624   return Stats;
2625 }
2626 
2627 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
2628   RAGreedyStats Stats;
2629 
2630   // Sum up the spill and reloads in subloops.
2631   for (MachineLoop *SubLoop : *L)
2632     Stats.add(reportStats(SubLoop));
2633 
2634   for (MachineBasicBlock *MBB : L->getBlocks())
2635     // Handle blocks that were not included in subloops.
2636     if (Loops->getLoopFor(MBB) == L)
2637       Stats.add(computeStats(*MBB));
2638 
2639   if (!Stats.isEmpty()) {
2640     using namespace ore;
2641 
2642     ORE->emit([&]() {
2643       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
2644                                         L->getStartLoc(), L->getHeader());
2645       Stats.report(R);
2646       R << "generated in loop";
2647       return R;
2648     });
2649   }
2650   return Stats;
2651 }
2652 
2653 void RAGreedy::reportStats() {
2654   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
2655     return;
2656   RAGreedyStats Stats;
2657   for (MachineLoop *L : *Loops)
2658     Stats.add(reportStats(L));
2659   // Process non-loop blocks.
2660   for (MachineBasicBlock &MBB : *MF)
2661     if (!Loops->getLoopFor(&MBB))
2662       Stats.add(computeStats(MBB));
2663   if (!Stats.isEmpty()) {
2664     using namespace ore;
2665 
2666     ORE->emit([&]() {
2667       DebugLoc Loc;
2668       if (auto *SP = MF->getFunction().getSubprogram())
2669         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
2670       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
2671                                         &MF->front());
2672       Stats.report(R);
2673       R << "generated in function";
2674       return R;
2675     });
2676   }
2677 }
2678 
2679 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2680   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2681                     << "********** Function: " << mf.getName() << '\n');
2682 
2683   MF = &mf;
2684   TRI = MF->getSubtarget().getRegisterInfo();
2685   TII = MF->getSubtarget().getInstrInfo();
2686   RCI.runOnMachineFunction(mf);
2687 
2688   if (VerifyEnabled)
2689     MF->verify(this, "Before greedy register allocator");
2690 
2691   RegAllocBase::init(getAnalysis<VirtRegMap>(),
2692                      getAnalysis<LiveIntervals>(),
2693                      getAnalysis<LiveRegMatrix>());
2694   Indexes = &getAnalysis<SlotIndexes>();
2695   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2696   DomTree = &getAnalysis<MachineDominatorTree>();
2697   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2698   Loops = &getAnalysis<MachineLoopInfo>();
2699   Bundles = &getAnalysis<EdgeBundles>();
2700   SpillPlacer = &getAnalysis<SpillPlacement>();
2701   DebugVars = &getAnalysis<LiveDebugVariables>();
2702   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2703 
2704   initializeCSRCost();
2705 
2706   RegCosts = TRI->getRegisterCosts(*MF);
2707   RegClassPriorityTrumpsGlobalness =
2708       GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences()
2709           ? GreedyRegClassPriorityTrumpsGlobalness
2710           : TRI->regClassPriorityTrumpsGlobalness(*MF);
2711 
2712   ExtraInfo.emplace();
2713   EvictAdvisor =
2714       getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this);
2715 
2716   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
2717   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
2718 
2719   VRAI->calculateSpillWeightsAndHints();
2720 
2721   LLVM_DEBUG(LIS->dump());
2722 
2723   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2724   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
2725 
2726   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2727   GlobalCand.resize(32);  // This will grow as needed.
2728   SetOfBrokenHints.clear();
2729   LastEvicted.clear();
2730 
2731   allocatePhysRegs();
2732   tryHintsRecoloring();
2733 
2734   if (VerifyEnabled)
2735     MF->verify(this, "Before post optimization");
2736   postOptimization();
2737   reportStats();
2738 
2739   releaseMemory();
2740   return true;
2741 }
2742