1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RegAllocGreedy.h"
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "RegAllocEvictionAdvisor.h"
20 #include "SpillPlacement.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/MapVector.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/CodeGen/CalcSpillWeights.h"
36 #include "llvm/CodeGen/EdgeBundles.h"
37 #include "llvm/CodeGen/LiveInterval.h"
38 #include "llvm/CodeGen/LiveIntervalUnion.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveRangeEdit.h"
41 #include "llvm/CodeGen/LiveRegMatrix.h"
42 #include "llvm/CodeGen/LiveStacks.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFrameInfo.h"
47 #include "llvm/CodeGen/MachineFunction.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RegAllocRegistry.h"
55 #include "llvm/CodeGen/RegisterClassInfo.h"
56 #include "llvm/CodeGen/SlotIndexes.h"
57 #include "llvm/CodeGen/Spiller.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetRegisterInfo.h"
60 #include "llvm/CodeGen/TargetSubtargetInfo.h"
61 #include "llvm/CodeGen/VirtRegMap.h"
62 #include "llvm/IR/DebugInfoMetadata.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Support/BlockFrequency.h"
68 #include "llvm/Support/BranchProbability.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/Timer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstdint>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "regalloc"
83 
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
86 STATISTIC(NumEvicted,      "Number of interferences evicted");
87 
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89     "split-spill-mode", cl::Hidden,
90     cl::desc("Spill mode for splitting live ranges"),
91     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94     cl::init(SplitEditor::SM_Speed));
95 
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98                              cl::desc("Last chance recoloring max depth"),
99                              cl::init(5));
100 
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102     "lcr-max-interf", cl::Hidden,
103     cl::desc("Last chance recoloring maximum number of considered"
104              " interference at a time"),
105     cl::init(8));
106 
107 static cl::opt<bool> ExhaustiveSearch(
108     "exhaustive-register-search", cl::NotHidden,
109     cl::desc("Exhaustive Search for registers bypassing the depth "
110              "and interference cutoffs of last chance recoloring"),
111     cl::Hidden);
112 
113 static cl::opt<bool> EnableDeferredSpilling(
114     "enable-deferred-spilling", cl::Hidden,
115     cl::desc("Instead of spilling a variable right away, defer the actual "
116              "code insertion to the end of the allocation. That way the "
117              "allocator might still find a suitable coloring for this "
118              "variable because of other evicted variables."),
119     cl::init(false));
120 
121 // FIXME: Find a good default for this flag and remove the flag.
122 static cl::opt<unsigned>
123 CSRFirstTimeCost("regalloc-csr-first-time-cost",
124               cl::desc("Cost for first time use of callee-saved register."),
125               cl::init(0), cl::Hidden);
126 
127 static cl::opt<long> GrowRegionComplexityBudget(
128     "grow-region-complexity-budget",
129     cl::desc("growRegion() does not scale with the number of BB edges, so "
130              "limit its budget and bail out once we reach the limit."),
131     cl::init(10000), cl::Hidden);
132 
133 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
134                                        createGreedyRegisterAllocator);
135 
136 char RAGreedy::ID = 0;
137 char &llvm::RAGreedyID = RAGreedy::ID;
138 
139 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
140                 "Greedy Register Allocator", false, false)
141 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
142 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
143 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
144 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
145 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
146 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
147 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
148 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
149 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
150 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
151 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
152 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
153 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
154 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
155 INITIALIZE_PASS_END(RAGreedy, "greedy",
156                 "Greedy Register Allocator", false, false)
157 
158 #ifndef NDEBUG
159 const char *const RAGreedy::StageName[] = {
160     "RS_New",
161     "RS_Assign",
162     "RS_Split",
163     "RS_Split2",
164     "RS_Spill",
165     "RS_Memory",
166     "RS_Done"
167 };
168 #endif
169 
170 // Hysteresis to use when comparing floats.
171 // This helps stabilize decisions based on float comparisons.
172 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
173 
174 FunctionPass* llvm::createGreedyRegisterAllocator() {
175   return new RAGreedy();
176 }
177 
178 namespace llvm {
179 FunctionPass* createGreedyRegisterAllocator(
180   std::function<bool(const TargetRegisterInfo &TRI,
181                      const TargetRegisterClass &RC)> Ftor);
182 
183 }
184 
185 FunctionPass* llvm::createGreedyRegisterAllocator(
186   std::function<bool(const TargetRegisterInfo &TRI,
187                      const TargetRegisterClass &RC)> Ftor) {
188   return new RAGreedy(Ftor);
189 }
190 
191 RAGreedy::RAGreedy(RegClassFilterFunc F):
192   MachineFunctionPass(ID),
193   RegAllocBase(F) {
194 }
195 
196 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
197   AU.setPreservesCFG();
198   AU.addRequired<MachineBlockFrequencyInfo>();
199   AU.addPreserved<MachineBlockFrequencyInfo>();
200   AU.addRequired<AAResultsWrapperPass>();
201   AU.addPreserved<AAResultsWrapperPass>();
202   AU.addRequired<LiveIntervals>();
203   AU.addPreserved<LiveIntervals>();
204   AU.addRequired<SlotIndexes>();
205   AU.addPreserved<SlotIndexes>();
206   AU.addRequired<LiveDebugVariables>();
207   AU.addPreserved<LiveDebugVariables>();
208   AU.addRequired<LiveStacks>();
209   AU.addPreserved<LiveStacks>();
210   AU.addRequired<MachineDominatorTree>();
211   AU.addPreserved<MachineDominatorTree>();
212   AU.addRequired<MachineLoopInfo>();
213   AU.addPreserved<MachineLoopInfo>();
214   AU.addRequired<VirtRegMap>();
215   AU.addPreserved<VirtRegMap>();
216   AU.addRequired<LiveRegMatrix>();
217   AU.addPreserved<LiveRegMatrix>();
218   AU.addRequired<EdgeBundles>();
219   AU.addRequired<SpillPlacement>();
220   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
221   AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
222   MachineFunctionPass::getAnalysisUsage(AU);
223 }
224 
225 //===----------------------------------------------------------------------===//
226 //                     LiveRangeEdit delegate methods
227 //===----------------------------------------------------------------------===//
228 
229 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
230   LiveInterval &LI = LIS->getInterval(VirtReg);
231   if (VRM->hasPhys(VirtReg)) {
232     Matrix->unassign(LI);
233     aboutToRemoveInterval(LI);
234     return true;
235   }
236   // Unassigned virtreg is probably in the priority queue.
237   // RegAllocBase will erase it after dequeueing.
238   // Nonetheless, clear the live-range so that the debug
239   // dump will show the right state for that VirtReg.
240   LI.clear();
241   return false;
242 }
243 
244 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
245   if (!VRM->hasPhys(VirtReg))
246     return;
247 
248   // Register is assigned, put it back on the queue for reassignment.
249   LiveInterval &LI = LIS->getInterval(VirtReg);
250   Matrix->unassign(LI);
251   RegAllocBase::enqueue(&LI);
252 }
253 
254 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
255   ExtraInfo->LRE_DidCloneVirtReg(New, Old);
256 }
257 
258 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
259   // Cloning a register we haven't even heard about yet?  Just ignore it.
260   if (!Info.inBounds(Old))
261     return;
262 
263   // LRE may clone a virtual register because dead code elimination causes it to
264   // be split into connected components. The new components are much smaller
265   // than the original, so they should get a new chance at being assigned.
266   // same stage as the parent.
267   Info[Old].Stage = RS_Assign;
268   Info.grow(New.id());
269   Info[New] = Info[Old];
270 }
271 
272 void RAGreedy::releaseMemory() {
273   SpillerInstance.reset();
274   GlobalCand.clear();
275 }
276 
277 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); }
278 
279 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) {
280   // Prioritize live ranges by size, assigning larger ranges first.
281   // The queue holds (size, reg) pairs.
282   const unsigned Size = LI->getSize();
283   const Register Reg = LI->reg();
284   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
285   unsigned Prio;
286 
287   auto Stage = ExtraInfo->getOrInitStage(Reg);
288   if (Stage == RS_New) {
289     Stage = RS_Assign;
290     ExtraInfo->setStage(Reg, Stage);
291   }
292   if (Stage == RS_Split) {
293     // Unsplit ranges that couldn't be allocated immediately are deferred until
294     // everything else has been allocated.
295     Prio = Size;
296   } else if (Stage == RS_Memory) {
297     // Memory operand should be considered last.
298     // Change the priority such that Memory operand are assigned in
299     // the reverse order that they came in.
300     // TODO: Make this a member variable and probably do something about hints.
301     static unsigned MemOp = 0;
302     Prio = MemOp++;
303   } else {
304     // Giant live ranges fall back to the global assignment heuristic, which
305     // prevents excessive spilling in pathological cases.
306     bool ReverseLocal = TRI->reverseLocalAssignment();
307     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
308     bool ForceGlobal = !ReverseLocal &&
309       (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC));
310 
311     if (Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
312         LIS->intervalIsInOneMBB(*LI)) {
313       // Allocate original local ranges in linear instruction order. Since they
314       // are singly defined, this produces optimal coloring in the absence of
315       // global interference and other constraints.
316       if (!ReverseLocal)
317         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
318       else {
319         // Allocating bottom up may allow many short LRGs to be assigned first
320         // to one of the cheap registers. This could be much faster for very
321         // large blocks on targets with many physical registers.
322         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
323       }
324       Prio |= RC.AllocationPriority << 24;
325     } else {
326       // Allocate global and split ranges in long->short order. Long ranges that
327       // don't fit should be spilled (or split) ASAP so they don't create
328       // interference.  Mark a bit to prioritize global above local ranges.
329       Prio = (1u << 29) + Size;
330 
331       Prio |= RC.AllocationPriority << 24;
332     }
333     // Mark a higher bit to prioritize global and local above RS_Split.
334     Prio |= (1u << 31);
335 
336     // Boost ranges that have a physical register hint.
337     if (VRM->hasKnownPreference(Reg))
338       Prio |= (1u << 30);
339   }
340   // The virtual register number is a tie breaker for same-sized ranges.
341   // Give lower vreg numbers higher priority to assign them first.
342   CurQueue.push(std::make_pair(Prio, ~Reg));
343 }
344 
345 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
346 
347 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
348   if (CurQueue.empty())
349     return nullptr;
350   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
351   CurQueue.pop();
352   return LI;
353 }
354 
355 //===----------------------------------------------------------------------===//
356 //                            Direct Assignment
357 //===----------------------------------------------------------------------===//
358 
359 /// tryAssign - Try to assign VirtReg to an available register.
360 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg,
361                                AllocationOrder &Order,
362                                SmallVectorImpl<Register> &NewVRegs,
363                                const SmallVirtRegSet &FixedRegisters) {
364   MCRegister PhysReg;
365   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
366     assert(*I);
367     if (!Matrix->checkInterference(VirtReg, *I)) {
368       if (I.isHint())
369         return *I;
370       else
371         PhysReg = *I;
372     }
373   }
374   if (!PhysReg.isValid())
375     return PhysReg;
376 
377   // PhysReg is available, but there may be a better choice.
378 
379   // If we missed a simple hint, try to cheaply evict interference from the
380   // preferred register.
381   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
382     if (Order.isHint(Hint)) {
383       MCRegister PhysHint = Hint.asMCReg();
384       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
385 
386       if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
387                                                  FixedRegisters)) {
388         evictInterference(VirtReg, PhysHint, NewVRegs);
389         return PhysHint;
390       }
391       // Record the missed hint, we may be able to recover
392       // at the end if the surrounding allocation changed.
393       SetOfBrokenHints.insert(&VirtReg);
394     }
395 
396   // Try to evict interference from a cheaper alternative.
397   uint8_t Cost = RegCosts[PhysReg];
398 
399   // Most registers have 0 additional cost.
400   if (!Cost)
401     return PhysReg;
402 
403   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
404                     << (unsigned)Cost << '\n');
405   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
406   return CheapReg ? CheapReg : PhysReg;
407 }
408 
409 //===----------------------------------------------------------------------===//
410 //                         Interference eviction
411 //===----------------------------------------------------------------------===//
412 
413 Register RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg,
414                                               Register PrevReg) const {
415   auto Order =
416       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
417   MCRegister PhysReg;
418   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
419     if ((*I).id() == PrevReg.id())
420       continue;
421 
422     MCRegUnitIterator Units(*I, TRI);
423     for (; Units.isValid(); ++Units) {
424       // Instantiate a "subquery", not to be confused with the Queries array.
425       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
426       if (subQ.checkInterference())
427         break;
428     }
429     // If no units have interference, break out with the current PhysReg.
430     if (!Units.isValid())
431       PhysReg = *I;
432   }
433   if (PhysReg)
434     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
435                       << printReg(PrevReg, TRI) << " to "
436                       << printReg(PhysReg, TRI) << '\n');
437   return PhysReg;
438 }
439 
440 /// Return true if all interferences between VirtReg and PhysReg between
441 /// Start and End can be evicted.
442 ///
443 /// \param VirtReg Live range that is about to be assigned.
444 /// \param PhysReg Desired register for assignment.
445 /// \param Start   Start of range to look for interferences.
446 /// \param End     End of range to look for interferences.
447 /// \param MaxCost Only look for cheaper candidates and update with new cost
448 ///                when returning true.
449 /// \return True when interference can be evicted cheaper than MaxCost.
450 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg,
451                                            MCRegister PhysReg, SlotIndex Start,
452                                            SlotIndex End,
453                                            EvictionCost &MaxCost) const {
454   EvictionCost Cost;
455 
456   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
457     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
458 
459     // Check if any interfering live range is heavier than MaxWeight.
460     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
461       // Check if interference overlast the segment in interest.
462       if (!Intf->overlaps(Start, End))
463         continue;
464 
465       // Cannot evict non virtual reg interference.
466       if (!Register::isVirtualRegister(Intf->reg()))
467         return false;
468       // Never evict spill products. They cannot split or spill.
469       if (ExtraInfo->getStage(*Intf) == RS_Done)
470         return false;
471 
472       // Would this break a satisfied hint?
473       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
474       // Update eviction cost.
475       Cost.BrokenHints += BreaksHint;
476       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
477       // Abort if this would be too expensive.
478       if (!(Cost < MaxCost))
479         return false;
480     }
481   }
482 
483   if (Cost.MaxWeight == 0)
484     return false;
485 
486   MaxCost = Cost;
487   return true;
488 }
489 
490 /// Return the physical register that will be best
491 /// candidate for eviction by a local split interval that will be created
492 /// between Start and End.
493 ///
494 /// \param Order            The allocation order
495 /// \param VirtReg          Live range that is about to be assigned.
496 /// \param Start            Start of range to look for interferences
497 /// \param End              End of range to look for interferences
498 /// \param BestEvictweight  The eviction cost of that eviction
499 /// \return The PhysReg which is the best candidate for eviction and the
500 /// eviction cost in BestEvictweight
501 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
502                                               const LiveInterval &VirtReg,
503                                               SlotIndex Start, SlotIndex End,
504                                               float *BestEvictweight) const {
505   EvictionCost BestEvictCost;
506   BestEvictCost.setMax();
507   BestEvictCost.MaxWeight = VirtReg.weight();
508   MCRegister BestEvicteePhys;
509 
510   // Go over all physical registers and find the best candidate for eviction
511   for (MCRegister PhysReg : Order.getOrder()) {
512 
513     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
514                                      BestEvictCost))
515       continue;
516 
517     // Best so far.
518     BestEvicteePhys = PhysReg;
519   }
520   *BestEvictweight = BestEvictCost.MaxWeight;
521   return BestEvicteePhys;
522 }
523 
524 /// evictInterference - Evict any interferring registers that prevent VirtReg
525 /// from being assigned to Physreg. This assumes that canEvictInterference
526 /// returned true.
527 void RAGreedy::evictInterference(const LiveInterval &VirtReg,
528                                  MCRegister PhysReg,
529                                  SmallVectorImpl<Register> &NewVRegs) {
530   // Make sure that VirtReg has a cascade number, and assign that cascade
531   // number to every evicted register. These live ranges than then only be
532   // evicted by a newer cascade, preventing infinite loops.
533   unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
534 
535   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
536                     << " interference: Cascade " << Cascade << '\n');
537 
538   // Collect all interfering virtregs first.
539   SmallVector<const LiveInterval *, 8> Intfs;
540   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
541     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
542     // We usually have the interfering VRegs cached so collectInterferingVRegs()
543     // should be fast, we may need to recalculate if when different physregs
544     // overlap the same register unit so we had different SubRanges queried
545     // against it.
546     ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs();
547     Intfs.append(IVR.begin(), IVR.end());
548   }
549 
550   // Evict them second. This will invalidate the queries.
551   for (const LiveInterval *Intf : Intfs) {
552     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
553     if (!VRM->hasPhys(Intf->reg()))
554       continue;
555 
556     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
557 
558     Matrix->unassign(*Intf);
559     assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
560             VirtReg.isSpillable() < Intf->isSpillable()) &&
561            "Cannot decrease cascade number, illegal eviction");
562     ExtraInfo->setCascade(Intf->reg(), Cascade);
563     ++NumEvicted;
564     NewVRegs.push_back(Intf->reg());
565   }
566 }
567 
568 /// Returns true if the given \p PhysReg is a callee saved register and has not
569 /// been used for allocation yet.
570 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
571   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
572   if (!CSR)
573     return false;
574 
575   return !Matrix->isPhysRegUsed(PhysReg);
576 }
577 
578 Optional<unsigned>
579 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg,
580                                        const AllocationOrder &Order,
581                                        unsigned CostPerUseLimit) const {
582   unsigned OrderLimit = Order.getOrder().size();
583 
584   if (CostPerUseLimit < uint8_t(~0u)) {
585     // Check of any registers in RC are below CostPerUseLimit.
586     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
587     uint8_t MinCost = RegClassInfo.getMinCost(RC);
588     if (MinCost >= CostPerUseLimit) {
589       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
590                         << MinCost << ", no cheaper registers to be found.\n");
591       return None;
592     }
593 
594     // It is normal for register classes to have a long tail of registers with
595     // the same cost. We don't need to look at them if they're too expensive.
596     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
597       OrderLimit = RegClassInfo.getLastCostChange(RC);
598       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
599                         << " regs.\n");
600     }
601   }
602   return OrderLimit;
603 }
604 
605 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit,
606                                                  MCRegister PhysReg) const {
607   if (RegCosts[PhysReg] >= CostPerUseLimit)
608     return false;
609   // The first use of a callee-saved register in a function has cost 1.
610   // Don't start using a CSR when the CostPerUseLimit is low.
611   if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
612     LLVM_DEBUG(
613         dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
614                << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
615                << '\n');
616     return false;
617   }
618   return true;
619 }
620 
621 /// tryEvict - Try to evict all interferences for a physreg.
622 /// @param  VirtReg Currently unassigned virtual register.
623 /// @param  Order   Physregs to try.
624 /// @return         Physreg to assign VirtReg, or 0.
625 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg,
626                               AllocationOrder &Order,
627                               SmallVectorImpl<Register> &NewVRegs,
628                               uint8_t CostPerUseLimit,
629                               const SmallVirtRegSet &FixedRegisters) {
630   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
631                      TimePassesIsEnabled);
632 
633   MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
634       VirtReg, Order, CostPerUseLimit, FixedRegisters);
635   if (BestPhys.isValid())
636     evictInterference(VirtReg, BestPhys, NewVRegs);
637   return BestPhys;
638 }
639 
640 //===----------------------------------------------------------------------===//
641 //                              Region Splitting
642 //===----------------------------------------------------------------------===//
643 
644 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
645 /// interference pattern in Physreg and its aliases. Add the constraints to
646 /// SpillPlacement and return the static cost of this split in Cost, assuming
647 /// that all preferences in SplitConstraints are met.
648 /// Return false if there are no bundles with positive bias.
649 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
650                                    BlockFrequency &Cost) {
651   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
652 
653   // Reset interference dependent info.
654   SplitConstraints.resize(UseBlocks.size());
655   BlockFrequency StaticCost = 0;
656   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
657     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
658     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
659 
660     BC.Number = BI.MBB->getNumber();
661     Intf.moveToBlock(BC.Number);
662     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
663     BC.Exit = (BI.LiveOut &&
664                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
665                   ? SpillPlacement::PrefReg
666                   : SpillPlacement::DontCare;
667     BC.ChangesValue = BI.FirstDef.isValid();
668 
669     if (!Intf.hasInterference())
670       continue;
671 
672     // Number of spill code instructions to insert.
673     unsigned Ins = 0;
674 
675     // Interference for the live-in value.
676     if (BI.LiveIn) {
677       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
678         BC.Entry = SpillPlacement::MustSpill;
679         ++Ins;
680       } else if (Intf.first() < BI.FirstInstr) {
681         BC.Entry = SpillPlacement::PrefSpill;
682         ++Ins;
683       } else if (Intf.first() < BI.LastInstr) {
684         ++Ins;
685       }
686 
687       // Abort if the spill cannot be inserted at the MBB' start
688       if (((BC.Entry == SpillPlacement::MustSpill) ||
689            (BC.Entry == SpillPlacement::PrefSpill)) &&
690           SlotIndex::isEarlierInstr(BI.FirstInstr,
691                                     SA->getFirstSplitPoint(BC.Number)))
692         return false;
693     }
694 
695     // Interference for the live-out value.
696     if (BI.LiveOut) {
697       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
698         BC.Exit = SpillPlacement::MustSpill;
699         ++Ins;
700       } else if (Intf.last() > BI.LastInstr) {
701         BC.Exit = SpillPlacement::PrefSpill;
702         ++Ins;
703       } else if (Intf.last() > BI.FirstInstr) {
704         ++Ins;
705       }
706     }
707 
708     // Accumulate the total frequency of inserted spill code.
709     while (Ins--)
710       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
711   }
712   Cost = StaticCost;
713 
714   // Add constraints for use-blocks. Note that these are the only constraints
715   // that may add a positive bias, it is downhill from here.
716   SpillPlacer->addConstraints(SplitConstraints);
717   return SpillPlacer->scanActiveBundles();
718 }
719 
720 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
721 /// live-through blocks in Blocks.
722 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
723                                      ArrayRef<unsigned> Blocks) {
724   const unsigned GroupSize = 8;
725   SpillPlacement::BlockConstraint BCS[GroupSize];
726   unsigned TBS[GroupSize];
727   unsigned B = 0, T = 0;
728 
729   for (unsigned Number : Blocks) {
730     Intf.moveToBlock(Number);
731 
732     if (!Intf.hasInterference()) {
733       assert(T < GroupSize && "Array overflow");
734       TBS[T] = Number;
735       if (++T == GroupSize) {
736         SpillPlacer->addLinks(makeArrayRef(TBS, T));
737         T = 0;
738       }
739       continue;
740     }
741 
742     assert(B < GroupSize && "Array overflow");
743     BCS[B].Number = Number;
744 
745     // Abort if the spill cannot be inserted at the MBB' start
746     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
747     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
748     if (FirstNonDebugInstr != MBB->end() &&
749         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
750                                   SA->getFirstSplitPoint(Number)))
751       return false;
752     // Interference for the live-in value.
753     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
754       BCS[B].Entry = SpillPlacement::MustSpill;
755     else
756       BCS[B].Entry = SpillPlacement::PrefSpill;
757 
758     // Interference for the live-out value.
759     if (Intf.last() >= SA->getLastSplitPoint(Number))
760       BCS[B].Exit = SpillPlacement::MustSpill;
761     else
762       BCS[B].Exit = SpillPlacement::PrefSpill;
763 
764     if (++B == GroupSize) {
765       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
766       B = 0;
767     }
768   }
769 
770   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
771   SpillPlacer->addLinks(makeArrayRef(TBS, T));
772   return true;
773 }
774 
775 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
776   // Keep track of through blocks that have not been added to SpillPlacer.
777   BitVector Todo = SA->getThroughBlocks();
778   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
779   unsigned AddedTo = 0;
780 #ifndef NDEBUG
781   unsigned Visited = 0;
782 #endif
783 
784   long Budget = GrowRegionComplexityBudget;
785   while (true) {
786     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
787     // Find new through blocks in the periphery of PrefRegBundles.
788     for (unsigned Bundle : NewBundles) {
789       // Look at all blocks connected to Bundle in the full graph.
790       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
791       for (unsigned Block : Blocks) {
792         // Limit compilation time by bailing out after we use all our budget.
793         if (Budget-- == 0)
794           return false;
795         if (!Todo.test(Block))
796           continue;
797         Todo.reset(Block);
798         // This is a new through block. Add it to SpillPlacer later.
799         ActiveBlocks.push_back(Block);
800 #ifndef NDEBUG
801         ++Visited;
802 #endif
803       }
804     }
805     // Any new blocks to add?
806     if (ActiveBlocks.size() == AddedTo)
807       break;
808 
809     // Compute through constraints from the interference, or assume that all
810     // through blocks prefer spilling when forming compact regions.
811     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
812     if (Cand.PhysReg) {
813       if (!addThroughConstraints(Cand.Intf, NewBlocks))
814         return false;
815     } else
816       // Provide a strong negative bias on through blocks to prevent unwanted
817       // liveness on loop backedges.
818       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
819     AddedTo = ActiveBlocks.size();
820 
821     // Perhaps iterating can enable more bundles?
822     SpillPlacer->iterate();
823   }
824   LLVM_DEBUG(dbgs() << ", v=" << Visited);
825   return true;
826 }
827 
828 /// calcCompactRegion - Compute the set of edge bundles that should be live
829 /// when splitting the current live range into compact regions.  Compact
830 /// regions can be computed without looking at interference.  They are the
831 /// regions formed by removing all the live-through blocks from the live range.
832 ///
833 /// Returns false if the current live range is already compact, or if the
834 /// compact regions would form single block regions anyway.
835 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
836   // Without any through blocks, the live range is already compact.
837   if (!SA->getNumThroughBlocks())
838     return false;
839 
840   // Compact regions don't correspond to any physreg.
841   Cand.reset(IntfCache, MCRegister::NoRegister);
842 
843   LLVM_DEBUG(dbgs() << "Compact region bundles");
844 
845   // Use the spill placer to determine the live bundles. GrowRegion pretends
846   // that all the through blocks have interference when PhysReg is unset.
847   SpillPlacer->prepare(Cand.LiveBundles);
848 
849   // The static split cost will be zero since Cand.Intf reports no interference.
850   BlockFrequency Cost;
851   if (!addSplitConstraints(Cand.Intf, Cost)) {
852     LLVM_DEBUG(dbgs() << ", none.\n");
853     return false;
854   }
855 
856   if (!growRegion(Cand)) {
857     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
858     return false;
859   }
860 
861   SpillPlacer->finish();
862 
863   if (!Cand.LiveBundles.any()) {
864     LLVM_DEBUG(dbgs() << ", none.\n");
865     return false;
866   }
867 
868   LLVM_DEBUG({
869     for (int I : Cand.LiveBundles.set_bits())
870       dbgs() << " EB#" << I;
871     dbgs() << ".\n";
872   });
873   return true;
874 }
875 
876 /// calcSpillCost - Compute how expensive it would be to split the live range in
877 /// SA around all use blocks instead of forming bundle regions.
878 BlockFrequency RAGreedy::calcSpillCost() {
879   BlockFrequency Cost = 0;
880   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
881   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
882     unsigned Number = BI.MBB->getNumber();
883     // We normally only need one spill instruction - a load or a store.
884     Cost += SpillPlacer->getBlockFrequency(Number);
885 
886     // Unless the value is redefined in the block.
887     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
888       Cost += SpillPlacer->getBlockFrequency(Number);
889   }
890   return Cost;
891 }
892 
893 /// Check if splitting Evictee will create a local split interval in
894 /// basic block number BBNumber that may cause a bad eviction chain. This is
895 /// intended to prevent bad eviction sequences like:
896 /// movl	%ebp, 8(%esp)           # 4-byte Spill
897 /// movl	%ecx, %ebp
898 /// movl	%ebx, %ecx
899 /// movl	%edi, %ebx
900 /// movl	%edx, %edi
901 /// cltd
902 /// idivl	%esi
903 /// movl	%edi, %edx
904 /// movl	%ebx, %edi
905 /// movl	%ecx, %ebx
906 /// movl	%ebp, %ecx
907 /// movl	16(%esp), %ebp          # 4 - byte Reload
908 ///
909 /// Such sequences are created in 2 scenarios:
910 ///
911 /// Scenario #1:
912 /// %0 is evicted from physreg0 by %1.
913 /// Evictee %0 is intended for region splitting with split candidate
914 /// physreg0 (the reg %0 was evicted from).
915 /// Region splitting creates a local interval because of interference with the
916 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
917 /// and "by stack" intervals and local interval created when interference
918 /// occurs).
919 /// One of the split intervals ends up evicting %2 from physreg1.
920 /// Evictee %2 is intended for region splitting with split candidate
921 /// physreg1.
922 /// One of the split intervals ends up evicting %3 from physreg2, etc.
923 ///
924 /// Scenario #2
925 /// %0 is evicted from physreg0 by %1.
926 /// %2 is evicted from physreg2 by %3 etc.
927 /// Evictee %0 is intended for region splitting with split candidate
928 /// physreg1.
929 /// Region splitting creates a local interval because of interference with the
930 /// evictor %1.
931 /// One of the split intervals ends up evicting back original evictor %1
932 /// from physreg0 (the reg %0 was evicted from).
933 /// Another evictee %2 is intended for region splitting with split candidate
934 /// physreg1.
935 /// One of the split intervals ends up evicting %3 from physreg2, etc.
936 ///
937 /// \param Evictee  The register considered to be split.
938 /// \param Cand     The split candidate that determines the physical register
939 ///                 we are splitting for and the interferences.
940 /// \param BBNumber The number of a BB for which the region split process will
941 ///                 create a local split interval.
942 /// \param Order    The physical registers that may get evicted by a split
943 ///                 artifact of Evictee.
944 /// \return True if splitting Evictee may cause a bad eviction chain, false
945 /// otherwise.
946 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
947                                           GlobalSplitCandidate &Cand,
948                                           unsigned BBNumber,
949                                           const AllocationOrder &Order) {
950   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
951   unsigned Evictor = VregEvictorInfo.first;
952   MCRegister PhysReg = VregEvictorInfo.second;
953 
954   // No actual evictor.
955   if (!Evictor || !PhysReg)
956     return false;
957 
958   float MaxWeight = 0;
959   MCRegister FutureEvictedPhysReg =
960       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
961                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
962 
963   // The bad eviction chain occurs when either the split candidate is the
964   // evicting reg or one of the split artifact will evict the evicting reg.
965   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
966     return false;
967 
968   Cand.Intf.moveToBlock(BBNumber);
969 
970   // Check to see if the Evictor contains interference (with Evictee) in the
971   // given BB. If so, this interference caused the eviction of Evictee from
972   // PhysReg. This suggest that we will create a local interval during the
973   // region split to avoid this interference This local interval may cause a bad
974   // eviction chain.
975   if (!LIS->hasInterval(Evictor))
976     return false;
977   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
978   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
979     return false;
980 
981   // Now, check to see if the local interval we will create is going to be
982   // expensive enough to evict somebody If so, this may cause a bad eviction
983   // chain.
984   float splitArtifactWeight =
985       VRAI->futureWeight(LIS->getInterval(Evictee),
986                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
987   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
988     return false;
989 
990   return true;
991 }
992 
993 /// calcGlobalSplitCost - Return the global split cost of following the split
994 /// pattern in LiveBundles. This cost should be added to the local cost of the
995 /// interference pattern in SplitConstraints.
996 ///
997 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
998                                              const AllocationOrder &Order) {
999   BlockFrequency GlobalCost = 0;
1000   const BitVector &LiveBundles = Cand.LiveBundles;
1001   Register VirtRegToSplit = SA->getParent().reg();
1002   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1003   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1004     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1005     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1006     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1007     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1008     unsigned Ins = 0;
1009 
1010     Cand.Intf.moveToBlock(BC.Number);
1011 
1012     if (BI.LiveIn)
1013       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1014     if (BI.LiveOut)
1015       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1016     while (Ins--)
1017       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1018   }
1019 
1020   for (unsigned Number : Cand.ActiveBlocks) {
1021     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1022     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1023     if (!RegIn && !RegOut)
1024       continue;
1025     if (RegIn && RegOut) {
1026       // We need double spill code if this block has interference.
1027       Cand.Intf.moveToBlock(Number);
1028       if (Cand.Intf.hasInterference()) {
1029         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1030         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1031       }
1032       continue;
1033     }
1034     // live-in / stack-out or stack-in live-out.
1035     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1036   }
1037   return GlobalCost;
1038 }
1039 
1040 /// splitAroundRegion - Split the current live range around the regions
1041 /// determined by BundleCand and GlobalCand.
1042 ///
1043 /// Before calling this function, GlobalCand and BundleCand must be initialized
1044 /// so each bundle is assigned to a valid candidate, or NoCand for the
1045 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1046 /// objects must be initialized for the current live range, and intervals
1047 /// created for the used candidates.
1048 ///
1049 /// @param LREdit    The LiveRangeEdit object handling the current split.
1050 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1051 ///                  must appear in this list.
1052 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1053                                  ArrayRef<unsigned> UsedCands) {
1054   // These are the intervals created for new global ranges. We may create more
1055   // intervals for local ranges.
1056   const unsigned NumGlobalIntvs = LREdit.size();
1057   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1058                     << " globals.\n");
1059   assert(NumGlobalIntvs && "No global intervals configured");
1060 
1061   // Isolate even single instructions when dealing with a proper sub-class.
1062   // That guarantees register class inflation for the stack interval because it
1063   // is all copies.
1064   Register Reg = SA->getParent().reg();
1065   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1066 
1067   // First handle all the blocks with uses.
1068   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1069   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1070     unsigned Number = BI.MBB->getNumber();
1071     unsigned IntvIn = 0, IntvOut = 0;
1072     SlotIndex IntfIn, IntfOut;
1073     if (BI.LiveIn) {
1074       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1075       if (CandIn != NoCand) {
1076         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1077         IntvIn = Cand.IntvIdx;
1078         Cand.Intf.moveToBlock(Number);
1079         IntfIn = Cand.Intf.first();
1080       }
1081     }
1082     if (BI.LiveOut) {
1083       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1084       if (CandOut != NoCand) {
1085         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1086         IntvOut = Cand.IntvIdx;
1087         Cand.Intf.moveToBlock(Number);
1088         IntfOut = Cand.Intf.last();
1089       }
1090     }
1091 
1092     // Create separate intervals for isolated blocks with multiple uses.
1093     if (!IntvIn && !IntvOut) {
1094       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1095       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1096         SE->splitSingleBlock(BI);
1097       continue;
1098     }
1099 
1100     if (IntvIn && IntvOut)
1101       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1102     else if (IntvIn)
1103       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1104     else
1105       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1106   }
1107 
1108   // Handle live-through blocks. The relevant live-through blocks are stored in
1109   // the ActiveBlocks list with each candidate. We need to filter out
1110   // duplicates.
1111   BitVector Todo = SA->getThroughBlocks();
1112   for (unsigned UsedCand : UsedCands) {
1113     ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
1114     for (unsigned Number : Blocks) {
1115       if (!Todo.test(Number))
1116         continue;
1117       Todo.reset(Number);
1118 
1119       unsigned IntvIn = 0, IntvOut = 0;
1120       SlotIndex IntfIn, IntfOut;
1121 
1122       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1123       if (CandIn != NoCand) {
1124         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1125         IntvIn = Cand.IntvIdx;
1126         Cand.Intf.moveToBlock(Number);
1127         IntfIn = Cand.Intf.first();
1128       }
1129 
1130       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1131       if (CandOut != NoCand) {
1132         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1133         IntvOut = Cand.IntvIdx;
1134         Cand.Intf.moveToBlock(Number);
1135         IntfOut = Cand.Intf.last();
1136       }
1137       if (!IntvIn && !IntvOut)
1138         continue;
1139       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1140     }
1141   }
1142 
1143   ++NumGlobalSplits;
1144 
1145   SmallVector<unsigned, 8> IntvMap;
1146   SE->finish(&IntvMap);
1147   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1148 
1149   unsigned OrigBlocks = SA->getNumLiveBlocks();
1150 
1151   // Sort out the new intervals created by splitting. We get four kinds:
1152   // - Remainder intervals should not be split again.
1153   // - Candidate intervals can be assigned to Cand.PhysReg.
1154   // - Block-local splits are candidates for local splitting.
1155   // - DCE leftovers should go back on the queue.
1156   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1157     const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1158 
1159     // Ignore old intervals from DCE.
1160     if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
1161       continue;
1162 
1163     // Remainder interval. Don't try splitting again, spill if it doesn't
1164     // allocate.
1165     if (IntvMap[I] == 0) {
1166       ExtraInfo->setStage(Reg, RS_Spill);
1167       continue;
1168     }
1169 
1170     // Global intervals. Allow repeated splitting as long as the number of live
1171     // blocks is strictly decreasing.
1172     if (IntvMap[I] < NumGlobalIntvs) {
1173       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1174         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1175                           << " blocks as original.\n");
1176         // Don't allow repeated splitting as a safe guard against looping.
1177         ExtraInfo->setStage(Reg, RS_Split2);
1178       }
1179       continue;
1180     }
1181 
1182     // Other intervals are treated as new. This includes local intervals created
1183     // for blocks with multiple uses, and anything created by DCE.
1184   }
1185 
1186   if (VerifyEnabled)
1187     MF->verify(this, "After splitting live range around region");
1188 }
1189 
1190 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg,
1191                                     AllocationOrder &Order,
1192                                     SmallVectorImpl<Register> &NewVRegs) {
1193   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1194     return MCRegister::NoRegister;
1195   unsigned NumCands = 0;
1196   BlockFrequency SpillCost = calcSpillCost();
1197   BlockFrequency BestCost;
1198 
1199   // Check if we can split this live range around a compact region.
1200   bool HasCompact = calcCompactRegion(GlobalCand.front());
1201   if (HasCompact) {
1202     // Yes, keep GlobalCand[0] as the compact region candidate.
1203     NumCands = 1;
1204     BestCost = BlockFrequency::getMaxFrequency();
1205   } else {
1206     // No benefit from the compact region, our fallback will be per-block
1207     // splitting. Make sure we find a solution that is cheaper than spilling.
1208     BestCost = SpillCost;
1209     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1210                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1211   }
1212 
1213   unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
1214                                                NumCands, false /*IgnoreCSR*/);
1215 
1216   // No solutions found, fall back to single block splitting.
1217   if (!HasCompact && BestCand == NoCand)
1218     return MCRegister::NoRegister;
1219 
1220   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1221 }
1222 
1223 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg,
1224                                             AllocationOrder &Order,
1225                                             BlockFrequency &BestCost,
1226                                             unsigned &NumCands,
1227                                             bool IgnoreCSR) {
1228   unsigned BestCand = NoCand;
1229   for (MCPhysReg PhysReg : Order) {
1230     assert(PhysReg);
1231     if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
1232       continue;
1233 
1234     // Discard bad candidates before we run out of interference cache cursors.
1235     // This will only affect register classes with a lot of registers (>32).
1236     if (NumCands == IntfCache.getMaxCursors()) {
1237       unsigned WorstCount = ~0u;
1238       unsigned Worst = 0;
1239       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1240         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1241           continue;
1242         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1243         if (Count < WorstCount) {
1244           Worst = CandIndex;
1245           WorstCount = Count;
1246         }
1247       }
1248       --NumCands;
1249       GlobalCand[Worst] = GlobalCand[NumCands];
1250       if (BestCand == NumCands)
1251         BestCand = Worst;
1252     }
1253 
1254     if (GlobalCand.size() <= NumCands)
1255       GlobalCand.resize(NumCands+1);
1256     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1257     Cand.reset(IntfCache, PhysReg);
1258 
1259     SpillPlacer->prepare(Cand.LiveBundles);
1260     BlockFrequency Cost;
1261     if (!addSplitConstraints(Cand.Intf, Cost)) {
1262       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1263       continue;
1264     }
1265     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1266                MBFI->printBlockFreq(dbgs(), Cost));
1267     if (Cost >= BestCost) {
1268       LLVM_DEBUG({
1269         if (BestCand == NoCand)
1270           dbgs() << " worse than no bundles\n";
1271         else
1272           dbgs() << " worse than "
1273                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1274       });
1275       continue;
1276     }
1277     if (!growRegion(Cand)) {
1278       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1279       continue;
1280     }
1281 
1282     SpillPlacer->finish();
1283 
1284     // No live bundles, defer to splitSingleBlocks().
1285     if (!Cand.LiveBundles.any()) {
1286       LLVM_DEBUG(dbgs() << " no bundles.\n");
1287       continue;
1288     }
1289 
1290     Cost += calcGlobalSplitCost(Cand, Order);
1291     LLVM_DEBUG({
1292       dbgs() << ", total = ";
1293       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1294       for (int I : Cand.LiveBundles.set_bits())
1295         dbgs() << " EB#" << I;
1296       dbgs() << ".\n";
1297     });
1298     if (Cost < BestCost) {
1299       BestCand = NumCands;
1300       BestCost = Cost;
1301     }
1302     ++NumCands;
1303   }
1304 
1305   return BestCand;
1306 }
1307 
1308 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand,
1309                                  bool HasCompact,
1310                                  SmallVectorImpl<Register> &NewVRegs) {
1311   SmallVector<unsigned, 8> UsedCands;
1312   // Prepare split editor.
1313   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1314   SE->reset(LREdit, SplitSpillMode);
1315 
1316   // Assign all edge bundles to the preferred candidate, or NoCand.
1317   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1318 
1319   // Assign bundles for the best candidate region.
1320   if (BestCand != NoCand) {
1321     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1322     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1323       UsedCands.push_back(BestCand);
1324       Cand.IntvIdx = SE->openIntv();
1325       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1326                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1327       (void)B;
1328     }
1329   }
1330 
1331   // Assign bundles for the compact region.
1332   if (HasCompact) {
1333     GlobalSplitCandidate &Cand = GlobalCand.front();
1334     assert(!Cand.PhysReg && "Compact region has no physreg");
1335     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1336       UsedCands.push_back(0);
1337       Cand.IntvIdx = SE->openIntv();
1338       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1339                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1340       (void)B;
1341     }
1342   }
1343 
1344   splitAroundRegion(LREdit, UsedCands);
1345   return 0;
1346 }
1347 
1348 //===----------------------------------------------------------------------===//
1349 //                            Per-Block Splitting
1350 //===----------------------------------------------------------------------===//
1351 
1352 /// tryBlockSplit - Split a global live range around every block with uses. This
1353 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1354 /// they don't allocate.
1355 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg,
1356                                  AllocationOrder &Order,
1357                                  SmallVectorImpl<Register> &NewVRegs) {
1358   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1359   Register Reg = VirtReg.reg();
1360   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1361   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1362   SE->reset(LREdit, SplitSpillMode);
1363   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1364   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1365     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1366       SE->splitSingleBlock(BI);
1367   }
1368   // No blocks were split.
1369   if (LREdit.empty())
1370     return 0;
1371 
1372   // We did split for some blocks.
1373   SmallVector<unsigned, 8> IntvMap;
1374   SE->finish(&IntvMap);
1375 
1376   // Tell LiveDebugVariables about the new ranges.
1377   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1378 
1379   // Sort out the new intervals created by splitting. The remainder interval
1380   // goes straight to spilling, the new local ranges get to stay RS_New.
1381   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1382     const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
1383     if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
1384       ExtraInfo->setStage(LI, RS_Spill);
1385   }
1386 
1387   if (VerifyEnabled)
1388     MF->verify(this, "After splitting live range around basic blocks");
1389   return 0;
1390 }
1391 
1392 //===----------------------------------------------------------------------===//
1393 //                         Per-Instruction Splitting
1394 //===----------------------------------------------------------------------===//
1395 
1396 /// Get the number of allocatable registers that match the constraints of \p Reg
1397 /// on \p MI and that are also in \p SuperRC.
1398 static unsigned getNumAllocatableRegsForConstraints(
1399     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
1400     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1401     const RegisterClassInfo &RCI) {
1402   assert(SuperRC && "Invalid register class");
1403 
1404   const TargetRegisterClass *ConstrainedRC =
1405       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1406                                              /* ExploreBundle */ true);
1407   if (!ConstrainedRC)
1408     return 0;
1409   return RCI.getNumAllocatableRegs(ConstrainedRC);
1410 }
1411 
1412 /// tryInstructionSplit - Split a live range around individual instructions.
1413 /// This is normally not worthwhile since the spiller is doing essentially the
1414 /// same thing. However, when the live range is in a constrained register
1415 /// class, it may help to insert copies such that parts of the live range can
1416 /// be moved to a larger register class.
1417 ///
1418 /// This is similar to spilling to a larger register class.
1419 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg,
1420                                        AllocationOrder &Order,
1421                                        SmallVectorImpl<Register> &NewVRegs) {
1422   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1423   // There is no point to this if there are no larger sub-classes.
1424   if (!RegClassInfo.isProperSubClass(CurRC))
1425     return 0;
1426 
1427   // Always enable split spill mode, since we're effectively spilling to a
1428   // register.
1429   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1430   SE->reset(LREdit, SplitEditor::SM_Size);
1431 
1432   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1433   if (Uses.size() <= 1)
1434     return 0;
1435 
1436   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
1437                     << " individual instrs.\n");
1438 
1439   const TargetRegisterClass *SuperRC =
1440       TRI->getLargestLegalSuperClass(CurRC, *MF);
1441   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
1442   // Split around every non-copy instruction if this split will relax
1443   // the constraints on the virtual register.
1444   // Otherwise, splitting just inserts uncoalescable copies that do not help
1445   // the allocation.
1446   for (const SlotIndex Use : Uses) {
1447     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
1448       if (MI->isFullCopy() ||
1449           SuperRCNumAllocatableRegs ==
1450               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
1451                                                   TII, TRI, RCI)) {
1452         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
1453         continue;
1454       }
1455     SE->openIntv();
1456     SlotIndex SegStart = SE->enterIntvBefore(Use);
1457     SlotIndex SegStop = SE->leaveIntvAfter(Use);
1458     SE->useIntv(SegStart, SegStop);
1459   }
1460 
1461   if (LREdit.empty()) {
1462     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
1463     return 0;
1464   }
1465 
1466   SmallVector<unsigned, 8> IntvMap;
1467   SE->finish(&IntvMap);
1468   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1469   // Assign all new registers to RS_Spill. This was the last chance.
1470   ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1471   return 0;
1472 }
1473 
1474 //===----------------------------------------------------------------------===//
1475 //                             Local Splitting
1476 //===----------------------------------------------------------------------===//
1477 
1478 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1479 /// in order to use PhysReg between two entries in SA->UseSlots.
1480 ///
1481 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
1482 ///
1483 void RAGreedy::calcGapWeights(MCRegister PhysReg,
1484                               SmallVectorImpl<float> &GapWeight) {
1485   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1486   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1487   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1488   const unsigned NumGaps = Uses.size()-1;
1489 
1490   // Start and end points for the interference check.
1491   SlotIndex StartIdx =
1492     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1493   SlotIndex StopIdx =
1494     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1495 
1496   GapWeight.assign(NumGaps, 0.0f);
1497 
1498   // Add interference from each overlapping register.
1499   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1500     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1501           .checkInterference())
1502       continue;
1503 
1504     // We know that VirtReg is a continuous interval from FirstInstr to
1505     // LastInstr, so we don't need InterferenceQuery.
1506     //
1507     // Interference that overlaps an instruction is counted in both gaps
1508     // surrounding the instruction. The exception is interference before
1509     // StartIdx and after StopIdx.
1510     //
1511     LiveIntervalUnion::SegmentIter IntI =
1512       Matrix->getLiveUnions()[*Units] .find(StartIdx);
1513     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1514       // Skip the gaps before IntI.
1515       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1516         if (++Gap == NumGaps)
1517           break;
1518       if (Gap == NumGaps)
1519         break;
1520 
1521       // Update the gaps covered by IntI.
1522       const float weight = IntI.value()->weight();
1523       for (; Gap != NumGaps; ++Gap) {
1524         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1525         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1526           break;
1527       }
1528       if (Gap == NumGaps)
1529         break;
1530     }
1531   }
1532 
1533   // Add fixed interference.
1534   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1535     const LiveRange &LR = LIS->getRegUnit(*Units);
1536     LiveRange::const_iterator I = LR.find(StartIdx);
1537     LiveRange::const_iterator E = LR.end();
1538 
1539     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1540     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1541       while (Uses[Gap+1].getBoundaryIndex() < I->start)
1542         if (++Gap == NumGaps)
1543           break;
1544       if (Gap == NumGaps)
1545         break;
1546 
1547       for (; Gap != NumGaps; ++Gap) {
1548         GapWeight[Gap] = huge_valf;
1549         if (Uses[Gap+1].getBaseIndex() >= I->end)
1550           break;
1551       }
1552       if (Gap == NumGaps)
1553         break;
1554     }
1555   }
1556 }
1557 
1558 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1559 /// basic block.
1560 ///
1561 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg,
1562                                  AllocationOrder &Order,
1563                                  SmallVectorImpl<Register> &NewVRegs) {
1564   // TODO: the function currently only handles a single UseBlock; it should be
1565   // possible to generalize.
1566   if (SA->getUseBlocks().size() != 1)
1567     return 0;
1568 
1569   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1570 
1571   // Note that it is possible to have an interval that is live-in or live-out
1572   // while only covering a single block - A phi-def can use undef values from
1573   // predecessors, and the block could be a single-block loop.
1574   // We don't bother doing anything clever about such a case, we simply assume
1575   // that the interval is continuous from FirstInstr to LastInstr. We should
1576   // make sure that we don't do anything illegal to such an interval, though.
1577 
1578   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1579   if (Uses.size() <= 2)
1580     return 0;
1581   const unsigned NumGaps = Uses.size()-1;
1582 
1583   LLVM_DEBUG({
1584     dbgs() << "tryLocalSplit: ";
1585     for (const auto &Use : Uses)
1586       dbgs() << ' ' << Use;
1587     dbgs() << '\n';
1588   });
1589 
1590   // If VirtReg is live across any register mask operands, compute a list of
1591   // gaps with register masks.
1592   SmallVector<unsigned, 8> RegMaskGaps;
1593   if (Matrix->checkRegMaskInterference(VirtReg)) {
1594     // Get regmask slots for the whole block.
1595     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1596     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1597     // Constrain to VirtReg's live range.
1598     unsigned RI =
1599         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
1600     unsigned RE = RMS.size();
1601     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
1602       // Look for Uses[I] <= RMS <= Uses[I + 1].
1603       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
1604       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
1605         continue;
1606       // Skip a regmask on the same instruction as the last use. It doesn't
1607       // overlap the live range.
1608       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
1609         break;
1610       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
1611                         << Uses[I + 1]);
1612       RegMaskGaps.push_back(I);
1613       // Advance ri to the next gap. A regmask on one of the uses counts in
1614       // both gaps.
1615       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
1616         ++RI;
1617     }
1618     LLVM_DEBUG(dbgs() << '\n');
1619   }
1620 
1621   // Since we allow local split results to be split again, there is a risk of
1622   // creating infinite loops. It is tempting to require that the new live
1623   // ranges have less instructions than the original. That would guarantee
1624   // convergence, but it is too strict. A live range with 3 instructions can be
1625   // split 2+3 (including the COPY), and we want to allow that.
1626   //
1627   // Instead we use these rules:
1628   //
1629   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1630   //    noop split, of course).
1631   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1632   //    the new ranges must have fewer instructions than before the split.
1633   // 3. New ranges with the same number of instructions are marked RS_Split2,
1634   //    smaller ranges are marked RS_New.
1635   //
1636   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1637   // excessive splitting and infinite loops.
1638   //
1639   bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
1640 
1641   // Best split candidate.
1642   unsigned BestBefore = NumGaps;
1643   unsigned BestAfter = 0;
1644   float BestDiff = 0;
1645 
1646   const float blockFreq =
1647     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1648     (1.0f / MBFI->getEntryFreq());
1649   SmallVector<float, 8> GapWeight;
1650 
1651   for (MCPhysReg PhysReg : Order) {
1652     assert(PhysReg);
1653     // Keep track of the largest spill weight that would need to be evicted in
1654     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
1655     calcGapWeights(PhysReg, GapWeight);
1656 
1657     // Remove any gaps with regmask clobbers.
1658     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1659       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
1660         GapWeight[RegMaskGaps[I]] = huge_valf;
1661 
1662     // Try to find the best sequence of gaps to close.
1663     // The new spill weight must be larger than any gap interference.
1664 
1665     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1666     unsigned SplitBefore = 0, SplitAfter = 1;
1667 
1668     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1669     // It is the spill weight that needs to be evicted.
1670     float MaxGap = GapWeight[0];
1671 
1672     while (true) {
1673       // Live before/after split?
1674       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1675       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1676 
1677       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
1678                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
1679 
1680       // Stop before the interval gets so big we wouldn't be making progress.
1681       if (!LiveBefore && !LiveAfter) {
1682         LLVM_DEBUG(dbgs() << " all\n");
1683         break;
1684       }
1685       // Should the interval be extended or shrunk?
1686       bool Shrink = true;
1687 
1688       // How many gaps would the new range have?
1689       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1690 
1691       // Legally, without causing looping?
1692       bool Legal = !ProgressRequired || NewGaps < NumGaps;
1693 
1694       if (Legal && MaxGap < huge_valf) {
1695         // Estimate the new spill weight. Each instruction reads or writes the
1696         // register. Conservatively assume there are no read-modify-write
1697         // instructions.
1698         //
1699         // Try to guess the size of the new interval.
1700         const float EstWeight = normalizeSpillWeight(
1701             blockFreq * (NewGaps + 1),
1702             Uses[SplitBefore].distance(Uses[SplitAfter]) +
1703                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1704             1);
1705         // Would this split be possible to allocate?
1706         // Never allocate all gaps, we wouldn't be making progress.
1707         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
1708         if (EstWeight * Hysteresis >= MaxGap) {
1709           Shrink = false;
1710           float Diff = EstWeight - MaxGap;
1711           if (Diff > BestDiff) {
1712             LLVM_DEBUG(dbgs() << " (best)");
1713             BestDiff = Hysteresis * Diff;
1714             BestBefore = SplitBefore;
1715             BestAfter = SplitAfter;
1716           }
1717         }
1718       }
1719 
1720       // Try to shrink.
1721       if (Shrink) {
1722         if (++SplitBefore < SplitAfter) {
1723           LLVM_DEBUG(dbgs() << " shrink\n");
1724           // Recompute the max when necessary.
1725           if (GapWeight[SplitBefore - 1] >= MaxGap) {
1726             MaxGap = GapWeight[SplitBefore];
1727             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
1728               MaxGap = std::max(MaxGap, GapWeight[I]);
1729           }
1730           continue;
1731         }
1732         MaxGap = 0;
1733       }
1734 
1735       // Try to extend the interval.
1736       if (SplitAfter >= NumGaps) {
1737         LLVM_DEBUG(dbgs() << " end\n");
1738         break;
1739       }
1740 
1741       LLVM_DEBUG(dbgs() << " extend\n");
1742       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1743     }
1744   }
1745 
1746   // Didn't find any candidates?
1747   if (BestBefore == NumGaps)
1748     return 0;
1749 
1750   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
1751                     << Uses[BestAfter] << ", " << BestDiff << ", "
1752                     << (BestAfter - BestBefore + 1) << " instrs\n");
1753 
1754   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1755   SE->reset(LREdit);
1756 
1757   SE->openIntv();
1758   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1759   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1760   SE->useIntv(SegStart, SegStop);
1761   SmallVector<unsigned, 8> IntvMap;
1762   SE->finish(&IntvMap);
1763   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1764   // If the new range has the same number of instructions as before, mark it as
1765   // RS_Split2 so the next split will be forced to make progress. Otherwise,
1766   // leave the new intervals as RS_New so they can compete.
1767   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1768   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1769   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1770   if (NewGaps >= NumGaps) {
1771     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1772     assert(!ProgressRequired && "Didn't make progress when it was required.");
1773     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
1774       if (IntvMap[I] == 1) {
1775         ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
1776         LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
1777       }
1778     LLVM_DEBUG(dbgs() << '\n');
1779   }
1780   ++NumLocalSplits;
1781 
1782   return 0;
1783 }
1784 
1785 //===----------------------------------------------------------------------===//
1786 //                          Live Range Splitting
1787 //===----------------------------------------------------------------------===//
1788 
1789 /// trySplit - Try to split VirtReg or one of its interferences, making it
1790 /// assignable.
1791 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1792 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order,
1793                             SmallVectorImpl<Register> &NewVRegs,
1794                             const SmallVirtRegSet &FixedRegisters) {
1795   // Ranges must be Split2 or less.
1796   if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
1797     return 0;
1798 
1799   // Local intervals are handled separately.
1800   if (LIS->intervalIsInOneMBB(VirtReg)) {
1801     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
1802                        TimerGroupDescription, TimePassesIsEnabled);
1803     SA->analyze(&VirtReg);
1804     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1805     if (PhysReg || !NewVRegs.empty())
1806       return PhysReg;
1807     return tryInstructionSplit(VirtReg, Order, NewVRegs);
1808   }
1809 
1810   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
1811                      TimerGroupDescription, TimePassesIsEnabled);
1812 
1813   SA->analyze(&VirtReg);
1814 
1815   // First try to split around a region spanning multiple blocks. RS_Split2
1816   // ranges already made dubious progress with region splitting, so they go
1817   // straight to single block splitting.
1818   if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
1819     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1820     if (PhysReg || !NewVRegs.empty())
1821       return PhysReg;
1822   }
1823 
1824   // Then isolate blocks.
1825   return tryBlockSplit(VirtReg, Order, NewVRegs);
1826 }
1827 
1828 //===----------------------------------------------------------------------===//
1829 //                          Last Chance Recoloring
1830 //===----------------------------------------------------------------------===//
1831 
1832 /// Return true if \p reg has any tied def operand.
1833 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
1834   for (const MachineOperand &MO : MRI->def_operands(reg))
1835     if (MO.isTied())
1836       return true;
1837 
1838   return false;
1839 }
1840 
1841 /// mayRecolorAllInterferences - Check if the virtual registers that
1842 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1843 /// recolored to free \p PhysReg.
1844 /// When true is returned, \p RecoloringCandidates has been augmented with all
1845 /// the live intervals that need to be recolored in order to free \p PhysReg
1846 /// for \p VirtReg.
1847 /// \p FixedRegisters contains all the virtual registers that cannot be
1848 /// recolored.
1849 bool RAGreedy::mayRecolorAllInterferences(
1850     MCRegister PhysReg, const LiveInterval &VirtReg,
1851     SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) {
1852   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1853 
1854   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1855     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1856     // If there is LastChanceRecoloringMaxInterference or more interferences,
1857     // chances are one would not be recolorable.
1858     if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
1859             LastChanceRecoloringMaxInterference &&
1860         !ExhaustiveSearch) {
1861       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1862       CutOffInfo |= CO_Interf;
1863       return false;
1864     }
1865     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1866       // If Intf is done and sit on the same register class as VirtReg,
1867       // it would not be recolorable as it is in the same state as VirtReg.
1868       // However, if VirtReg has tied defs and Intf doesn't, then
1869       // there is still a point in examining if it can be recolorable.
1870       //
1871       // Also, don't try to evict a register which is assigned to an overlapping
1872       // super register.
1873       //
1874       // TODO: Can we evict an interfering subset of the subregisters?
1875       if (((ExtraInfo->getStage(*Intf) == RS_Done &&
1876             (MRI->getRegClass(Intf->reg()) == CurRC ||
1877              TRI->regsOverlap(VRM->getPhys(Intf->reg()), PhysReg))) &&
1878            !(hasTiedDef(MRI, VirtReg.reg()) &&
1879              !hasTiedDef(MRI, Intf->reg()))) ||
1880           FixedRegisters.count(Intf->reg())) {
1881         LLVM_DEBUG(
1882             dbgs() << "Early abort: the interference is not recolorable.\n");
1883         return false;
1884       }
1885       RecoloringCandidates.insert(Intf);
1886     }
1887   }
1888   return true;
1889 }
1890 
1891 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1892 /// its interferences.
1893 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
1894 /// virtual register that was using it. The recoloring process may recursively
1895 /// use the last chance recoloring. Therefore, when a virtual register has been
1896 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
1897 /// be last-chance-recolored again during this recoloring "session".
1898 /// E.g.,
1899 /// Let
1900 /// vA can use {R1, R2    }
1901 /// vB can use {    R2, R3}
1902 /// vC can use {R1        }
1903 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
1904 /// instance) and they all interfere.
1905 ///
1906 /// vA is assigned R1
1907 /// vB is assigned R2
1908 /// vC tries to evict vA but vA is already done.
1909 /// Regular register allocation fails.
1910 ///
1911 /// Last chance recoloring kicks in:
1912 /// vC does as if vA was evicted => vC uses R1.
1913 /// vC is marked as fixed.
1914 /// vA needs to find a color.
1915 /// None are available.
1916 /// vA cannot evict vC: vC is a fixed virtual register now.
1917 /// vA does as if vB was evicted => vA uses R2.
1918 /// vB needs to find a color.
1919 /// R3 is available.
1920 /// Recoloring => vC = R1, vA = R2, vB = R3
1921 ///
1922 /// \p Order defines the preferred allocation order for \p VirtReg.
1923 /// \p NewRegs will contain any new virtual register that have been created
1924 /// (split, spill) during the process and that must be assigned.
1925 /// \p FixedRegisters contains all the virtual registers that cannot be
1926 /// recolored.
1927 /// \p Depth gives the current depth of the last chance recoloring.
1928 /// \return a physical register that can be used for VirtReg or ~0u if none
1929 /// exists.
1930 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg,
1931                                            AllocationOrder &Order,
1932                                            SmallVectorImpl<Register> &NewVRegs,
1933                                            SmallVirtRegSet &FixedRegisters,
1934                                            unsigned Depth) {
1935   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
1936     return ~0u;
1937 
1938   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
1939   // Ranges must be Done.
1940   assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
1941          "Last chance recoloring should really be last chance");
1942   // Set the max depth to LastChanceRecoloringMaxDepth.
1943   // We may want to reconsider that if we end up with a too large search space
1944   // for target with hundreds of registers.
1945   // Indeed, in that case we may want to cut the search space earlier.
1946   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
1947     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
1948     CutOffInfo |= CO_Depth;
1949     return ~0u;
1950   }
1951 
1952   // Set of Live intervals that will need to be recolored.
1953   SmallLISet RecoloringCandidates;
1954   // Record the original mapping virtual register to physical register in case
1955   // the recoloring fails.
1956   DenseMap<Register, MCRegister> VirtRegToPhysReg;
1957   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
1958   // this recoloring "session".
1959   assert(!FixedRegisters.count(VirtReg.reg()));
1960   FixedRegisters.insert(VirtReg.reg());
1961   SmallVector<Register, 4> CurrentNewVRegs;
1962 
1963   for (MCRegister PhysReg : Order) {
1964     assert(PhysReg.isValid());
1965     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
1966                       << printReg(PhysReg, TRI) << '\n');
1967     RecoloringCandidates.clear();
1968     VirtRegToPhysReg.clear();
1969     CurrentNewVRegs.clear();
1970 
1971     // It is only possible to recolor virtual register interference.
1972     if (Matrix->checkInterference(VirtReg, PhysReg) >
1973         LiveRegMatrix::IK_VirtReg) {
1974       LLVM_DEBUG(
1975           dbgs() << "Some interferences are not with virtual registers.\n");
1976 
1977       continue;
1978     }
1979 
1980     // Early give up on this PhysReg if it is obvious we cannot recolor all
1981     // the interferences.
1982     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
1983                                     FixedRegisters)) {
1984       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
1985       continue;
1986     }
1987 
1988     // RecoloringCandidates contains all the virtual registers that interfer
1989     // with VirtReg on PhysReg (or one of its aliases).
1990     // Enqueue them for recoloring and perform the actual recoloring.
1991     PQueue RecoloringQueue;
1992     for (const LiveInterval *RC : RecoloringCandidates) {
1993       Register ItVirtReg = RC->reg();
1994       enqueue(RecoloringQueue, RC);
1995       assert(VRM->hasPhys(ItVirtReg) &&
1996              "Interferences are supposed to be with allocated variables");
1997 
1998       // Record the current allocation.
1999       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2000       // unset the related struct.
2001       Matrix->unassign(*RC);
2002     }
2003 
2004     // Do as if VirtReg was assigned to PhysReg so that the underlying
2005     // recoloring has the right information about the interferes and
2006     // available colors.
2007     Matrix->assign(VirtReg, PhysReg);
2008 
2009     // Save the current recoloring state.
2010     // If we cannot recolor all the interferences, we will have to start again
2011     // at this point for the next physical register.
2012     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2013     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2014                                 FixedRegisters, Depth)) {
2015       // Push the queued vregs into the main queue.
2016       for (Register NewVReg : CurrentNewVRegs)
2017         NewVRegs.push_back(NewVReg);
2018       // Do not mess up with the global assignment process.
2019       // I.e., VirtReg must be unassigned.
2020       Matrix->unassign(VirtReg);
2021       return PhysReg;
2022     }
2023 
2024     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2025                       << printReg(PhysReg, TRI) << '\n');
2026 
2027     // The recoloring attempt failed, undo the changes.
2028     FixedRegisters = SaveFixedRegisters;
2029     Matrix->unassign(VirtReg);
2030 
2031     // For a newly created vreg which is also in RecoloringCandidates,
2032     // don't add it to NewVRegs because its physical register will be restored
2033     // below. Other vregs in CurrentNewVRegs are created by calling
2034     // selectOrSplit and should be added into NewVRegs.
2035     for (Register &R : CurrentNewVRegs) {
2036       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2037         continue;
2038       NewVRegs.push_back(R);
2039     }
2040 
2041     for (const LiveInterval *RC : RecoloringCandidates) {
2042       Register ItVirtReg = RC->reg();
2043       if (VRM->hasPhys(ItVirtReg))
2044         Matrix->unassign(*RC);
2045       MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2046       Matrix->assign(*RC, ItPhysReg);
2047     }
2048   }
2049 
2050   // Last chance recoloring did not worked either, give up.
2051   return ~0u;
2052 }
2053 
2054 /// tryRecoloringCandidates - Try to assign a new color to every register
2055 /// in \RecoloringQueue.
2056 /// \p NewRegs will contain any new virtual register created during the
2057 /// recoloring process.
2058 /// \p FixedRegisters[in/out] contains all the registers that have been
2059 /// recolored.
2060 /// \return true if all virtual registers in RecoloringQueue were successfully
2061 /// recolored, false otherwise.
2062 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2063                                        SmallVectorImpl<Register> &NewVRegs,
2064                                        SmallVirtRegSet &FixedRegisters,
2065                                        unsigned Depth) {
2066   while (!RecoloringQueue.empty()) {
2067     const LiveInterval *LI = dequeue(RecoloringQueue);
2068     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2069     MCRegister PhysReg =
2070         selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2071     // When splitting happens, the live-range may actually be empty.
2072     // In that case, this is okay to continue the recoloring even
2073     // if we did not find an alternative color for it. Indeed,
2074     // there will not be anything to color for LI in the end.
2075     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2076       return false;
2077 
2078     if (!PhysReg) {
2079       assert(LI->empty() && "Only empty live-range do not require a register");
2080       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2081                         << " succeeded. Empty LI.\n");
2082       continue;
2083     }
2084     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2085                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2086 
2087     Matrix->assign(*LI, PhysReg);
2088     FixedRegisters.insert(LI->reg());
2089   }
2090   return true;
2091 }
2092 
2093 //===----------------------------------------------------------------------===//
2094 //                            Main Entry Point
2095 //===----------------------------------------------------------------------===//
2096 
2097 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg,
2098                                    SmallVectorImpl<Register> &NewVRegs) {
2099   CutOffInfo = CO_None;
2100   LLVMContext &Ctx = MF->getFunction().getContext();
2101   SmallVirtRegSet FixedRegisters;
2102   MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2103   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2104     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2105     if (CutOffEncountered == CO_Depth)
2106       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2107                     "reached. Use -fexhaustive-register-search to skip "
2108                     "cutoffs");
2109     else if (CutOffEncountered == CO_Interf)
2110       Ctx.emitError("register allocation failed: maximum interference for "
2111                     "recoloring reached. Use -fexhaustive-register-search "
2112                     "to skip cutoffs");
2113     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2114       Ctx.emitError("register allocation failed: maximum interference and "
2115                     "depth for recoloring reached. Use "
2116                     "-fexhaustive-register-search to skip cutoffs");
2117   }
2118   return Reg;
2119 }
2120 
2121 /// Using a CSR for the first time has a cost because it causes push|pop
2122 /// to be added to prologue|epilogue. Splitting a cold section of the live
2123 /// range can have lower cost than using the CSR for the first time;
2124 /// Spilling a live range in the cold path can have lower cost than using
2125 /// the CSR for the first time. Returns the physical register if we decide
2126 /// to use the CSR; otherwise return 0.
2127 MCRegister RAGreedy::tryAssignCSRFirstTime(
2128     const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg,
2129     uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) {
2130   if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2131     // We choose spill over using the CSR for the first time if the spill cost
2132     // is lower than CSRCost.
2133     SA->analyze(&VirtReg);
2134     if (calcSpillCost() >= CSRCost)
2135       return PhysReg;
2136 
2137     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2138     // we will not use a callee-saved register in tryEvict.
2139     CostPerUseLimit = 1;
2140     return 0;
2141   }
2142   if (ExtraInfo->getStage(VirtReg) < RS_Split) {
2143     // We choose pre-splitting over using the CSR for the first time if
2144     // the cost of splitting is lower than CSRCost.
2145     SA->analyze(&VirtReg);
2146     unsigned NumCands = 0;
2147     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2148     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2149                                                  NumCands, true /*IgnoreCSR*/);
2150     if (BestCand == NoCand)
2151       // Use the CSR if we can't find a region split below CSRCost.
2152       return PhysReg;
2153 
2154     // Perform the actual pre-splitting.
2155     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2156     return 0;
2157   }
2158   return PhysReg;
2159 }
2160 
2161 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) {
2162   // Do not keep invalid information around.
2163   SetOfBrokenHints.remove(&LI);
2164 }
2165 
2166 void RAGreedy::initializeCSRCost() {
2167   // We use the larger one out of the command-line option and the value report
2168   // by TRI.
2169   CSRCost = BlockFrequency(
2170       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2171   if (!CSRCost.getFrequency())
2172     return;
2173 
2174   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2175   uint64_t ActualEntry = MBFI->getEntryFreq();
2176   if (!ActualEntry) {
2177     CSRCost = 0;
2178     return;
2179   }
2180   uint64_t FixedEntry = 1 << 14;
2181   if (ActualEntry < FixedEntry)
2182     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2183   else if (ActualEntry <= UINT32_MAX)
2184     // Invert the fraction and divide.
2185     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2186   else
2187     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2188     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2189 }
2190 
2191 /// Collect the hint info for \p Reg.
2192 /// The results are stored into \p Out.
2193 /// \p Out is not cleared before being populated.
2194 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2195   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2196     if (!Instr.isFullCopy())
2197       continue;
2198     // Look for the other end of the copy.
2199     Register OtherReg = Instr.getOperand(0).getReg();
2200     if (OtherReg == Reg) {
2201       OtherReg = Instr.getOperand(1).getReg();
2202       if (OtherReg == Reg)
2203         continue;
2204     }
2205     // Get the current assignment.
2206     MCRegister OtherPhysReg =
2207         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2208     // Push the collected information.
2209     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2210                            OtherPhysReg));
2211   }
2212 }
2213 
2214 /// Using the given \p List, compute the cost of the broken hints if
2215 /// \p PhysReg was used.
2216 /// \return The cost of \p List for \p PhysReg.
2217 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2218                                            MCRegister PhysReg) {
2219   BlockFrequency Cost = 0;
2220   for (const HintInfo &Info : List) {
2221     if (Info.PhysReg != PhysReg)
2222       Cost += Info.Freq;
2223   }
2224   return Cost;
2225 }
2226 
2227 /// Using the register assigned to \p VirtReg, try to recolor
2228 /// all the live ranges that are copy-related with \p VirtReg.
2229 /// The recoloring is then propagated to all the live-ranges that have
2230 /// been recolored and so on, until no more copies can be coalesced or
2231 /// it is not profitable.
2232 /// For a given live range, profitability is determined by the sum of the
2233 /// frequencies of the non-identity copies it would introduce with the old
2234 /// and new register.
2235 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) {
2236   // We have a broken hint, check if it is possible to fix it by
2237   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2238   // some register and PhysReg may be available for the other live-ranges.
2239   SmallSet<Register, 4> Visited;
2240   SmallVector<unsigned, 2> RecoloringCandidates;
2241   HintsInfo Info;
2242   Register Reg = VirtReg.reg();
2243   MCRegister PhysReg = VRM->getPhys(Reg);
2244   // Start the recoloring algorithm from the input live-interval, then
2245   // it will propagate to the ones that are copy-related with it.
2246   Visited.insert(Reg);
2247   RecoloringCandidates.push_back(Reg);
2248 
2249   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2250                     << '(' << printReg(PhysReg, TRI) << ")\n");
2251 
2252   do {
2253     Reg = RecoloringCandidates.pop_back_val();
2254 
2255     // We cannot recolor physical register.
2256     if (Register::isPhysicalRegister(Reg))
2257       continue;
2258 
2259     // This may be a skipped class
2260     if (!VRM->hasPhys(Reg)) {
2261       assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2262              "We have an unallocated variable which should have been handled");
2263       continue;
2264     }
2265 
2266     // Get the live interval mapped with this virtual register to be able
2267     // to check for the interference with the new color.
2268     LiveInterval &LI = LIS->getInterval(Reg);
2269     MCRegister CurrPhys = VRM->getPhys(Reg);
2270     // Check that the new color matches the register class constraints and
2271     // that it is free for this live range.
2272     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2273                                 Matrix->checkInterference(LI, PhysReg)))
2274       continue;
2275 
2276     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2277                       << ") is recolorable.\n");
2278 
2279     // Gather the hint info.
2280     Info.clear();
2281     collectHintInfo(Reg, Info);
2282     // Check if recoloring the live-range will increase the cost of the
2283     // non-identity copies.
2284     if (CurrPhys != PhysReg) {
2285       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2286       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2287       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2288       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2289                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2290                         << '\n');
2291       if (OldCopiesCost < NewCopiesCost) {
2292         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2293         continue;
2294       }
2295       // At this point, the cost is either cheaper or equal. If it is
2296       // equal, we consider this is profitable because it may expose
2297       // more recoloring opportunities.
2298       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2299       // Recolor the live-range.
2300       Matrix->unassign(LI);
2301       Matrix->assign(LI, PhysReg);
2302     }
2303     // Push all copy-related live-ranges to keep reconciling the broken
2304     // hints.
2305     for (const HintInfo &HI : Info) {
2306       if (Visited.insert(HI.Reg).second)
2307         RecoloringCandidates.push_back(HI.Reg);
2308     }
2309   } while (!RecoloringCandidates.empty());
2310 }
2311 
2312 /// Try to recolor broken hints.
2313 /// Broken hints may be repaired by recoloring when an evicted variable
2314 /// freed up a register for a larger live-range.
2315 /// Consider the following example:
2316 /// BB1:
2317 ///   a =
2318 ///   b =
2319 /// BB2:
2320 ///   ...
2321 ///   = b
2322 ///   = a
2323 /// Let us assume b gets split:
2324 /// BB1:
2325 ///   a =
2326 ///   b =
2327 /// BB2:
2328 ///   c = b
2329 ///   ...
2330 ///   d = c
2331 ///   = d
2332 ///   = a
2333 /// Because of how the allocation work, b, c, and d may be assigned different
2334 /// colors. Now, if a gets evicted later:
2335 /// BB1:
2336 ///   a =
2337 ///   st a, SpillSlot
2338 ///   b =
2339 /// BB2:
2340 ///   c = b
2341 ///   ...
2342 ///   d = c
2343 ///   = d
2344 ///   e = ld SpillSlot
2345 ///   = e
2346 /// This is likely that we can assign the same register for b, c, and d,
2347 /// getting rid of 2 copies.
2348 void RAGreedy::tryHintsRecoloring() {
2349   for (const LiveInterval *LI : SetOfBrokenHints) {
2350     assert(Register::isVirtualRegister(LI->reg()) &&
2351            "Recoloring is possible only for virtual registers");
2352     // Some dead defs may be around (e.g., because of debug uses).
2353     // Ignore those.
2354     if (!VRM->hasPhys(LI->reg()))
2355       continue;
2356     tryHintRecoloring(*LI);
2357   }
2358 }
2359 
2360 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg,
2361                                        SmallVectorImpl<Register> &NewVRegs,
2362                                        SmallVirtRegSet &FixedRegisters,
2363                                        unsigned Depth) {
2364   uint8_t CostPerUseLimit = uint8_t(~0u);
2365   // First try assigning a free register.
2366   auto Order =
2367       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
2368   if (MCRegister PhysReg =
2369           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
2370     // If VirtReg got an assignment, the eviction info is no longer relevant.
2371     LastEvicted.clearEvicteeInfo(VirtReg.reg());
2372     // When NewVRegs is not empty, we may have made decisions such as evicting
2373     // a virtual register, go with the earlier decisions and use the physical
2374     // register.
2375     if (CSRCost.getFrequency() &&
2376         EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
2377       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2378                                                 CostPerUseLimit, NewVRegs);
2379       if (CSRReg || !NewVRegs.empty())
2380         // Return now if we decide to use a CSR or create new vregs due to
2381         // pre-splitting.
2382         return CSRReg;
2383     } else
2384       return PhysReg;
2385   }
2386 
2387   LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
2388   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2389                     << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
2390 
2391   // Try to evict a less worthy live range, but only for ranges from the primary
2392   // queue. The RS_Split ranges already failed to do this, and they should not
2393   // get a second chance until they have been split.
2394   if (Stage != RS_Split)
2395     if (Register PhysReg =
2396             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
2397                      FixedRegisters)) {
2398       Register Hint = MRI->getSimpleHint(VirtReg.reg());
2399       // If VirtReg has a hint and that hint is broken record this
2400       // virtual register as a recoloring candidate for broken hint.
2401       // Indeed, since we evicted a variable in its neighborhood it is
2402       // likely we can at least partially recolor some of the
2403       // copy-related live-ranges.
2404       if (Hint && Hint != PhysReg)
2405         SetOfBrokenHints.insert(&VirtReg);
2406       // If VirtReg eviction someone, the eviction info for it as an evictee is
2407       // no longer relevant.
2408       LastEvicted.clearEvicteeInfo(VirtReg.reg());
2409       return PhysReg;
2410     }
2411 
2412   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2413 
2414   // The first time we see a live range, don't try to split or spill.
2415   // Wait until the second time, when all smaller ranges have been allocated.
2416   // This gives a better picture of the interference to split around.
2417   if (Stage < RS_Split) {
2418     ExtraInfo->setStage(VirtReg, RS_Split);
2419     LLVM_DEBUG(dbgs() << "wait for second round\n");
2420     NewVRegs.push_back(VirtReg.reg());
2421     return 0;
2422   }
2423 
2424   if (Stage < RS_Spill) {
2425     // Try splitting VirtReg or interferences.
2426     unsigned NewVRegSizeBefore = NewVRegs.size();
2427     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
2428     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
2429       // If VirtReg got split, the eviction info is no longer relevant.
2430       LastEvicted.clearEvicteeInfo(VirtReg.reg());
2431       return PhysReg;
2432     }
2433   }
2434 
2435   // If we couldn't allocate a register from spilling, there is probably some
2436   // invalid inline assembly. The base class will report it.
2437   if (Stage >= RS_Done || !VirtReg.isSpillable())
2438     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2439                                    Depth);
2440 
2441   // Finally spill VirtReg itself.
2442   if ((EnableDeferredSpilling ||
2443        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
2444       ExtraInfo->getStage(VirtReg) < RS_Memory) {
2445     // TODO: This is experimental and in particular, we do not model
2446     // the live range splitting done by spilling correctly.
2447     // We would need a deep integration with the spiller to do the
2448     // right thing here. Anyway, that is still good for early testing.
2449     ExtraInfo->setStage(VirtReg, RS_Memory);
2450     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2451     NewVRegs.push_back(VirtReg.reg());
2452   } else {
2453     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
2454                        TimerGroupDescription, TimePassesIsEnabled);
2455     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2456     spiller().spill(LRE);
2457     ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2458 
2459     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
2460     // the new regs are kept in LDV (still mapping to the old register), until
2461     // we rewrite spilled locations in LDV at a later stage.
2462     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
2463 
2464     if (VerifyEnabled)
2465       MF->verify(this, "After spilling");
2466   }
2467 
2468   // The live virtual register requesting allocation was spilled, so tell
2469   // the caller not to allocate anything during this round.
2470   return 0;
2471 }
2472 
2473 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
2474   using namespace ore;
2475   if (Spills) {
2476     R << NV("NumSpills", Spills) << " spills ";
2477     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
2478   }
2479   if (FoldedSpills) {
2480     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2481     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
2482       << " total folded spills cost ";
2483   }
2484   if (Reloads) {
2485     R << NV("NumReloads", Reloads) << " reloads ";
2486     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
2487   }
2488   if (FoldedReloads) {
2489     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2490     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
2491       << " total folded reloads cost ";
2492   }
2493   if (ZeroCostFoldedReloads)
2494     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
2495       << " zero cost folded reloads ";
2496   if (Copies) {
2497     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
2498     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
2499   }
2500 }
2501 
2502 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
2503   RAGreedyStats Stats;
2504   const MachineFrameInfo &MFI = MF->getFrameInfo();
2505   int FI;
2506 
2507   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
2508     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
2509         A->getPseudoValue())->getFrameIndex());
2510   };
2511   auto isPatchpointInstr = [](const MachineInstr &MI) {
2512     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
2513            MI.getOpcode() == TargetOpcode::STACKMAP ||
2514            MI.getOpcode() == TargetOpcode::STATEPOINT;
2515   };
2516   for (MachineInstr &MI : MBB) {
2517     if (MI.isCopy()) {
2518       MachineOperand &Dest = MI.getOperand(0);
2519       MachineOperand &Src = MI.getOperand(1);
2520       if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() &&
2521           Src.getReg().isVirtual())
2522         ++Stats.Copies;
2523       continue;
2524     }
2525 
2526     SmallVector<const MachineMemOperand *, 2> Accesses;
2527     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2528       ++Stats.Reloads;
2529       continue;
2530     }
2531     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2532       ++Stats.Spills;
2533       continue;
2534     }
2535     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
2536         llvm::any_of(Accesses, isSpillSlotAccess)) {
2537       if (!isPatchpointInstr(MI)) {
2538         Stats.FoldedReloads += Accesses.size();
2539         continue;
2540       }
2541       // For statepoint there may be folded and zero cost folded stack reloads.
2542       std::pair<unsigned, unsigned> NonZeroCostRange =
2543           TII->getPatchpointUnfoldableRange(MI);
2544       SmallSet<unsigned, 16> FoldedReloads;
2545       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
2546       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
2547         MachineOperand &MO = MI.getOperand(Idx);
2548         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
2549           continue;
2550         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
2551           FoldedReloads.insert(MO.getIndex());
2552         else
2553           ZeroCostFoldedReloads.insert(MO.getIndex());
2554       }
2555       // If stack slot is used in folded reload it is not zero cost then.
2556       for (unsigned Slot : FoldedReloads)
2557         ZeroCostFoldedReloads.erase(Slot);
2558       Stats.FoldedReloads += FoldedReloads.size();
2559       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
2560       continue;
2561     }
2562     Accesses.clear();
2563     if (TII->hasStoreToStackSlot(MI, Accesses) &&
2564         llvm::any_of(Accesses, isSpillSlotAccess)) {
2565       Stats.FoldedSpills += Accesses.size();
2566     }
2567   }
2568   // Set cost of collected statistic by multiplication to relative frequency of
2569   // this basic block.
2570   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
2571   Stats.ReloadsCost = RelFreq * Stats.Reloads;
2572   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
2573   Stats.SpillsCost = RelFreq * Stats.Spills;
2574   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
2575   Stats.CopiesCost = RelFreq * Stats.Copies;
2576   return Stats;
2577 }
2578 
2579 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
2580   RAGreedyStats Stats;
2581 
2582   // Sum up the spill and reloads in subloops.
2583   for (MachineLoop *SubLoop : *L)
2584     Stats.add(reportStats(SubLoop));
2585 
2586   for (MachineBasicBlock *MBB : L->getBlocks())
2587     // Handle blocks that were not included in subloops.
2588     if (Loops->getLoopFor(MBB) == L)
2589       Stats.add(computeStats(*MBB));
2590 
2591   if (!Stats.isEmpty()) {
2592     using namespace ore;
2593 
2594     ORE->emit([&]() {
2595       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
2596                                         L->getStartLoc(), L->getHeader());
2597       Stats.report(R);
2598       R << "generated in loop";
2599       return R;
2600     });
2601   }
2602   return Stats;
2603 }
2604 
2605 void RAGreedy::reportStats() {
2606   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
2607     return;
2608   RAGreedyStats Stats;
2609   for (MachineLoop *L : *Loops)
2610     Stats.add(reportStats(L));
2611   // Process non-loop blocks.
2612   for (MachineBasicBlock &MBB : *MF)
2613     if (!Loops->getLoopFor(&MBB))
2614       Stats.add(computeStats(MBB));
2615   if (!Stats.isEmpty()) {
2616     using namespace ore;
2617 
2618     ORE->emit([&]() {
2619       DebugLoc Loc;
2620       if (auto *SP = MF->getFunction().getSubprogram())
2621         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
2622       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
2623                                         &MF->front());
2624       Stats.report(R);
2625       R << "generated in function";
2626       return R;
2627     });
2628   }
2629 }
2630 
2631 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2632   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2633                     << "********** Function: " << mf.getName() << '\n');
2634 
2635   MF = &mf;
2636   TRI = MF->getSubtarget().getRegisterInfo();
2637   TII = MF->getSubtarget().getInstrInfo();
2638   RCI.runOnMachineFunction(mf);
2639 
2640   if (VerifyEnabled)
2641     MF->verify(this, "Before greedy register allocator");
2642 
2643   RegAllocBase::init(getAnalysis<VirtRegMap>(),
2644                      getAnalysis<LiveIntervals>(),
2645                      getAnalysis<LiveRegMatrix>());
2646   Indexes = &getAnalysis<SlotIndexes>();
2647   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2648   DomTree = &getAnalysis<MachineDominatorTree>();
2649   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2650   Loops = &getAnalysis<MachineLoopInfo>();
2651   Bundles = &getAnalysis<EdgeBundles>();
2652   SpillPlacer = &getAnalysis<SpillPlacement>();
2653   DebugVars = &getAnalysis<LiveDebugVariables>();
2654   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2655 
2656   initializeCSRCost();
2657 
2658   RegCosts = TRI->getRegisterCosts(*MF);
2659 
2660   ExtraInfo.emplace();
2661   EvictAdvisor =
2662       getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this);
2663 
2664   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
2665   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
2666 
2667   VRAI->calculateSpillWeightsAndHints();
2668 
2669   LLVM_DEBUG(LIS->dump());
2670 
2671   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2672   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
2673 
2674   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2675   GlobalCand.resize(32);  // This will grow as needed.
2676   SetOfBrokenHints.clear();
2677   LastEvicted.clear();
2678 
2679   allocatePhysRegs();
2680   tryHintsRecoloring();
2681 
2682   if (VerifyEnabled)
2683     MF->verify(this, "Before post optimization");
2684   postOptimization();
2685   reportStats();
2686 
2687   releaseMemory();
2688   return true;
2689 }
2690