1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "SpillPlacement.h" 19 #include "Spiller.h" 20 #include "SplitKit.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/BitVector.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IndexedMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/CodeGen/CalcSpillWeights.h" 35 #include "llvm/CodeGen/EdgeBundles.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalUnion.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveRangeEdit.h" 40 #include "llvm/CodeGen/LiveRegMatrix.h" 41 #include "llvm/CodeGen/LiveStacks.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RegAllocRegistry.h" 54 #include "llvm/CodeGen/RegisterClassInfo.h" 55 #include "llvm/CodeGen/SlotIndexes.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/BlockFrequency.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/Timer.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <memory> 76 #include <queue> 77 #include <tuple> 78 #include <utility> 79 80 using namespace llvm; 81 82 #define DEBUG_TYPE "regalloc" 83 84 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 85 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 86 STATISTIC(NumEvicted, "Number of interferences evicted"); 87 88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 89 "split-spill-mode", cl::Hidden, 90 cl::desc("Spill mode for splitting live ranges"), 91 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 92 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 93 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 94 cl::init(SplitEditor::SM_Speed)); 95 96 static cl::opt<unsigned> 97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 98 cl::desc("Last chance recoloring max depth"), 99 cl::init(5)); 100 101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 102 "lcr-max-interf", cl::Hidden, 103 cl::desc("Last chance recoloring maximum number of considered" 104 " interference at a time"), 105 cl::init(8)); 106 107 static cl::opt<bool> ExhaustiveSearch( 108 "exhaustive-register-search", cl::NotHidden, 109 cl::desc("Exhaustive Search for registers bypassing the depth " 110 "and interference cutoffs of last chance recoloring"), 111 cl::Hidden); 112 113 static cl::opt<bool> EnableLocalReassignment( 114 "enable-local-reassign", cl::Hidden, 115 cl::desc("Local reassignment can yield better allocation decisions, but " 116 "may be compile time intensive"), 117 cl::init(false)); 118 119 static cl::opt<bool> EnableDeferredSpilling( 120 "enable-deferred-spilling", cl::Hidden, 121 cl::desc("Instead of spilling a variable right away, defer the actual " 122 "code insertion to the end of the allocation. That way the " 123 "allocator might still find a suitable coloring for this " 124 "variable because of other evicted variables."), 125 cl::init(false)); 126 127 static cl::opt<unsigned> 128 HugeSizeForSplit("huge-size-for-split", cl::Hidden, 129 cl::desc("A threshold of live range size which may cause " 130 "high compile time cost in global splitting."), 131 cl::init(5000)); 132 133 // FIXME: Find a good default for this flag and remove the flag. 134 static cl::opt<unsigned> 135 CSRFirstTimeCost("regalloc-csr-first-time-cost", 136 cl::desc("Cost for first time use of callee-saved register."), 137 cl::init(0), cl::Hidden); 138 139 static cl::opt<bool> ConsiderLocalIntervalCost( 140 "condsider-local-interval-cost", cl::Hidden, 141 cl::desc("Consider the cost of local intervals created by a split " 142 "candidate when choosing the best split candidate."), 143 cl::init(false)); 144 145 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 146 createGreedyRegisterAllocator); 147 148 namespace { 149 150 class RAGreedy : public MachineFunctionPass, 151 public RegAllocBase, 152 private LiveRangeEdit::Delegate { 153 // Convenient shortcuts. 154 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 155 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 156 using SmallVirtRegSet = SmallSet<unsigned, 16>; 157 158 // context 159 MachineFunction *MF; 160 161 // Shortcuts to some useful interface. 162 const TargetInstrInfo *TII; 163 const TargetRegisterInfo *TRI; 164 RegisterClassInfo RCI; 165 166 // analyses 167 SlotIndexes *Indexes; 168 MachineBlockFrequencyInfo *MBFI; 169 MachineDominatorTree *DomTree; 170 MachineLoopInfo *Loops; 171 MachineOptimizationRemarkEmitter *ORE; 172 EdgeBundles *Bundles; 173 SpillPlacement *SpillPlacer; 174 LiveDebugVariables *DebugVars; 175 AliasAnalysis *AA; 176 177 // state 178 std::unique_ptr<Spiller> SpillerInstance; 179 PQueue Queue; 180 unsigned NextCascade; 181 182 // Live ranges pass through a number of stages as we try to allocate them. 183 // Some of the stages may also create new live ranges: 184 // 185 // - Region splitting. 186 // - Per-block splitting. 187 // - Local splitting. 188 // - Spilling. 189 // 190 // Ranges produced by one of the stages skip the previous stages when they are 191 // dequeued. This improves performance because we can skip interference checks 192 // that are unlikely to give any results. It also guarantees that the live 193 // range splitting algorithm terminates, something that is otherwise hard to 194 // ensure. 195 enum LiveRangeStage { 196 /// Newly created live range that has never been queued. 197 RS_New, 198 199 /// Only attempt assignment and eviction. Then requeue as RS_Split. 200 RS_Assign, 201 202 /// Attempt live range splitting if assignment is impossible. 203 RS_Split, 204 205 /// Attempt more aggressive live range splitting that is guaranteed to make 206 /// progress. This is used for split products that may not be making 207 /// progress. 208 RS_Split2, 209 210 /// Live range will be spilled. No more splitting will be attempted. 211 RS_Spill, 212 213 214 /// Live range is in memory. Because of other evictions, it might get moved 215 /// in a register in the end. 216 RS_Memory, 217 218 /// There is nothing more we can do to this live range. Abort compilation 219 /// if it can't be assigned. 220 RS_Done 221 }; 222 223 // Enum CutOffStage to keep a track whether the register allocation failed 224 // because of the cutoffs encountered in last chance recoloring. 225 // Note: This is used as bitmask. New value should be next power of 2. 226 enum CutOffStage { 227 // No cutoffs encountered 228 CO_None = 0, 229 230 // lcr-max-depth cutoff encountered 231 CO_Depth = 1, 232 233 // lcr-max-interf cutoff encountered 234 CO_Interf = 2 235 }; 236 237 uint8_t CutOffInfo; 238 239 #ifndef NDEBUG 240 static const char *const StageName[]; 241 #endif 242 243 // RegInfo - Keep additional information about each live range. 244 struct RegInfo { 245 LiveRangeStage Stage = RS_New; 246 247 // Cascade - Eviction loop prevention. See canEvictInterference(). 248 unsigned Cascade = 0; 249 250 RegInfo() = default; 251 }; 252 253 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 254 255 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 256 return ExtraRegInfo[VirtReg.reg].Stage; 257 } 258 259 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 260 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 261 ExtraRegInfo[VirtReg.reg].Stage = Stage; 262 } 263 264 template<typename Iterator> 265 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 266 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 267 for (;Begin != End; ++Begin) { 268 unsigned Reg = *Begin; 269 if (ExtraRegInfo[Reg].Stage == RS_New) 270 ExtraRegInfo[Reg].Stage = NewStage; 271 } 272 } 273 274 /// Cost of evicting interference. 275 struct EvictionCost { 276 unsigned BrokenHints = 0; ///< Total number of broken hints. 277 float MaxWeight = 0; ///< Maximum spill weight evicted. 278 279 EvictionCost() = default; 280 281 bool isMax() const { return BrokenHints == ~0u; } 282 283 void setMax() { BrokenHints = ~0u; } 284 285 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 286 287 bool operator<(const EvictionCost &O) const { 288 return std::tie(BrokenHints, MaxWeight) < 289 std::tie(O.BrokenHints, O.MaxWeight); 290 } 291 }; 292 293 /// EvictionTrack - Keeps track of past evictions in order to optimize region 294 /// split decision. 295 class EvictionTrack { 296 297 public: 298 using EvictorInfo = 299 std::pair<unsigned /* evictor */, unsigned /* physreg */>; 300 using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>; 301 302 private: 303 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 304 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 305 EvicteeInfo Evictees; 306 307 public: 308 /// Clear all eviction information. 309 void clear() { Evictees.clear(); } 310 311 /// Clear eviction information for the given evictee Vreg. 312 /// E.g. when Vreg get's a new allocation, the old eviction info is no 313 /// longer relevant. 314 /// \param Evictee The evictee Vreg for whom we want to clear collected 315 /// eviction info. 316 void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); } 317 318 /// Track new eviction. 319 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 320 /// \param PhysReg The physical register Evictee was evicted from. 321 /// \param Evictor The evictor Vreg that evicted Evictee. 322 /// \param Evictee The evictee Vreg. 323 void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) { 324 Evictees[Evictee].first = Evictor; 325 Evictees[Evictee].second = PhysReg; 326 } 327 328 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 329 /// \param Evictee The evictee vreg. 330 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 331 /// nobody has evicted Evictee from PhysReg. 332 EvictorInfo getEvictor(unsigned Evictee) { 333 if (Evictees.count(Evictee)) { 334 return Evictees[Evictee]; 335 } 336 337 return EvictorInfo(0, 0); 338 } 339 }; 340 341 // Keeps track of past evictions in order to optimize region split decision. 342 EvictionTrack LastEvicted; 343 344 // splitting state. 345 std::unique_ptr<SplitAnalysis> SA; 346 std::unique_ptr<SplitEditor> SE; 347 348 /// Cached per-block interference maps 349 InterferenceCache IntfCache; 350 351 /// All basic blocks where the current register has uses. 352 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 353 354 /// Global live range splitting candidate info. 355 struct GlobalSplitCandidate { 356 // Register intended for assignment, or 0. 357 unsigned PhysReg; 358 359 // SplitKit interval index for this candidate. 360 unsigned IntvIdx; 361 362 // Interference for PhysReg. 363 InterferenceCache::Cursor Intf; 364 365 // Bundles where this candidate should be live. 366 BitVector LiveBundles; 367 SmallVector<unsigned, 8> ActiveBlocks; 368 369 void reset(InterferenceCache &Cache, unsigned Reg) { 370 PhysReg = Reg; 371 IntvIdx = 0; 372 Intf.setPhysReg(Cache, Reg); 373 LiveBundles.clear(); 374 ActiveBlocks.clear(); 375 } 376 377 // Set B[i] = C for every live bundle where B[i] was NoCand. 378 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 379 unsigned Count = 0; 380 for (unsigned i : LiveBundles.set_bits()) 381 if (B[i] == NoCand) { 382 B[i] = C; 383 Count++; 384 } 385 return Count; 386 } 387 }; 388 389 /// Candidate info for each PhysReg in AllocationOrder. 390 /// This vector never shrinks, but grows to the size of the largest register 391 /// class. 392 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 393 394 enum : unsigned { NoCand = ~0u }; 395 396 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 397 /// NoCand which indicates the stack interval. 398 SmallVector<unsigned, 32> BundleCand; 399 400 /// Callee-save register cost, calculated once per machine function. 401 BlockFrequency CSRCost; 402 403 /// Run or not the local reassignment heuristic. This information is 404 /// obtained from the TargetSubtargetInfo. 405 bool EnableLocalReassign; 406 407 /// Enable or not the consideration of the cost of local intervals created 408 /// by a split candidate when choosing the best split candidate. 409 bool EnableAdvancedRASplitCost; 410 411 /// Set of broken hints that may be reconciled later because of eviction. 412 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 413 414 public: 415 RAGreedy(); 416 417 /// Return the pass name. 418 StringRef getPassName() const override { return "Greedy Register Allocator"; } 419 420 /// RAGreedy analysis usage. 421 void getAnalysisUsage(AnalysisUsage &AU) const override; 422 void releaseMemory() override; 423 Spiller &spiller() override { return *SpillerInstance; } 424 void enqueue(LiveInterval *LI) override; 425 LiveInterval *dequeue() override; 426 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; 427 void aboutToRemoveInterval(LiveInterval &) override; 428 429 /// Perform register allocation. 430 bool runOnMachineFunction(MachineFunction &mf) override; 431 432 MachineFunctionProperties getRequiredProperties() const override { 433 return MachineFunctionProperties().set( 434 MachineFunctionProperties::Property::NoPHIs); 435 } 436 437 static char ID; 438 439 private: 440 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, 441 SmallVirtRegSet &, unsigned = 0); 442 443 bool LRE_CanEraseVirtReg(unsigned) override; 444 void LRE_WillShrinkVirtReg(unsigned) override; 445 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 446 void enqueue(PQueue &CurQueue, LiveInterval *LI); 447 LiveInterval *dequeue(PQueue &CurQueue); 448 449 BlockFrequency calcSpillCost(); 450 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 451 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 452 bool growRegion(GlobalSplitCandidate &Cand); 453 bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand, 454 unsigned BBNumber, 455 const AllocationOrder &Order); 456 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 457 GlobalSplitCandidate &Cand, unsigned BBNumber, 458 const AllocationOrder &Order); 459 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 460 const AllocationOrder &Order, 461 bool *CanCauseEvictionChain); 462 bool calcCompactRegion(GlobalSplitCandidate&); 463 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 464 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 465 unsigned canReassign(LiveInterval &VirtReg, unsigned PrevReg); 466 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 467 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 468 bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg, 469 SlotIndex Start, SlotIndex End, 470 EvictionCost &MaxCost); 471 unsigned getCheapestEvicteeWeight(const AllocationOrder &Order, 472 LiveInterval &VirtReg, SlotIndex Start, 473 SlotIndex End, float *BestEvictWeight); 474 void evictInterference(LiveInterval&, unsigned, 475 SmallVectorImpl<unsigned>&); 476 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 477 SmallLISet &RecoloringCandidates, 478 const SmallVirtRegSet &FixedRegisters); 479 480 unsigned tryAssign(LiveInterval&, AllocationOrder&, 481 SmallVectorImpl<unsigned>&); 482 unsigned tryEvict(LiveInterval&, AllocationOrder&, 483 SmallVectorImpl<unsigned>&, unsigned = ~0u); 484 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 485 SmallVectorImpl<unsigned>&); 486 unsigned isSplitBenefitWorthCost(LiveInterval &VirtReg); 487 /// Calculate cost of region splitting. 488 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 489 AllocationOrder &Order, 490 BlockFrequency &BestCost, 491 unsigned &NumCands, bool IgnoreCSR, 492 bool *CanCauseEvictionChain = nullptr); 493 /// Perform region splitting. 494 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 495 bool HasCompact, 496 SmallVectorImpl<unsigned> &NewVRegs); 497 /// Check other options before using a callee-saved register for the first 498 /// time. 499 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 500 unsigned PhysReg, unsigned &CostPerUseLimit, 501 SmallVectorImpl<unsigned> &NewVRegs); 502 void initializeCSRCost(); 503 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 504 SmallVectorImpl<unsigned>&); 505 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 506 SmallVectorImpl<unsigned>&); 507 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 508 SmallVectorImpl<unsigned>&); 509 unsigned trySplit(LiveInterval&, AllocationOrder&, 510 SmallVectorImpl<unsigned>&); 511 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 512 SmallVectorImpl<unsigned> &, 513 SmallVirtRegSet &, unsigned); 514 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, 515 SmallVirtRegSet &, unsigned); 516 void tryHintRecoloring(LiveInterval &); 517 void tryHintsRecoloring(); 518 519 /// Model the information carried by one end of a copy. 520 struct HintInfo { 521 /// The frequency of the copy. 522 BlockFrequency Freq; 523 /// The virtual register or physical register. 524 unsigned Reg; 525 /// Its currently assigned register. 526 /// In case of a physical register Reg == PhysReg. 527 unsigned PhysReg; 528 529 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) 530 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 531 }; 532 using HintsInfo = SmallVector<HintInfo, 4>; 533 534 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 535 void collectHintInfo(unsigned, HintsInfo &); 536 537 bool isUnusedCalleeSavedReg(unsigned PhysReg) const; 538 539 /// Compute and report the number of spills and reloads for a loop. 540 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 541 unsigned &FoldedReloads, unsigned &Spills, 542 unsigned &FoldedSpills); 543 544 /// Report the number of spills and reloads for each loop. 545 void reportNumberOfSplillsReloads() { 546 for (MachineLoop *L : *Loops) { 547 unsigned Reloads, FoldedReloads, Spills, FoldedSpills; 548 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills, 549 FoldedSpills); 550 } 551 } 552 }; 553 554 } // end anonymous namespace 555 556 char RAGreedy::ID = 0; 557 char &llvm::RAGreedyID = RAGreedy::ID; 558 559 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 560 "Greedy Register Allocator", false, false) 561 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 562 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 563 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 564 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 565 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 566 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 567 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 568 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 569 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 570 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 571 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 572 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 573 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 574 INITIALIZE_PASS_END(RAGreedy, "greedy", 575 "Greedy Register Allocator", false, false) 576 577 #ifndef NDEBUG 578 const char *const RAGreedy::StageName[] = { 579 "RS_New", 580 "RS_Assign", 581 "RS_Split", 582 "RS_Split2", 583 "RS_Spill", 584 "RS_Memory", 585 "RS_Done" 586 }; 587 #endif 588 589 // Hysteresis to use when comparing floats. 590 // This helps stabilize decisions based on float comparisons. 591 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 592 593 FunctionPass* llvm::createGreedyRegisterAllocator() { 594 return new RAGreedy(); 595 } 596 597 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 598 } 599 600 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 601 AU.setPreservesCFG(); 602 AU.addRequired<MachineBlockFrequencyInfo>(); 603 AU.addPreserved<MachineBlockFrequencyInfo>(); 604 AU.addRequired<AAResultsWrapperPass>(); 605 AU.addPreserved<AAResultsWrapperPass>(); 606 AU.addRequired<LiveIntervals>(); 607 AU.addPreserved<LiveIntervals>(); 608 AU.addRequired<SlotIndexes>(); 609 AU.addPreserved<SlotIndexes>(); 610 AU.addRequired<LiveDebugVariables>(); 611 AU.addPreserved<LiveDebugVariables>(); 612 AU.addRequired<LiveStacks>(); 613 AU.addPreserved<LiveStacks>(); 614 AU.addRequired<MachineDominatorTree>(); 615 AU.addPreserved<MachineDominatorTree>(); 616 AU.addRequired<MachineLoopInfo>(); 617 AU.addPreserved<MachineLoopInfo>(); 618 AU.addRequired<VirtRegMap>(); 619 AU.addPreserved<VirtRegMap>(); 620 AU.addRequired<LiveRegMatrix>(); 621 AU.addPreserved<LiveRegMatrix>(); 622 AU.addRequired<EdgeBundles>(); 623 AU.addRequired<SpillPlacement>(); 624 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 625 MachineFunctionPass::getAnalysisUsage(AU); 626 } 627 628 //===----------------------------------------------------------------------===// 629 // LiveRangeEdit delegate methods 630 //===----------------------------------------------------------------------===// 631 632 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 633 LiveInterval &LI = LIS->getInterval(VirtReg); 634 if (VRM->hasPhys(VirtReg)) { 635 Matrix->unassign(LI); 636 aboutToRemoveInterval(LI); 637 return true; 638 } 639 // Unassigned virtreg is probably in the priority queue. 640 // RegAllocBase will erase it after dequeueing. 641 // Nonetheless, clear the live-range so that the debug 642 // dump will show the right state for that VirtReg. 643 LI.clear(); 644 return false; 645 } 646 647 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 648 if (!VRM->hasPhys(VirtReg)) 649 return; 650 651 // Register is assigned, put it back on the queue for reassignment. 652 LiveInterval &LI = LIS->getInterval(VirtReg); 653 Matrix->unassign(LI); 654 enqueue(&LI); 655 } 656 657 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 658 // Cloning a register we haven't even heard about yet? Just ignore it. 659 if (!ExtraRegInfo.inBounds(Old)) 660 return; 661 662 // LRE may clone a virtual register because dead code elimination causes it to 663 // be split into connected components. The new components are much smaller 664 // than the original, so they should get a new chance at being assigned. 665 // same stage as the parent. 666 ExtraRegInfo[Old].Stage = RS_Assign; 667 ExtraRegInfo.grow(New); 668 ExtraRegInfo[New] = ExtraRegInfo[Old]; 669 } 670 671 void RAGreedy::releaseMemory() { 672 SpillerInstance.reset(); 673 ExtraRegInfo.clear(); 674 GlobalCand.clear(); 675 } 676 677 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 678 679 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 680 // Prioritize live ranges by size, assigning larger ranges first. 681 // The queue holds (size, reg) pairs. 682 const unsigned Size = LI->getSize(); 683 const unsigned Reg = LI->reg; 684 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 685 "Can only enqueue virtual registers"); 686 unsigned Prio; 687 688 ExtraRegInfo.grow(Reg); 689 if (ExtraRegInfo[Reg].Stage == RS_New) 690 ExtraRegInfo[Reg].Stage = RS_Assign; 691 692 if (ExtraRegInfo[Reg].Stage == RS_Split) { 693 // Unsplit ranges that couldn't be allocated immediately are deferred until 694 // everything else has been allocated. 695 Prio = Size; 696 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 697 // Memory operand should be considered last. 698 // Change the priority such that Memory operand are assigned in 699 // the reverse order that they came in. 700 // TODO: Make this a member variable and probably do something about hints. 701 static unsigned MemOp = 0; 702 Prio = MemOp++; 703 } else { 704 // Giant live ranges fall back to the global assignment heuristic, which 705 // prevents excessive spilling in pathological cases. 706 bool ReverseLocal = TRI->reverseLocalAssignment(); 707 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 708 bool ForceGlobal = !ReverseLocal && 709 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 710 711 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 712 LIS->intervalIsInOneMBB(*LI)) { 713 // Allocate original local ranges in linear instruction order. Since they 714 // are singly defined, this produces optimal coloring in the absence of 715 // global interference and other constraints. 716 if (!ReverseLocal) 717 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 718 else { 719 // Allocating bottom up may allow many short LRGs to be assigned first 720 // to one of the cheap registers. This could be much faster for very 721 // large blocks on targets with many physical registers. 722 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 723 } 724 Prio |= RC.AllocationPriority << 24; 725 } else { 726 // Allocate global and split ranges in long->short order. Long ranges that 727 // don't fit should be spilled (or split) ASAP so they don't create 728 // interference. Mark a bit to prioritize global above local ranges. 729 Prio = (1u << 29) + Size; 730 } 731 // Mark a higher bit to prioritize global and local above RS_Split. 732 Prio |= (1u << 31); 733 734 // Boost ranges that have a physical register hint. 735 if (VRM->hasKnownPreference(Reg)) 736 Prio |= (1u << 30); 737 } 738 // The virtual register number is a tie breaker for same-sized ranges. 739 // Give lower vreg numbers higher priority to assign them first. 740 CurQueue.push(std::make_pair(Prio, ~Reg)); 741 } 742 743 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 744 745 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 746 if (CurQueue.empty()) 747 return nullptr; 748 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 749 CurQueue.pop(); 750 return LI; 751 } 752 753 //===----------------------------------------------------------------------===// 754 // Direct Assignment 755 //===----------------------------------------------------------------------===// 756 757 /// tryAssign - Try to assign VirtReg to an available register. 758 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 759 AllocationOrder &Order, 760 SmallVectorImpl<unsigned> &NewVRegs) { 761 Order.rewind(); 762 unsigned PhysReg; 763 while ((PhysReg = Order.next())) 764 if (!Matrix->checkInterference(VirtReg, PhysReg)) 765 break; 766 if (!PhysReg || Order.isHint()) 767 return PhysReg; 768 769 // PhysReg is available, but there may be a better choice. 770 771 // If we missed a simple hint, try to cheaply evict interference from the 772 // preferred register. 773 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 774 if (Order.isHint(Hint)) { 775 LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n'); 776 EvictionCost MaxCost; 777 MaxCost.setBrokenHints(1); 778 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 779 evictInterference(VirtReg, Hint, NewVRegs); 780 return Hint; 781 } 782 // Record the missed hint, we may be able to recover 783 // at the end if the surrounding allocation changed. 784 SetOfBrokenHints.insert(&VirtReg); 785 } 786 787 // Try to evict interference from a cheaper alternative. 788 unsigned Cost = TRI->getCostPerUse(PhysReg); 789 790 // Most registers have 0 additional cost. 791 if (!Cost) 792 return PhysReg; 793 794 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 795 << Cost << '\n'); 796 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 797 return CheapReg ? CheapReg : PhysReg; 798 } 799 800 //===----------------------------------------------------------------------===// 801 // Interference eviction 802 //===----------------------------------------------------------------------===// 803 804 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { 805 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 806 unsigned PhysReg; 807 while ((PhysReg = Order.next())) { 808 if (PhysReg == PrevReg) 809 continue; 810 811 MCRegUnitIterator Units(PhysReg, TRI); 812 for (; Units.isValid(); ++Units) { 813 // Instantiate a "subquery", not to be confused with the Queries array. 814 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 815 if (subQ.checkInterference()) 816 break; 817 } 818 // If no units have interference, break out with the current PhysReg. 819 if (!Units.isValid()) 820 break; 821 } 822 if (PhysReg) 823 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 824 << printReg(PrevReg, TRI) << " to " 825 << printReg(PhysReg, TRI) << '\n'); 826 return PhysReg; 827 } 828 829 /// shouldEvict - determine if A should evict the assigned live range B. The 830 /// eviction policy defined by this function together with the allocation order 831 /// defined by enqueue() decides which registers ultimately end up being split 832 /// and spilled. 833 /// 834 /// Cascade numbers are used to prevent infinite loops if this function is a 835 /// cyclic relation. 836 /// 837 /// @param A The live range to be assigned. 838 /// @param IsHint True when A is about to be assigned to its preferred 839 /// register. 840 /// @param B The live range to be evicted. 841 /// @param BreaksHint True when B is already assigned to its preferred register. 842 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 843 LiveInterval &B, bool BreaksHint) { 844 bool CanSplit = getStage(B) < RS_Spill; 845 846 // Be fairly aggressive about following hints as long as the evictee can be 847 // split. 848 if (CanSplit && IsHint && !BreaksHint) 849 return true; 850 851 if (A.weight > B.weight) { 852 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); 853 return true; 854 } 855 return false; 856 } 857 858 /// canEvictInterference - Return true if all interferences between VirtReg and 859 /// PhysReg can be evicted. 860 /// 861 /// @param VirtReg Live range that is about to be assigned. 862 /// @param PhysReg Desired register for assignment. 863 /// @param IsHint True when PhysReg is VirtReg's preferred register. 864 /// @param MaxCost Only look for cheaper candidates and update with new cost 865 /// when returning true. 866 /// @returns True when interference can be evicted cheaper than MaxCost. 867 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 868 bool IsHint, EvictionCost &MaxCost) { 869 // It is only possible to evict virtual register interference. 870 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 871 return false; 872 873 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 874 875 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 876 // involved in an eviction before. If a cascade number was assigned, deny 877 // evicting anything with the same or a newer cascade number. This prevents 878 // infinite eviction loops. 879 // 880 // This works out so a register without a cascade number is allowed to evict 881 // anything, and it can be evicted by anything. 882 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 883 if (!Cascade) 884 Cascade = NextCascade; 885 886 EvictionCost Cost; 887 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 888 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 889 // If there is 10 or more interferences, chances are one is heavier. 890 if (Q.collectInterferingVRegs(10) >= 10) 891 return false; 892 893 // Check if any interfering live range is heavier than MaxWeight. 894 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 895 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 896 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && 897 "Only expecting virtual register interference from query"); 898 // Never evict spill products. They cannot split or spill. 899 if (getStage(*Intf) == RS_Done) 900 return false; 901 // Once a live range becomes small enough, it is urgent that we find a 902 // register for it. This is indicated by an infinite spill weight. These 903 // urgent live ranges get to evict almost anything. 904 // 905 // Also allow urgent evictions of unspillable ranges from a strictly 906 // larger allocation order. 907 bool Urgent = !VirtReg.isSpillable() && 908 (Intf->isSpillable() || 909 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 910 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 911 // Only evict older cascades or live ranges without a cascade. 912 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 913 if (Cascade <= IntfCascade) { 914 if (!Urgent) 915 return false; 916 // We permit breaking cascades for urgent evictions. It should be the 917 // last resort, though, so make it really expensive. 918 Cost.BrokenHints += 10; 919 } 920 // Would this break a satisfied hint? 921 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 922 // Update eviction cost. 923 Cost.BrokenHints += BreaksHint; 924 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 925 // Abort if this would be too expensive. 926 if (!(Cost < MaxCost)) 927 return false; 928 if (Urgent) 929 continue; 930 // Apply the eviction policy for non-urgent evictions. 931 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 932 return false; 933 // If !MaxCost.isMax(), then we're just looking for a cheap register. 934 // Evicting another local live range in this case could lead to suboptimal 935 // coloring. 936 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 937 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 938 return false; 939 } 940 } 941 } 942 MaxCost = Cost; 943 return true; 944 } 945 946 /// Return true if all interferences between VirtReg and PhysReg between 947 /// Start and End can be evicted. 948 /// 949 /// \param VirtReg Live range that is about to be assigned. 950 /// \param PhysReg Desired register for assignment. 951 /// \param Start Start of range to look for interferences. 952 /// \param End End of range to look for interferences. 953 /// \param MaxCost Only look for cheaper candidates and update with new cost 954 /// when returning true. 955 /// \return True when interference can be evicted cheaper than MaxCost. 956 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg, 957 unsigned PhysReg, SlotIndex Start, 958 SlotIndex End, 959 EvictionCost &MaxCost) { 960 EvictionCost Cost; 961 962 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 963 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 964 965 // Check if any interfering live range is heavier than MaxWeight. 966 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 967 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 968 969 // Check if interference overlast the segment in interest. 970 if (!Intf->overlaps(Start, End)) 971 continue; 972 973 // Cannot evict non virtual reg interference. 974 if (!TargetRegisterInfo::isVirtualRegister(Intf->reg)) 975 return false; 976 // Never evict spill products. They cannot split or spill. 977 if (getStage(*Intf) == RS_Done) 978 return false; 979 980 // Would this break a satisfied hint? 981 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 982 // Update eviction cost. 983 Cost.BrokenHints += BreaksHint; 984 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 985 // Abort if this would be too expensive. 986 if (!(Cost < MaxCost)) 987 return false; 988 } 989 } 990 991 if (Cost.MaxWeight == 0) 992 return false; 993 994 MaxCost = Cost; 995 return true; 996 } 997 998 /// Return the physical register that will be best 999 /// candidate for eviction by a local split interval that will be created 1000 /// between Start and End. 1001 /// 1002 /// \param Order The allocation order 1003 /// \param VirtReg Live range that is about to be assigned. 1004 /// \param Start Start of range to look for interferences 1005 /// \param End End of range to look for interferences 1006 /// \param BestEvictweight The eviction cost of that eviction 1007 /// \return The PhysReg which is the best candidate for eviction and the 1008 /// eviction cost in BestEvictweight 1009 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1010 LiveInterval &VirtReg, 1011 SlotIndex Start, SlotIndex End, 1012 float *BestEvictweight) { 1013 EvictionCost BestEvictCost; 1014 BestEvictCost.setMax(); 1015 BestEvictCost.MaxWeight = VirtReg.weight; 1016 unsigned BestEvicteePhys = 0; 1017 1018 // Go over all physical registers and find the best candidate for eviction 1019 for (auto PhysReg : Order.getOrder()) { 1020 1021 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1022 BestEvictCost)) 1023 continue; 1024 1025 // Best so far. 1026 BestEvicteePhys = PhysReg; 1027 } 1028 *BestEvictweight = BestEvictCost.MaxWeight; 1029 return BestEvicteePhys; 1030 } 1031 1032 /// evictInterference - Evict any interferring registers that prevent VirtReg 1033 /// from being assigned to Physreg. This assumes that canEvictInterference 1034 /// returned true. 1035 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 1036 SmallVectorImpl<unsigned> &NewVRegs) { 1037 // Make sure that VirtReg has a cascade number, and assign that cascade 1038 // number to every evicted register. These live ranges than then only be 1039 // evicted by a newer cascade, preventing infinite loops. 1040 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 1041 if (!Cascade) 1042 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 1043 1044 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1045 << " interference: Cascade " << Cascade << '\n'); 1046 1047 // Collect all interfering virtregs first. 1048 SmallVector<LiveInterval*, 8> Intfs; 1049 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1050 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1051 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1052 // should be fast, we may need to recalculate if when different physregs 1053 // overlap the same register unit so we had different SubRanges queried 1054 // against it. 1055 Q.collectInterferingVRegs(); 1056 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1057 Intfs.append(IVR.begin(), IVR.end()); 1058 } 1059 1060 // Evict them second. This will invalidate the queries. 1061 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 1062 LiveInterval *Intf = Intfs[i]; 1063 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1064 if (!VRM->hasPhys(Intf->reg)) 1065 continue; 1066 1067 LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg); 1068 1069 Matrix->unassign(*Intf); 1070 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 1071 VirtReg.isSpillable() < Intf->isSpillable()) && 1072 "Cannot decrease cascade number, illegal eviction"); 1073 ExtraRegInfo[Intf->reg].Cascade = Cascade; 1074 ++NumEvicted; 1075 NewVRegs.push_back(Intf->reg); 1076 } 1077 } 1078 1079 /// Returns true if the given \p PhysReg is a callee saved register and has not 1080 /// been used for allocation yet. 1081 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { 1082 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1083 if (CSR == 0) 1084 return false; 1085 1086 return !Matrix->isPhysRegUsed(PhysReg); 1087 } 1088 1089 /// tryEvict - Try to evict all interferences for a physreg. 1090 /// @param VirtReg Currently unassigned virtual register. 1091 /// @param Order Physregs to try. 1092 /// @return Physreg to assign VirtReg, or 0. 1093 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 1094 AllocationOrder &Order, 1095 SmallVectorImpl<unsigned> &NewVRegs, 1096 unsigned CostPerUseLimit) { 1097 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1098 TimePassesIsEnabled); 1099 1100 // Keep track of the cheapest interference seen so far. 1101 EvictionCost BestCost; 1102 BestCost.setMax(); 1103 unsigned BestPhys = 0; 1104 unsigned OrderLimit = Order.getOrder().size(); 1105 1106 // When we are just looking for a reduced cost per use, don't break any 1107 // hints, and only evict smaller spill weights. 1108 if (CostPerUseLimit < ~0u) { 1109 BestCost.BrokenHints = 0; 1110 BestCost.MaxWeight = VirtReg.weight; 1111 1112 // Check of any registers in RC are below CostPerUseLimit. 1113 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 1114 unsigned MinCost = RegClassInfo.getMinCost(RC); 1115 if (MinCost >= CostPerUseLimit) { 1116 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1117 << MinCost << ", no cheaper registers to be found.\n"); 1118 return 0; 1119 } 1120 1121 // It is normal for register classes to have a long tail of registers with 1122 // the same cost. We don't need to look at them if they're too expensive. 1123 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 1124 OrderLimit = RegClassInfo.getLastCostChange(RC); 1125 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1126 << " regs.\n"); 1127 } 1128 } 1129 1130 Order.rewind(); 1131 while (unsigned PhysReg = Order.next(OrderLimit)) { 1132 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 1133 continue; 1134 // The first use of a callee-saved register in a function has cost 1. 1135 // Don't start using a CSR when the CostPerUseLimit is low. 1136 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1137 LLVM_DEBUG( 1138 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1139 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1140 << '\n'); 1141 continue; 1142 } 1143 1144 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 1145 continue; 1146 1147 // Best so far. 1148 BestPhys = PhysReg; 1149 1150 // Stop if the hint can be used. 1151 if (Order.isHint()) 1152 break; 1153 } 1154 1155 if (!BestPhys) 1156 return 0; 1157 1158 evictInterference(VirtReg, BestPhys, NewVRegs); 1159 return BestPhys; 1160 } 1161 1162 //===----------------------------------------------------------------------===// 1163 // Region Splitting 1164 //===----------------------------------------------------------------------===// 1165 1166 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1167 /// interference pattern in Physreg and its aliases. Add the constraints to 1168 /// SpillPlacement and return the static cost of this split in Cost, assuming 1169 /// that all preferences in SplitConstraints are met. 1170 /// Return false if there are no bundles with positive bias. 1171 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1172 BlockFrequency &Cost) { 1173 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1174 1175 // Reset interference dependent info. 1176 SplitConstraints.resize(UseBlocks.size()); 1177 BlockFrequency StaticCost = 0; 1178 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1179 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1180 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1181 1182 BC.Number = BI.MBB->getNumber(); 1183 Intf.moveToBlock(BC.Number); 1184 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1185 BC.Exit = (BI.LiveOut && 1186 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1187 ? SpillPlacement::PrefReg 1188 : SpillPlacement::DontCare; 1189 BC.ChangesValue = BI.FirstDef.isValid(); 1190 1191 if (!Intf.hasInterference()) 1192 continue; 1193 1194 // Number of spill code instructions to insert. 1195 unsigned Ins = 0; 1196 1197 // Interference for the live-in value. 1198 if (BI.LiveIn) { 1199 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1200 BC.Entry = SpillPlacement::MustSpill; 1201 ++Ins; 1202 } else if (Intf.first() < BI.FirstInstr) { 1203 BC.Entry = SpillPlacement::PrefSpill; 1204 ++Ins; 1205 } else if (Intf.first() < BI.LastInstr) { 1206 ++Ins; 1207 } 1208 1209 // Abort if the spill cannot be inserted at the MBB' start 1210 if (((BC.Entry == SpillPlacement::MustSpill) || 1211 (BC.Entry == SpillPlacement::PrefSpill)) && 1212 SlotIndex::isEarlierInstr(BI.FirstInstr, 1213 SA->getFirstSplitPoint(BC.Number))) 1214 return false; 1215 } 1216 1217 // Interference for the live-out value. 1218 if (BI.LiveOut) { 1219 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1220 BC.Exit = SpillPlacement::MustSpill; 1221 ++Ins; 1222 } else if (Intf.last() > BI.LastInstr) { 1223 BC.Exit = SpillPlacement::PrefSpill; 1224 ++Ins; 1225 } else if (Intf.last() > BI.FirstInstr) { 1226 ++Ins; 1227 } 1228 } 1229 1230 // Accumulate the total frequency of inserted spill code. 1231 while (Ins--) 1232 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1233 } 1234 Cost = StaticCost; 1235 1236 // Add constraints for use-blocks. Note that these are the only constraints 1237 // that may add a positive bias, it is downhill from here. 1238 SpillPlacer->addConstraints(SplitConstraints); 1239 return SpillPlacer->scanActiveBundles(); 1240 } 1241 1242 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1243 /// live-through blocks in Blocks. 1244 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1245 ArrayRef<unsigned> Blocks) { 1246 const unsigned GroupSize = 8; 1247 SpillPlacement::BlockConstraint BCS[GroupSize]; 1248 unsigned TBS[GroupSize]; 1249 unsigned B = 0, T = 0; 1250 1251 for (unsigned i = 0; i != Blocks.size(); ++i) { 1252 unsigned Number = Blocks[i]; 1253 Intf.moveToBlock(Number); 1254 1255 if (!Intf.hasInterference()) { 1256 assert(T < GroupSize && "Array overflow"); 1257 TBS[T] = Number; 1258 if (++T == GroupSize) { 1259 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1260 T = 0; 1261 } 1262 continue; 1263 } 1264 1265 assert(B < GroupSize && "Array overflow"); 1266 BCS[B].Number = Number; 1267 1268 // Abort if the spill cannot be inserted at the MBB' start 1269 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1270 if (!MBB->empty() && 1271 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()), 1272 SA->getFirstSplitPoint(Number))) 1273 return false; 1274 // Interference for the live-in value. 1275 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1276 BCS[B].Entry = SpillPlacement::MustSpill; 1277 else 1278 BCS[B].Entry = SpillPlacement::PrefSpill; 1279 1280 // Interference for the live-out value. 1281 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1282 BCS[B].Exit = SpillPlacement::MustSpill; 1283 else 1284 BCS[B].Exit = SpillPlacement::PrefSpill; 1285 1286 if (++B == GroupSize) { 1287 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1288 B = 0; 1289 } 1290 } 1291 1292 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1293 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1294 return true; 1295 } 1296 1297 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1298 // Keep track of through blocks that have not been added to SpillPlacer. 1299 BitVector Todo = SA->getThroughBlocks(); 1300 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1301 unsigned AddedTo = 0; 1302 #ifndef NDEBUG 1303 unsigned Visited = 0; 1304 #endif 1305 1306 while (true) { 1307 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1308 // Find new through blocks in the periphery of PrefRegBundles. 1309 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1310 unsigned Bundle = NewBundles[i]; 1311 // Look at all blocks connected to Bundle in the full graph. 1312 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1313 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1314 I != E; ++I) { 1315 unsigned Block = *I; 1316 if (!Todo.test(Block)) 1317 continue; 1318 Todo.reset(Block); 1319 // This is a new through block. Add it to SpillPlacer later. 1320 ActiveBlocks.push_back(Block); 1321 #ifndef NDEBUG 1322 ++Visited; 1323 #endif 1324 } 1325 } 1326 // Any new blocks to add? 1327 if (ActiveBlocks.size() == AddedTo) 1328 break; 1329 1330 // Compute through constraints from the interference, or assume that all 1331 // through blocks prefer spilling when forming compact regions. 1332 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1333 if (Cand.PhysReg) { 1334 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1335 return false; 1336 } else 1337 // Provide a strong negative bias on through blocks to prevent unwanted 1338 // liveness on loop backedges. 1339 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1340 AddedTo = ActiveBlocks.size(); 1341 1342 // Perhaps iterating can enable more bundles? 1343 SpillPlacer->iterate(); 1344 } 1345 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1346 return true; 1347 } 1348 1349 /// calcCompactRegion - Compute the set of edge bundles that should be live 1350 /// when splitting the current live range into compact regions. Compact 1351 /// regions can be computed without looking at interference. They are the 1352 /// regions formed by removing all the live-through blocks from the live range. 1353 /// 1354 /// Returns false if the current live range is already compact, or if the 1355 /// compact regions would form single block regions anyway. 1356 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1357 // Without any through blocks, the live range is already compact. 1358 if (!SA->getNumThroughBlocks()) 1359 return false; 1360 1361 // Compact regions don't correspond to any physreg. 1362 Cand.reset(IntfCache, 0); 1363 1364 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1365 1366 // Use the spill placer to determine the live bundles. GrowRegion pretends 1367 // that all the through blocks have interference when PhysReg is unset. 1368 SpillPlacer->prepare(Cand.LiveBundles); 1369 1370 // The static split cost will be zero since Cand.Intf reports no interference. 1371 BlockFrequency Cost; 1372 if (!addSplitConstraints(Cand.Intf, Cost)) { 1373 LLVM_DEBUG(dbgs() << ", none.\n"); 1374 return false; 1375 } 1376 1377 if (!growRegion(Cand)) { 1378 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1379 return false; 1380 } 1381 1382 SpillPlacer->finish(); 1383 1384 if (!Cand.LiveBundles.any()) { 1385 LLVM_DEBUG(dbgs() << ", none.\n"); 1386 return false; 1387 } 1388 1389 LLVM_DEBUG({ 1390 for (int i : Cand.LiveBundles.set_bits()) 1391 dbgs() << " EB#" << i; 1392 dbgs() << ".\n"; 1393 }); 1394 return true; 1395 } 1396 1397 /// calcSpillCost - Compute how expensive it would be to split the live range in 1398 /// SA around all use blocks instead of forming bundle regions. 1399 BlockFrequency RAGreedy::calcSpillCost() { 1400 BlockFrequency Cost = 0; 1401 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1402 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1403 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1404 unsigned Number = BI.MBB->getNumber(); 1405 // We normally only need one spill instruction - a load or a store. 1406 Cost += SpillPlacer->getBlockFrequency(Number); 1407 1408 // Unless the value is redefined in the block. 1409 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1410 Cost += SpillPlacer->getBlockFrequency(Number); 1411 } 1412 return Cost; 1413 } 1414 1415 /// Check if splitting Evictee will create a local split interval in 1416 /// basic block number BBNumber that may cause a bad eviction chain. This is 1417 /// intended to prevent bad eviction sequences like: 1418 /// movl %ebp, 8(%esp) # 4-byte Spill 1419 /// movl %ecx, %ebp 1420 /// movl %ebx, %ecx 1421 /// movl %edi, %ebx 1422 /// movl %edx, %edi 1423 /// cltd 1424 /// idivl %esi 1425 /// movl %edi, %edx 1426 /// movl %ebx, %edi 1427 /// movl %ecx, %ebx 1428 /// movl %ebp, %ecx 1429 /// movl 16(%esp), %ebp # 4 - byte Reload 1430 /// 1431 /// Such sequences are created in 2 scenarios: 1432 /// 1433 /// Scenario #1: 1434 /// %0 is evicted from physreg0 by %1. 1435 /// Evictee %0 is intended for region splitting with split candidate 1436 /// physreg0 (the reg %0 was evicted from). 1437 /// Region splitting creates a local interval because of interference with the 1438 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1439 /// and "by stack" intervals and local interval created when interference 1440 /// occurs). 1441 /// One of the split intervals ends up evicting %2 from physreg1. 1442 /// Evictee %2 is intended for region splitting with split candidate 1443 /// physreg1. 1444 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1445 /// 1446 /// Scenario #2 1447 /// %0 is evicted from physreg0 by %1. 1448 /// %2 is evicted from physreg2 by %3 etc. 1449 /// Evictee %0 is intended for region splitting with split candidate 1450 /// physreg1. 1451 /// Region splitting creates a local interval because of interference with the 1452 /// evictor %1. 1453 /// One of the split intervals ends up evicting back original evictor %1 1454 /// from physreg0 (the reg %0 was evicted from). 1455 /// Another evictee %2 is intended for region splitting with split candidate 1456 /// physreg1. 1457 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1458 /// 1459 /// \param Evictee The register considered to be split. 1460 /// \param Cand The split candidate that determines the physical register 1461 /// we are splitting for and the interferences. 1462 /// \param BBNumber The number of a BB for which the region split process will 1463 /// create a local split interval. 1464 /// \param Order The physical registers that may get evicted by a split 1465 /// artifact of Evictee. 1466 /// \return True if splitting Evictee may cause a bad eviction chain, false 1467 /// otherwise. 1468 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee, 1469 GlobalSplitCandidate &Cand, 1470 unsigned BBNumber, 1471 const AllocationOrder &Order) { 1472 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1473 unsigned Evictor = VregEvictorInfo.first; 1474 unsigned PhysReg = VregEvictorInfo.second; 1475 1476 // No actual evictor. 1477 if (!Evictor || !PhysReg) 1478 return false; 1479 1480 float MaxWeight = 0; 1481 unsigned FutureEvictedPhysReg = 1482 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1483 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1484 1485 // The bad eviction chain occurs when either the split candidate is the 1486 // evicting reg or one of the split artifact will evict the evicting reg. 1487 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1488 return false; 1489 1490 Cand.Intf.moveToBlock(BBNumber); 1491 1492 // Check to see if the Evictor contains interference (with Evictee) in the 1493 // given BB. If so, this interference caused the eviction of Evictee from 1494 // PhysReg. This suggest that we will create a local interval during the 1495 // region split to avoid this interference This local interval may cause a bad 1496 // eviction chain. 1497 if (!LIS->hasInterval(Evictor)) 1498 return false; 1499 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1500 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1501 return false; 1502 1503 // Now, check to see if the local interval we will create is going to be 1504 // expensive enough to evict somebody If so, this may cause a bad eviction 1505 // chain. 1506 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); 1507 float splitArtifactWeight = 1508 VRAI.futureWeight(LIS->getInterval(Evictee), 1509 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1510 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1511 return false; 1512 1513 return true; 1514 } 1515 1516 /// Check if splitting VirtRegToSplit will create a local split interval 1517 /// in basic block number BBNumber that may cause a spill. 1518 /// 1519 /// \param VirtRegToSplit The register considered to be split. 1520 /// \param Cand The split candidate that determines the physical 1521 /// register we are splitting for and the interferences. 1522 /// \param BBNumber The number of a BB for which the region split process 1523 /// will create a local split interval. 1524 /// \param Order The physical registers that may get evicted by a 1525 /// split artifact of VirtRegToSplit. 1526 /// \return True if splitting VirtRegToSplit may cause a spill, false 1527 /// otherwise. 1528 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1529 GlobalSplitCandidate &Cand, 1530 unsigned BBNumber, 1531 const AllocationOrder &Order) { 1532 Cand.Intf.moveToBlock(BBNumber); 1533 1534 // Check if the local interval will find a non interfereing assignment. 1535 for (auto PhysReg : Order.getOrder()) { 1536 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1537 Cand.Intf.last(), PhysReg)) 1538 return false; 1539 } 1540 1541 // Check if the local interval will evict a cheaper interval. 1542 float CheapestEvictWeight = 0; 1543 unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight( 1544 Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(), 1545 Cand.Intf.last(), &CheapestEvictWeight); 1546 1547 // Have we found an interval that can be evicted? 1548 if (FutureEvictedPhysReg) { 1549 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); 1550 float splitArtifactWeight = 1551 VRAI.futureWeight(LIS->getInterval(VirtRegToSplit), 1552 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1553 // Will the weight of the local interval be higher than the cheapest evictee 1554 // weight? If so it will evict it and will not cause a spill. 1555 if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight) 1556 return false; 1557 } 1558 1559 // The local interval is not able to find non interferencing assignment and 1560 // not able to evict a less worthy interval, therfore, it can cause a spill. 1561 return true; 1562 } 1563 1564 /// calcGlobalSplitCost - Return the global split cost of following the split 1565 /// pattern in LiveBundles. This cost should be added to the local cost of the 1566 /// interference pattern in SplitConstraints. 1567 /// 1568 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1569 const AllocationOrder &Order, 1570 bool *CanCauseEvictionChain) { 1571 BlockFrequency GlobalCost = 0; 1572 const BitVector &LiveBundles = Cand.LiveBundles; 1573 unsigned VirtRegToSplit = SA->getParent().reg; 1574 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1575 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1576 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1577 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1578 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1579 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1580 unsigned Ins = 0; 1581 1582 Cand.Intf.moveToBlock(BC.Number); 1583 // Check wheather a local interval is going to be created during the region 1584 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1585 // is enabled. 1586 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1587 BI.LiveOut && RegIn && RegOut) { 1588 1589 if (CanCauseEvictionChain && 1590 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1591 // This interference causes our eviction from this assignment, we might 1592 // evict somebody else and eventually someone will spill, add that cost. 1593 // See splitCanCauseEvictionChain for detailed description of scenarios. 1594 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1595 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1596 1597 *CanCauseEvictionChain = true; 1598 1599 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1600 Order)) { 1601 // This interference causes local interval to spill, add that cost. 1602 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1603 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1604 } 1605 } 1606 1607 if (BI.LiveIn) 1608 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1609 if (BI.LiveOut) 1610 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1611 while (Ins--) 1612 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1613 } 1614 1615 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1616 unsigned Number = Cand.ActiveBlocks[i]; 1617 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1618 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1619 if (!RegIn && !RegOut) 1620 continue; 1621 if (RegIn && RegOut) { 1622 // We need double spill code if this block has interference. 1623 Cand.Intf.moveToBlock(Number); 1624 if (Cand.Intf.hasInterference()) { 1625 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1626 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1627 1628 // Check wheather a local interval is going to be created during the 1629 // region split. 1630 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1631 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1632 // This interference cause our eviction from this assignment, we might 1633 // evict somebody else, add that cost. 1634 // See splitCanCauseEvictionChain for detailed description of 1635 // scenarios. 1636 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1637 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1638 1639 *CanCauseEvictionChain = true; 1640 } 1641 } 1642 continue; 1643 } 1644 // live-in / stack-out or stack-in live-out. 1645 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1646 } 1647 return GlobalCost; 1648 } 1649 1650 /// splitAroundRegion - Split the current live range around the regions 1651 /// determined by BundleCand and GlobalCand. 1652 /// 1653 /// Before calling this function, GlobalCand and BundleCand must be initialized 1654 /// so each bundle is assigned to a valid candidate, or NoCand for the 1655 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1656 /// objects must be initialized for the current live range, and intervals 1657 /// created for the used candidates. 1658 /// 1659 /// @param LREdit The LiveRangeEdit object handling the current split. 1660 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1661 /// must appear in this list. 1662 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1663 ArrayRef<unsigned> UsedCands) { 1664 // These are the intervals created for new global ranges. We may create more 1665 // intervals for local ranges. 1666 const unsigned NumGlobalIntvs = LREdit.size(); 1667 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1668 << " globals.\n"); 1669 assert(NumGlobalIntvs && "No global intervals configured"); 1670 1671 // Isolate even single instructions when dealing with a proper sub-class. 1672 // That guarantees register class inflation for the stack interval because it 1673 // is all copies. 1674 unsigned Reg = SA->getParent().reg; 1675 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1676 1677 // First handle all the blocks with uses. 1678 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1679 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1680 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1681 unsigned Number = BI.MBB->getNumber(); 1682 unsigned IntvIn = 0, IntvOut = 0; 1683 SlotIndex IntfIn, IntfOut; 1684 if (BI.LiveIn) { 1685 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1686 if (CandIn != NoCand) { 1687 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1688 IntvIn = Cand.IntvIdx; 1689 Cand.Intf.moveToBlock(Number); 1690 IntfIn = Cand.Intf.first(); 1691 } 1692 } 1693 if (BI.LiveOut) { 1694 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1695 if (CandOut != NoCand) { 1696 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1697 IntvOut = Cand.IntvIdx; 1698 Cand.Intf.moveToBlock(Number); 1699 IntfOut = Cand.Intf.last(); 1700 } 1701 } 1702 1703 // Create separate intervals for isolated blocks with multiple uses. 1704 if (!IntvIn && !IntvOut) { 1705 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1706 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1707 SE->splitSingleBlock(BI); 1708 continue; 1709 } 1710 1711 if (IntvIn && IntvOut) 1712 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1713 else if (IntvIn) 1714 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1715 else 1716 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1717 } 1718 1719 // Handle live-through blocks. The relevant live-through blocks are stored in 1720 // the ActiveBlocks list with each candidate. We need to filter out 1721 // duplicates. 1722 BitVector Todo = SA->getThroughBlocks(); 1723 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1724 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1725 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1726 unsigned Number = Blocks[i]; 1727 if (!Todo.test(Number)) 1728 continue; 1729 Todo.reset(Number); 1730 1731 unsigned IntvIn = 0, IntvOut = 0; 1732 SlotIndex IntfIn, IntfOut; 1733 1734 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1735 if (CandIn != NoCand) { 1736 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1737 IntvIn = Cand.IntvIdx; 1738 Cand.Intf.moveToBlock(Number); 1739 IntfIn = Cand.Intf.first(); 1740 } 1741 1742 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1743 if (CandOut != NoCand) { 1744 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1745 IntvOut = Cand.IntvIdx; 1746 Cand.Intf.moveToBlock(Number); 1747 IntfOut = Cand.Intf.last(); 1748 } 1749 if (!IntvIn && !IntvOut) 1750 continue; 1751 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1752 } 1753 } 1754 1755 ++NumGlobalSplits; 1756 1757 SmallVector<unsigned, 8> IntvMap; 1758 SE->finish(&IntvMap); 1759 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1760 1761 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1762 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1763 1764 // Sort out the new intervals created by splitting. We get four kinds: 1765 // - Remainder intervals should not be split again. 1766 // - Candidate intervals can be assigned to Cand.PhysReg. 1767 // - Block-local splits are candidates for local splitting. 1768 // - DCE leftovers should go back on the queue. 1769 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1770 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1771 1772 // Ignore old intervals from DCE. 1773 if (getStage(Reg) != RS_New) 1774 continue; 1775 1776 // Remainder interval. Don't try splitting again, spill if it doesn't 1777 // allocate. 1778 if (IntvMap[i] == 0) { 1779 setStage(Reg, RS_Spill); 1780 continue; 1781 } 1782 1783 // Global intervals. Allow repeated splitting as long as the number of live 1784 // blocks is strictly decreasing. 1785 if (IntvMap[i] < NumGlobalIntvs) { 1786 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1787 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1788 << " blocks as original.\n"); 1789 // Don't allow repeated splitting as a safe guard against looping. 1790 setStage(Reg, RS_Split2); 1791 } 1792 continue; 1793 } 1794 1795 // Other intervals are treated as new. This includes local intervals created 1796 // for blocks with multiple uses, and anything created by DCE. 1797 } 1798 1799 if (VerifyEnabled) 1800 MF->verify(this, "After splitting live range around region"); 1801 } 1802 1803 // Global split has high compile time cost especially for large live range. 1804 // Return false for the case here where the potential benefit will never 1805 // worth the cost. 1806 unsigned RAGreedy::isSplitBenefitWorthCost(LiveInterval &VirtReg) { 1807 MachineInstr *MI = MRI->getUniqueVRegDef(VirtReg.reg); 1808 if (MI && TII->isTriviallyReMaterializable(*MI, AA) && 1809 VirtReg.size() > HugeSizeForSplit) 1810 return false; 1811 return true; 1812 } 1813 1814 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1815 SmallVectorImpl<unsigned> &NewVRegs) { 1816 if (!isSplitBenefitWorthCost(VirtReg)) 1817 return 0; 1818 unsigned NumCands = 0; 1819 BlockFrequency SpillCost = calcSpillCost(); 1820 BlockFrequency BestCost; 1821 1822 // Check if we can split this live range around a compact region. 1823 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1824 if (HasCompact) { 1825 // Yes, keep GlobalCand[0] as the compact region candidate. 1826 NumCands = 1; 1827 BestCost = BlockFrequency::getMaxFrequency(); 1828 } else { 1829 // No benefit from the compact region, our fallback will be per-block 1830 // splitting. Make sure we find a solution that is cheaper than spilling. 1831 BestCost = SpillCost; 1832 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1833 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1834 } 1835 1836 bool CanCauseEvictionChain = false; 1837 unsigned BestCand = 1838 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1839 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1840 1841 // Split candidates with compact regions can cause a bad eviction sequence. 1842 // See splitCanCauseEvictionChain for detailed description of scenarios. 1843 // To avoid it, we need to comapre the cost with the spill cost and not the 1844 // current max frequency. 1845 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1846 CanCauseEvictionChain) { 1847 return 0; 1848 } 1849 1850 // No solutions found, fall back to single block splitting. 1851 if (!HasCompact && BestCand == NoCand) 1852 return 0; 1853 1854 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1855 } 1856 1857 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1858 AllocationOrder &Order, 1859 BlockFrequency &BestCost, 1860 unsigned &NumCands, bool IgnoreCSR, 1861 bool *CanCauseEvictionChain) { 1862 unsigned BestCand = NoCand; 1863 Order.rewind(); 1864 while (unsigned PhysReg = Order.next()) { 1865 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1866 continue; 1867 1868 // Discard bad candidates before we run out of interference cache cursors. 1869 // This will only affect register classes with a lot of registers (>32). 1870 if (NumCands == IntfCache.getMaxCursors()) { 1871 unsigned WorstCount = ~0u; 1872 unsigned Worst = 0; 1873 for (unsigned i = 0; i != NumCands; ++i) { 1874 if (i == BestCand || !GlobalCand[i].PhysReg) 1875 continue; 1876 unsigned Count = GlobalCand[i].LiveBundles.count(); 1877 if (Count < WorstCount) { 1878 Worst = i; 1879 WorstCount = Count; 1880 } 1881 } 1882 --NumCands; 1883 GlobalCand[Worst] = GlobalCand[NumCands]; 1884 if (BestCand == NumCands) 1885 BestCand = Worst; 1886 } 1887 1888 if (GlobalCand.size() <= NumCands) 1889 GlobalCand.resize(NumCands+1); 1890 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1891 Cand.reset(IntfCache, PhysReg); 1892 1893 SpillPlacer->prepare(Cand.LiveBundles); 1894 BlockFrequency Cost; 1895 if (!addSplitConstraints(Cand.Intf, Cost)) { 1896 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1897 continue; 1898 } 1899 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1900 MBFI->printBlockFreq(dbgs(), Cost)); 1901 if (Cost >= BestCost) { 1902 LLVM_DEBUG({ 1903 if (BestCand == NoCand) 1904 dbgs() << " worse than no bundles\n"; 1905 else 1906 dbgs() << " worse than " 1907 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1908 }); 1909 continue; 1910 } 1911 if (!growRegion(Cand)) { 1912 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1913 continue; 1914 } 1915 1916 SpillPlacer->finish(); 1917 1918 // No live bundles, defer to splitSingleBlocks(). 1919 if (!Cand.LiveBundles.any()) { 1920 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1921 continue; 1922 } 1923 1924 bool HasEvictionChain = false; 1925 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1926 LLVM_DEBUG({ 1927 dbgs() << ", total = "; 1928 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1929 for (int i : Cand.LiveBundles.set_bits()) 1930 dbgs() << " EB#" << i; 1931 dbgs() << ".\n"; 1932 }); 1933 if (Cost < BestCost) { 1934 BestCand = NumCands; 1935 BestCost = Cost; 1936 // See splitCanCauseEvictionChain for detailed description of bad 1937 // eviction chain scenarios. 1938 if (CanCauseEvictionChain) 1939 *CanCauseEvictionChain = HasEvictionChain; 1940 } 1941 ++NumCands; 1942 } 1943 1944 if (CanCauseEvictionChain && BestCand != NoCand) { 1945 // See splitCanCauseEvictionChain for detailed description of bad 1946 // eviction chain scenarios. 1947 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1948 << printReg(VirtReg.reg, TRI) << " may "); 1949 if (!(*CanCauseEvictionChain)) 1950 LLVM_DEBUG(dbgs() << "not "); 1951 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1952 } 1953 1954 return BestCand; 1955 } 1956 1957 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1958 bool HasCompact, 1959 SmallVectorImpl<unsigned> &NewVRegs) { 1960 SmallVector<unsigned, 8> UsedCands; 1961 // Prepare split editor. 1962 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1963 SE->reset(LREdit, SplitSpillMode); 1964 1965 // Assign all edge bundles to the preferred candidate, or NoCand. 1966 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1967 1968 // Assign bundles for the best candidate region. 1969 if (BestCand != NoCand) { 1970 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1971 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1972 UsedCands.push_back(BestCand); 1973 Cand.IntvIdx = SE->openIntv(); 1974 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1975 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1976 (void)B; 1977 } 1978 } 1979 1980 // Assign bundles for the compact region. 1981 if (HasCompact) { 1982 GlobalSplitCandidate &Cand = GlobalCand.front(); 1983 assert(!Cand.PhysReg && "Compact region has no physreg"); 1984 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1985 UsedCands.push_back(0); 1986 Cand.IntvIdx = SE->openIntv(); 1987 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1988 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1989 (void)B; 1990 } 1991 } 1992 1993 splitAroundRegion(LREdit, UsedCands); 1994 return 0; 1995 } 1996 1997 //===----------------------------------------------------------------------===// 1998 // Per-Block Splitting 1999 //===----------------------------------------------------------------------===// 2000 2001 /// tryBlockSplit - Split a global live range around every block with uses. This 2002 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 2003 /// they don't allocate. 2004 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2005 SmallVectorImpl<unsigned> &NewVRegs) { 2006 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 2007 unsigned Reg = VirtReg.reg; 2008 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 2009 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2010 SE->reset(LREdit, SplitSpillMode); 2011 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 2012 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 2013 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 2014 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 2015 SE->splitSingleBlock(BI); 2016 } 2017 // No blocks were split. 2018 if (LREdit.empty()) 2019 return 0; 2020 2021 // We did split for some blocks. 2022 SmallVector<unsigned, 8> IntvMap; 2023 SE->finish(&IntvMap); 2024 2025 // Tell LiveDebugVariables about the new ranges. 2026 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2027 2028 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2029 2030 // Sort out the new intervals created by splitting. The remainder interval 2031 // goes straight to spilling, the new local ranges get to stay RS_New. 2032 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 2033 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 2034 if (getStage(LI) == RS_New && IntvMap[i] == 0) 2035 setStage(LI, RS_Spill); 2036 } 2037 2038 if (VerifyEnabled) 2039 MF->verify(this, "After splitting live range around basic blocks"); 2040 return 0; 2041 } 2042 2043 //===----------------------------------------------------------------------===// 2044 // Per-Instruction Splitting 2045 //===----------------------------------------------------------------------===// 2046 2047 /// Get the number of allocatable registers that match the constraints of \p Reg 2048 /// on \p MI and that are also in \p SuperRC. 2049 static unsigned getNumAllocatableRegsForConstraints( 2050 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 2051 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2052 const RegisterClassInfo &RCI) { 2053 assert(SuperRC && "Invalid register class"); 2054 2055 const TargetRegisterClass *ConstrainedRC = 2056 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2057 /* ExploreBundle */ true); 2058 if (!ConstrainedRC) 2059 return 0; 2060 return RCI.getNumAllocatableRegs(ConstrainedRC); 2061 } 2062 2063 /// tryInstructionSplit - Split a live range around individual instructions. 2064 /// This is normally not worthwhile since the spiller is doing essentially the 2065 /// same thing. However, when the live range is in a constrained register 2066 /// class, it may help to insert copies such that parts of the live range can 2067 /// be moved to a larger register class. 2068 /// 2069 /// This is similar to spilling to a larger register class. 2070 unsigned 2071 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2072 SmallVectorImpl<unsigned> &NewVRegs) { 2073 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2074 // There is no point to this if there are no larger sub-classes. 2075 if (!RegClassInfo.isProperSubClass(CurRC)) 2076 return 0; 2077 2078 // Always enable split spill mode, since we're effectively spilling to a 2079 // register. 2080 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2081 SE->reset(LREdit, SplitEditor::SM_Size); 2082 2083 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2084 if (Uses.size() <= 1) 2085 return 0; 2086 2087 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2088 << " individual instrs.\n"); 2089 2090 const TargetRegisterClass *SuperRC = 2091 TRI->getLargestLegalSuperClass(CurRC, *MF); 2092 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2093 // Split around every non-copy instruction if this split will relax 2094 // the constraints on the virtual register. 2095 // Otherwise, splitting just inserts uncoalescable copies that do not help 2096 // the allocation. 2097 for (unsigned i = 0; i != Uses.size(); ++i) { 2098 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 2099 if (MI->isFullCopy() || 2100 SuperRCNumAllocatableRegs == 2101 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, 2102 TRI, RCI)) { 2103 LLVM_DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 2104 continue; 2105 } 2106 SE->openIntv(); 2107 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 2108 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 2109 SE->useIntv(SegStart, SegStop); 2110 } 2111 2112 if (LREdit.empty()) { 2113 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2114 return 0; 2115 } 2116 2117 SmallVector<unsigned, 8> IntvMap; 2118 SE->finish(&IntvMap); 2119 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 2120 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2121 2122 // Assign all new registers to RS_Spill. This was the last chance. 2123 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2124 return 0; 2125 } 2126 2127 //===----------------------------------------------------------------------===// 2128 // Local Splitting 2129 //===----------------------------------------------------------------------===// 2130 2131 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2132 /// in order to use PhysReg between two entries in SA->UseSlots. 2133 /// 2134 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 2135 /// 2136 void RAGreedy::calcGapWeights(unsigned PhysReg, 2137 SmallVectorImpl<float> &GapWeight) { 2138 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2139 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2140 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2141 const unsigned NumGaps = Uses.size()-1; 2142 2143 // Start and end points for the interference check. 2144 SlotIndex StartIdx = 2145 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2146 SlotIndex StopIdx = 2147 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2148 2149 GapWeight.assign(NumGaps, 0.0f); 2150 2151 // Add interference from each overlapping register. 2152 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2153 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2154 .checkInterference()) 2155 continue; 2156 2157 // We know that VirtReg is a continuous interval from FirstInstr to 2158 // LastInstr, so we don't need InterferenceQuery. 2159 // 2160 // Interference that overlaps an instruction is counted in both gaps 2161 // surrounding the instruction. The exception is interference before 2162 // StartIdx and after StopIdx. 2163 // 2164 LiveIntervalUnion::SegmentIter IntI = 2165 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2166 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2167 // Skip the gaps before IntI. 2168 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2169 if (++Gap == NumGaps) 2170 break; 2171 if (Gap == NumGaps) 2172 break; 2173 2174 // Update the gaps covered by IntI. 2175 const float weight = IntI.value()->weight; 2176 for (; Gap != NumGaps; ++Gap) { 2177 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2178 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2179 break; 2180 } 2181 if (Gap == NumGaps) 2182 break; 2183 } 2184 } 2185 2186 // Add fixed interference. 2187 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2188 const LiveRange &LR = LIS->getRegUnit(*Units); 2189 LiveRange::const_iterator I = LR.find(StartIdx); 2190 LiveRange::const_iterator E = LR.end(); 2191 2192 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2193 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2194 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2195 if (++Gap == NumGaps) 2196 break; 2197 if (Gap == NumGaps) 2198 break; 2199 2200 for (; Gap != NumGaps; ++Gap) { 2201 GapWeight[Gap] = huge_valf; 2202 if (Uses[Gap+1].getBaseIndex() >= I->end) 2203 break; 2204 } 2205 if (Gap == NumGaps) 2206 break; 2207 } 2208 } 2209 } 2210 2211 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2212 /// basic block. 2213 /// 2214 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2215 SmallVectorImpl<unsigned> &NewVRegs) { 2216 // TODO: the function currently only handles a single UseBlock; it should be 2217 // possible to generalize. 2218 if (SA->getUseBlocks().size() != 1) 2219 return 0; 2220 2221 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2222 2223 // Note that it is possible to have an interval that is live-in or live-out 2224 // while only covering a single block - A phi-def can use undef values from 2225 // predecessors, and the block could be a single-block loop. 2226 // We don't bother doing anything clever about such a case, we simply assume 2227 // that the interval is continuous from FirstInstr to LastInstr. We should 2228 // make sure that we don't do anything illegal to such an interval, though. 2229 2230 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2231 if (Uses.size() <= 2) 2232 return 0; 2233 const unsigned NumGaps = Uses.size()-1; 2234 2235 LLVM_DEBUG({ 2236 dbgs() << "tryLocalSplit: "; 2237 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 2238 dbgs() << ' ' << Uses[i]; 2239 dbgs() << '\n'; 2240 }); 2241 2242 // If VirtReg is live across any register mask operands, compute a list of 2243 // gaps with register masks. 2244 SmallVector<unsigned, 8> RegMaskGaps; 2245 if (Matrix->checkRegMaskInterference(VirtReg)) { 2246 // Get regmask slots for the whole block. 2247 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2248 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2249 // Constrain to VirtReg's live range. 2250 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 2251 Uses.front().getRegSlot()) - RMS.begin(); 2252 unsigned re = RMS.size(); 2253 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 2254 // Look for Uses[i] <= RMS <= Uses[i+1]. 2255 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 2256 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 2257 continue; 2258 // Skip a regmask on the same instruction as the last use. It doesn't 2259 // overlap the live range. 2260 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 2261 break; 2262 LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' 2263 << Uses[i + 1]); 2264 RegMaskGaps.push_back(i); 2265 // Advance ri to the next gap. A regmask on one of the uses counts in 2266 // both gaps. 2267 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 2268 ++ri; 2269 } 2270 LLVM_DEBUG(dbgs() << '\n'); 2271 } 2272 2273 // Since we allow local split results to be split again, there is a risk of 2274 // creating infinite loops. It is tempting to require that the new live 2275 // ranges have less instructions than the original. That would guarantee 2276 // convergence, but it is too strict. A live range with 3 instructions can be 2277 // split 2+3 (including the COPY), and we want to allow that. 2278 // 2279 // Instead we use these rules: 2280 // 2281 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2282 // noop split, of course). 2283 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2284 // the new ranges must have fewer instructions than before the split. 2285 // 3. New ranges with the same number of instructions are marked RS_Split2, 2286 // smaller ranges are marked RS_New. 2287 // 2288 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2289 // excessive splitting and infinite loops. 2290 // 2291 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2292 2293 // Best split candidate. 2294 unsigned BestBefore = NumGaps; 2295 unsigned BestAfter = 0; 2296 float BestDiff = 0; 2297 2298 const float blockFreq = 2299 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2300 (1.0f / MBFI->getEntryFreq()); 2301 SmallVector<float, 8> GapWeight; 2302 2303 Order.rewind(); 2304 while (unsigned PhysReg = Order.next()) { 2305 // Keep track of the largest spill weight that would need to be evicted in 2306 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 2307 calcGapWeights(PhysReg, GapWeight); 2308 2309 // Remove any gaps with regmask clobbers. 2310 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2311 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 2312 GapWeight[RegMaskGaps[i]] = huge_valf; 2313 2314 // Try to find the best sequence of gaps to close. 2315 // The new spill weight must be larger than any gap interference. 2316 2317 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2318 unsigned SplitBefore = 0, SplitAfter = 1; 2319 2320 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2321 // It is the spill weight that needs to be evicted. 2322 float MaxGap = GapWeight[0]; 2323 2324 while (true) { 2325 // Live before/after split? 2326 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2327 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2328 2329 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2330 << '-' << Uses[SplitAfter] << " i=" << MaxGap); 2331 2332 // Stop before the interval gets so big we wouldn't be making progress. 2333 if (!LiveBefore && !LiveAfter) { 2334 LLVM_DEBUG(dbgs() << " all\n"); 2335 break; 2336 } 2337 // Should the interval be extended or shrunk? 2338 bool Shrink = true; 2339 2340 // How many gaps would the new range have? 2341 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2342 2343 // Legally, without causing looping? 2344 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2345 2346 if (Legal && MaxGap < huge_valf) { 2347 // Estimate the new spill weight. Each instruction reads or writes the 2348 // register. Conservatively assume there are no read-modify-write 2349 // instructions. 2350 // 2351 // Try to guess the size of the new interval. 2352 const float EstWeight = normalizeSpillWeight( 2353 blockFreq * (NewGaps + 1), 2354 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2355 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2356 1); 2357 // Would this split be possible to allocate? 2358 // Never allocate all gaps, we wouldn't be making progress. 2359 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2360 if (EstWeight * Hysteresis >= MaxGap) { 2361 Shrink = false; 2362 float Diff = EstWeight - MaxGap; 2363 if (Diff > BestDiff) { 2364 LLVM_DEBUG(dbgs() << " (best)"); 2365 BestDiff = Hysteresis * Diff; 2366 BestBefore = SplitBefore; 2367 BestAfter = SplitAfter; 2368 } 2369 } 2370 } 2371 2372 // Try to shrink. 2373 if (Shrink) { 2374 if (++SplitBefore < SplitAfter) { 2375 LLVM_DEBUG(dbgs() << " shrink\n"); 2376 // Recompute the max when necessary. 2377 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2378 MaxGap = GapWeight[SplitBefore]; 2379 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 2380 MaxGap = std::max(MaxGap, GapWeight[i]); 2381 } 2382 continue; 2383 } 2384 MaxGap = 0; 2385 } 2386 2387 // Try to extend the interval. 2388 if (SplitAfter >= NumGaps) { 2389 LLVM_DEBUG(dbgs() << " end\n"); 2390 break; 2391 } 2392 2393 LLVM_DEBUG(dbgs() << " extend\n"); 2394 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2395 } 2396 } 2397 2398 // Didn't find any candidates? 2399 if (BestBefore == NumGaps) 2400 return 0; 2401 2402 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2403 << Uses[BestAfter] << ", " << BestDiff << ", " 2404 << (BestAfter - BestBefore + 1) << " instrs\n"); 2405 2406 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2407 SE->reset(LREdit); 2408 2409 SE->openIntv(); 2410 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2411 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2412 SE->useIntv(SegStart, SegStop); 2413 SmallVector<unsigned, 8> IntvMap; 2414 SE->finish(&IntvMap); 2415 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 2416 2417 // If the new range has the same number of instructions as before, mark it as 2418 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2419 // leave the new intervals as RS_New so they can compete. 2420 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2421 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2422 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2423 if (NewGaps >= NumGaps) { 2424 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: "); 2425 assert(!ProgressRequired && "Didn't make progress when it was required."); 2426 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 2427 if (IntvMap[i] == 1) { 2428 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 2429 LLVM_DEBUG(dbgs() << printReg(LREdit.get(i))); 2430 } 2431 LLVM_DEBUG(dbgs() << '\n'); 2432 } 2433 ++NumLocalSplits; 2434 2435 return 0; 2436 } 2437 2438 //===----------------------------------------------------------------------===// 2439 // Live Range Splitting 2440 //===----------------------------------------------------------------------===// 2441 2442 /// trySplit - Try to split VirtReg or one of its interferences, making it 2443 /// assignable. 2444 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2445 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2446 SmallVectorImpl<unsigned>&NewVRegs) { 2447 // Ranges must be Split2 or less. 2448 if (getStage(VirtReg) >= RS_Spill) 2449 return 0; 2450 2451 // Local intervals are handled separately. 2452 if (LIS->intervalIsInOneMBB(VirtReg)) { 2453 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2454 TimerGroupDescription, TimePassesIsEnabled); 2455 SA->analyze(&VirtReg); 2456 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2457 if (PhysReg || !NewVRegs.empty()) 2458 return PhysReg; 2459 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2460 } 2461 2462 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2463 TimerGroupDescription, TimePassesIsEnabled); 2464 2465 SA->analyze(&VirtReg); 2466 2467 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2468 // coalescer. That may cause the range to become allocatable which means that 2469 // tryRegionSplit won't be making progress. This check should be replaced with 2470 // an assertion when the coalescer is fixed. 2471 if (SA->didRepairRange()) { 2472 // VirtReg has changed, so all cached queries are invalid. 2473 Matrix->invalidateVirtRegs(); 2474 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 2475 return PhysReg; 2476 } 2477 2478 // First try to split around a region spanning multiple blocks. RS_Split2 2479 // ranges already made dubious progress with region splitting, so they go 2480 // straight to single block splitting. 2481 if (getStage(VirtReg) < RS_Split2) { 2482 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2483 if (PhysReg || !NewVRegs.empty()) 2484 return PhysReg; 2485 } 2486 2487 // Then isolate blocks. 2488 return tryBlockSplit(VirtReg, Order, NewVRegs); 2489 } 2490 2491 //===----------------------------------------------------------------------===// 2492 // Last Chance Recoloring 2493 //===----------------------------------------------------------------------===// 2494 2495 /// Return true if \p reg has any tied def operand. 2496 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2497 for (const MachineOperand &MO : MRI->def_operands(reg)) 2498 if (MO.isTied()) 2499 return true; 2500 2501 return false; 2502 } 2503 2504 /// mayRecolorAllInterferences - Check if the virtual registers that 2505 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2506 /// recolored to free \p PhysReg. 2507 /// When true is returned, \p RecoloringCandidates has been augmented with all 2508 /// the live intervals that need to be recolored in order to free \p PhysReg 2509 /// for \p VirtReg. 2510 /// \p FixedRegisters contains all the virtual registers that cannot be 2511 /// recolored. 2512 bool 2513 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 2514 SmallLISet &RecoloringCandidates, 2515 const SmallVirtRegSet &FixedRegisters) { 2516 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2517 2518 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2519 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2520 // If there is LastChanceRecoloringMaxInterference or more interferences, 2521 // chances are one would not be recolorable. 2522 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2523 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2524 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2525 CutOffInfo |= CO_Interf; 2526 return false; 2527 } 2528 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 2529 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 2530 // If Intf is done and sit on the same register class as VirtReg, 2531 // it would not be recolorable as it is in the same state as VirtReg. 2532 // However, if VirtReg has tied defs and Intf doesn't, then 2533 // there is still a point in examining if it can be recolorable. 2534 if (((getStage(*Intf) == RS_Done && 2535 MRI->getRegClass(Intf->reg) == CurRC) && 2536 !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) || 2537 FixedRegisters.count(Intf->reg)) { 2538 LLVM_DEBUG( 2539 dbgs() << "Early abort: the interference is not recolorable.\n"); 2540 return false; 2541 } 2542 RecoloringCandidates.insert(Intf); 2543 } 2544 } 2545 return true; 2546 } 2547 2548 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2549 /// its interferences. 2550 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2551 /// virtual register that was using it. The recoloring process may recursively 2552 /// use the last chance recoloring. Therefore, when a virtual register has been 2553 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2554 /// be last-chance-recolored again during this recoloring "session". 2555 /// E.g., 2556 /// Let 2557 /// vA can use {R1, R2 } 2558 /// vB can use { R2, R3} 2559 /// vC can use {R1 } 2560 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2561 /// instance) and they all interfere. 2562 /// 2563 /// vA is assigned R1 2564 /// vB is assigned R2 2565 /// vC tries to evict vA but vA is already done. 2566 /// Regular register allocation fails. 2567 /// 2568 /// Last chance recoloring kicks in: 2569 /// vC does as if vA was evicted => vC uses R1. 2570 /// vC is marked as fixed. 2571 /// vA needs to find a color. 2572 /// None are available. 2573 /// vA cannot evict vC: vC is a fixed virtual register now. 2574 /// vA does as if vB was evicted => vA uses R2. 2575 /// vB needs to find a color. 2576 /// R3 is available. 2577 /// Recoloring => vC = R1, vA = R2, vB = R3 2578 /// 2579 /// \p Order defines the preferred allocation order for \p VirtReg. 2580 /// \p NewRegs will contain any new virtual register that have been created 2581 /// (split, spill) during the process and that must be assigned. 2582 /// \p FixedRegisters contains all the virtual registers that cannot be 2583 /// recolored. 2584 /// \p Depth gives the current depth of the last chance recoloring. 2585 /// \return a physical register that can be used for VirtReg or ~0u if none 2586 /// exists. 2587 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2588 AllocationOrder &Order, 2589 SmallVectorImpl<unsigned> &NewVRegs, 2590 SmallVirtRegSet &FixedRegisters, 2591 unsigned Depth) { 2592 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2593 // Ranges must be Done. 2594 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2595 "Last chance recoloring should really be last chance"); 2596 // Set the max depth to LastChanceRecoloringMaxDepth. 2597 // We may want to reconsider that if we end up with a too large search space 2598 // for target with hundreds of registers. 2599 // Indeed, in that case we may want to cut the search space earlier. 2600 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2601 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2602 CutOffInfo |= CO_Depth; 2603 return ~0u; 2604 } 2605 2606 // Set of Live intervals that will need to be recolored. 2607 SmallLISet RecoloringCandidates; 2608 // Record the original mapping virtual register to physical register in case 2609 // the recoloring fails. 2610 DenseMap<unsigned, unsigned> VirtRegToPhysReg; 2611 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2612 // this recoloring "session". 2613 FixedRegisters.insert(VirtReg.reg); 2614 SmallVector<unsigned, 4> CurrentNewVRegs; 2615 2616 Order.rewind(); 2617 while (unsigned PhysReg = Order.next()) { 2618 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2619 << printReg(PhysReg, TRI) << '\n'); 2620 RecoloringCandidates.clear(); 2621 VirtRegToPhysReg.clear(); 2622 CurrentNewVRegs.clear(); 2623 2624 // It is only possible to recolor virtual register interference. 2625 if (Matrix->checkInterference(VirtReg, PhysReg) > 2626 LiveRegMatrix::IK_VirtReg) { 2627 LLVM_DEBUG( 2628 dbgs() << "Some interferences are not with virtual registers.\n"); 2629 2630 continue; 2631 } 2632 2633 // Early give up on this PhysReg if it is obvious we cannot recolor all 2634 // the interferences. 2635 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2636 FixedRegisters)) { 2637 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2638 continue; 2639 } 2640 2641 // RecoloringCandidates contains all the virtual registers that interfer 2642 // with VirtReg on PhysReg (or one of its aliases). 2643 // Enqueue them for recoloring and perform the actual recoloring. 2644 PQueue RecoloringQueue; 2645 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2646 EndIt = RecoloringCandidates.end(); 2647 It != EndIt; ++It) { 2648 unsigned ItVirtReg = (*It)->reg; 2649 enqueue(RecoloringQueue, *It); 2650 assert(VRM->hasPhys(ItVirtReg) && 2651 "Interferences are supposed to be with allocated variables"); 2652 2653 // Record the current allocation. 2654 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2655 // unset the related struct. 2656 Matrix->unassign(**It); 2657 } 2658 2659 // Do as if VirtReg was assigned to PhysReg so that the underlying 2660 // recoloring has the right information about the interferes and 2661 // available colors. 2662 Matrix->assign(VirtReg, PhysReg); 2663 2664 // Save the current recoloring state. 2665 // If we cannot recolor all the interferences, we will have to start again 2666 // at this point for the next physical register. 2667 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2668 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2669 FixedRegisters, Depth)) { 2670 // Push the queued vregs into the main queue. 2671 for (unsigned NewVReg : CurrentNewVRegs) 2672 NewVRegs.push_back(NewVReg); 2673 // Do not mess up with the global assignment process. 2674 // I.e., VirtReg must be unassigned. 2675 Matrix->unassign(VirtReg); 2676 return PhysReg; 2677 } 2678 2679 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2680 << printReg(PhysReg, TRI) << '\n'); 2681 2682 // The recoloring attempt failed, undo the changes. 2683 FixedRegisters = SaveFixedRegisters; 2684 Matrix->unassign(VirtReg); 2685 2686 // For a newly created vreg which is also in RecoloringCandidates, 2687 // don't add it to NewVRegs because its physical register will be restored 2688 // below. Other vregs in CurrentNewVRegs are created by calling 2689 // selectOrSplit and should be added into NewVRegs. 2690 for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(), 2691 End = CurrentNewVRegs.end(); 2692 Next != End; ++Next) { 2693 if (RecoloringCandidates.count(&LIS->getInterval(*Next))) 2694 continue; 2695 NewVRegs.push_back(*Next); 2696 } 2697 2698 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2699 EndIt = RecoloringCandidates.end(); 2700 It != EndIt; ++It) { 2701 unsigned ItVirtReg = (*It)->reg; 2702 if (VRM->hasPhys(ItVirtReg)) 2703 Matrix->unassign(**It); 2704 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2705 Matrix->assign(**It, ItPhysReg); 2706 } 2707 } 2708 2709 // Last chance recoloring did not worked either, give up. 2710 return ~0u; 2711 } 2712 2713 /// tryRecoloringCandidates - Try to assign a new color to every register 2714 /// in \RecoloringQueue. 2715 /// \p NewRegs will contain any new virtual register created during the 2716 /// recoloring process. 2717 /// \p FixedRegisters[in/out] contains all the registers that have been 2718 /// recolored. 2719 /// \return true if all virtual registers in RecoloringQueue were successfully 2720 /// recolored, false otherwise. 2721 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2722 SmallVectorImpl<unsigned> &NewVRegs, 2723 SmallVirtRegSet &FixedRegisters, 2724 unsigned Depth) { 2725 while (!RecoloringQueue.empty()) { 2726 LiveInterval *LI = dequeue(RecoloringQueue); 2727 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2728 unsigned PhysReg; 2729 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2730 // When splitting happens, the live-range may actually be empty. 2731 // In that case, this is okay to continue the recoloring even 2732 // if we did not find an alternative color for it. Indeed, 2733 // there will not be anything to color for LI in the end. 2734 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2735 return false; 2736 2737 if (!PhysReg) { 2738 assert(LI->empty() && "Only empty live-range do not require a register"); 2739 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2740 << " succeeded. Empty LI.\n"); 2741 continue; 2742 } 2743 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2744 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2745 2746 Matrix->assign(*LI, PhysReg); 2747 FixedRegisters.insert(LI->reg); 2748 } 2749 return true; 2750 } 2751 2752 //===----------------------------------------------------------------------===// 2753 // Main Entry Point 2754 //===----------------------------------------------------------------------===// 2755 2756 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2757 SmallVectorImpl<unsigned> &NewVRegs) { 2758 CutOffInfo = CO_None; 2759 LLVMContext &Ctx = MF->getFunction().getContext(); 2760 SmallVirtRegSet FixedRegisters; 2761 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2762 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2763 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2764 if (CutOffEncountered == CO_Depth) 2765 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2766 "reached. Use -fexhaustive-register-search to skip " 2767 "cutoffs"); 2768 else if (CutOffEncountered == CO_Interf) 2769 Ctx.emitError("register allocation failed: maximum interference for " 2770 "recoloring reached. Use -fexhaustive-register-search " 2771 "to skip cutoffs"); 2772 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2773 Ctx.emitError("register allocation failed: maximum interference and " 2774 "depth for recoloring reached. Use " 2775 "-fexhaustive-register-search to skip cutoffs"); 2776 } 2777 return Reg; 2778 } 2779 2780 /// Using a CSR for the first time has a cost because it causes push|pop 2781 /// to be added to prologue|epilogue. Splitting a cold section of the live 2782 /// range can have lower cost than using the CSR for the first time; 2783 /// Spilling a live range in the cold path can have lower cost than using 2784 /// the CSR for the first time. Returns the physical register if we decide 2785 /// to use the CSR; otherwise return 0. 2786 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2787 AllocationOrder &Order, 2788 unsigned PhysReg, 2789 unsigned &CostPerUseLimit, 2790 SmallVectorImpl<unsigned> &NewVRegs) { 2791 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2792 // We choose spill over using the CSR for the first time if the spill cost 2793 // is lower than CSRCost. 2794 SA->analyze(&VirtReg); 2795 if (calcSpillCost() >= CSRCost) 2796 return PhysReg; 2797 2798 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2799 // we will not use a callee-saved register in tryEvict. 2800 CostPerUseLimit = 1; 2801 return 0; 2802 } 2803 if (getStage(VirtReg) < RS_Split) { 2804 // We choose pre-splitting over using the CSR for the first time if 2805 // the cost of splitting is lower than CSRCost. 2806 SA->analyze(&VirtReg); 2807 unsigned NumCands = 0; 2808 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2809 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2810 NumCands, true /*IgnoreCSR*/); 2811 if (BestCand == NoCand) 2812 // Use the CSR if we can't find a region split below CSRCost. 2813 return PhysReg; 2814 2815 // Perform the actual pre-splitting. 2816 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2817 return 0; 2818 } 2819 return PhysReg; 2820 } 2821 2822 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2823 // Do not keep invalid information around. 2824 SetOfBrokenHints.remove(&LI); 2825 } 2826 2827 void RAGreedy::initializeCSRCost() { 2828 // We use the larger one out of the command-line option and the value report 2829 // by TRI. 2830 CSRCost = BlockFrequency( 2831 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2832 if (!CSRCost.getFrequency()) 2833 return; 2834 2835 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2836 uint64_t ActualEntry = MBFI->getEntryFreq(); 2837 if (!ActualEntry) { 2838 CSRCost = 0; 2839 return; 2840 } 2841 uint64_t FixedEntry = 1 << 14; 2842 if (ActualEntry < FixedEntry) 2843 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2844 else if (ActualEntry <= UINT32_MAX) 2845 // Invert the fraction and divide. 2846 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2847 else 2848 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2849 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2850 } 2851 2852 /// Collect the hint info for \p Reg. 2853 /// The results are stored into \p Out. 2854 /// \p Out is not cleared before being populated. 2855 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2856 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2857 if (!Instr.isFullCopy()) 2858 continue; 2859 // Look for the other end of the copy. 2860 unsigned OtherReg = Instr.getOperand(0).getReg(); 2861 if (OtherReg == Reg) { 2862 OtherReg = Instr.getOperand(1).getReg(); 2863 if (OtherReg == Reg) 2864 continue; 2865 } 2866 // Get the current assignment. 2867 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg) 2868 ? OtherReg 2869 : VRM->getPhys(OtherReg); 2870 // Push the collected information. 2871 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2872 OtherPhysReg)); 2873 } 2874 } 2875 2876 /// Using the given \p List, compute the cost of the broken hints if 2877 /// \p PhysReg was used. 2878 /// \return The cost of \p List for \p PhysReg. 2879 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2880 unsigned PhysReg) { 2881 BlockFrequency Cost = 0; 2882 for (const HintInfo &Info : List) { 2883 if (Info.PhysReg != PhysReg) 2884 Cost += Info.Freq; 2885 } 2886 return Cost; 2887 } 2888 2889 /// Using the register assigned to \p VirtReg, try to recolor 2890 /// all the live ranges that are copy-related with \p VirtReg. 2891 /// The recoloring is then propagated to all the live-ranges that have 2892 /// been recolored and so on, until no more copies can be coalesced or 2893 /// it is not profitable. 2894 /// For a given live range, profitability is determined by the sum of the 2895 /// frequencies of the non-identity copies it would introduce with the old 2896 /// and new register. 2897 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2898 // We have a broken hint, check if it is possible to fix it by 2899 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2900 // some register and PhysReg may be available for the other live-ranges. 2901 SmallSet<unsigned, 4> Visited; 2902 SmallVector<unsigned, 2> RecoloringCandidates; 2903 HintsInfo Info; 2904 unsigned Reg = VirtReg.reg; 2905 unsigned PhysReg = VRM->getPhys(Reg); 2906 // Start the recoloring algorithm from the input live-interval, then 2907 // it will propagate to the ones that are copy-related with it. 2908 Visited.insert(Reg); 2909 RecoloringCandidates.push_back(Reg); 2910 2911 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2912 << '(' << printReg(PhysReg, TRI) << ")\n"); 2913 2914 do { 2915 Reg = RecoloringCandidates.pop_back_val(); 2916 2917 // We cannot recolor physical register. 2918 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 2919 continue; 2920 2921 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2922 2923 // Get the live interval mapped with this virtual register to be able 2924 // to check for the interference with the new color. 2925 LiveInterval &LI = LIS->getInterval(Reg); 2926 unsigned CurrPhys = VRM->getPhys(Reg); 2927 // Check that the new color matches the register class constraints and 2928 // that it is free for this live range. 2929 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2930 Matrix->checkInterference(LI, PhysReg))) 2931 continue; 2932 2933 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2934 << ") is recolorable.\n"); 2935 2936 // Gather the hint info. 2937 Info.clear(); 2938 collectHintInfo(Reg, Info); 2939 // Check if recoloring the live-range will increase the cost of the 2940 // non-identity copies. 2941 if (CurrPhys != PhysReg) { 2942 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2943 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2944 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2945 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2946 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2947 << '\n'); 2948 if (OldCopiesCost < NewCopiesCost) { 2949 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2950 continue; 2951 } 2952 // At this point, the cost is either cheaper or equal. If it is 2953 // equal, we consider this is profitable because it may expose 2954 // more recoloring opportunities. 2955 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2956 // Recolor the live-range. 2957 Matrix->unassign(LI); 2958 Matrix->assign(LI, PhysReg); 2959 } 2960 // Push all copy-related live-ranges to keep reconciling the broken 2961 // hints. 2962 for (const HintInfo &HI : Info) { 2963 if (Visited.insert(HI.Reg).second) 2964 RecoloringCandidates.push_back(HI.Reg); 2965 } 2966 } while (!RecoloringCandidates.empty()); 2967 } 2968 2969 /// Try to recolor broken hints. 2970 /// Broken hints may be repaired by recoloring when an evicted variable 2971 /// freed up a register for a larger live-range. 2972 /// Consider the following example: 2973 /// BB1: 2974 /// a = 2975 /// b = 2976 /// BB2: 2977 /// ... 2978 /// = b 2979 /// = a 2980 /// Let us assume b gets split: 2981 /// BB1: 2982 /// a = 2983 /// b = 2984 /// BB2: 2985 /// c = b 2986 /// ... 2987 /// d = c 2988 /// = d 2989 /// = a 2990 /// Because of how the allocation work, b, c, and d may be assigned different 2991 /// colors. Now, if a gets evicted later: 2992 /// BB1: 2993 /// a = 2994 /// st a, SpillSlot 2995 /// b = 2996 /// BB2: 2997 /// c = b 2998 /// ... 2999 /// d = c 3000 /// = d 3001 /// e = ld SpillSlot 3002 /// = e 3003 /// This is likely that we can assign the same register for b, c, and d, 3004 /// getting rid of 2 copies. 3005 void RAGreedy::tryHintsRecoloring() { 3006 for (LiveInterval *LI : SetOfBrokenHints) { 3007 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) && 3008 "Recoloring is possible only for virtual registers"); 3009 // Some dead defs may be around (e.g., because of debug uses). 3010 // Ignore those. 3011 if (!VRM->hasPhys(LI->reg)) 3012 continue; 3013 tryHintRecoloring(*LI); 3014 } 3015 } 3016 3017 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 3018 SmallVectorImpl<unsigned> &NewVRegs, 3019 SmallVirtRegSet &FixedRegisters, 3020 unsigned Depth) { 3021 unsigned CostPerUseLimit = ~0u; 3022 // First try assigning a free register. 3023 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 3024 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) { 3025 // If VirtReg got an assignment, the eviction info is no longre relevant. 3026 LastEvicted.clearEvicteeInfo(VirtReg.reg); 3027 // When NewVRegs is not empty, we may have made decisions such as evicting 3028 // a virtual register, go with the earlier decisions and use the physical 3029 // register. 3030 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3031 NewVRegs.empty()) { 3032 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3033 CostPerUseLimit, NewVRegs); 3034 if (CSRReg || !NewVRegs.empty()) 3035 // Return now if we decide to use a CSR or create new vregs due to 3036 // pre-splitting. 3037 return CSRReg; 3038 } else 3039 return PhysReg; 3040 } 3041 3042 LiveRangeStage Stage = getStage(VirtReg); 3043 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3044 << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 3045 3046 // Try to evict a less worthy live range, but only for ranges from the primary 3047 // queue. The RS_Split ranges already failed to do this, and they should not 3048 // get a second chance until they have been split. 3049 if (Stage != RS_Split) 3050 if (unsigned PhysReg = 3051 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) { 3052 unsigned Hint = MRI->getSimpleHint(VirtReg.reg); 3053 // If VirtReg has a hint and that hint is broken record this 3054 // virtual register as a recoloring candidate for broken hint. 3055 // Indeed, since we evicted a variable in its neighborhood it is 3056 // likely we can at least partially recolor some of the 3057 // copy-related live-ranges. 3058 if (Hint && Hint != PhysReg) 3059 SetOfBrokenHints.insert(&VirtReg); 3060 // If VirtReg eviction someone, the eviction info for it as an evictee is 3061 // no longre relevant. 3062 LastEvicted.clearEvicteeInfo(VirtReg.reg); 3063 return PhysReg; 3064 } 3065 3066 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3067 3068 // The first time we see a live range, don't try to split or spill. 3069 // Wait until the second time, when all smaller ranges have been allocated. 3070 // This gives a better picture of the interference to split around. 3071 if (Stage < RS_Split) { 3072 setStage(VirtReg, RS_Split); 3073 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3074 NewVRegs.push_back(VirtReg.reg); 3075 return 0; 3076 } 3077 3078 if (Stage < RS_Spill) { 3079 // Try splitting VirtReg or interferences. 3080 unsigned NewVRegSizeBefore = NewVRegs.size(); 3081 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 3082 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3083 // If VirtReg got split, the eviction info is no longre relevant. 3084 LastEvicted.clearEvicteeInfo(VirtReg.reg); 3085 return PhysReg; 3086 } 3087 } 3088 3089 // If we couldn't allocate a register from spilling, there is probably some 3090 // invalid inline assembly. The base class will report it. 3091 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3092 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3093 Depth); 3094 3095 // Finally spill VirtReg itself. 3096 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) { 3097 // TODO: This is experimental and in particular, we do not model 3098 // the live range splitting done by spilling correctly. 3099 // We would need a deep integration with the spiller to do the 3100 // right thing here. Anyway, that is still good for early testing. 3101 setStage(VirtReg, RS_Memory); 3102 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3103 NewVRegs.push_back(VirtReg.reg); 3104 } else { 3105 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3106 TimerGroupDescription, TimePassesIsEnabled); 3107 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3108 spiller().spill(LRE); 3109 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3110 3111 if (VerifyEnabled) 3112 MF->verify(this, "After spilling"); 3113 } 3114 3115 // The live virtual register requesting allocation was spilled, so tell 3116 // the caller not to allocate anything during this round. 3117 return 0; 3118 } 3119 3120 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 3121 unsigned &FoldedReloads, 3122 unsigned &Spills, 3123 unsigned &FoldedSpills) { 3124 Reloads = 0; 3125 FoldedReloads = 0; 3126 Spills = 0; 3127 FoldedSpills = 0; 3128 3129 // Sum up the spill and reloads in subloops. 3130 for (MachineLoop *SubLoop : *L) { 3131 unsigned SubReloads; 3132 unsigned SubFoldedReloads; 3133 unsigned SubSpills; 3134 unsigned SubFoldedSpills; 3135 3136 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads, 3137 SubSpills, SubFoldedSpills); 3138 Reloads += SubReloads; 3139 FoldedReloads += SubFoldedReloads; 3140 Spills += SubSpills; 3141 FoldedSpills += SubFoldedSpills; 3142 } 3143 3144 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3145 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 3146 int FI; 3147 3148 for (MachineBasicBlock *MBB : L->getBlocks()) 3149 // Handle blocks that were not included in subloops. 3150 if (Loops->getLoopFor(MBB) == L) 3151 for (MachineInstr &MI : *MBB) { 3152 SmallVector<const MachineMemOperand *, 2> Accesses; 3153 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3154 return MFI.isSpillSlotObjectIndex( 3155 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 3156 ->getFrameIndex()); 3157 }; 3158 3159 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) 3160 ++Reloads; 3161 else if (TII->hasLoadFromStackSlot(MI, Accesses) && 3162 llvm::any_of(Accesses, isSpillSlotAccess)) 3163 ++FoldedReloads; 3164 else if (TII->isStoreToStackSlot(MI, FI) && 3165 MFI.isSpillSlotObjectIndex(FI)) 3166 ++Spills; 3167 else if (TII->hasStoreToStackSlot(MI, Accesses) && 3168 llvm::any_of(Accesses, isSpillSlotAccess)) 3169 ++FoldedSpills; 3170 } 3171 3172 if (Reloads || FoldedReloads || Spills || FoldedSpills) { 3173 using namespace ore; 3174 3175 ORE->emit([&]() { 3176 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", 3177 L->getStartLoc(), L->getHeader()); 3178 if (Spills) 3179 R << NV("NumSpills", Spills) << " spills "; 3180 if (FoldedSpills) 3181 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3182 if (Reloads) 3183 R << NV("NumReloads", Reloads) << " reloads "; 3184 if (FoldedReloads) 3185 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3186 R << "generated in loop"; 3187 return R; 3188 }); 3189 } 3190 } 3191 3192 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3193 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3194 << "********** Function: " << mf.getName() << '\n'); 3195 3196 MF = &mf; 3197 TRI = MF->getSubtarget().getRegisterInfo(); 3198 TII = MF->getSubtarget().getInstrInfo(); 3199 RCI.runOnMachineFunction(mf); 3200 3201 EnableLocalReassign = EnableLocalReassignment || 3202 MF->getSubtarget().enableRALocalReassignment( 3203 MF->getTarget().getOptLevel()); 3204 3205 EnableAdvancedRASplitCost = ConsiderLocalIntervalCost || 3206 MF->getSubtarget().enableAdvancedRASplitCost(); 3207 3208 if (VerifyEnabled) 3209 MF->verify(this, "Before greedy register allocator"); 3210 3211 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3212 getAnalysis<LiveIntervals>(), 3213 getAnalysis<LiveRegMatrix>()); 3214 Indexes = &getAnalysis<SlotIndexes>(); 3215 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3216 DomTree = &getAnalysis<MachineDominatorTree>(); 3217 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3218 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 3219 Loops = &getAnalysis<MachineLoopInfo>(); 3220 Bundles = &getAnalysis<EdgeBundles>(); 3221 SpillPlacer = &getAnalysis<SpillPlacement>(); 3222 DebugVars = &getAnalysis<LiveDebugVariables>(); 3223 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3224 3225 initializeCSRCost(); 3226 3227 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); 3228 3229 LLVM_DEBUG(LIS->dump()); 3230 3231 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3232 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); 3233 ExtraRegInfo.clear(); 3234 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3235 NextCascade = 1; 3236 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3237 GlobalCand.resize(32); // This will grow as needed. 3238 SetOfBrokenHints.clear(); 3239 LastEvicted.clear(); 3240 3241 allocatePhysRegs(); 3242 tryHintsRecoloring(); 3243 postOptimization(); 3244 reportNumberOfSplillsReloads(); 3245 3246 releaseMemory(); 3247 return true; 3248 } 3249