1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "RegAllocEvictionAdvisor.h" 19 #include "SpillPlacement.h" 20 #include "SplitKit.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/BitVector.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IndexedMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/CodeGen/CalcSpillWeights.h" 35 #include "llvm/CodeGen/EdgeBundles.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalUnion.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveRangeEdit.h" 40 #include "llvm/CodeGen/LiveRegMatrix.h" 41 #include "llvm/CodeGen/LiveStacks.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RegAllocRegistry.h" 54 #include "llvm/CodeGen/RegisterClassInfo.h" 55 #include "llvm/CodeGen/SlotIndexes.h" 56 #include "llvm/CodeGen/Spiller.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/VirtRegMap.h" 61 #include "llvm/IR/DebugInfoMetadata.h" 62 #include "llvm/IR/Function.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/MC/MCRegisterInfo.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/BlockFrequency.h" 67 #include "llvm/Support/BranchProbability.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/Timer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstdint> 77 #include <memory> 78 #include <queue> 79 #include <tuple> 80 #include <utility> 81 82 using namespace llvm; 83 84 #define DEBUG_TYPE "regalloc" 85 86 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 87 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 88 STATISTIC(NumEvicted, "Number of interferences evicted"); 89 90 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 91 "split-spill-mode", cl::Hidden, 92 cl::desc("Spill mode for splitting live ranges"), 93 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 94 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 95 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 96 cl::init(SplitEditor::SM_Speed)); 97 98 static cl::opt<unsigned> 99 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 100 cl::desc("Last chance recoloring max depth"), 101 cl::init(5)); 102 103 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 104 "lcr-max-interf", cl::Hidden, 105 cl::desc("Last chance recoloring maximum number of considered" 106 " interference at a time"), 107 cl::init(8)); 108 109 static cl::opt<bool> ExhaustiveSearch( 110 "exhaustive-register-search", cl::NotHidden, 111 cl::desc("Exhaustive Search for registers bypassing the depth " 112 "and interference cutoffs of last chance recoloring"), 113 cl::Hidden); 114 115 static cl::opt<bool> EnableLocalReassignment( 116 "enable-local-reassign", cl::Hidden, 117 cl::desc("Local reassignment can yield better allocation decisions, but " 118 "may be compile time intensive"), 119 cl::init(false)); 120 121 static cl::opt<bool> EnableDeferredSpilling( 122 "enable-deferred-spilling", cl::Hidden, 123 cl::desc("Instead of spilling a variable right away, defer the actual " 124 "code insertion to the end of the allocation. That way the " 125 "allocator might still find a suitable coloring for this " 126 "variable because of other evicted variables."), 127 cl::init(false)); 128 129 // FIXME: Find a good default for this flag and remove the flag. 130 static cl::opt<unsigned> 131 CSRFirstTimeCost("regalloc-csr-first-time-cost", 132 cl::desc("Cost for first time use of callee-saved register."), 133 cl::init(0), cl::Hidden); 134 135 static cl::opt<bool> ConsiderLocalIntervalCost( 136 "consider-local-interval-cost", cl::Hidden, 137 cl::desc("Consider the cost of local intervals created by a split " 138 "candidate when choosing the best split candidate."), 139 cl::init(false)); 140 141 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 142 createGreedyRegisterAllocator); 143 144 namespace { 145 146 class RAGreedy : public MachineFunctionPass, 147 public RegAllocBase, 148 private LiveRangeEdit::Delegate { 149 // Convenient shortcuts. 150 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 151 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 152 153 // context 154 MachineFunction *MF; 155 156 // Shortcuts to some useful interface. 157 const TargetInstrInfo *TII; 158 const TargetRegisterInfo *TRI; 159 RegisterClassInfo RCI; 160 161 // analyses 162 SlotIndexes *Indexes; 163 MachineBlockFrequencyInfo *MBFI; 164 MachineDominatorTree *DomTree; 165 MachineLoopInfo *Loops; 166 MachineOptimizationRemarkEmitter *ORE; 167 EdgeBundles *Bundles; 168 SpillPlacement *SpillPlacer; 169 LiveDebugVariables *DebugVars; 170 AliasAnalysis *AA; 171 172 // state 173 std::unique_ptr<Spiller> SpillerInstance; 174 PQueue Queue; 175 std::unique_ptr<VirtRegAuxInfo> VRAI; 176 Optional<ExtraRegInfo> ExtraInfo; 177 178 // Enum CutOffStage to keep a track whether the register allocation failed 179 // because of the cutoffs encountered in last chance recoloring. 180 // Note: This is used as bitmask. New value should be next power of 2. 181 enum CutOffStage { 182 // No cutoffs encountered 183 CO_None = 0, 184 185 // lcr-max-depth cutoff encountered 186 CO_Depth = 1, 187 188 // lcr-max-interf cutoff encountered 189 CO_Interf = 2 190 }; 191 192 uint8_t CutOffInfo; 193 194 #ifndef NDEBUG 195 static const char *const StageName[]; 196 #endif 197 198 /// EvictionTrack - Keeps track of past evictions in order to optimize region 199 /// split decision. 200 class EvictionTrack { 201 202 public: 203 using EvictorInfo = 204 std::pair<Register /* evictor */, MCRegister /* physreg */>; 205 using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>; 206 207 private: 208 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 209 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 210 EvicteeInfo Evictees; 211 212 public: 213 /// Clear all eviction information. 214 void clear() { Evictees.clear(); } 215 216 /// Clear eviction information for the given evictee Vreg. 217 /// E.g. when Vreg get's a new allocation, the old eviction info is no 218 /// longer relevant. 219 /// \param Evictee The evictee Vreg for whom we want to clear collected 220 /// eviction info. 221 void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); } 222 223 /// Track new eviction. 224 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 225 /// \param PhysReg The physical register Evictee was evicted from. 226 /// \param Evictor The evictor Vreg that evicted Evictee. 227 /// \param Evictee The evictee Vreg. 228 void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) { 229 Evictees[Evictee].first = Evictor; 230 Evictees[Evictee].second = PhysReg; 231 } 232 233 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 234 /// \param Evictee The evictee vreg. 235 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 236 /// nobody has evicted Evictee from PhysReg. 237 EvictorInfo getEvictor(Register Evictee) { 238 if (Evictees.count(Evictee)) { 239 return Evictees[Evictee]; 240 } 241 242 return EvictorInfo(0, 0); 243 } 244 }; 245 246 // Keeps track of past evictions in order to optimize region split decision. 247 EvictionTrack LastEvicted; 248 249 // splitting state. 250 std::unique_ptr<SplitAnalysis> SA; 251 std::unique_ptr<SplitEditor> SE; 252 253 /// Cached per-block interference maps 254 InterferenceCache IntfCache; 255 256 /// All basic blocks where the current register has uses. 257 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 258 259 /// Global live range splitting candidate info. 260 struct GlobalSplitCandidate { 261 // Register intended for assignment, or 0. 262 MCRegister PhysReg; 263 264 // SplitKit interval index for this candidate. 265 unsigned IntvIdx; 266 267 // Interference for PhysReg. 268 InterferenceCache::Cursor Intf; 269 270 // Bundles where this candidate should be live. 271 BitVector LiveBundles; 272 SmallVector<unsigned, 8> ActiveBlocks; 273 274 void reset(InterferenceCache &Cache, MCRegister Reg) { 275 PhysReg = Reg; 276 IntvIdx = 0; 277 Intf.setPhysReg(Cache, Reg); 278 LiveBundles.clear(); 279 ActiveBlocks.clear(); 280 } 281 282 // Set B[I] = C for every live bundle where B[I] was NoCand. 283 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 284 unsigned Count = 0; 285 for (unsigned I : LiveBundles.set_bits()) 286 if (B[I] == NoCand) { 287 B[I] = C; 288 Count++; 289 } 290 return Count; 291 } 292 }; 293 294 /// Candidate info for each PhysReg in AllocationOrder. 295 /// This vector never shrinks, but grows to the size of the largest register 296 /// class. 297 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 298 299 enum : unsigned { NoCand = ~0u }; 300 301 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 302 /// NoCand which indicates the stack interval. 303 SmallVector<unsigned, 32> BundleCand; 304 305 /// Callee-save register cost, calculated once per machine function. 306 BlockFrequency CSRCost; 307 308 /// Run or not the local reassignment heuristic. This information is 309 /// obtained from the TargetSubtargetInfo. 310 bool EnableLocalReassign; 311 312 /// Enable or not the consideration of the cost of local intervals created 313 /// by a split candidate when choosing the best split candidate. 314 bool EnableAdvancedRASplitCost; 315 316 /// Set of broken hints that may be reconciled later because of eviction. 317 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 318 319 /// The register cost values. This list will be recreated for each Machine 320 /// Function 321 ArrayRef<uint8_t> RegCosts; 322 323 public: 324 RAGreedy(const RegClassFilterFunc F = allocateAllRegClasses); 325 326 /// Return the pass name. 327 StringRef getPassName() const override { return "Greedy Register Allocator"; } 328 329 /// RAGreedy analysis usage. 330 void getAnalysisUsage(AnalysisUsage &AU) const override; 331 void releaseMemory() override; 332 Spiller &spiller() override { return *SpillerInstance; } 333 void enqueueImpl(LiveInterval *LI) override; 334 LiveInterval *dequeue() override; 335 MCRegister selectOrSplit(LiveInterval &, 336 SmallVectorImpl<Register> &) override; 337 void aboutToRemoveInterval(LiveInterval &) override; 338 339 /// Perform register allocation. 340 bool runOnMachineFunction(MachineFunction &mf) override; 341 342 MachineFunctionProperties getRequiredProperties() const override { 343 return MachineFunctionProperties().set( 344 MachineFunctionProperties::Property::NoPHIs); 345 } 346 347 MachineFunctionProperties getClearedProperties() const override { 348 return MachineFunctionProperties().set( 349 MachineFunctionProperties::Property::IsSSA); 350 } 351 352 static char ID; 353 354 private: 355 MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &, 356 SmallVirtRegSet &, unsigned = 0); 357 358 bool LRE_CanEraseVirtReg(Register) override; 359 void LRE_WillShrinkVirtReg(Register) override; 360 void LRE_DidCloneVirtReg(Register, Register) override; 361 void enqueue(PQueue &CurQueue, LiveInterval *LI); 362 LiveInterval *dequeue(PQueue &CurQueue); 363 364 BlockFrequency calcSpillCost(); 365 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 366 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 367 bool growRegion(GlobalSplitCandidate &Cand); 368 bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand, 369 unsigned BBNumber, 370 const AllocationOrder &Order); 371 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 372 GlobalSplitCandidate &Cand, unsigned BBNumber, 373 const AllocationOrder &Order); 374 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 375 const AllocationOrder &Order, 376 bool *CanCauseEvictionChain); 377 bool calcCompactRegion(GlobalSplitCandidate&); 378 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 379 void calcGapWeights(MCRegister, SmallVectorImpl<float> &); 380 Register canReassign(LiveInterval &VirtReg, Register PrevReg) const; 381 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const; 382 bool canEvictInterferenceBasedOnCost(LiveInterval &, MCRegister, bool, 383 EvictionCost &, 384 const SmallVirtRegSet &) const; 385 bool canEvictHintInterference(LiveInterval &, MCRegister, 386 const SmallVirtRegSet &) const; 387 bool canEvictInterferenceInRange(const LiveInterval &VirtReg, 388 MCRegister PhysReg, SlotIndex Start, 389 SlotIndex End, EvictionCost &MaxCost) const; 390 MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order, 391 const LiveInterval &VirtReg, 392 SlotIndex Start, SlotIndex End, 393 float *BestEvictWeight) const; 394 void evictInterference(LiveInterval &, MCRegister, 395 SmallVectorImpl<Register> &); 396 bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg, 397 SmallLISet &RecoloringCandidates, 398 const SmallVirtRegSet &FixedRegisters); 399 400 MCRegister tryAssign(LiveInterval&, AllocationOrder&, 401 SmallVectorImpl<Register>&, 402 const SmallVirtRegSet&); 403 MCRegister tryFindEvictionCandidate(LiveInterval &, const AllocationOrder &, 404 uint8_t, const SmallVirtRegSet &) const; 405 MCRegister tryEvict(LiveInterval &, AllocationOrder &, 406 SmallVectorImpl<Register> &, uint8_t, 407 const SmallVirtRegSet &); 408 MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &, 409 SmallVectorImpl<Register> &); 410 /// Calculate cost of region splitting. 411 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 412 AllocationOrder &Order, 413 BlockFrequency &BestCost, 414 unsigned &NumCands, bool IgnoreCSR, 415 bool *CanCauseEvictionChain = nullptr); 416 /// Perform region splitting. 417 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 418 bool HasCompact, 419 SmallVectorImpl<Register> &NewVRegs); 420 /// Check other options before using a callee-saved register for the first 421 /// time. 422 MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg, 423 AllocationOrder &Order, MCRegister PhysReg, 424 uint8_t &CostPerUseLimit, 425 SmallVectorImpl<Register> &NewVRegs); 426 void initializeCSRCost(); 427 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 428 SmallVectorImpl<Register>&); 429 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 430 SmallVectorImpl<Register>&); 431 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 432 SmallVectorImpl<Register>&); 433 unsigned trySplit(LiveInterval&, AllocationOrder&, 434 SmallVectorImpl<Register>&, 435 const SmallVirtRegSet&); 436 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 437 SmallVectorImpl<Register> &, 438 SmallVirtRegSet &, unsigned); 439 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &, 440 SmallVirtRegSet &, unsigned); 441 void tryHintRecoloring(LiveInterval &); 442 void tryHintsRecoloring(); 443 444 /// Model the information carried by one end of a copy. 445 struct HintInfo { 446 /// The frequency of the copy. 447 BlockFrequency Freq; 448 /// The virtual register or physical register. 449 Register Reg; 450 /// Its currently assigned register. 451 /// In case of a physical register Reg == PhysReg. 452 MCRegister PhysReg; 453 454 HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg) 455 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 456 }; 457 using HintsInfo = SmallVector<HintInfo, 4>; 458 459 BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister); 460 void collectHintInfo(Register, HintsInfo &); 461 462 bool isUnusedCalleeSavedReg(MCRegister PhysReg) const; 463 464 /// Greedy RA statistic to remark. 465 struct RAGreedyStats { 466 unsigned Reloads = 0; 467 unsigned FoldedReloads = 0; 468 unsigned ZeroCostFoldedReloads = 0; 469 unsigned Spills = 0; 470 unsigned FoldedSpills = 0; 471 unsigned Copies = 0; 472 float ReloadsCost = 0.0f; 473 float FoldedReloadsCost = 0.0f; 474 float SpillsCost = 0.0f; 475 float FoldedSpillsCost = 0.0f; 476 float CopiesCost = 0.0f; 477 478 bool isEmpty() { 479 return !(Reloads || FoldedReloads || Spills || FoldedSpills || 480 ZeroCostFoldedReloads || Copies); 481 } 482 483 void add(RAGreedyStats other) { 484 Reloads += other.Reloads; 485 FoldedReloads += other.FoldedReloads; 486 ZeroCostFoldedReloads += other.ZeroCostFoldedReloads; 487 Spills += other.Spills; 488 FoldedSpills += other.FoldedSpills; 489 Copies += other.Copies; 490 ReloadsCost += other.ReloadsCost; 491 FoldedReloadsCost += other.FoldedReloadsCost; 492 SpillsCost += other.SpillsCost; 493 FoldedSpillsCost += other.FoldedSpillsCost; 494 CopiesCost += other.CopiesCost; 495 } 496 497 void report(MachineOptimizationRemarkMissed &R); 498 }; 499 500 /// Compute statistic for a basic block. 501 RAGreedyStats computeStats(MachineBasicBlock &MBB); 502 503 /// Compute and report statistic through a remark. 504 RAGreedyStats reportStats(MachineLoop *L); 505 506 /// Report the statistic for each loop. 507 void reportStats(); 508 }; 509 510 } // end anonymous namespace 511 512 char RAGreedy::ID = 0; 513 char &llvm::RAGreedyID = RAGreedy::ID; 514 515 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 516 "Greedy Register Allocator", false, false) 517 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 518 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 519 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 520 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 521 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 522 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 523 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 524 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 525 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 526 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 527 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 528 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 529 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 530 INITIALIZE_PASS_END(RAGreedy, "greedy", 531 "Greedy Register Allocator", false, false) 532 533 #ifndef NDEBUG 534 const char *const RAGreedy::StageName[] = { 535 "RS_New", 536 "RS_Assign", 537 "RS_Split", 538 "RS_Split2", 539 "RS_Spill", 540 "RS_Memory", 541 "RS_Done" 542 }; 543 #endif 544 545 // Hysteresis to use when comparing floats. 546 // This helps stabilize decisions based on float comparisons. 547 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 548 549 FunctionPass* llvm::createGreedyRegisterAllocator() { 550 return new RAGreedy(); 551 } 552 553 namespace llvm { 554 FunctionPass* createGreedyRegisterAllocator( 555 std::function<bool(const TargetRegisterInfo &TRI, 556 const TargetRegisterClass &RC)> Ftor); 557 558 } 559 560 FunctionPass* llvm::createGreedyRegisterAllocator( 561 std::function<bool(const TargetRegisterInfo &TRI, 562 const TargetRegisterClass &RC)> Ftor) { 563 return new RAGreedy(Ftor); 564 } 565 566 RAGreedy::RAGreedy(RegClassFilterFunc F): 567 MachineFunctionPass(ID), 568 RegAllocBase(F) { 569 } 570 571 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 572 AU.setPreservesCFG(); 573 AU.addRequired<MachineBlockFrequencyInfo>(); 574 AU.addPreserved<MachineBlockFrequencyInfo>(); 575 AU.addRequired<AAResultsWrapperPass>(); 576 AU.addPreserved<AAResultsWrapperPass>(); 577 AU.addRequired<LiveIntervals>(); 578 AU.addPreserved<LiveIntervals>(); 579 AU.addRequired<SlotIndexes>(); 580 AU.addPreserved<SlotIndexes>(); 581 AU.addRequired<LiveDebugVariables>(); 582 AU.addPreserved<LiveDebugVariables>(); 583 AU.addRequired<LiveStacks>(); 584 AU.addPreserved<LiveStacks>(); 585 AU.addRequired<MachineDominatorTree>(); 586 AU.addPreserved<MachineDominatorTree>(); 587 AU.addRequired<MachineLoopInfo>(); 588 AU.addPreserved<MachineLoopInfo>(); 589 AU.addRequired<VirtRegMap>(); 590 AU.addPreserved<VirtRegMap>(); 591 AU.addRequired<LiveRegMatrix>(); 592 AU.addPreserved<LiveRegMatrix>(); 593 AU.addRequired<EdgeBundles>(); 594 AU.addRequired<SpillPlacement>(); 595 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 596 MachineFunctionPass::getAnalysisUsage(AU); 597 } 598 599 //===----------------------------------------------------------------------===// 600 // LiveRangeEdit delegate methods 601 //===----------------------------------------------------------------------===// 602 603 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 604 LiveInterval &LI = LIS->getInterval(VirtReg); 605 if (VRM->hasPhys(VirtReg)) { 606 Matrix->unassign(LI); 607 aboutToRemoveInterval(LI); 608 return true; 609 } 610 // Unassigned virtreg is probably in the priority queue. 611 // RegAllocBase will erase it after dequeueing. 612 // Nonetheless, clear the live-range so that the debug 613 // dump will show the right state for that VirtReg. 614 LI.clear(); 615 return false; 616 } 617 618 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 619 if (!VRM->hasPhys(VirtReg)) 620 return; 621 622 // Register is assigned, put it back on the queue for reassignment. 623 LiveInterval &LI = LIS->getInterval(VirtReg); 624 Matrix->unassign(LI); 625 RegAllocBase::enqueue(&LI); 626 } 627 628 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 629 ExtraInfo->LRE_DidCloneVirtReg(New, Old); 630 } 631 632 void ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) { 633 // Cloning a register we haven't even heard about yet? Just ignore it. 634 if (!Info.inBounds(Old)) 635 return; 636 637 // LRE may clone a virtual register because dead code elimination causes it to 638 // be split into connected components. The new components are much smaller 639 // than the original, so they should get a new chance at being assigned. 640 // same stage as the parent. 641 Info[Old].Stage = RS_Assign; 642 Info.grow(New.id()); 643 Info[New] = Info[Old]; 644 } 645 646 void RAGreedy::releaseMemory() { 647 SpillerInstance.reset(); 648 GlobalCand.clear(); 649 } 650 651 void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); } 652 653 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 654 // Prioritize live ranges by size, assigning larger ranges first. 655 // The queue holds (size, reg) pairs. 656 const unsigned Size = LI->getSize(); 657 const Register Reg = LI->reg(); 658 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 659 unsigned Prio; 660 661 auto Stage = ExtraInfo->getOrInitStage(Reg); 662 if (Stage == RS_New) { 663 Stage = RS_Assign; 664 ExtraInfo->setStage(Reg, Stage); 665 } 666 if (Stage == RS_Split) { 667 // Unsplit ranges that couldn't be allocated immediately are deferred until 668 // everything else has been allocated. 669 Prio = Size; 670 } else if (Stage == RS_Memory) { 671 // Memory operand should be considered last. 672 // Change the priority such that Memory operand are assigned in 673 // the reverse order that they came in. 674 // TODO: Make this a member variable and probably do something about hints. 675 static unsigned MemOp = 0; 676 Prio = MemOp++; 677 } else { 678 // Giant live ranges fall back to the global assignment heuristic, which 679 // prevents excessive spilling in pathological cases. 680 bool ReverseLocal = TRI->reverseLocalAssignment(); 681 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 682 bool ForceGlobal = !ReverseLocal && 683 (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC)); 684 685 if (Stage == RS_Assign && !ForceGlobal && !LI->empty() && 686 LIS->intervalIsInOneMBB(*LI)) { 687 // Allocate original local ranges in linear instruction order. Since they 688 // are singly defined, this produces optimal coloring in the absence of 689 // global interference and other constraints. 690 if (!ReverseLocal) 691 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 692 else { 693 // Allocating bottom up may allow many short LRGs to be assigned first 694 // to one of the cheap registers. This could be much faster for very 695 // large blocks on targets with many physical registers. 696 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 697 } 698 Prio |= RC.AllocationPriority << 24; 699 } else { 700 // Allocate global and split ranges in long->short order. Long ranges that 701 // don't fit should be spilled (or split) ASAP so they don't create 702 // interference. Mark a bit to prioritize global above local ranges. 703 Prio = (1u << 29) + Size; 704 705 Prio |= RC.AllocationPriority << 24; 706 } 707 // Mark a higher bit to prioritize global and local above RS_Split. 708 Prio |= (1u << 31); 709 710 // Boost ranges that have a physical register hint. 711 if (VRM->hasKnownPreference(Reg)) 712 Prio |= (1u << 30); 713 } 714 // The virtual register number is a tie breaker for same-sized ranges. 715 // Give lower vreg numbers higher priority to assign them first. 716 CurQueue.push(std::make_pair(Prio, ~Reg)); 717 } 718 719 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 720 721 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 722 if (CurQueue.empty()) 723 return nullptr; 724 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 725 CurQueue.pop(); 726 return LI; 727 } 728 729 //===----------------------------------------------------------------------===// 730 // Direct Assignment 731 //===----------------------------------------------------------------------===// 732 733 /// tryAssign - Try to assign VirtReg to an available register. 734 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg, 735 AllocationOrder &Order, 736 SmallVectorImpl<Register> &NewVRegs, 737 const SmallVirtRegSet &FixedRegisters) { 738 MCRegister PhysReg; 739 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 740 assert(*I); 741 if (!Matrix->checkInterference(VirtReg, *I)) { 742 if (I.isHint()) 743 return *I; 744 else 745 PhysReg = *I; 746 } 747 } 748 if (!PhysReg.isValid()) 749 return PhysReg; 750 751 // PhysReg is available, but there may be a better choice. 752 753 // If we missed a simple hint, try to cheaply evict interference from the 754 // preferred register. 755 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 756 if (Order.isHint(Hint)) { 757 MCRegister PhysHint = Hint.asMCReg(); 758 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 759 760 if (canEvictHintInterference(VirtReg, PhysHint, FixedRegisters)) { 761 evictInterference(VirtReg, PhysHint, NewVRegs); 762 return PhysHint; 763 } 764 // Record the missed hint, we may be able to recover 765 // at the end if the surrounding allocation changed. 766 SetOfBrokenHints.insert(&VirtReg); 767 } 768 769 // Try to evict interference from a cheaper alternative. 770 uint8_t Cost = RegCosts[PhysReg]; 771 772 // Most registers have 0 additional cost. 773 if (!Cost) 774 return PhysReg; 775 776 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 777 << (unsigned)Cost << '\n'); 778 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 779 return CheapReg ? CheapReg : PhysReg; 780 } 781 782 //===----------------------------------------------------------------------===// 783 // Interference eviction 784 //===----------------------------------------------------------------------===// 785 786 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const { 787 auto Order = 788 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 789 MCRegister PhysReg; 790 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 791 if ((*I).id() == PrevReg.id()) 792 continue; 793 794 MCRegUnitIterator Units(*I, TRI); 795 for (; Units.isValid(); ++Units) { 796 // Instantiate a "subquery", not to be confused with the Queries array. 797 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 798 if (subQ.checkInterference()) 799 break; 800 } 801 // If no units have interference, break out with the current PhysReg. 802 if (!Units.isValid()) 803 PhysReg = *I; 804 } 805 if (PhysReg) 806 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 807 << printReg(PrevReg, TRI) << " to " 808 << printReg(PhysReg, TRI) << '\n'); 809 return PhysReg; 810 } 811 812 /// shouldEvict - determine if A should evict the assigned live range B. The 813 /// eviction policy defined by this function together with the allocation order 814 /// defined by enqueue() decides which registers ultimately end up being split 815 /// and spilled. 816 /// 817 /// Cascade numbers are used to prevent infinite loops if this function is a 818 /// cyclic relation. 819 /// 820 /// @param A The live range to be assigned. 821 /// @param IsHint True when A is about to be assigned to its preferred 822 /// register. 823 /// @param B The live range to be evicted. 824 /// @param BreaksHint True when B is already assigned to its preferred register. 825 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 826 LiveInterval &B, bool BreaksHint) const { 827 bool CanSplit = ExtraInfo->getStage(B) < RS_Spill; 828 829 // Be fairly aggressive about following hints as long as the evictee can be 830 // split. 831 if (CanSplit && IsHint && !BreaksHint) 832 return true; 833 834 if (A.weight() > B.weight()) { 835 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n'); 836 return true; 837 } 838 return false; 839 } 840 841 /// canEvictHintInterference - return true if the interference for VirtReg 842 /// on the PhysReg, which is VirtReg's hint, can be evicted in favor of VirtReg. 843 bool RAGreedy::canEvictHintInterference( 844 LiveInterval &VirtReg, MCRegister PhysReg, 845 const SmallVirtRegSet &FixedRegisters) const { 846 EvictionCost MaxCost; 847 MaxCost.setBrokenHints(1); 848 return canEvictInterferenceBasedOnCost(VirtReg, PhysReg, true, MaxCost, 849 FixedRegisters); 850 } 851 852 /// canEvictInterferenceBasedOnCost - Return true if all interferences between 853 /// VirtReg and PhysReg can be evicted. 854 /// 855 /// @param VirtReg Live range that is about to be assigned. 856 /// @param PhysReg Desired register for assignment. 857 /// @param IsHint True when PhysReg is VirtReg's preferred register. 858 /// @param MaxCost Only look for cheaper candidates and update with new cost 859 /// when returning true. 860 /// @returns True when interference can be evicted cheaper than MaxCost. 861 bool RAGreedy::canEvictInterferenceBasedOnCost( 862 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 863 EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const { 864 // It is only possible to evict virtual register interference. 865 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 866 return false; 867 868 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 869 870 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 871 // involved in an eviction before. If a cascade number was assigned, deny 872 // evicting anything with the same or a newer cascade number. This prevents 873 // infinite eviction loops. 874 // 875 // This works out so a register without a cascade number is allowed to evict 876 // anything, and it can be evicted by anything. 877 unsigned Cascade = ExtraInfo->getCascadeOrCurrentNext(VirtReg.reg()); 878 879 EvictionCost Cost; 880 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 881 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 882 // If there is 10 or more interferences, chances are one is heavier. 883 const auto &Interferences = Q.interferingVRegs(10); 884 if (Interferences.size() >= 10) 885 return false; 886 887 // Check if any interfering live range is heavier than MaxWeight. 888 for (LiveInterval *Intf : reverse(Interferences)) { 889 assert(Register::isVirtualRegister(Intf->reg()) && 890 "Only expecting virtual register interference from query"); 891 892 // Do not allow eviction of a virtual register if we are in the middle 893 // of last-chance recoloring and this virtual register is one that we 894 // have scavenged a physical register for. 895 if (FixedRegisters.count(Intf->reg())) 896 return false; 897 898 // Never evict spill products. They cannot split or spill. 899 if (ExtraInfo->getStage(*Intf) == RS_Done) 900 return false; 901 // Once a live range becomes small enough, it is urgent that we find a 902 // register for it. This is indicated by an infinite spill weight. These 903 // urgent live ranges get to evict almost anything. 904 // 905 // Also allow urgent evictions of unspillable ranges from a strictly 906 // larger allocation order. 907 bool Urgent = 908 !VirtReg.isSpillable() && 909 (Intf->isSpillable() || 910 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 911 RegClassInfo.getNumAllocatableRegs( 912 MRI->getRegClass(Intf->reg()))); 913 // Only evict older cascades or live ranges without a cascade. 914 unsigned IntfCascade = ExtraInfo->getCascade(Intf->reg()); 915 if (Cascade <= IntfCascade) { 916 if (!Urgent) 917 return false; 918 // We permit breaking cascades for urgent evictions. It should be the 919 // last resort, though, so make it really expensive. 920 Cost.BrokenHints += 10; 921 } 922 // Would this break a satisfied hint? 923 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 924 // Update eviction cost. 925 Cost.BrokenHints += BreaksHint; 926 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 927 // Abort if this would be too expensive. 928 if (!(Cost < MaxCost)) 929 return false; 930 if (Urgent) 931 continue; 932 // Apply the eviction policy for non-urgent evictions. 933 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 934 return false; 935 // If !MaxCost.isMax(), then we're just looking for a cheap register. 936 // Evicting another local live range in this case could lead to suboptimal 937 // coloring. 938 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 939 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 940 return false; 941 } 942 } 943 } 944 MaxCost = Cost; 945 return true; 946 } 947 948 /// Return true if all interferences between VirtReg and PhysReg between 949 /// Start and End can be evicted. 950 /// 951 /// \param VirtReg Live range that is about to be assigned. 952 /// \param PhysReg Desired register for assignment. 953 /// \param Start Start of range to look for interferences. 954 /// \param End End of range to look for interferences. 955 /// \param MaxCost Only look for cheaper candidates and update with new cost 956 /// when returning true. 957 /// \return True when interference can be evicted cheaper than MaxCost. 958 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg, 959 MCRegister PhysReg, SlotIndex Start, 960 SlotIndex End, 961 EvictionCost &MaxCost) const { 962 EvictionCost Cost; 963 964 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 965 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 966 967 // Check if any interfering live range is heavier than MaxWeight. 968 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 969 // Check if interference overlast the segment in interest. 970 if (!Intf->overlaps(Start, End)) 971 continue; 972 973 // Cannot evict non virtual reg interference. 974 if (!Register::isVirtualRegister(Intf->reg())) 975 return false; 976 // Never evict spill products. They cannot split or spill. 977 if (ExtraInfo->getStage(*Intf) == RS_Done) 978 return false; 979 980 // Would this break a satisfied hint? 981 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 982 // Update eviction cost. 983 Cost.BrokenHints += BreaksHint; 984 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 985 // Abort if this would be too expensive. 986 if (!(Cost < MaxCost)) 987 return false; 988 } 989 } 990 991 if (Cost.MaxWeight == 0) 992 return false; 993 994 MaxCost = Cost; 995 return true; 996 } 997 998 /// Return the physical register that will be best 999 /// candidate for eviction by a local split interval that will be created 1000 /// between Start and End. 1001 /// 1002 /// \param Order The allocation order 1003 /// \param VirtReg Live range that is about to be assigned. 1004 /// \param Start Start of range to look for interferences 1005 /// \param End End of range to look for interferences 1006 /// \param BestEvictweight The eviction cost of that eviction 1007 /// \return The PhysReg which is the best candidate for eviction and the 1008 /// eviction cost in BestEvictweight 1009 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1010 const LiveInterval &VirtReg, 1011 SlotIndex Start, SlotIndex End, 1012 float *BestEvictweight) const { 1013 EvictionCost BestEvictCost; 1014 BestEvictCost.setMax(); 1015 BestEvictCost.MaxWeight = VirtReg.weight(); 1016 MCRegister BestEvicteePhys; 1017 1018 // Go over all physical registers and find the best candidate for eviction 1019 for (MCRegister PhysReg : Order.getOrder()) { 1020 1021 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1022 BestEvictCost)) 1023 continue; 1024 1025 // Best so far. 1026 BestEvicteePhys = PhysReg; 1027 } 1028 *BestEvictweight = BestEvictCost.MaxWeight; 1029 return BestEvicteePhys; 1030 } 1031 1032 /// evictInterference - Evict any interferring registers that prevent VirtReg 1033 /// from being assigned to Physreg. This assumes that canEvictInterference 1034 /// returned true. 1035 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg, 1036 SmallVectorImpl<Register> &NewVRegs) { 1037 // Make sure that VirtReg has a cascade number, and assign that cascade 1038 // number to every evicted register. These live ranges than then only be 1039 // evicted by a newer cascade, preventing infinite loops. 1040 unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg()); 1041 1042 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1043 << " interference: Cascade " << Cascade << '\n'); 1044 1045 // Collect all interfering virtregs first. 1046 SmallVector<LiveInterval*, 8> Intfs; 1047 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1048 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1049 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1050 // should be fast, we may need to recalculate if when different physregs 1051 // overlap the same register unit so we had different SubRanges queried 1052 // against it. 1053 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1054 Intfs.append(IVR.begin(), IVR.end()); 1055 } 1056 1057 // Evict them second. This will invalidate the queries. 1058 for (LiveInterval *Intf : Intfs) { 1059 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1060 if (!VRM->hasPhys(Intf->reg())) 1061 continue; 1062 1063 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 1064 1065 Matrix->unassign(*Intf); 1066 assert((ExtraInfo->getCascade(Intf->reg()) < Cascade || 1067 VirtReg.isSpillable() < Intf->isSpillable()) && 1068 "Cannot decrease cascade number, illegal eviction"); 1069 ExtraInfo->setCascade(Intf->reg(), Cascade); 1070 ++NumEvicted; 1071 NewVRegs.push_back(Intf->reg()); 1072 } 1073 } 1074 1075 /// Returns true if the given \p PhysReg is a callee saved register and has not 1076 /// been used for allocation yet. 1077 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 1078 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1079 if (!CSR) 1080 return false; 1081 1082 return !Matrix->isPhysRegUsed(PhysReg); 1083 } 1084 1085 MCRegister RAGreedy::tryFindEvictionCandidate( 1086 LiveInterval &VirtReg, const AllocationOrder &Order, 1087 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { 1088 // Keep track of the cheapest interference seen so far. 1089 EvictionCost BestCost; 1090 BestCost.setMax(); 1091 MCRegister BestPhys; 1092 unsigned OrderLimit = Order.getOrder().size(); 1093 1094 // When we are just looking for a reduced cost per use, don't break any 1095 // hints, and only evict smaller spill weights. 1096 if (CostPerUseLimit < uint8_t(~0u)) { 1097 BestCost.BrokenHints = 0; 1098 BestCost.MaxWeight = VirtReg.weight(); 1099 1100 // Check of any registers in RC are below CostPerUseLimit. 1101 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 1102 uint8_t MinCost = RegClassInfo.getMinCost(RC); 1103 if (MinCost >= CostPerUseLimit) { 1104 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1105 << MinCost << ", no cheaper registers to be found.\n"); 1106 return 0; 1107 } 1108 1109 // It is normal for register classes to have a long tail of registers with 1110 // the same cost. We don't need to look at them if they're too expensive. 1111 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 1112 OrderLimit = RegClassInfo.getLastCostChange(RC); 1113 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1114 << " regs.\n"); 1115 } 1116 } 1117 1118 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 1119 ++I) { 1120 MCRegister PhysReg = *I; 1121 assert(PhysReg); 1122 if (RegCosts[PhysReg] >= CostPerUseLimit) 1123 continue; 1124 // The first use of a callee-saved register in a function has cost 1. 1125 // Don't start using a CSR when the CostPerUseLimit is low. 1126 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1127 LLVM_DEBUG( 1128 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1129 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1130 << '\n'); 1131 continue; 1132 } 1133 1134 if (!canEvictInterferenceBasedOnCost(VirtReg, PhysReg, false, BestCost, 1135 FixedRegisters)) 1136 continue; 1137 1138 // Best so far. 1139 BestPhys = PhysReg; 1140 1141 // Stop if the hint can be used. 1142 if (I.isHint()) 1143 break; 1144 } 1145 return BestPhys; 1146 } 1147 1148 /// tryEvict - Try to evict all interferences for a physreg. 1149 /// @param VirtReg Currently unassigned virtual register. 1150 /// @param Order Physregs to try. 1151 /// @return Physreg to assign VirtReg, or 0. 1152 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order, 1153 SmallVectorImpl<Register> &NewVRegs, 1154 uint8_t CostPerUseLimit, 1155 const SmallVirtRegSet &FixedRegisters) { 1156 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1157 TimePassesIsEnabled); 1158 1159 MCRegister BestPhys = 1160 tryFindEvictionCandidate(VirtReg, Order, CostPerUseLimit, FixedRegisters); 1161 if (BestPhys.isValid()) 1162 evictInterference(VirtReg, BestPhys, NewVRegs); 1163 return BestPhys; 1164 } 1165 1166 //===----------------------------------------------------------------------===// 1167 // Region Splitting 1168 //===----------------------------------------------------------------------===// 1169 1170 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1171 /// interference pattern in Physreg and its aliases. Add the constraints to 1172 /// SpillPlacement and return the static cost of this split in Cost, assuming 1173 /// that all preferences in SplitConstraints are met. 1174 /// Return false if there are no bundles with positive bias. 1175 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1176 BlockFrequency &Cost) { 1177 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1178 1179 // Reset interference dependent info. 1180 SplitConstraints.resize(UseBlocks.size()); 1181 BlockFrequency StaticCost = 0; 1182 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1183 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1184 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1185 1186 BC.Number = BI.MBB->getNumber(); 1187 Intf.moveToBlock(BC.Number); 1188 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1189 BC.Exit = (BI.LiveOut && 1190 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1191 ? SpillPlacement::PrefReg 1192 : SpillPlacement::DontCare; 1193 BC.ChangesValue = BI.FirstDef.isValid(); 1194 1195 if (!Intf.hasInterference()) 1196 continue; 1197 1198 // Number of spill code instructions to insert. 1199 unsigned Ins = 0; 1200 1201 // Interference for the live-in value. 1202 if (BI.LiveIn) { 1203 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1204 BC.Entry = SpillPlacement::MustSpill; 1205 ++Ins; 1206 } else if (Intf.first() < BI.FirstInstr) { 1207 BC.Entry = SpillPlacement::PrefSpill; 1208 ++Ins; 1209 } else if (Intf.first() < BI.LastInstr) { 1210 ++Ins; 1211 } 1212 1213 // Abort if the spill cannot be inserted at the MBB' start 1214 if (((BC.Entry == SpillPlacement::MustSpill) || 1215 (BC.Entry == SpillPlacement::PrefSpill)) && 1216 SlotIndex::isEarlierInstr(BI.FirstInstr, 1217 SA->getFirstSplitPoint(BC.Number))) 1218 return false; 1219 } 1220 1221 // Interference for the live-out value. 1222 if (BI.LiveOut) { 1223 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1224 BC.Exit = SpillPlacement::MustSpill; 1225 ++Ins; 1226 } else if (Intf.last() > BI.LastInstr) { 1227 BC.Exit = SpillPlacement::PrefSpill; 1228 ++Ins; 1229 } else if (Intf.last() > BI.FirstInstr) { 1230 ++Ins; 1231 } 1232 } 1233 1234 // Accumulate the total frequency of inserted spill code. 1235 while (Ins--) 1236 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1237 } 1238 Cost = StaticCost; 1239 1240 // Add constraints for use-blocks. Note that these are the only constraints 1241 // that may add a positive bias, it is downhill from here. 1242 SpillPlacer->addConstraints(SplitConstraints); 1243 return SpillPlacer->scanActiveBundles(); 1244 } 1245 1246 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1247 /// live-through blocks in Blocks. 1248 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1249 ArrayRef<unsigned> Blocks) { 1250 const unsigned GroupSize = 8; 1251 SpillPlacement::BlockConstraint BCS[GroupSize]; 1252 unsigned TBS[GroupSize]; 1253 unsigned B = 0, T = 0; 1254 1255 for (unsigned Number : Blocks) { 1256 Intf.moveToBlock(Number); 1257 1258 if (!Intf.hasInterference()) { 1259 assert(T < GroupSize && "Array overflow"); 1260 TBS[T] = Number; 1261 if (++T == GroupSize) { 1262 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1263 T = 0; 1264 } 1265 continue; 1266 } 1267 1268 assert(B < GroupSize && "Array overflow"); 1269 BCS[B].Number = Number; 1270 1271 // Abort if the spill cannot be inserted at the MBB' start 1272 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1273 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 1274 if (FirstNonDebugInstr != MBB->end() && 1275 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 1276 SA->getFirstSplitPoint(Number))) 1277 return false; 1278 // Interference for the live-in value. 1279 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1280 BCS[B].Entry = SpillPlacement::MustSpill; 1281 else 1282 BCS[B].Entry = SpillPlacement::PrefSpill; 1283 1284 // Interference for the live-out value. 1285 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1286 BCS[B].Exit = SpillPlacement::MustSpill; 1287 else 1288 BCS[B].Exit = SpillPlacement::PrefSpill; 1289 1290 if (++B == GroupSize) { 1291 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1292 B = 0; 1293 } 1294 } 1295 1296 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1297 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1298 return true; 1299 } 1300 1301 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1302 // Keep track of through blocks that have not been added to SpillPlacer. 1303 BitVector Todo = SA->getThroughBlocks(); 1304 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1305 unsigned AddedTo = 0; 1306 #ifndef NDEBUG 1307 unsigned Visited = 0; 1308 #endif 1309 1310 while (true) { 1311 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1312 // Find new through blocks in the periphery of PrefRegBundles. 1313 for (unsigned Bundle : NewBundles) { 1314 // Look at all blocks connected to Bundle in the full graph. 1315 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1316 for (unsigned Block : Blocks) { 1317 if (!Todo.test(Block)) 1318 continue; 1319 Todo.reset(Block); 1320 // This is a new through block. Add it to SpillPlacer later. 1321 ActiveBlocks.push_back(Block); 1322 #ifndef NDEBUG 1323 ++Visited; 1324 #endif 1325 } 1326 } 1327 // Any new blocks to add? 1328 if (ActiveBlocks.size() == AddedTo) 1329 break; 1330 1331 // Compute through constraints from the interference, or assume that all 1332 // through blocks prefer spilling when forming compact regions. 1333 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1334 if (Cand.PhysReg) { 1335 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1336 return false; 1337 } else 1338 // Provide a strong negative bias on through blocks to prevent unwanted 1339 // liveness on loop backedges. 1340 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1341 AddedTo = ActiveBlocks.size(); 1342 1343 // Perhaps iterating can enable more bundles? 1344 SpillPlacer->iterate(); 1345 } 1346 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1347 return true; 1348 } 1349 1350 /// calcCompactRegion - Compute the set of edge bundles that should be live 1351 /// when splitting the current live range into compact regions. Compact 1352 /// regions can be computed without looking at interference. They are the 1353 /// regions formed by removing all the live-through blocks from the live range. 1354 /// 1355 /// Returns false if the current live range is already compact, or if the 1356 /// compact regions would form single block regions anyway. 1357 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1358 // Without any through blocks, the live range is already compact. 1359 if (!SA->getNumThroughBlocks()) 1360 return false; 1361 1362 // Compact regions don't correspond to any physreg. 1363 Cand.reset(IntfCache, MCRegister::NoRegister); 1364 1365 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1366 1367 // Use the spill placer to determine the live bundles. GrowRegion pretends 1368 // that all the through blocks have interference when PhysReg is unset. 1369 SpillPlacer->prepare(Cand.LiveBundles); 1370 1371 // The static split cost will be zero since Cand.Intf reports no interference. 1372 BlockFrequency Cost; 1373 if (!addSplitConstraints(Cand.Intf, Cost)) { 1374 LLVM_DEBUG(dbgs() << ", none.\n"); 1375 return false; 1376 } 1377 1378 if (!growRegion(Cand)) { 1379 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1380 return false; 1381 } 1382 1383 SpillPlacer->finish(); 1384 1385 if (!Cand.LiveBundles.any()) { 1386 LLVM_DEBUG(dbgs() << ", none.\n"); 1387 return false; 1388 } 1389 1390 LLVM_DEBUG({ 1391 for (int I : Cand.LiveBundles.set_bits()) 1392 dbgs() << " EB#" << I; 1393 dbgs() << ".\n"; 1394 }); 1395 return true; 1396 } 1397 1398 /// calcSpillCost - Compute how expensive it would be to split the live range in 1399 /// SA around all use blocks instead of forming bundle regions. 1400 BlockFrequency RAGreedy::calcSpillCost() { 1401 BlockFrequency Cost = 0; 1402 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1403 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1404 unsigned Number = BI.MBB->getNumber(); 1405 // We normally only need one spill instruction - a load or a store. 1406 Cost += SpillPlacer->getBlockFrequency(Number); 1407 1408 // Unless the value is redefined in the block. 1409 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1410 Cost += SpillPlacer->getBlockFrequency(Number); 1411 } 1412 return Cost; 1413 } 1414 1415 /// Check if splitting Evictee will create a local split interval in 1416 /// basic block number BBNumber that may cause a bad eviction chain. This is 1417 /// intended to prevent bad eviction sequences like: 1418 /// movl %ebp, 8(%esp) # 4-byte Spill 1419 /// movl %ecx, %ebp 1420 /// movl %ebx, %ecx 1421 /// movl %edi, %ebx 1422 /// movl %edx, %edi 1423 /// cltd 1424 /// idivl %esi 1425 /// movl %edi, %edx 1426 /// movl %ebx, %edi 1427 /// movl %ecx, %ebx 1428 /// movl %ebp, %ecx 1429 /// movl 16(%esp), %ebp # 4 - byte Reload 1430 /// 1431 /// Such sequences are created in 2 scenarios: 1432 /// 1433 /// Scenario #1: 1434 /// %0 is evicted from physreg0 by %1. 1435 /// Evictee %0 is intended for region splitting with split candidate 1436 /// physreg0 (the reg %0 was evicted from). 1437 /// Region splitting creates a local interval because of interference with the 1438 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1439 /// and "by stack" intervals and local interval created when interference 1440 /// occurs). 1441 /// One of the split intervals ends up evicting %2 from physreg1. 1442 /// Evictee %2 is intended for region splitting with split candidate 1443 /// physreg1. 1444 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1445 /// 1446 /// Scenario #2 1447 /// %0 is evicted from physreg0 by %1. 1448 /// %2 is evicted from physreg2 by %3 etc. 1449 /// Evictee %0 is intended for region splitting with split candidate 1450 /// physreg1. 1451 /// Region splitting creates a local interval because of interference with the 1452 /// evictor %1. 1453 /// One of the split intervals ends up evicting back original evictor %1 1454 /// from physreg0 (the reg %0 was evicted from). 1455 /// Another evictee %2 is intended for region splitting with split candidate 1456 /// physreg1. 1457 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1458 /// 1459 /// \param Evictee The register considered to be split. 1460 /// \param Cand The split candidate that determines the physical register 1461 /// we are splitting for and the interferences. 1462 /// \param BBNumber The number of a BB for which the region split process will 1463 /// create a local split interval. 1464 /// \param Order The physical registers that may get evicted by a split 1465 /// artifact of Evictee. 1466 /// \return True if splitting Evictee may cause a bad eviction chain, false 1467 /// otherwise. 1468 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 1469 GlobalSplitCandidate &Cand, 1470 unsigned BBNumber, 1471 const AllocationOrder &Order) { 1472 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1473 unsigned Evictor = VregEvictorInfo.first; 1474 MCRegister PhysReg = VregEvictorInfo.second; 1475 1476 // No actual evictor. 1477 if (!Evictor || !PhysReg) 1478 return false; 1479 1480 float MaxWeight = 0; 1481 MCRegister FutureEvictedPhysReg = 1482 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1483 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1484 1485 // The bad eviction chain occurs when either the split candidate is the 1486 // evicting reg or one of the split artifact will evict the evicting reg. 1487 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1488 return false; 1489 1490 Cand.Intf.moveToBlock(BBNumber); 1491 1492 // Check to see if the Evictor contains interference (with Evictee) in the 1493 // given BB. If so, this interference caused the eviction of Evictee from 1494 // PhysReg. This suggest that we will create a local interval during the 1495 // region split to avoid this interference This local interval may cause a bad 1496 // eviction chain. 1497 if (!LIS->hasInterval(Evictor)) 1498 return false; 1499 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1500 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1501 return false; 1502 1503 // Now, check to see if the local interval we will create is going to be 1504 // expensive enough to evict somebody If so, this may cause a bad eviction 1505 // chain. 1506 float splitArtifactWeight = 1507 VRAI->futureWeight(LIS->getInterval(Evictee), 1508 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1509 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1510 return false; 1511 1512 return true; 1513 } 1514 1515 /// Check if splitting VirtRegToSplit will create a local split interval 1516 /// in basic block number BBNumber that may cause a spill. 1517 /// 1518 /// \param VirtRegToSplit The register considered to be split. 1519 /// \param Cand The split candidate that determines the physical 1520 /// register we are splitting for and the interferences. 1521 /// \param BBNumber The number of a BB for which the region split process 1522 /// will create a local split interval. 1523 /// \param Order The physical registers that may get evicted by a 1524 /// split artifact of VirtRegToSplit. 1525 /// \return True if splitting VirtRegToSplit may cause a spill, false 1526 /// otherwise. 1527 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1528 GlobalSplitCandidate &Cand, 1529 unsigned BBNumber, 1530 const AllocationOrder &Order) { 1531 Cand.Intf.moveToBlock(BBNumber); 1532 1533 // Check if the local interval will find a non interfereing assignment. 1534 for (auto PhysReg : Order.getOrder()) { 1535 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1536 Cand.Intf.last(), PhysReg)) 1537 return false; 1538 } 1539 1540 // The local interval is not able to find non interferencing assignment 1541 // and not able to evict a less worthy interval, therfore, it can cause a 1542 // spill. 1543 return true; 1544 } 1545 1546 /// calcGlobalSplitCost - Return the global split cost of following the split 1547 /// pattern in LiveBundles. This cost should be added to the local cost of the 1548 /// interference pattern in SplitConstraints. 1549 /// 1550 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1551 const AllocationOrder &Order, 1552 bool *CanCauseEvictionChain) { 1553 BlockFrequency GlobalCost = 0; 1554 const BitVector &LiveBundles = Cand.LiveBundles; 1555 Register VirtRegToSplit = SA->getParent().reg(); 1556 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1557 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1558 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1559 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1560 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1561 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1562 unsigned Ins = 0; 1563 1564 Cand.Intf.moveToBlock(BC.Number); 1565 // Check wheather a local interval is going to be created during the region 1566 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1567 // is enabled. 1568 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1569 BI.LiveOut && RegIn && RegOut) { 1570 1571 if (CanCauseEvictionChain && 1572 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1573 // This interference causes our eviction from this assignment, we might 1574 // evict somebody else and eventually someone will spill, add that cost. 1575 // See splitCanCauseEvictionChain for detailed description of scenarios. 1576 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1577 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1578 1579 *CanCauseEvictionChain = true; 1580 1581 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1582 Order)) { 1583 // This interference causes local interval to spill, add that cost. 1584 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1585 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1586 } 1587 } 1588 1589 if (BI.LiveIn) 1590 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1591 if (BI.LiveOut) 1592 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1593 while (Ins--) 1594 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1595 } 1596 1597 for (unsigned Number : Cand.ActiveBlocks) { 1598 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1599 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1600 if (!RegIn && !RegOut) 1601 continue; 1602 if (RegIn && RegOut) { 1603 // We need double spill code if this block has interference. 1604 Cand.Intf.moveToBlock(Number); 1605 if (Cand.Intf.hasInterference()) { 1606 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1607 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1608 1609 // Check wheather a local interval is going to be created during the 1610 // region split. 1611 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1612 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1613 // This interference cause our eviction from this assignment, we might 1614 // evict somebody else, add that cost. 1615 // See splitCanCauseEvictionChain for detailed description of 1616 // scenarios. 1617 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1618 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1619 1620 *CanCauseEvictionChain = true; 1621 } 1622 } 1623 continue; 1624 } 1625 // live-in / stack-out or stack-in live-out. 1626 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1627 } 1628 return GlobalCost; 1629 } 1630 1631 /// splitAroundRegion - Split the current live range around the regions 1632 /// determined by BundleCand and GlobalCand. 1633 /// 1634 /// Before calling this function, GlobalCand and BundleCand must be initialized 1635 /// so each bundle is assigned to a valid candidate, or NoCand for the 1636 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1637 /// objects must be initialized for the current live range, and intervals 1638 /// created for the used candidates. 1639 /// 1640 /// @param LREdit The LiveRangeEdit object handling the current split. 1641 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1642 /// must appear in this list. 1643 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1644 ArrayRef<unsigned> UsedCands) { 1645 // These are the intervals created for new global ranges. We may create more 1646 // intervals for local ranges. 1647 const unsigned NumGlobalIntvs = LREdit.size(); 1648 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1649 << " globals.\n"); 1650 assert(NumGlobalIntvs && "No global intervals configured"); 1651 1652 // Isolate even single instructions when dealing with a proper sub-class. 1653 // That guarantees register class inflation for the stack interval because it 1654 // is all copies. 1655 Register Reg = SA->getParent().reg(); 1656 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1657 1658 // First handle all the blocks with uses. 1659 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1660 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1661 unsigned Number = BI.MBB->getNumber(); 1662 unsigned IntvIn = 0, IntvOut = 0; 1663 SlotIndex IntfIn, IntfOut; 1664 if (BI.LiveIn) { 1665 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1666 if (CandIn != NoCand) { 1667 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1668 IntvIn = Cand.IntvIdx; 1669 Cand.Intf.moveToBlock(Number); 1670 IntfIn = Cand.Intf.first(); 1671 } 1672 } 1673 if (BI.LiveOut) { 1674 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1675 if (CandOut != NoCand) { 1676 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1677 IntvOut = Cand.IntvIdx; 1678 Cand.Intf.moveToBlock(Number); 1679 IntfOut = Cand.Intf.last(); 1680 } 1681 } 1682 1683 // Create separate intervals for isolated blocks with multiple uses. 1684 if (!IntvIn && !IntvOut) { 1685 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1686 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1687 SE->splitSingleBlock(BI); 1688 continue; 1689 } 1690 1691 if (IntvIn && IntvOut) 1692 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1693 else if (IntvIn) 1694 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1695 else 1696 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1697 } 1698 1699 // Handle live-through blocks. The relevant live-through blocks are stored in 1700 // the ActiveBlocks list with each candidate. We need to filter out 1701 // duplicates. 1702 BitVector Todo = SA->getThroughBlocks(); 1703 for (unsigned UsedCand : UsedCands) { 1704 ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks; 1705 for (unsigned Number : Blocks) { 1706 if (!Todo.test(Number)) 1707 continue; 1708 Todo.reset(Number); 1709 1710 unsigned IntvIn = 0, IntvOut = 0; 1711 SlotIndex IntfIn, IntfOut; 1712 1713 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1714 if (CandIn != NoCand) { 1715 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1716 IntvIn = Cand.IntvIdx; 1717 Cand.Intf.moveToBlock(Number); 1718 IntfIn = Cand.Intf.first(); 1719 } 1720 1721 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1722 if (CandOut != NoCand) { 1723 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1724 IntvOut = Cand.IntvIdx; 1725 Cand.Intf.moveToBlock(Number); 1726 IntfOut = Cand.Intf.last(); 1727 } 1728 if (!IntvIn && !IntvOut) 1729 continue; 1730 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1731 } 1732 } 1733 1734 ++NumGlobalSplits; 1735 1736 SmallVector<unsigned, 8> IntvMap; 1737 SE->finish(&IntvMap); 1738 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1739 1740 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1741 1742 // Sort out the new intervals created by splitting. We get four kinds: 1743 // - Remainder intervals should not be split again. 1744 // - Candidate intervals can be assigned to Cand.PhysReg. 1745 // - Block-local splits are candidates for local splitting. 1746 // - DCE leftovers should go back on the queue. 1747 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1748 const LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1749 1750 // Ignore old intervals from DCE. 1751 if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New) 1752 continue; 1753 1754 // Remainder interval. Don't try splitting again, spill if it doesn't 1755 // allocate. 1756 if (IntvMap[I] == 0) { 1757 ExtraInfo->setStage(Reg, RS_Spill); 1758 continue; 1759 } 1760 1761 // Global intervals. Allow repeated splitting as long as the number of live 1762 // blocks is strictly decreasing. 1763 if (IntvMap[I] < NumGlobalIntvs) { 1764 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1765 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1766 << " blocks as original.\n"); 1767 // Don't allow repeated splitting as a safe guard against looping. 1768 ExtraInfo->setStage(Reg, RS_Split2); 1769 } 1770 continue; 1771 } 1772 1773 // Other intervals are treated as new. This includes local intervals created 1774 // for blocks with multiple uses, and anything created by DCE. 1775 } 1776 1777 if (VerifyEnabled) 1778 MF->verify(this, "After splitting live range around region"); 1779 } 1780 1781 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg, 1782 AllocationOrder &Order, 1783 SmallVectorImpl<Register> &NewVRegs) { 1784 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1785 return MCRegister::NoRegister; 1786 unsigned NumCands = 0; 1787 BlockFrequency SpillCost = calcSpillCost(); 1788 BlockFrequency BestCost; 1789 1790 // Check if we can split this live range around a compact region. 1791 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1792 if (HasCompact) { 1793 // Yes, keep GlobalCand[0] as the compact region candidate. 1794 NumCands = 1; 1795 BestCost = BlockFrequency::getMaxFrequency(); 1796 } else { 1797 // No benefit from the compact region, our fallback will be per-block 1798 // splitting. Make sure we find a solution that is cheaper than spilling. 1799 BestCost = SpillCost; 1800 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1801 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1802 } 1803 1804 bool CanCauseEvictionChain = false; 1805 unsigned BestCand = 1806 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1807 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1808 1809 // Split candidates with compact regions can cause a bad eviction sequence. 1810 // See splitCanCauseEvictionChain for detailed description of scenarios. 1811 // To avoid it, we need to comapre the cost with the spill cost and not the 1812 // current max frequency. 1813 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1814 CanCauseEvictionChain) { 1815 return MCRegister::NoRegister; 1816 } 1817 1818 // No solutions found, fall back to single block splitting. 1819 if (!HasCompact && BestCand == NoCand) 1820 return MCRegister::NoRegister; 1821 1822 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1823 } 1824 1825 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1826 AllocationOrder &Order, 1827 BlockFrequency &BestCost, 1828 unsigned &NumCands, bool IgnoreCSR, 1829 bool *CanCauseEvictionChain) { 1830 unsigned BestCand = NoCand; 1831 for (MCPhysReg PhysReg : Order) { 1832 assert(PhysReg); 1833 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1834 continue; 1835 1836 // Discard bad candidates before we run out of interference cache cursors. 1837 // This will only affect register classes with a lot of registers (>32). 1838 if (NumCands == IntfCache.getMaxCursors()) { 1839 unsigned WorstCount = ~0u; 1840 unsigned Worst = 0; 1841 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1842 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1843 continue; 1844 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1845 if (Count < WorstCount) { 1846 Worst = CandIndex; 1847 WorstCount = Count; 1848 } 1849 } 1850 --NumCands; 1851 GlobalCand[Worst] = GlobalCand[NumCands]; 1852 if (BestCand == NumCands) 1853 BestCand = Worst; 1854 } 1855 1856 if (GlobalCand.size() <= NumCands) 1857 GlobalCand.resize(NumCands+1); 1858 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1859 Cand.reset(IntfCache, PhysReg); 1860 1861 SpillPlacer->prepare(Cand.LiveBundles); 1862 BlockFrequency Cost; 1863 if (!addSplitConstraints(Cand.Intf, Cost)) { 1864 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1865 continue; 1866 } 1867 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1868 MBFI->printBlockFreq(dbgs(), Cost)); 1869 if (Cost >= BestCost) { 1870 LLVM_DEBUG({ 1871 if (BestCand == NoCand) 1872 dbgs() << " worse than no bundles\n"; 1873 else 1874 dbgs() << " worse than " 1875 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1876 }); 1877 continue; 1878 } 1879 if (!growRegion(Cand)) { 1880 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1881 continue; 1882 } 1883 1884 SpillPlacer->finish(); 1885 1886 // No live bundles, defer to splitSingleBlocks(). 1887 if (!Cand.LiveBundles.any()) { 1888 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1889 continue; 1890 } 1891 1892 bool HasEvictionChain = false; 1893 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1894 LLVM_DEBUG({ 1895 dbgs() << ", total = "; 1896 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1897 for (int I : Cand.LiveBundles.set_bits()) 1898 dbgs() << " EB#" << I; 1899 dbgs() << ".\n"; 1900 }); 1901 if (Cost < BestCost) { 1902 BestCand = NumCands; 1903 BestCost = Cost; 1904 // See splitCanCauseEvictionChain for detailed description of bad 1905 // eviction chain scenarios. 1906 if (CanCauseEvictionChain) 1907 *CanCauseEvictionChain = HasEvictionChain; 1908 } 1909 ++NumCands; 1910 } 1911 1912 if (CanCauseEvictionChain && BestCand != NoCand) { 1913 // See splitCanCauseEvictionChain for detailed description of bad 1914 // eviction chain scenarios. 1915 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1916 << printReg(VirtReg.reg(), TRI) << " may "); 1917 if (!(*CanCauseEvictionChain)) 1918 LLVM_DEBUG(dbgs() << "not "); 1919 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1920 } 1921 1922 return BestCand; 1923 } 1924 1925 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1926 bool HasCompact, 1927 SmallVectorImpl<Register> &NewVRegs) { 1928 SmallVector<unsigned, 8> UsedCands; 1929 // Prepare split editor. 1930 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1931 SE->reset(LREdit, SplitSpillMode); 1932 1933 // Assign all edge bundles to the preferred candidate, or NoCand. 1934 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1935 1936 // Assign bundles for the best candidate region. 1937 if (BestCand != NoCand) { 1938 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1939 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1940 UsedCands.push_back(BestCand); 1941 Cand.IntvIdx = SE->openIntv(); 1942 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1943 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1944 (void)B; 1945 } 1946 } 1947 1948 // Assign bundles for the compact region. 1949 if (HasCompact) { 1950 GlobalSplitCandidate &Cand = GlobalCand.front(); 1951 assert(!Cand.PhysReg && "Compact region has no physreg"); 1952 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1953 UsedCands.push_back(0); 1954 Cand.IntvIdx = SE->openIntv(); 1955 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1956 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1957 (void)B; 1958 } 1959 } 1960 1961 splitAroundRegion(LREdit, UsedCands); 1962 return 0; 1963 } 1964 1965 //===----------------------------------------------------------------------===// 1966 // Per-Block Splitting 1967 //===----------------------------------------------------------------------===// 1968 1969 /// tryBlockSplit - Split a global live range around every block with uses. This 1970 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1971 /// they don't allocate. 1972 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1973 SmallVectorImpl<Register> &NewVRegs) { 1974 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1975 Register Reg = VirtReg.reg(); 1976 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1977 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1978 SE->reset(LREdit, SplitSpillMode); 1979 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1980 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1981 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1982 SE->splitSingleBlock(BI); 1983 } 1984 // No blocks were split. 1985 if (LREdit.empty()) 1986 return 0; 1987 1988 // We did split for some blocks. 1989 SmallVector<unsigned, 8> IntvMap; 1990 SE->finish(&IntvMap); 1991 1992 // Tell LiveDebugVariables about the new ranges. 1993 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1994 1995 // Sort out the new intervals created by splitting. The remainder interval 1996 // goes straight to spilling, the new local ranges get to stay RS_New. 1997 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1998 const LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 1999 if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0) 2000 ExtraInfo->setStage(LI, RS_Spill); 2001 } 2002 2003 if (VerifyEnabled) 2004 MF->verify(this, "After splitting live range around basic blocks"); 2005 return 0; 2006 } 2007 2008 //===----------------------------------------------------------------------===// 2009 // Per-Instruction Splitting 2010 //===----------------------------------------------------------------------===// 2011 2012 /// Get the number of allocatable registers that match the constraints of \p Reg 2013 /// on \p MI and that are also in \p SuperRC. 2014 static unsigned getNumAllocatableRegsForConstraints( 2015 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 2016 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2017 const RegisterClassInfo &RCI) { 2018 assert(SuperRC && "Invalid register class"); 2019 2020 const TargetRegisterClass *ConstrainedRC = 2021 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2022 /* ExploreBundle */ true); 2023 if (!ConstrainedRC) 2024 return 0; 2025 return RCI.getNumAllocatableRegs(ConstrainedRC); 2026 } 2027 2028 /// tryInstructionSplit - Split a live range around individual instructions. 2029 /// This is normally not worthwhile since the spiller is doing essentially the 2030 /// same thing. However, when the live range is in a constrained register 2031 /// class, it may help to insert copies such that parts of the live range can 2032 /// be moved to a larger register class. 2033 /// 2034 /// This is similar to spilling to a larger register class. 2035 unsigned 2036 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2037 SmallVectorImpl<Register> &NewVRegs) { 2038 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2039 // There is no point to this if there are no larger sub-classes. 2040 if (!RegClassInfo.isProperSubClass(CurRC)) 2041 return 0; 2042 2043 // Always enable split spill mode, since we're effectively spilling to a 2044 // register. 2045 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2046 SE->reset(LREdit, SplitEditor::SM_Size); 2047 2048 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2049 if (Uses.size() <= 1) 2050 return 0; 2051 2052 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2053 << " individual instrs.\n"); 2054 2055 const TargetRegisterClass *SuperRC = 2056 TRI->getLargestLegalSuperClass(CurRC, *MF); 2057 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2058 // Split around every non-copy instruction if this split will relax 2059 // the constraints on the virtual register. 2060 // Otherwise, splitting just inserts uncoalescable copies that do not help 2061 // the allocation. 2062 for (const SlotIndex Use : Uses) { 2063 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 2064 if (MI->isFullCopy() || 2065 SuperRCNumAllocatableRegs == 2066 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 2067 TII, TRI, RCI)) { 2068 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 2069 continue; 2070 } 2071 SE->openIntv(); 2072 SlotIndex SegStart = SE->enterIntvBefore(Use); 2073 SlotIndex SegStop = SE->leaveIntvAfter(Use); 2074 SE->useIntv(SegStart, SegStop); 2075 } 2076 2077 if (LREdit.empty()) { 2078 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2079 return 0; 2080 } 2081 2082 SmallVector<unsigned, 8> IntvMap; 2083 SE->finish(&IntvMap); 2084 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2085 // Assign all new registers to RS_Spill. This was the last chance. 2086 ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2087 return 0; 2088 } 2089 2090 //===----------------------------------------------------------------------===// 2091 // Local Splitting 2092 //===----------------------------------------------------------------------===// 2093 2094 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2095 /// in order to use PhysReg between two entries in SA->UseSlots. 2096 /// 2097 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 2098 /// 2099 void RAGreedy::calcGapWeights(MCRegister PhysReg, 2100 SmallVectorImpl<float> &GapWeight) { 2101 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2102 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2103 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2104 const unsigned NumGaps = Uses.size()-1; 2105 2106 // Start and end points for the interference check. 2107 SlotIndex StartIdx = 2108 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2109 SlotIndex StopIdx = 2110 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2111 2112 GapWeight.assign(NumGaps, 0.0f); 2113 2114 // Add interference from each overlapping register. 2115 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2116 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2117 .checkInterference()) 2118 continue; 2119 2120 // We know that VirtReg is a continuous interval from FirstInstr to 2121 // LastInstr, so we don't need InterferenceQuery. 2122 // 2123 // Interference that overlaps an instruction is counted in both gaps 2124 // surrounding the instruction. The exception is interference before 2125 // StartIdx and after StopIdx. 2126 // 2127 LiveIntervalUnion::SegmentIter IntI = 2128 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2129 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2130 // Skip the gaps before IntI. 2131 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2132 if (++Gap == NumGaps) 2133 break; 2134 if (Gap == NumGaps) 2135 break; 2136 2137 // Update the gaps covered by IntI. 2138 const float weight = IntI.value()->weight(); 2139 for (; Gap != NumGaps; ++Gap) { 2140 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2141 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2142 break; 2143 } 2144 if (Gap == NumGaps) 2145 break; 2146 } 2147 } 2148 2149 // Add fixed interference. 2150 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2151 const LiveRange &LR = LIS->getRegUnit(*Units); 2152 LiveRange::const_iterator I = LR.find(StartIdx); 2153 LiveRange::const_iterator E = LR.end(); 2154 2155 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2156 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2157 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2158 if (++Gap == NumGaps) 2159 break; 2160 if (Gap == NumGaps) 2161 break; 2162 2163 for (; Gap != NumGaps; ++Gap) { 2164 GapWeight[Gap] = huge_valf; 2165 if (Uses[Gap+1].getBaseIndex() >= I->end) 2166 break; 2167 } 2168 if (Gap == NumGaps) 2169 break; 2170 } 2171 } 2172 } 2173 2174 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2175 /// basic block. 2176 /// 2177 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2178 SmallVectorImpl<Register> &NewVRegs) { 2179 // TODO: the function currently only handles a single UseBlock; it should be 2180 // possible to generalize. 2181 if (SA->getUseBlocks().size() != 1) 2182 return 0; 2183 2184 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2185 2186 // Note that it is possible to have an interval that is live-in or live-out 2187 // while only covering a single block - A phi-def can use undef values from 2188 // predecessors, and the block could be a single-block loop. 2189 // We don't bother doing anything clever about such a case, we simply assume 2190 // that the interval is continuous from FirstInstr to LastInstr. We should 2191 // make sure that we don't do anything illegal to such an interval, though. 2192 2193 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2194 if (Uses.size() <= 2) 2195 return 0; 2196 const unsigned NumGaps = Uses.size()-1; 2197 2198 LLVM_DEBUG({ 2199 dbgs() << "tryLocalSplit: "; 2200 for (const auto &Use : Uses) 2201 dbgs() << ' ' << Use; 2202 dbgs() << '\n'; 2203 }); 2204 2205 // If VirtReg is live across any register mask operands, compute a list of 2206 // gaps with register masks. 2207 SmallVector<unsigned, 8> RegMaskGaps; 2208 if (Matrix->checkRegMaskInterference(VirtReg)) { 2209 // Get regmask slots for the whole block. 2210 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2211 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2212 // Constrain to VirtReg's live range. 2213 unsigned RI = 2214 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 2215 unsigned RE = RMS.size(); 2216 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 2217 // Look for Uses[I] <= RMS <= Uses[I + 1]. 2218 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 2219 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 2220 continue; 2221 // Skip a regmask on the same instruction as the last use. It doesn't 2222 // overlap the live range. 2223 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 2224 break; 2225 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 2226 << Uses[I + 1]); 2227 RegMaskGaps.push_back(I); 2228 // Advance ri to the next gap. A regmask on one of the uses counts in 2229 // both gaps. 2230 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 2231 ++RI; 2232 } 2233 LLVM_DEBUG(dbgs() << '\n'); 2234 } 2235 2236 // Since we allow local split results to be split again, there is a risk of 2237 // creating infinite loops. It is tempting to require that the new live 2238 // ranges have less instructions than the original. That would guarantee 2239 // convergence, but it is too strict. A live range with 3 instructions can be 2240 // split 2+3 (including the COPY), and we want to allow that. 2241 // 2242 // Instead we use these rules: 2243 // 2244 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2245 // noop split, of course). 2246 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2247 // the new ranges must have fewer instructions than before the split. 2248 // 3. New ranges with the same number of instructions are marked RS_Split2, 2249 // smaller ranges are marked RS_New. 2250 // 2251 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2252 // excessive splitting and infinite loops. 2253 // 2254 bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2; 2255 2256 // Best split candidate. 2257 unsigned BestBefore = NumGaps; 2258 unsigned BestAfter = 0; 2259 float BestDiff = 0; 2260 2261 const float blockFreq = 2262 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2263 (1.0f / MBFI->getEntryFreq()); 2264 SmallVector<float, 8> GapWeight; 2265 2266 for (MCPhysReg PhysReg : Order) { 2267 assert(PhysReg); 2268 // Keep track of the largest spill weight that would need to be evicted in 2269 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 2270 calcGapWeights(PhysReg, GapWeight); 2271 2272 // Remove any gaps with regmask clobbers. 2273 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2274 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 2275 GapWeight[RegMaskGaps[I]] = huge_valf; 2276 2277 // Try to find the best sequence of gaps to close. 2278 // The new spill weight must be larger than any gap interference. 2279 2280 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2281 unsigned SplitBefore = 0, SplitAfter = 1; 2282 2283 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2284 // It is the spill weight that needs to be evicted. 2285 float MaxGap = GapWeight[0]; 2286 2287 while (true) { 2288 // Live before/after split? 2289 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2290 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2291 2292 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2293 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 2294 2295 // Stop before the interval gets so big we wouldn't be making progress. 2296 if (!LiveBefore && !LiveAfter) { 2297 LLVM_DEBUG(dbgs() << " all\n"); 2298 break; 2299 } 2300 // Should the interval be extended or shrunk? 2301 bool Shrink = true; 2302 2303 // How many gaps would the new range have? 2304 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2305 2306 // Legally, without causing looping? 2307 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2308 2309 if (Legal && MaxGap < huge_valf) { 2310 // Estimate the new spill weight. Each instruction reads or writes the 2311 // register. Conservatively assume there are no read-modify-write 2312 // instructions. 2313 // 2314 // Try to guess the size of the new interval. 2315 const float EstWeight = normalizeSpillWeight( 2316 blockFreq * (NewGaps + 1), 2317 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2318 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2319 1); 2320 // Would this split be possible to allocate? 2321 // Never allocate all gaps, we wouldn't be making progress. 2322 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2323 if (EstWeight * Hysteresis >= MaxGap) { 2324 Shrink = false; 2325 float Diff = EstWeight - MaxGap; 2326 if (Diff > BestDiff) { 2327 LLVM_DEBUG(dbgs() << " (best)"); 2328 BestDiff = Hysteresis * Diff; 2329 BestBefore = SplitBefore; 2330 BestAfter = SplitAfter; 2331 } 2332 } 2333 } 2334 2335 // Try to shrink. 2336 if (Shrink) { 2337 if (++SplitBefore < SplitAfter) { 2338 LLVM_DEBUG(dbgs() << " shrink\n"); 2339 // Recompute the max when necessary. 2340 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2341 MaxGap = GapWeight[SplitBefore]; 2342 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 2343 MaxGap = std::max(MaxGap, GapWeight[I]); 2344 } 2345 continue; 2346 } 2347 MaxGap = 0; 2348 } 2349 2350 // Try to extend the interval. 2351 if (SplitAfter >= NumGaps) { 2352 LLVM_DEBUG(dbgs() << " end\n"); 2353 break; 2354 } 2355 2356 LLVM_DEBUG(dbgs() << " extend\n"); 2357 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2358 } 2359 } 2360 2361 // Didn't find any candidates? 2362 if (BestBefore == NumGaps) 2363 return 0; 2364 2365 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2366 << Uses[BestAfter] << ", " << BestDiff << ", " 2367 << (BestAfter - BestBefore + 1) << " instrs\n"); 2368 2369 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2370 SE->reset(LREdit); 2371 2372 SE->openIntv(); 2373 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2374 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2375 SE->useIntv(SegStart, SegStop); 2376 SmallVector<unsigned, 8> IntvMap; 2377 SE->finish(&IntvMap); 2378 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2379 // If the new range has the same number of instructions as before, mark it as 2380 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2381 // leave the new intervals as RS_New so they can compete. 2382 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2383 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2384 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2385 if (NewGaps >= NumGaps) { 2386 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 2387 assert(!ProgressRequired && "Didn't make progress when it was required."); 2388 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 2389 if (IntvMap[I] == 1) { 2390 ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 2391 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 2392 } 2393 LLVM_DEBUG(dbgs() << '\n'); 2394 } 2395 ++NumLocalSplits; 2396 2397 return 0; 2398 } 2399 2400 //===----------------------------------------------------------------------===// 2401 // Live Range Splitting 2402 //===----------------------------------------------------------------------===// 2403 2404 /// trySplit - Try to split VirtReg or one of its interferences, making it 2405 /// assignable. 2406 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2407 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2408 SmallVectorImpl<Register> &NewVRegs, 2409 const SmallVirtRegSet &FixedRegisters) { 2410 // Ranges must be Split2 or less. 2411 if (ExtraInfo->getStage(VirtReg) >= RS_Spill) 2412 return 0; 2413 2414 // Local intervals are handled separately. 2415 if (LIS->intervalIsInOneMBB(VirtReg)) { 2416 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2417 TimerGroupDescription, TimePassesIsEnabled); 2418 SA->analyze(&VirtReg); 2419 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2420 if (PhysReg || !NewVRegs.empty()) 2421 return PhysReg; 2422 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2423 } 2424 2425 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2426 TimerGroupDescription, TimePassesIsEnabled); 2427 2428 SA->analyze(&VirtReg); 2429 2430 // First try to split around a region spanning multiple blocks. RS_Split2 2431 // ranges already made dubious progress with region splitting, so they go 2432 // straight to single block splitting. 2433 if (ExtraInfo->getStage(VirtReg) < RS_Split2) { 2434 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2435 if (PhysReg || !NewVRegs.empty()) 2436 return PhysReg; 2437 } 2438 2439 // Then isolate blocks. 2440 return tryBlockSplit(VirtReg, Order, NewVRegs); 2441 } 2442 2443 //===----------------------------------------------------------------------===// 2444 // Last Chance Recoloring 2445 //===----------------------------------------------------------------------===// 2446 2447 /// Return true if \p reg has any tied def operand. 2448 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2449 for (const MachineOperand &MO : MRI->def_operands(reg)) 2450 if (MO.isTied()) 2451 return true; 2452 2453 return false; 2454 } 2455 2456 /// mayRecolorAllInterferences - Check if the virtual registers that 2457 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2458 /// recolored to free \p PhysReg. 2459 /// When true is returned, \p RecoloringCandidates has been augmented with all 2460 /// the live intervals that need to be recolored in order to free \p PhysReg 2461 /// for \p VirtReg. 2462 /// \p FixedRegisters contains all the virtual registers that cannot be 2463 /// recolored. 2464 bool RAGreedy::mayRecolorAllInterferences( 2465 MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates, 2466 const SmallVirtRegSet &FixedRegisters) { 2467 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2468 2469 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2470 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2471 // If there is LastChanceRecoloringMaxInterference or more interferences, 2472 // chances are one would not be recolorable. 2473 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= 2474 LastChanceRecoloringMaxInterference && 2475 !ExhaustiveSearch) { 2476 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2477 CutOffInfo |= CO_Interf; 2478 return false; 2479 } 2480 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 2481 // If Intf is done and sit on the same register class as VirtReg, 2482 // it would not be recolorable as it is in the same state as VirtReg. 2483 // However, if VirtReg has tied defs and Intf doesn't, then 2484 // there is still a point in examining if it can be recolorable. 2485 if (((ExtraInfo->getStage(*Intf) == RS_Done && 2486 MRI->getRegClass(Intf->reg()) == CurRC) && 2487 !(hasTiedDef(MRI, VirtReg.reg()) && 2488 !hasTiedDef(MRI, Intf->reg()))) || 2489 FixedRegisters.count(Intf->reg())) { 2490 LLVM_DEBUG( 2491 dbgs() << "Early abort: the interference is not recolorable.\n"); 2492 return false; 2493 } 2494 RecoloringCandidates.insert(Intf); 2495 } 2496 } 2497 return true; 2498 } 2499 2500 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2501 /// its interferences. 2502 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2503 /// virtual register that was using it. The recoloring process may recursively 2504 /// use the last chance recoloring. Therefore, when a virtual register has been 2505 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2506 /// be last-chance-recolored again during this recoloring "session". 2507 /// E.g., 2508 /// Let 2509 /// vA can use {R1, R2 } 2510 /// vB can use { R2, R3} 2511 /// vC can use {R1 } 2512 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2513 /// instance) and they all interfere. 2514 /// 2515 /// vA is assigned R1 2516 /// vB is assigned R2 2517 /// vC tries to evict vA but vA is already done. 2518 /// Regular register allocation fails. 2519 /// 2520 /// Last chance recoloring kicks in: 2521 /// vC does as if vA was evicted => vC uses R1. 2522 /// vC is marked as fixed. 2523 /// vA needs to find a color. 2524 /// None are available. 2525 /// vA cannot evict vC: vC is a fixed virtual register now. 2526 /// vA does as if vB was evicted => vA uses R2. 2527 /// vB needs to find a color. 2528 /// R3 is available. 2529 /// Recoloring => vC = R1, vA = R2, vB = R3 2530 /// 2531 /// \p Order defines the preferred allocation order for \p VirtReg. 2532 /// \p NewRegs will contain any new virtual register that have been created 2533 /// (split, spill) during the process and that must be assigned. 2534 /// \p FixedRegisters contains all the virtual registers that cannot be 2535 /// recolored. 2536 /// \p Depth gives the current depth of the last chance recoloring. 2537 /// \return a physical register that can be used for VirtReg or ~0u if none 2538 /// exists. 2539 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2540 AllocationOrder &Order, 2541 SmallVectorImpl<Register> &NewVRegs, 2542 SmallVirtRegSet &FixedRegisters, 2543 unsigned Depth) { 2544 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 2545 return ~0u; 2546 2547 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2548 // Ranges must be Done. 2549 assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2550 "Last chance recoloring should really be last chance"); 2551 // Set the max depth to LastChanceRecoloringMaxDepth. 2552 // We may want to reconsider that if we end up with a too large search space 2553 // for target with hundreds of registers. 2554 // Indeed, in that case we may want to cut the search space earlier. 2555 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2556 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2557 CutOffInfo |= CO_Depth; 2558 return ~0u; 2559 } 2560 2561 // Set of Live intervals that will need to be recolored. 2562 SmallLISet RecoloringCandidates; 2563 // Record the original mapping virtual register to physical register in case 2564 // the recoloring fails. 2565 DenseMap<Register, MCRegister> VirtRegToPhysReg; 2566 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2567 // this recoloring "session". 2568 assert(!FixedRegisters.count(VirtReg.reg())); 2569 FixedRegisters.insert(VirtReg.reg()); 2570 SmallVector<Register, 4> CurrentNewVRegs; 2571 2572 for (MCRegister PhysReg : Order) { 2573 assert(PhysReg.isValid()); 2574 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2575 << printReg(PhysReg, TRI) << '\n'); 2576 RecoloringCandidates.clear(); 2577 VirtRegToPhysReg.clear(); 2578 CurrentNewVRegs.clear(); 2579 2580 // It is only possible to recolor virtual register interference. 2581 if (Matrix->checkInterference(VirtReg, PhysReg) > 2582 LiveRegMatrix::IK_VirtReg) { 2583 LLVM_DEBUG( 2584 dbgs() << "Some interferences are not with virtual registers.\n"); 2585 2586 continue; 2587 } 2588 2589 // Early give up on this PhysReg if it is obvious we cannot recolor all 2590 // the interferences. 2591 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2592 FixedRegisters)) { 2593 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2594 continue; 2595 } 2596 2597 // RecoloringCandidates contains all the virtual registers that interfer 2598 // with VirtReg on PhysReg (or one of its aliases). 2599 // Enqueue them for recoloring and perform the actual recoloring. 2600 PQueue RecoloringQueue; 2601 for (LiveInterval *RC : RecoloringCandidates) { 2602 Register ItVirtReg = RC->reg(); 2603 enqueue(RecoloringQueue, RC); 2604 assert(VRM->hasPhys(ItVirtReg) && 2605 "Interferences are supposed to be with allocated variables"); 2606 2607 // Record the current allocation. 2608 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2609 // unset the related struct. 2610 Matrix->unassign(*RC); 2611 } 2612 2613 // Do as if VirtReg was assigned to PhysReg so that the underlying 2614 // recoloring has the right information about the interferes and 2615 // available colors. 2616 Matrix->assign(VirtReg, PhysReg); 2617 2618 // Save the current recoloring state. 2619 // If we cannot recolor all the interferences, we will have to start again 2620 // at this point for the next physical register. 2621 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2622 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2623 FixedRegisters, Depth)) { 2624 // Push the queued vregs into the main queue. 2625 for (Register NewVReg : CurrentNewVRegs) 2626 NewVRegs.push_back(NewVReg); 2627 // Do not mess up with the global assignment process. 2628 // I.e., VirtReg must be unassigned. 2629 Matrix->unassign(VirtReg); 2630 return PhysReg; 2631 } 2632 2633 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2634 << printReg(PhysReg, TRI) << '\n'); 2635 2636 // The recoloring attempt failed, undo the changes. 2637 FixedRegisters = SaveFixedRegisters; 2638 Matrix->unassign(VirtReg); 2639 2640 // For a newly created vreg which is also in RecoloringCandidates, 2641 // don't add it to NewVRegs because its physical register will be restored 2642 // below. Other vregs in CurrentNewVRegs are created by calling 2643 // selectOrSplit and should be added into NewVRegs. 2644 for (Register &R : CurrentNewVRegs) { 2645 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2646 continue; 2647 NewVRegs.push_back(R); 2648 } 2649 2650 for (LiveInterval *RC : RecoloringCandidates) { 2651 Register ItVirtReg = RC->reg(); 2652 if (VRM->hasPhys(ItVirtReg)) 2653 Matrix->unassign(*RC); 2654 MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2655 Matrix->assign(*RC, ItPhysReg); 2656 } 2657 } 2658 2659 // Last chance recoloring did not worked either, give up. 2660 return ~0u; 2661 } 2662 2663 /// tryRecoloringCandidates - Try to assign a new color to every register 2664 /// in \RecoloringQueue. 2665 /// \p NewRegs will contain any new virtual register created during the 2666 /// recoloring process. 2667 /// \p FixedRegisters[in/out] contains all the registers that have been 2668 /// recolored. 2669 /// \return true if all virtual registers in RecoloringQueue were successfully 2670 /// recolored, false otherwise. 2671 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2672 SmallVectorImpl<Register> &NewVRegs, 2673 SmallVirtRegSet &FixedRegisters, 2674 unsigned Depth) { 2675 while (!RecoloringQueue.empty()) { 2676 LiveInterval *LI = dequeue(RecoloringQueue); 2677 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2678 MCRegister PhysReg = 2679 selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2680 // When splitting happens, the live-range may actually be empty. 2681 // In that case, this is okay to continue the recoloring even 2682 // if we did not find an alternative color for it. Indeed, 2683 // there will not be anything to color for LI in the end. 2684 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2685 return false; 2686 2687 if (!PhysReg) { 2688 assert(LI->empty() && "Only empty live-range do not require a register"); 2689 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2690 << " succeeded. Empty LI.\n"); 2691 continue; 2692 } 2693 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2694 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2695 2696 Matrix->assign(*LI, PhysReg); 2697 FixedRegisters.insert(LI->reg()); 2698 } 2699 return true; 2700 } 2701 2702 //===----------------------------------------------------------------------===// 2703 // Main Entry Point 2704 //===----------------------------------------------------------------------===// 2705 2706 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2707 SmallVectorImpl<Register> &NewVRegs) { 2708 CutOffInfo = CO_None; 2709 LLVMContext &Ctx = MF->getFunction().getContext(); 2710 SmallVirtRegSet FixedRegisters; 2711 MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2712 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2713 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2714 if (CutOffEncountered == CO_Depth) 2715 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2716 "reached. Use -fexhaustive-register-search to skip " 2717 "cutoffs"); 2718 else if (CutOffEncountered == CO_Interf) 2719 Ctx.emitError("register allocation failed: maximum interference for " 2720 "recoloring reached. Use -fexhaustive-register-search " 2721 "to skip cutoffs"); 2722 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2723 Ctx.emitError("register allocation failed: maximum interference and " 2724 "depth for recoloring reached. Use " 2725 "-fexhaustive-register-search to skip cutoffs"); 2726 } 2727 return Reg; 2728 } 2729 2730 /// Using a CSR for the first time has a cost because it causes push|pop 2731 /// to be added to prologue|epilogue. Splitting a cold section of the live 2732 /// range can have lower cost than using the CSR for the first time; 2733 /// Spilling a live range in the cold path can have lower cost than using 2734 /// the CSR for the first time. Returns the physical register if we decide 2735 /// to use the CSR; otherwise return 0. 2736 MCRegister 2737 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 2738 MCRegister PhysReg, uint8_t &CostPerUseLimit, 2739 SmallVectorImpl<Register> &NewVRegs) { 2740 if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2741 // We choose spill over using the CSR for the first time if the spill cost 2742 // is lower than CSRCost. 2743 SA->analyze(&VirtReg); 2744 if (calcSpillCost() >= CSRCost) 2745 return PhysReg; 2746 2747 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2748 // we will not use a callee-saved register in tryEvict. 2749 CostPerUseLimit = 1; 2750 return 0; 2751 } 2752 if (ExtraInfo->getStage(VirtReg) < RS_Split) { 2753 // We choose pre-splitting over using the CSR for the first time if 2754 // the cost of splitting is lower than CSRCost. 2755 SA->analyze(&VirtReg); 2756 unsigned NumCands = 0; 2757 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2758 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2759 NumCands, true /*IgnoreCSR*/); 2760 if (BestCand == NoCand) 2761 // Use the CSR if we can't find a region split below CSRCost. 2762 return PhysReg; 2763 2764 // Perform the actual pre-splitting. 2765 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2766 return 0; 2767 } 2768 return PhysReg; 2769 } 2770 2771 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2772 // Do not keep invalid information around. 2773 SetOfBrokenHints.remove(&LI); 2774 } 2775 2776 void RAGreedy::initializeCSRCost() { 2777 // We use the larger one out of the command-line option and the value report 2778 // by TRI. 2779 CSRCost = BlockFrequency( 2780 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2781 if (!CSRCost.getFrequency()) 2782 return; 2783 2784 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2785 uint64_t ActualEntry = MBFI->getEntryFreq(); 2786 if (!ActualEntry) { 2787 CSRCost = 0; 2788 return; 2789 } 2790 uint64_t FixedEntry = 1 << 14; 2791 if (ActualEntry < FixedEntry) 2792 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2793 else if (ActualEntry <= UINT32_MAX) 2794 // Invert the fraction and divide. 2795 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2796 else 2797 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2798 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2799 } 2800 2801 /// Collect the hint info for \p Reg. 2802 /// The results are stored into \p Out. 2803 /// \p Out is not cleared before being populated. 2804 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2805 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2806 if (!Instr.isFullCopy()) 2807 continue; 2808 // Look for the other end of the copy. 2809 Register OtherReg = Instr.getOperand(0).getReg(); 2810 if (OtherReg == Reg) { 2811 OtherReg = Instr.getOperand(1).getReg(); 2812 if (OtherReg == Reg) 2813 continue; 2814 } 2815 // Get the current assignment. 2816 MCRegister OtherPhysReg = 2817 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2818 // Push the collected information. 2819 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2820 OtherPhysReg)); 2821 } 2822 } 2823 2824 /// Using the given \p List, compute the cost of the broken hints if 2825 /// \p PhysReg was used. 2826 /// \return The cost of \p List for \p PhysReg. 2827 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2828 MCRegister PhysReg) { 2829 BlockFrequency Cost = 0; 2830 for (const HintInfo &Info : List) { 2831 if (Info.PhysReg != PhysReg) 2832 Cost += Info.Freq; 2833 } 2834 return Cost; 2835 } 2836 2837 /// Using the register assigned to \p VirtReg, try to recolor 2838 /// all the live ranges that are copy-related with \p VirtReg. 2839 /// The recoloring is then propagated to all the live-ranges that have 2840 /// been recolored and so on, until no more copies can be coalesced or 2841 /// it is not profitable. 2842 /// For a given live range, profitability is determined by the sum of the 2843 /// frequencies of the non-identity copies it would introduce with the old 2844 /// and new register. 2845 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2846 // We have a broken hint, check if it is possible to fix it by 2847 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2848 // some register and PhysReg may be available for the other live-ranges. 2849 SmallSet<Register, 4> Visited; 2850 SmallVector<unsigned, 2> RecoloringCandidates; 2851 HintsInfo Info; 2852 Register Reg = VirtReg.reg(); 2853 MCRegister PhysReg = VRM->getPhys(Reg); 2854 // Start the recoloring algorithm from the input live-interval, then 2855 // it will propagate to the ones that are copy-related with it. 2856 Visited.insert(Reg); 2857 RecoloringCandidates.push_back(Reg); 2858 2859 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2860 << '(' << printReg(PhysReg, TRI) << ")\n"); 2861 2862 do { 2863 Reg = RecoloringCandidates.pop_back_val(); 2864 2865 // We cannot recolor physical register. 2866 if (Register::isPhysicalRegister(Reg)) 2867 continue; 2868 2869 // This may be a skipped class 2870 if (!VRM->hasPhys(Reg)) { 2871 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2872 "We have an unallocated variable which should have been handled"); 2873 continue; 2874 } 2875 2876 // Get the live interval mapped with this virtual register to be able 2877 // to check for the interference with the new color. 2878 LiveInterval &LI = LIS->getInterval(Reg); 2879 MCRegister CurrPhys = VRM->getPhys(Reg); 2880 // Check that the new color matches the register class constraints and 2881 // that it is free for this live range. 2882 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2883 Matrix->checkInterference(LI, PhysReg))) 2884 continue; 2885 2886 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2887 << ") is recolorable.\n"); 2888 2889 // Gather the hint info. 2890 Info.clear(); 2891 collectHintInfo(Reg, Info); 2892 // Check if recoloring the live-range will increase the cost of the 2893 // non-identity copies. 2894 if (CurrPhys != PhysReg) { 2895 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2896 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2897 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2898 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2899 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2900 << '\n'); 2901 if (OldCopiesCost < NewCopiesCost) { 2902 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2903 continue; 2904 } 2905 // At this point, the cost is either cheaper or equal. If it is 2906 // equal, we consider this is profitable because it may expose 2907 // more recoloring opportunities. 2908 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2909 // Recolor the live-range. 2910 Matrix->unassign(LI); 2911 Matrix->assign(LI, PhysReg); 2912 } 2913 // Push all copy-related live-ranges to keep reconciling the broken 2914 // hints. 2915 for (const HintInfo &HI : Info) { 2916 if (Visited.insert(HI.Reg).second) 2917 RecoloringCandidates.push_back(HI.Reg); 2918 } 2919 } while (!RecoloringCandidates.empty()); 2920 } 2921 2922 /// Try to recolor broken hints. 2923 /// Broken hints may be repaired by recoloring when an evicted variable 2924 /// freed up a register for a larger live-range. 2925 /// Consider the following example: 2926 /// BB1: 2927 /// a = 2928 /// b = 2929 /// BB2: 2930 /// ... 2931 /// = b 2932 /// = a 2933 /// Let us assume b gets split: 2934 /// BB1: 2935 /// a = 2936 /// b = 2937 /// BB2: 2938 /// c = b 2939 /// ... 2940 /// d = c 2941 /// = d 2942 /// = a 2943 /// Because of how the allocation work, b, c, and d may be assigned different 2944 /// colors. Now, if a gets evicted later: 2945 /// BB1: 2946 /// a = 2947 /// st a, SpillSlot 2948 /// b = 2949 /// BB2: 2950 /// c = b 2951 /// ... 2952 /// d = c 2953 /// = d 2954 /// e = ld SpillSlot 2955 /// = e 2956 /// This is likely that we can assign the same register for b, c, and d, 2957 /// getting rid of 2 copies. 2958 void RAGreedy::tryHintsRecoloring() { 2959 for (LiveInterval *LI : SetOfBrokenHints) { 2960 assert(Register::isVirtualRegister(LI->reg()) && 2961 "Recoloring is possible only for virtual registers"); 2962 // Some dead defs may be around (e.g., because of debug uses). 2963 // Ignore those. 2964 if (!VRM->hasPhys(LI->reg())) 2965 continue; 2966 tryHintRecoloring(*LI); 2967 } 2968 } 2969 2970 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2971 SmallVectorImpl<Register> &NewVRegs, 2972 SmallVirtRegSet &FixedRegisters, 2973 unsigned Depth) { 2974 uint8_t CostPerUseLimit = uint8_t(~0u); 2975 // First try assigning a free register. 2976 auto Order = 2977 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 2978 if (MCRegister PhysReg = 2979 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 2980 // If VirtReg got an assignment, the eviction info is no longer relevant. 2981 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 2982 // When NewVRegs is not empty, we may have made decisions such as evicting 2983 // a virtual register, go with the earlier decisions and use the physical 2984 // register. 2985 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 2986 NewVRegs.empty()) { 2987 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2988 CostPerUseLimit, NewVRegs); 2989 if (CSRReg || !NewVRegs.empty()) 2990 // Return now if we decide to use a CSR or create new vregs due to 2991 // pre-splitting. 2992 return CSRReg; 2993 } else 2994 return PhysReg; 2995 } 2996 2997 LiveRangeStage Stage = ExtraInfo->getStage(VirtReg); 2998 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 2999 << ExtraInfo->getCascade(VirtReg.reg()) << '\n'); 3000 3001 // Try to evict a less worthy live range, but only for ranges from the primary 3002 // queue. The RS_Split ranges already failed to do this, and they should not 3003 // get a second chance until they have been split. 3004 if (Stage != RS_Split) 3005 if (Register PhysReg = 3006 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 3007 FixedRegisters)) { 3008 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 3009 // If VirtReg has a hint and that hint is broken record this 3010 // virtual register as a recoloring candidate for broken hint. 3011 // Indeed, since we evicted a variable in its neighborhood it is 3012 // likely we can at least partially recolor some of the 3013 // copy-related live-ranges. 3014 if (Hint && Hint != PhysReg) 3015 SetOfBrokenHints.insert(&VirtReg); 3016 // If VirtReg eviction someone, the eviction info for it as an evictee is 3017 // no longer relevant. 3018 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3019 return PhysReg; 3020 } 3021 3022 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3023 3024 // The first time we see a live range, don't try to split or spill. 3025 // Wait until the second time, when all smaller ranges have been allocated. 3026 // This gives a better picture of the interference to split around. 3027 if (Stage < RS_Split) { 3028 ExtraInfo->setStage(VirtReg, RS_Split); 3029 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3030 NewVRegs.push_back(VirtReg.reg()); 3031 return 0; 3032 } 3033 3034 if (Stage < RS_Spill) { 3035 // Try splitting VirtReg or interferences. 3036 unsigned NewVRegSizeBefore = NewVRegs.size(); 3037 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 3038 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3039 // If VirtReg got split, the eviction info is no longer relevant. 3040 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3041 return PhysReg; 3042 } 3043 } 3044 3045 // If we couldn't allocate a register from spilling, there is probably some 3046 // invalid inline assembly. The base class will report it. 3047 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3048 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3049 Depth); 3050 3051 // Finally spill VirtReg itself. 3052 if ((EnableDeferredSpilling || 3053 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 3054 ExtraInfo->getStage(VirtReg) < RS_Memory) { 3055 // TODO: This is experimental and in particular, we do not model 3056 // the live range splitting done by spilling correctly. 3057 // We would need a deep integration with the spiller to do the 3058 // right thing here. Anyway, that is still good for early testing. 3059 ExtraInfo->setStage(VirtReg, RS_Memory); 3060 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3061 NewVRegs.push_back(VirtReg.reg()); 3062 } else { 3063 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3064 TimerGroupDescription, TimePassesIsEnabled); 3065 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3066 spiller().spill(LRE); 3067 ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3068 3069 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 3070 // the new regs are kept in LDV (still mapping to the old register), until 3071 // we rewrite spilled locations in LDV at a later stage. 3072 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 3073 3074 if (VerifyEnabled) 3075 MF->verify(this, "After spilling"); 3076 } 3077 3078 // The live virtual register requesting allocation was spilled, so tell 3079 // the caller not to allocate anything during this round. 3080 return 0; 3081 } 3082 3083 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 3084 using namespace ore; 3085 if (Spills) { 3086 R << NV("NumSpills", Spills) << " spills "; 3087 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 3088 } 3089 if (FoldedSpills) { 3090 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3091 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 3092 << " total folded spills cost "; 3093 } 3094 if (Reloads) { 3095 R << NV("NumReloads", Reloads) << " reloads "; 3096 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 3097 } 3098 if (FoldedReloads) { 3099 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3100 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 3101 << " total folded reloads cost "; 3102 } 3103 if (ZeroCostFoldedReloads) 3104 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 3105 << " zero cost folded reloads "; 3106 if (Copies) { 3107 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 3108 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 3109 } 3110 } 3111 3112 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 3113 RAGreedyStats Stats; 3114 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3115 int FI; 3116 3117 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3118 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 3119 A->getPseudoValue())->getFrameIndex()); 3120 }; 3121 auto isPatchpointInstr = [](const MachineInstr &MI) { 3122 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 3123 MI.getOpcode() == TargetOpcode::STACKMAP || 3124 MI.getOpcode() == TargetOpcode::STATEPOINT; 3125 }; 3126 for (MachineInstr &MI : MBB) { 3127 if (MI.isCopy()) { 3128 MachineOperand &Dest = MI.getOperand(0); 3129 MachineOperand &Src = MI.getOperand(1); 3130 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 3131 Src.getReg().isVirtual()) 3132 ++Stats.Copies; 3133 continue; 3134 } 3135 3136 SmallVector<const MachineMemOperand *, 2> Accesses; 3137 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3138 ++Stats.Reloads; 3139 continue; 3140 } 3141 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3142 ++Stats.Spills; 3143 continue; 3144 } 3145 if (TII->hasLoadFromStackSlot(MI, Accesses) && 3146 llvm::any_of(Accesses, isSpillSlotAccess)) { 3147 if (!isPatchpointInstr(MI)) { 3148 Stats.FoldedReloads += Accesses.size(); 3149 continue; 3150 } 3151 // For statepoint there may be folded and zero cost folded stack reloads. 3152 std::pair<unsigned, unsigned> NonZeroCostRange = 3153 TII->getPatchpointUnfoldableRange(MI); 3154 SmallSet<unsigned, 16> FoldedReloads; 3155 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 3156 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 3157 MachineOperand &MO = MI.getOperand(Idx); 3158 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 3159 continue; 3160 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 3161 FoldedReloads.insert(MO.getIndex()); 3162 else 3163 ZeroCostFoldedReloads.insert(MO.getIndex()); 3164 } 3165 // If stack slot is used in folded reload it is not zero cost then. 3166 for (unsigned Slot : FoldedReloads) 3167 ZeroCostFoldedReloads.erase(Slot); 3168 Stats.FoldedReloads += FoldedReloads.size(); 3169 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 3170 continue; 3171 } 3172 Accesses.clear(); 3173 if (TII->hasStoreToStackSlot(MI, Accesses) && 3174 llvm::any_of(Accesses, isSpillSlotAccess)) { 3175 Stats.FoldedSpills += Accesses.size(); 3176 } 3177 } 3178 // Set cost of collected statistic by multiplication to relative frequency of 3179 // this basic block. 3180 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 3181 Stats.ReloadsCost = RelFreq * Stats.Reloads; 3182 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 3183 Stats.SpillsCost = RelFreq * Stats.Spills; 3184 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 3185 Stats.CopiesCost = RelFreq * Stats.Copies; 3186 return Stats; 3187 } 3188 3189 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 3190 RAGreedyStats Stats; 3191 3192 // Sum up the spill and reloads in subloops. 3193 for (MachineLoop *SubLoop : *L) 3194 Stats.add(reportStats(SubLoop)); 3195 3196 for (MachineBasicBlock *MBB : L->getBlocks()) 3197 // Handle blocks that were not included in subloops. 3198 if (Loops->getLoopFor(MBB) == L) 3199 Stats.add(computeStats(*MBB)); 3200 3201 if (!Stats.isEmpty()) { 3202 using namespace ore; 3203 3204 ORE->emit([&]() { 3205 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 3206 L->getStartLoc(), L->getHeader()); 3207 Stats.report(R); 3208 R << "generated in loop"; 3209 return R; 3210 }); 3211 } 3212 return Stats; 3213 } 3214 3215 void RAGreedy::reportStats() { 3216 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 3217 return; 3218 RAGreedyStats Stats; 3219 for (MachineLoop *L : *Loops) 3220 Stats.add(reportStats(L)); 3221 // Process non-loop blocks. 3222 for (MachineBasicBlock &MBB : *MF) 3223 if (!Loops->getLoopFor(&MBB)) 3224 Stats.add(computeStats(MBB)); 3225 if (!Stats.isEmpty()) { 3226 using namespace ore; 3227 3228 ORE->emit([&]() { 3229 DebugLoc Loc; 3230 if (auto *SP = MF->getFunction().getSubprogram()) 3231 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 3232 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 3233 &MF->front()); 3234 Stats.report(R); 3235 R << "generated in function"; 3236 return R; 3237 }); 3238 } 3239 } 3240 3241 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3242 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3243 << "********** Function: " << mf.getName() << '\n'); 3244 3245 MF = &mf; 3246 TRI = MF->getSubtarget().getRegisterInfo(); 3247 TII = MF->getSubtarget().getInstrInfo(); 3248 RCI.runOnMachineFunction(mf); 3249 3250 EnableLocalReassign = EnableLocalReassignment || 3251 MF->getSubtarget().enableRALocalReassignment( 3252 MF->getTarget().getOptLevel()); 3253 3254 EnableAdvancedRASplitCost = 3255 ConsiderLocalIntervalCost.getNumOccurrences() 3256 ? ConsiderLocalIntervalCost 3257 : MF->getSubtarget().enableAdvancedRASplitCost(); 3258 3259 if (VerifyEnabled) 3260 MF->verify(this, "Before greedy register allocator"); 3261 3262 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3263 getAnalysis<LiveIntervals>(), 3264 getAnalysis<LiveRegMatrix>()); 3265 Indexes = &getAnalysis<SlotIndexes>(); 3266 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3267 DomTree = &getAnalysis<MachineDominatorTree>(); 3268 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3269 Loops = &getAnalysis<MachineLoopInfo>(); 3270 Bundles = &getAnalysis<EdgeBundles>(); 3271 SpillPlacer = &getAnalysis<SpillPlacement>(); 3272 DebugVars = &getAnalysis<LiveDebugVariables>(); 3273 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3274 3275 initializeCSRCost(); 3276 3277 RegCosts = TRI->getRegisterCosts(*MF); 3278 3279 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 3280 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 3281 3282 VRAI->calculateSpillWeightsAndHints(); 3283 3284 LLVM_DEBUG(LIS->dump()); 3285 3286 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3287 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 3288 ExtraInfo.emplace(); 3289 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3290 GlobalCand.resize(32); // This will grow as needed. 3291 SetOfBrokenHints.clear(); 3292 LastEvicted.clear(); 3293 3294 allocatePhysRegs(); 3295 tryHintsRecoloring(); 3296 3297 if (VerifyEnabled) 3298 MF->verify(this, "Before post optimization"); 3299 postOptimization(); 3300 reportStats(); 3301 3302 releaseMemory(); 3303 return true; 3304 } 3305