1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "SpillPlacement.h" 20 #include "Spiller.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/CalcSpillWeights.h" 25 #include "llvm/CodeGen/EdgeBundles.h" 26 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 27 #include "llvm/CodeGen/LiveRangeEdit.h" 28 #include "llvm/CodeGen/LiveRegMatrix.h" 29 #include "llvm/CodeGen/LiveStackAnalysis.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegAllocRegistry.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/VirtRegMap.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/PassAnalysisSupport.h" 41 #include "llvm/Support/BranchProbability.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Timer.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetSubtargetInfo.h" 49 #include <queue> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 56 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 57 STATISTIC(NumEvicted, "Number of interferences evicted"); 58 59 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 60 "split-spill-mode", cl::Hidden, 61 cl::desc("Spill mode for splitting live ranges"), 62 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 63 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 64 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"), 65 clEnumValEnd), 66 cl::init(SplitEditor::SM_Speed)); 67 68 static cl::opt<unsigned> 69 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 70 cl::desc("Last chance recoloring max depth"), 71 cl::init(5)); 72 73 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 74 "lcr-max-interf", cl::Hidden, 75 cl::desc("Last chance recoloring maximum number of considered" 76 " interference at a time"), 77 cl::init(8)); 78 79 static cl::opt<bool> 80 ExhaustiveSearch("exhaustive-register-search", cl::NotHidden, 81 cl::desc("Exhaustive Search for registers bypassing the depth " 82 "and interference cutoffs of last chance recoloring")); 83 84 static cl::opt<bool> EnableLocalReassignment( 85 "enable-local-reassign", cl::Hidden, 86 cl::desc("Local reassignment can yield better allocation decisions, but " 87 "may be compile time intensive"), 88 cl::init(false)); 89 90 static cl::opt<bool> EnableDeferredSpilling( 91 "enable-deferred-spilling", cl::Hidden, 92 cl::desc("Instead of spilling a variable right away, defer the actual " 93 "code insertion to the end of the allocation. That way the " 94 "allocator might still find a suitable coloring for this " 95 "variable because of other evicted variables."), 96 cl::init(false)); 97 98 // FIXME: Find a good default for this flag and remove the flag. 99 static cl::opt<unsigned> 100 CSRFirstTimeCost("regalloc-csr-first-time-cost", 101 cl::desc("Cost for first time use of callee-saved register."), 102 cl::init(0), cl::Hidden); 103 104 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 105 createGreedyRegisterAllocator); 106 107 namespace { 108 class RAGreedy : public MachineFunctionPass, 109 public RegAllocBase, 110 private LiveRangeEdit::Delegate { 111 // Convenient shortcuts. 112 typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue; 113 typedef SmallPtrSet<LiveInterval *, 4> SmallLISet; 114 typedef SmallSet<unsigned, 16> SmallVirtRegSet; 115 116 // context 117 MachineFunction *MF; 118 119 // Shortcuts to some useful interface. 120 const TargetInstrInfo *TII; 121 const TargetRegisterInfo *TRI; 122 RegisterClassInfo RCI; 123 124 // analyses 125 SlotIndexes *Indexes; 126 MachineBlockFrequencyInfo *MBFI; 127 MachineDominatorTree *DomTree; 128 MachineLoopInfo *Loops; 129 EdgeBundles *Bundles; 130 SpillPlacement *SpillPlacer; 131 LiveDebugVariables *DebugVars; 132 133 // state 134 std::unique_ptr<Spiller> SpillerInstance; 135 PQueue Queue; 136 unsigned NextCascade; 137 138 // Live ranges pass through a number of stages as we try to allocate them. 139 // Some of the stages may also create new live ranges: 140 // 141 // - Region splitting. 142 // - Per-block splitting. 143 // - Local splitting. 144 // - Spilling. 145 // 146 // Ranges produced by one of the stages skip the previous stages when they are 147 // dequeued. This improves performance because we can skip interference checks 148 // that are unlikely to give any results. It also guarantees that the live 149 // range splitting algorithm terminates, something that is otherwise hard to 150 // ensure. 151 enum LiveRangeStage { 152 /// Newly created live range that has never been queued. 153 RS_New, 154 155 /// Only attempt assignment and eviction. Then requeue as RS_Split. 156 RS_Assign, 157 158 /// Attempt live range splitting if assignment is impossible. 159 RS_Split, 160 161 /// Attempt more aggressive live range splitting that is guaranteed to make 162 /// progress. This is used for split products that may not be making 163 /// progress. 164 RS_Split2, 165 166 /// Live range will be spilled. No more splitting will be attempted. 167 RS_Spill, 168 169 170 /// Live range is in memory. Because of other evictions, it might get moved 171 /// in a register in the end. 172 RS_Memory, 173 174 /// There is nothing more we can do to this live range. Abort compilation 175 /// if it can't be assigned. 176 RS_Done 177 }; 178 179 // Enum CutOffStage to keep a track whether the register allocation failed 180 // because of the cutoffs encountered in last chance recoloring. 181 // Note: This is used as bitmask. New value should be next power of 2. 182 enum CutOffStage { 183 // No cutoffs encountered 184 CO_None = 0, 185 186 // lcr-max-depth cutoff encountered 187 CO_Depth = 1, 188 189 // lcr-max-interf cutoff encountered 190 CO_Interf = 2 191 }; 192 193 uint8_t CutOffInfo; 194 195 #ifndef NDEBUG 196 static const char *const StageName[]; 197 #endif 198 199 // RegInfo - Keep additional information about each live range. 200 struct RegInfo { 201 LiveRangeStage Stage; 202 203 // Cascade - Eviction loop prevention. See canEvictInterference(). 204 unsigned Cascade; 205 206 RegInfo() : Stage(RS_New), Cascade(0) {} 207 }; 208 209 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 210 211 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 212 return ExtraRegInfo[VirtReg.reg].Stage; 213 } 214 215 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 216 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 217 ExtraRegInfo[VirtReg.reg].Stage = Stage; 218 } 219 220 template<typename Iterator> 221 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 222 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 223 for (;Begin != End; ++Begin) { 224 unsigned Reg = *Begin; 225 if (ExtraRegInfo[Reg].Stage == RS_New) 226 ExtraRegInfo[Reg].Stage = NewStage; 227 } 228 } 229 230 /// Cost of evicting interference. 231 struct EvictionCost { 232 unsigned BrokenHints; ///< Total number of broken hints. 233 float MaxWeight; ///< Maximum spill weight evicted. 234 235 EvictionCost(): BrokenHints(0), MaxWeight(0) {} 236 237 bool isMax() const { return BrokenHints == ~0u; } 238 239 void setMax() { BrokenHints = ~0u; } 240 241 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 242 243 bool operator<(const EvictionCost &O) const { 244 return std::tie(BrokenHints, MaxWeight) < 245 std::tie(O.BrokenHints, O.MaxWeight); 246 } 247 }; 248 249 // splitting state. 250 std::unique_ptr<SplitAnalysis> SA; 251 std::unique_ptr<SplitEditor> SE; 252 253 /// Cached per-block interference maps 254 InterferenceCache IntfCache; 255 256 /// All basic blocks where the current register has uses. 257 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 258 259 /// Global live range splitting candidate info. 260 struct GlobalSplitCandidate { 261 // Register intended for assignment, or 0. 262 unsigned PhysReg; 263 264 // SplitKit interval index for this candidate. 265 unsigned IntvIdx; 266 267 // Interference for PhysReg. 268 InterferenceCache::Cursor Intf; 269 270 // Bundles where this candidate should be live. 271 BitVector LiveBundles; 272 SmallVector<unsigned, 8> ActiveBlocks; 273 274 void reset(InterferenceCache &Cache, unsigned Reg) { 275 PhysReg = Reg; 276 IntvIdx = 0; 277 Intf.setPhysReg(Cache, Reg); 278 LiveBundles.clear(); 279 ActiveBlocks.clear(); 280 } 281 282 // Set B[i] = C for every live bundle where B[i] was NoCand. 283 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 284 unsigned Count = 0; 285 for (int i = LiveBundles.find_first(); i >= 0; 286 i = LiveBundles.find_next(i)) 287 if (B[i] == NoCand) { 288 B[i] = C; 289 Count++; 290 } 291 return Count; 292 } 293 }; 294 295 /// Candidate info for each PhysReg in AllocationOrder. 296 /// This vector never shrinks, but grows to the size of the largest register 297 /// class. 298 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 299 300 enum : unsigned { NoCand = ~0u }; 301 302 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 303 /// NoCand which indicates the stack interval. 304 SmallVector<unsigned, 32> BundleCand; 305 306 /// Callee-save register cost, calculated once per machine function. 307 BlockFrequency CSRCost; 308 309 /// Run or not the local reassignment heuristic. This information is 310 /// obtained from the TargetSubtargetInfo. 311 bool EnableLocalReassign; 312 313 /// Set of broken hints that may be reconciled later because of eviction. 314 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 315 316 public: 317 RAGreedy(); 318 319 /// Return the pass name. 320 const char* getPassName() const override { 321 return "Greedy Register Allocator"; 322 } 323 324 /// RAGreedy analysis usage. 325 void getAnalysisUsage(AnalysisUsage &AU) const override; 326 void releaseMemory() override; 327 Spiller &spiller() override { return *SpillerInstance; } 328 void enqueue(LiveInterval *LI) override; 329 LiveInterval *dequeue() override; 330 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; 331 void aboutToRemoveInterval(LiveInterval &) override; 332 333 /// Perform register allocation. 334 bool runOnMachineFunction(MachineFunction &mf) override; 335 336 static char ID; 337 338 private: 339 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, 340 SmallVirtRegSet &, unsigned = 0); 341 342 bool LRE_CanEraseVirtReg(unsigned) override; 343 void LRE_WillShrinkVirtReg(unsigned) override; 344 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 345 void enqueue(PQueue &CurQueue, LiveInterval *LI); 346 LiveInterval *dequeue(PQueue &CurQueue); 347 348 BlockFrequency calcSpillCost(); 349 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 350 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 351 void growRegion(GlobalSplitCandidate &Cand); 352 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&); 353 bool calcCompactRegion(GlobalSplitCandidate&); 354 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 355 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 356 unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg); 357 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 358 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 359 void evictInterference(LiveInterval&, unsigned, 360 SmallVectorImpl<unsigned>&); 361 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 362 SmallLISet &RecoloringCandidates, 363 const SmallVirtRegSet &FixedRegisters); 364 365 unsigned tryAssign(LiveInterval&, AllocationOrder&, 366 SmallVectorImpl<unsigned>&); 367 unsigned tryEvict(LiveInterval&, AllocationOrder&, 368 SmallVectorImpl<unsigned>&, unsigned = ~0u); 369 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 370 SmallVectorImpl<unsigned>&); 371 /// Calculate cost of region splitting. 372 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 373 AllocationOrder &Order, 374 BlockFrequency &BestCost, 375 unsigned &NumCands, bool IgnoreCSR); 376 /// Perform region splitting. 377 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 378 bool HasCompact, 379 SmallVectorImpl<unsigned> &NewVRegs); 380 /// Check other options before using a callee-saved register for the first 381 /// time. 382 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 383 unsigned PhysReg, unsigned &CostPerUseLimit, 384 SmallVectorImpl<unsigned> &NewVRegs); 385 void initializeCSRCost(); 386 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 387 SmallVectorImpl<unsigned>&); 388 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 389 SmallVectorImpl<unsigned>&); 390 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 391 SmallVectorImpl<unsigned>&); 392 unsigned trySplit(LiveInterval&, AllocationOrder&, 393 SmallVectorImpl<unsigned>&); 394 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 395 SmallVectorImpl<unsigned> &, 396 SmallVirtRegSet &, unsigned); 397 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, 398 SmallVirtRegSet &, unsigned); 399 void tryHintRecoloring(LiveInterval &); 400 void tryHintsRecoloring(); 401 402 /// Model the information carried by one end of a copy. 403 struct HintInfo { 404 /// The frequency of the copy. 405 BlockFrequency Freq; 406 /// The virtual register or physical register. 407 unsigned Reg; 408 /// Its currently assigned register. 409 /// In case of a physical register Reg == PhysReg. 410 unsigned PhysReg; 411 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) 412 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 413 }; 414 typedef SmallVector<HintInfo, 4> HintsInfo; 415 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 416 void collectHintInfo(unsigned, HintsInfo &); 417 418 bool isUnusedCalleeSavedReg(unsigned PhysReg) const; 419 }; 420 } // end anonymous namespace 421 422 char RAGreedy::ID = 0; 423 424 #ifndef NDEBUG 425 const char *const RAGreedy::StageName[] = { 426 "RS_New", 427 "RS_Assign", 428 "RS_Split", 429 "RS_Split2", 430 "RS_Spill", 431 "RS_Memory", 432 "RS_Done" 433 }; 434 #endif 435 436 // Hysteresis to use when comparing floats. 437 // This helps stabilize decisions based on float comparisons. 438 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 439 440 441 FunctionPass* llvm::createGreedyRegisterAllocator() { 442 return new RAGreedy(); 443 } 444 445 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 446 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 447 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 448 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 449 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 450 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 451 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 452 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 453 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); 454 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); 455 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 456 initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry()); 457 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); 458 initializeSpillPlacementPass(*PassRegistry::getPassRegistry()); 459 } 460 461 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 462 AU.setPreservesCFG(); 463 AU.addRequired<MachineBlockFrequencyInfo>(); 464 AU.addPreserved<MachineBlockFrequencyInfo>(); 465 AU.addRequired<AAResultsWrapperPass>(); 466 AU.addPreserved<AAResultsWrapperPass>(); 467 AU.addRequired<LiveIntervals>(); 468 AU.addPreserved<LiveIntervals>(); 469 AU.addRequired<SlotIndexes>(); 470 AU.addPreserved<SlotIndexes>(); 471 AU.addRequired<LiveDebugVariables>(); 472 AU.addPreserved<LiveDebugVariables>(); 473 AU.addRequired<LiveStacks>(); 474 AU.addPreserved<LiveStacks>(); 475 AU.addRequired<MachineDominatorTree>(); 476 AU.addPreserved<MachineDominatorTree>(); 477 AU.addRequired<MachineLoopInfo>(); 478 AU.addPreserved<MachineLoopInfo>(); 479 AU.addRequired<VirtRegMap>(); 480 AU.addPreserved<VirtRegMap>(); 481 AU.addRequired<LiveRegMatrix>(); 482 AU.addPreserved<LiveRegMatrix>(); 483 AU.addRequired<EdgeBundles>(); 484 AU.addRequired<SpillPlacement>(); 485 MachineFunctionPass::getAnalysisUsage(AU); 486 } 487 488 489 //===----------------------------------------------------------------------===// 490 // LiveRangeEdit delegate methods 491 //===----------------------------------------------------------------------===// 492 493 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 494 if (VRM->hasPhys(VirtReg)) { 495 LiveInterval &LI = LIS->getInterval(VirtReg); 496 Matrix->unassign(LI); 497 aboutToRemoveInterval(LI); 498 return true; 499 } 500 // Unassigned virtreg is probably in the priority queue. 501 // RegAllocBase will erase it after dequeueing. 502 return false; 503 } 504 505 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 506 if (!VRM->hasPhys(VirtReg)) 507 return; 508 509 // Register is assigned, put it back on the queue for reassignment. 510 LiveInterval &LI = LIS->getInterval(VirtReg); 511 Matrix->unassign(LI); 512 enqueue(&LI); 513 } 514 515 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 516 // Cloning a register we haven't even heard about yet? Just ignore it. 517 if (!ExtraRegInfo.inBounds(Old)) 518 return; 519 520 // LRE may clone a virtual register because dead code elimination causes it to 521 // be split into connected components. The new components are much smaller 522 // than the original, so they should get a new chance at being assigned. 523 // same stage as the parent. 524 ExtraRegInfo[Old].Stage = RS_Assign; 525 ExtraRegInfo.grow(New); 526 ExtraRegInfo[New] = ExtraRegInfo[Old]; 527 } 528 529 void RAGreedy::releaseMemory() { 530 SpillerInstance.reset(); 531 ExtraRegInfo.clear(); 532 GlobalCand.clear(); 533 } 534 535 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 536 537 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 538 // Prioritize live ranges by size, assigning larger ranges first. 539 // The queue holds (size, reg) pairs. 540 const unsigned Size = LI->getSize(); 541 const unsigned Reg = LI->reg; 542 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 543 "Can only enqueue virtual registers"); 544 unsigned Prio; 545 546 ExtraRegInfo.grow(Reg); 547 if (ExtraRegInfo[Reg].Stage == RS_New) 548 ExtraRegInfo[Reg].Stage = RS_Assign; 549 550 if (ExtraRegInfo[Reg].Stage == RS_Split) { 551 // Unsplit ranges that couldn't be allocated immediately are deferred until 552 // everything else has been allocated. 553 Prio = Size; 554 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 555 // Memory operand should be considered last. 556 // Change the priority such that Memory operand are assigned in 557 // the reverse order that they came in. 558 // TODO: Make this a member variable and probably do something about hints. 559 static unsigned MemOp = 0; 560 Prio = MemOp++; 561 } else { 562 // Giant live ranges fall back to the global assignment heuristic, which 563 // prevents excessive spilling in pathological cases. 564 bool ReverseLocal = TRI->reverseLocalAssignment(); 565 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 566 bool ForceGlobal = !ReverseLocal && 567 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 568 569 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 570 LIS->intervalIsInOneMBB(*LI)) { 571 // Allocate original local ranges in linear instruction order. Since they 572 // are singly defined, this produces optimal coloring in the absence of 573 // global interference and other constraints. 574 if (!ReverseLocal) 575 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 576 else { 577 // Allocating bottom up may allow many short LRGs to be assigned first 578 // to one of the cheap registers. This could be much faster for very 579 // large blocks on targets with many physical registers. 580 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 581 } 582 Prio |= RC.AllocationPriority << 24; 583 } else { 584 // Allocate global and split ranges in long->short order. Long ranges that 585 // don't fit should be spilled (or split) ASAP so they don't create 586 // interference. Mark a bit to prioritize global above local ranges. 587 Prio = (1u << 29) + Size; 588 } 589 // Mark a higher bit to prioritize global and local above RS_Split. 590 Prio |= (1u << 31); 591 592 // Boost ranges that have a physical register hint. 593 if (VRM->hasKnownPreference(Reg)) 594 Prio |= (1u << 30); 595 } 596 // The virtual register number is a tie breaker for same-sized ranges. 597 // Give lower vreg numbers higher priority to assign them first. 598 CurQueue.push(std::make_pair(Prio, ~Reg)); 599 } 600 601 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 602 603 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 604 if (CurQueue.empty()) 605 return nullptr; 606 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 607 CurQueue.pop(); 608 return LI; 609 } 610 611 612 //===----------------------------------------------------------------------===// 613 // Direct Assignment 614 //===----------------------------------------------------------------------===// 615 616 /// tryAssign - Try to assign VirtReg to an available register. 617 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 618 AllocationOrder &Order, 619 SmallVectorImpl<unsigned> &NewVRegs) { 620 Order.rewind(); 621 unsigned PhysReg; 622 while ((PhysReg = Order.next())) 623 if (!Matrix->checkInterference(VirtReg, PhysReg)) 624 break; 625 if (!PhysReg || Order.isHint()) 626 return PhysReg; 627 628 // PhysReg is available, but there may be a better choice. 629 630 // If we missed a simple hint, try to cheaply evict interference from the 631 // preferred register. 632 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 633 if (Order.isHint(Hint)) { 634 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); 635 EvictionCost MaxCost; 636 MaxCost.setBrokenHints(1); 637 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 638 evictInterference(VirtReg, Hint, NewVRegs); 639 return Hint; 640 } 641 } 642 643 // Try to evict interference from a cheaper alternative. 644 unsigned Cost = TRI->getCostPerUse(PhysReg); 645 646 // Most registers have 0 additional cost. 647 if (!Cost) 648 return PhysReg; 649 650 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost 651 << '\n'); 652 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 653 return CheapReg ? CheapReg : PhysReg; 654 } 655 656 657 //===----------------------------------------------------------------------===// 658 // Interference eviction 659 //===----------------------------------------------------------------------===// 660 661 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { 662 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 663 unsigned PhysReg; 664 while ((PhysReg = Order.next())) { 665 if (PhysReg == PrevReg) 666 continue; 667 668 MCRegUnitIterator Units(PhysReg, TRI); 669 for (; Units.isValid(); ++Units) { 670 // Instantiate a "subquery", not to be confused with the Queries array. 671 LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]); 672 if (subQ.checkInterference()) 673 break; 674 } 675 // If no units have interference, break out with the current PhysReg. 676 if (!Units.isValid()) 677 break; 678 } 679 if (PhysReg) 680 DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 681 << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI) 682 << '\n'); 683 return PhysReg; 684 } 685 686 /// shouldEvict - determine if A should evict the assigned live range B. The 687 /// eviction policy defined by this function together with the allocation order 688 /// defined by enqueue() decides which registers ultimately end up being split 689 /// and spilled. 690 /// 691 /// Cascade numbers are used to prevent infinite loops if this function is a 692 /// cyclic relation. 693 /// 694 /// @param A The live range to be assigned. 695 /// @param IsHint True when A is about to be assigned to its preferred 696 /// register. 697 /// @param B The live range to be evicted. 698 /// @param BreaksHint True when B is already assigned to its preferred register. 699 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 700 LiveInterval &B, bool BreaksHint) { 701 bool CanSplit = getStage(B) < RS_Spill; 702 703 // Be fairly aggressive about following hints as long as the evictee can be 704 // split. 705 if (CanSplit && IsHint && !BreaksHint) 706 return true; 707 708 if (A.weight > B.weight) { 709 DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); 710 return true; 711 } 712 return false; 713 } 714 715 /// canEvictInterference - Return true if all interferences between VirtReg and 716 /// PhysReg can be evicted. 717 /// 718 /// @param VirtReg Live range that is about to be assigned. 719 /// @param PhysReg Desired register for assignment. 720 /// @param IsHint True when PhysReg is VirtReg's preferred register. 721 /// @param MaxCost Only look for cheaper candidates and update with new cost 722 /// when returning true. 723 /// @returns True when interference can be evicted cheaper than MaxCost. 724 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 725 bool IsHint, EvictionCost &MaxCost) { 726 // It is only possible to evict virtual register interference. 727 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 728 return false; 729 730 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 731 732 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 733 // involved in an eviction before. If a cascade number was assigned, deny 734 // evicting anything with the same or a newer cascade number. This prevents 735 // infinite eviction loops. 736 // 737 // This works out so a register without a cascade number is allowed to evict 738 // anything, and it can be evicted by anything. 739 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 740 if (!Cascade) 741 Cascade = NextCascade; 742 743 EvictionCost Cost; 744 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 745 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 746 // If there is 10 or more interferences, chances are one is heavier. 747 if (Q.collectInterferingVRegs(10) >= 10) 748 return false; 749 750 // Check if any interfering live range is heavier than MaxWeight. 751 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 752 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 753 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && 754 "Only expecting virtual register interference from query"); 755 // Never evict spill products. They cannot split or spill. 756 if (getStage(*Intf) == RS_Done) 757 return false; 758 // Once a live range becomes small enough, it is urgent that we find a 759 // register for it. This is indicated by an infinite spill weight. These 760 // urgent live ranges get to evict almost anything. 761 // 762 // Also allow urgent evictions of unspillable ranges from a strictly 763 // larger allocation order. 764 bool Urgent = !VirtReg.isSpillable() && 765 (Intf->isSpillable() || 766 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 767 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 768 // Only evict older cascades or live ranges without a cascade. 769 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 770 if (Cascade <= IntfCascade) { 771 if (!Urgent) 772 return false; 773 // We permit breaking cascades for urgent evictions. It should be the 774 // last resort, though, so make it really expensive. 775 Cost.BrokenHints += 10; 776 } 777 // Would this break a satisfied hint? 778 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 779 // Update eviction cost. 780 Cost.BrokenHints += BreaksHint; 781 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 782 // Abort if this would be too expensive. 783 if (!(Cost < MaxCost)) 784 return false; 785 if (Urgent) 786 continue; 787 // Apply the eviction policy for non-urgent evictions. 788 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 789 return false; 790 // If !MaxCost.isMax(), then we're just looking for a cheap register. 791 // Evicting another local live range in this case could lead to suboptimal 792 // coloring. 793 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 794 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 795 return false; 796 } 797 } 798 } 799 MaxCost = Cost; 800 return true; 801 } 802 803 /// evictInterference - Evict any interferring registers that prevent VirtReg 804 /// from being assigned to Physreg. This assumes that canEvictInterference 805 /// returned true. 806 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 807 SmallVectorImpl<unsigned> &NewVRegs) { 808 // Make sure that VirtReg has a cascade number, and assign that cascade 809 // number to every evicted register. These live ranges than then only be 810 // evicted by a newer cascade, preventing infinite loops. 811 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 812 if (!Cascade) 813 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 814 815 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) 816 << " interference: Cascade " << Cascade << '\n'); 817 818 // Collect all interfering virtregs first. 819 SmallVector<LiveInterval*, 8> Intfs; 820 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 821 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 822 assert(Q.seenAllInterferences() && "Didn't check all interfererences."); 823 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 824 Intfs.append(IVR.begin(), IVR.end()); 825 } 826 827 // Evict them second. This will invalidate the queries. 828 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 829 LiveInterval *Intf = Intfs[i]; 830 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 831 if (!VRM->hasPhys(Intf->reg)) 832 continue; 833 Matrix->unassign(*Intf); 834 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 835 VirtReg.isSpillable() < Intf->isSpillable()) && 836 "Cannot decrease cascade number, illegal eviction"); 837 ExtraRegInfo[Intf->reg].Cascade = Cascade; 838 ++NumEvicted; 839 NewVRegs.push_back(Intf->reg); 840 } 841 } 842 843 /// Returns true if the given \p PhysReg is a callee saved register and has not 844 /// been used for allocation yet. 845 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { 846 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 847 if (CSR == 0) 848 return false; 849 850 return !Matrix->isPhysRegUsed(PhysReg); 851 } 852 853 /// tryEvict - Try to evict all interferences for a physreg. 854 /// @param VirtReg Currently unassigned virtual register. 855 /// @param Order Physregs to try. 856 /// @return Physreg to assign VirtReg, or 0. 857 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 858 AllocationOrder &Order, 859 SmallVectorImpl<unsigned> &NewVRegs, 860 unsigned CostPerUseLimit) { 861 NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled); 862 863 // Keep track of the cheapest interference seen so far. 864 EvictionCost BestCost; 865 BestCost.setMax(); 866 unsigned BestPhys = 0; 867 unsigned OrderLimit = Order.getOrder().size(); 868 869 // When we are just looking for a reduced cost per use, don't break any 870 // hints, and only evict smaller spill weights. 871 if (CostPerUseLimit < ~0u) { 872 BestCost.BrokenHints = 0; 873 BestCost.MaxWeight = VirtReg.weight; 874 875 // Check of any registers in RC are below CostPerUseLimit. 876 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 877 unsigned MinCost = RegClassInfo.getMinCost(RC); 878 if (MinCost >= CostPerUseLimit) { 879 DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost 880 << ", no cheaper registers to be found.\n"); 881 return 0; 882 } 883 884 // It is normal for register classes to have a long tail of registers with 885 // the same cost. We don't need to look at them if they're too expensive. 886 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 887 OrderLimit = RegClassInfo.getLastCostChange(RC); 888 DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n"); 889 } 890 } 891 892 Order.rewind(); 893 while (unsigned PhysReg = Order.next(OrderLimit)) { 894 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 895 continue; 896 // The first use of a callee-saved register in a function has cost 1. 897 // Don't start using a CSR when the CostPerUseLimit is low. 898 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 899 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " 900 << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 901 << '\n'); 902 continue; 903 } 904 905 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 906 continue; 907 908 // Best so far. 909 BestPhys = PhysReg; 910 911 // Stop if the hint can be used. 912 if (Order.isHint()) 913 break; 914 } 915 916 if (!BestPhys) 917 return 0; 918 919 evictInterference(VirtReg, BestPhys, NewVRegs); 920 return BestPhys; 921 } 922 923 924 //===----------------------------------------------------------------------===// 925 // Region Splitting 926 //===----------------------------------------------------------------------===// 927 928 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 929 /// interference pattern in Physreg and its aliases. Add the constraints to 930 /// SpillPlacement and return the static cost of this split in Cost, assuming 931 /// that all preferences in SplitConstraints are met. 932 /// Return false if there are no bundles with positive bias. 933 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 934 BlockFrequency &Cost) { 935 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 936 937 // Reset interference dependent info. 938 SplitConstraints.resize(UseBlocks.size()); 939 BlockFrequency StaticCost = 0; 940 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 941 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 942 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 943 944 BC.Number = BI.MBB->getNumber(); 945 Intf.moveToBlock(BC.Number); 946 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 947 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 948 BC.ChangesValue = BI.FirstDef.isValid(); 949 950 if (!Intf.hasInterference()) 951 continue; 952 953 // Number of spill code instructions to insert. 954 unsigned Ins = 0; 955 956 // Interference for the live-in value. 957 if (BI.LiveIn) { 958 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 959 BC.Entry = SpillPlacement::MustSpill; 960 ++Ins; 961 } else if (Intf.first() < BI.FirstInstr) { 962 BC.Entry = SpillPlacement::PrefSpill; 963 ++Ins; 964 } else if (Intf.first() < BI.LastInstr) { 965 ++Ins; 966 } 967 } 968 969 // Interference for the live-out value. 970 if (BI.LiveOut) { 971 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 972 BC.Exit = SpillPlacement::MustSpill; 973 ++Ins; 974 } else if (Intf.last() > BI.LastInstr) { 975 BC.Exit = SpillPlacement::PrefSpill; 976 ++Ins; 977 } else if (Intf.last() > BI.FirstInstr) { 978 ++Ins; 979 } 980 } 981 982 // Accumulate the total frequency of inserted spill code. 983 while (Ins--) 984 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 985 } 986 Cost = StaticCost; 987 988 // Add constraints for use-blocks. Note that these are the only constraints 989 // that may add a positive bias, it is downhill from here. 990 SpillPlacer->addConstraints(SplitConstraints); 991 return SpillPlacer->scanActiveBundles(); 992 } 993 994 995 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 996 /// live-through blocks in Blocks. 997 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 998 ArrayRef<unsigned> Blocks) { 999 const unsigned GroupSize = 8; 1000 SpillPlacement::BlockConstraint BCS[GroupSize]; 1001 unsigned TBS[GroupSize]; 1002 unsigned B = 0, T = 0; 1003 1004 for (unsigned i = 0; i != Blocks.size(); ++i) { 1005 unsigned Number = Blocks[i]; 1006 Intf.moveToBlock(Number); 1007 1008 if (!Intf.hasInterference()) { 1009 assert(T < GroupSize && "Array overflow"); 1010 TBS[T] = Number; 1011 if (++T == GroupSize) { 1012 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1013 T = 0; 1014 } 1015 continue; 1016 } 1017 1018 assert(B < GroupSize && "Array overflow"); 1019 BCS[B].Number = Number; 1020 1021 // Interference for the live-in value. 1022 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1023 BCS[B].Entry = SpillPlacement::MustSpill; 1024 else 1025 BCS[B].Entry = SpillPlacement::PrefSpill; 1026 1027 // Interference for the live-out value. 1028 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1029 BCS[B].Exit = SpillPlacement::MustSpill; 1030 else 1031 BCS[B].Exit = SpillPlacement::PrefSpill; 1032 1033 if (++B == GroupSize) { 1034 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1035 B = 0; 1036 } 1037 } 1038 1039 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1040 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1041 } 1042 1043 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1044 // Keep track of through blocks that have not been added to SpillPlacer. 1045 BitVector Todo = SA->getThroughBlocks(); 1046 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1047 unsigned AddedTo = 0; 1048 #ifndef NDEBUG 1049 unsigned Visited = 0; 1050 #endif 1051 1052 for (;;) { 1053 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1054 // Find new through blocks in the periphery of PrefRegBundles. 1055 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1056 unsigned Bundle = NewBundles[i]; 1057 // Look at all blocks connected to Bundle in the full graph. 1058 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1059 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1060 I != E; ++I) { 1061 unsigned Block = *I; 1062 if (!Todo.test(Block)) 1063 continue; 1064 Todo.reset(Block); 1065 // This is a new through block. Add it to SpillPlacer later. 1066 ActiveBlocks.push_back(Block); 1067 #ifndef NDEBUG 1068 ++Visited; 1069 #endif 1070 } 1071 } 1072 // Any new blocks to add? 1073 if (ActiveBlocks.size() == AddedTo) 1074 break; 1075 1076 // Compute through constraints from the interference, or assume that all 1077 // through blocks prefer spilling when forming compact regions. 1078 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1079 if (Cand.PhysReg) 1080 addThroughConstraints(Cand.Intf, NewBlocks); 1081 else 1082 // Provide a strong negative bias on through blocks to prevent unwanted 1083 // liveness on loop backedges. 1084 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1085 AddedTo = ActiveBlocks.size(); 1086 1087 // Perhaps iterating can enable more bundles? 1088 SpillPlacer->iterate(); 1089 } 1090 DEBUG(dbgs() << ", v=" << Visited); 1091 } 1092 1093 /// calcCompactRegion - Compute the set of edge bundles that should be live 1094 /// when splitting the current live range into compact regions. Compact 1095 /// regions can be computed without looking at interference. They are the 1096 /// regions formed by removing all the live-through blocks from the live range. 1097 /// 1098 /// Returns false if the current live range is already compact, or if the 1099 /// compact regions would form single block regions anyway. 1100 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1101 // Without any through blocks, the live range is already compact. 1102 if (!SA->getNumThroughBlocks()) 1103 return false; 1104 1105 // Compact regions don't correspond to any physreg. 1106 Cand.reset(IntfCache, 0); 1107 1108 DEBUG(dbgs() << "Compact region bundles"); 1109 1110 // Use the spill placer to determine the live bundles. GrowRegion pretends 1111 // that all the through blocks have interference when PhysReg is unset. 1112 SpillPlacer->prepare(Cand.LiveBundles); 1113 1114 // The static split cost will be zero since Cand.Intf reports no interference. 1115 BlockFrequency Cost; 1116 if (!addSplitConstraints(Cand.Intf, Cost)) { 1117 DEBUG(dbgs() << ", none.\n"); 1118 return false; 1119 } 1120 1121 growRegion(Cand); 1122 SpillPlacer->finish(); 1123 1124 if (!Cand.LiveBundles.any()) { 1125 DEBUG(dbgs() << ", none.\n"); 1126 return false; 1127 } 1128 1129 DEBUG({ 1130 for (int i = Cand.LiveBundles.find_first(); i>=0; 1131 i = Cand.LiveBundles.find_next(i)) 1132 dbgs() << " EB#" << i; 1133 dbgs() << ".\n"; 1134 }); 1135 return true; 1136 } 1137 1138 /// calcSpillCost - Compute how expensive it would be to split the live range in 1139 /// SA around all use blocks instead of forming bundle regions. 1140 BlockFrequency RAGreedy::calcSpillCost() { 1141 BlockFrequency Cost = 0; 1142 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1143 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1144 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1145 unsigned Number = BI.MBB->getNumber(); 1146 // We normally only need one spill instruction - a load or a store. 1147 Cost += SpillPlacer->getBlockFrequency(Number); 1148 1149 // Unless the value is redefined in the block. 1150 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1151 Cost += SpillPlacer->getBlockFrequency(Number); 1152 } 1153 return Cost; 1154 } 1155 1156 /// calcGlobalSplitCost - Return the global split cost of following the split 1157 /// pattern in LiveBundles. This cost should be added to the local cost of the 1158 /// interference pattern in SplitConstraints. 1159 /// 1160 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) { 1161 BlockFrequency GlobalCost = 0; 1162 const BitVector &LiveBundles = Cand.LiveBundles; 1163 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1164 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1165 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1166 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1167 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)]; 1168 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)]; 1169 unsigned Ins = 0; 1170 1171 if (BI.LiveIn) 1172 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1173 if (BI.LiveOut) 1174 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1175 while (Ins--) 1176 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1177 } 1178 1179 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1180 unsigned Number = Cand.ActiveBlocks[i]; 1181 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)]; 1182 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)]; 1183 if (!RegIn && !RegOut) 1184 continue; 1185 if (RegIn && RegOut) { 1186 // We need double spill code if this block has interference. 1187 Cand.Intf.moveToBlock(Number); 1188 if (Cand.Intf.hasInterference()) { 1189 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1190 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1191 } 1192 continue; 1193 } 1194 // live-in / stack-out or stack-in live-out. 1195 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1196 } 1197 return GlobalCost; 1198 } 1199 1200 /// splitAroundRegion - Split the current live range around the regions 1201 /// determined by BundleCand and GlobalCand. 1202 /// 1203 /// Before calling this function, GlobalCand and BundleCand must be initialized 1204 /// so each bundle is assigned to a valid candidate, or NoCand for the 1205 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1206 /// objects must be initialized for the current live range, and intervals 1207 /// created for the used candidates. 1208 /// 1209 /// @param LREdit The LiveRangeEdit object handling the current split. 1210 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1211 /// must appear in this list. 1212 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1213 ArrayRef<unsigned> UsedCands) { 1214 // These are the intervals created for new global ranges. We may create more 1215 // intervals for local ranges. 1216 const unsigned NumGlobalIntvs = LREdit.size(); 1217 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 1218 assert(NumGlobalIntvs && "No global intervals configured"); 1219 1220 // Isolate even single instructions when dealing with a proper sub-class. 1221 // That guarantees register class inflation for the stack interval because it 1222 // is all copies. 1223 unsigned Reg = SA->getParent().reg; 1224 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1225 1226 // First handle all the blocks with uses. 1227 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1228 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1229 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1230 unsigned Number = BI.MBB->getNumber(); 1231 unsigned IntvIn = 0, IntvOut = 0; 1232 SlotIndex IntfIn, IntfOut; 1233 if (BI.LiveIn) { 1234 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1235 if (CandIn != NoCand) { 1236 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1237 IntvIn = Cand.IntvIdx; 1238 Cand.Intf.moveToBlock(Number); 1239 IntfIn = Cand.Intf.first(); 1240 } 1241 } 1242 if (BI.LiveOut) { 1243 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1244 if (CandOut != NoCand) { 1245 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1246 IntvOut = Cand.IntvIdx; 1247 Cand.Intf.moveToBlock(Number); 1248 IntfOut = Cand.Intf.last(); 1249 } 1250 } 1251 1252 // Create separate intervals for isolated blocks with multiple uses. 1253 if (!IntvIn && !IntvOut) { 1254 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); 1255 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1256 SE->splitSingleBlock(BI); 1257 continue; 1258 } 1259 1260 if (IntvIn && IntvOut) 1261 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1262 else if (IntvIn) 1263 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1264 else 1265 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1266 } 1267 1268 // Handle live-through blocks. The relevant live-through blocks are stored in 1269 // the ActiveBlocks list with each candidate. We need to filter out 1270 // duplicates. 1271 BitVector Todo = SA->getThroughBlocks(); 1272 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1273 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1274 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1275 unsigned Number = Blocks[i]; 1276 if (!Todo.test(Number)) 1277 continue; 1278 Todo.reset(Number); 1279 1280 unsigned IntvIn = 0, IntvOut = 0; 1281 SlotIndex IntfIn, IntfOut; 1282 1283 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1284 if (CandIn != NoCand) { 1285 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1286 IntvIn = Cand.IntvIdx; 1287 Cand.Intf.moveToBlock(Number); 1288 IntfIn = Cand.Intf.first(); 1289 } 1290 1291 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1292 if (CandOut != NoCand) { 1293 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1294 IntvOut = Cand.IntvIdx; 1295 Cand.Intf.moveToBlock(Number); 1296 IntfOut = Cand.Intf.last(); 1297 } 1298 if (!IntvIn && !IntvOut) 1299 continue; 1300 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1301 } 1302 } 1303 1304 ++NumGlobalSplits; 1305 1306 SmallVector<unsigned, 8> IntvMap; 1307 SE->finish(&IntvMap); 1308 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1309 1310 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1311 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1312 1313 // Sort out the new intervals created by splitting. We get four kinds: 1314 // - Remainder intervals should not be split again. 1315 // - Candidate intervals can be assigned to Cand.PhysReg. 1316 // - Block-local splits are candidates for local splitting. 1317 // - DCE leftovers should go back on the queue. 1318 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1319 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1320 1321 // Ignore old intervals from DCE. 1322 if (getStage(Reg) != RS_New) 1323 continue; 1324 1325 // Remainder interval. Don't try splitting again, spill if it doesn't 1326 // allocate. 1327 if (IntvMap[i] == 0) { 1328 setStage(Reg, RS_Spill); 1329 continue; 1330 } 1331 1332 // Global intervals. Allow repeated splitting as long as the number of live 1333 // blocks is strictly decreasing. 1334 if (IntvMap[i] < NumGlobalIntvs) { 1335 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1336 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1337 << " blocks as original.\n"); 1338 // Don't allow repeated splitting as a safe guard against looping. 1339 setStage(Reg, RS_Split2); 1340 } 1341 continue; 1342 } 1343 1344 // Other intervals are treated as new. This includes local intervals created 1345 // for blocks with multiple uses, and anything created by DCE. 1346 } 1347 1348 if (VerifyEnabled) 1349 MF->verify(this, "After splitting live range around region"); 1350 } 1351 1352 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1353 SmallVectorImpl<unsigned> &NewVRegs) { 1354 unsigned NumCands = 0; 1355 BlockFrequency BestCost; 1356 1357 // Check if we can split this live range around a compact region. 1358 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1359 if (HasCompact) { 1360 // Yes, keep GlobalCand[0] as the compact region candidate. 1361 NumCands = 1; 1362 BestCost = BlockFrequency::getMaxFrequency(); 1363 } else { 1364 // No benefit from the compact region, our fallback will be per-block 1365 // splitting. Make sure we find a solution that is cheaper than spilling. 1366 BestCost = calcSpillCost(); 1367 DEBUG(dbgs() << "Cost of isolating all blocks = "; 1368 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1369 } 1370 1371 unsigned BestCand = 1372 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1373 false/*IgnoreCSR*/); 1374 1375 // No solutions found, fall back to single block splitting. 1376 if (!HasCompact && BestCand == NoCand) 1377 return 0; 1378 1379 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1380 } 1381 1382 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1383 AllocationOrder &Order, 1384 BlockFrequency &BestCost, 1385 unsigned &NumCands, 1386 bool IgnoreCSR) { 1387 unsigned BestCand = NoCand; 1388 Order.rewind(); 1389 while (unsigned PhysReg = Order.next()) { 1390 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1391 continue; 1392 1393 // Discard bad candidates before we run out of interference cache cursors. 1394 // This will only affect register classes with a lot of registers (>32). 1395 if (NumCands == IntfCache.getMaxCursors()) { 1396 unsigned WorstCount = ~0u; 1397 unsigned Worst = 0; 1398 for (unsigned i = 0; i != NumCands; ++i) { 1399 if (i == BestCand || !GlobalCand[i].PhysReg) 1400 continue; 1401 unsigned Count = GlobalCand[i].LiveBundles.count(); 1402 if (Count < WorstCount) { 1403 Worst = i; 1404 WorstCount = Count; 1405 } 1406 } 1407 --NumCands; 1408 GlobalCand[Worst] = GlobalCand[NumCands]; 1409 if (BestCand == NumCands) 1410 BestCand = Worst; 1411 } 1412 1413 if (GlobalCand.size() <= NumCands) 1414 GlobalCand.resize(NumCands+1); 1415 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1416 Cand.reset(IntfCache, PhysReg); 1417 1418 SpillPlacer->prepare(Cand.LiveBundles); 1419 BlockFrequency Cost; 1420 if (!addSplitConstraints(Cand.Intf, Cost)) { 1421 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); 1422 continue; 1423 } 1424 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = "; 1425 MBFI->printBlockFreq(dbgs(), Cost)); 1426 if (Cost >= BestCost) { 1427 DEBUG({ 1428 if (BestCand == NoCand) 1429 dbgs() << " worse than no bundles\n"; 1430 else 1431 dbgs() << " worse than " 1432 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1433 }); 1434 continue; 1435 } 1436 growRegion(Cand); 1437 1438 SpillPlacer->finish(); 1439 1440 // No live bundles, defer to splitSingleBlocks(). 1441 if (!Cand.LiveBundles.any()) { 1442 DEBUG(dbgs() << " no bundles.\n"); 1443 continue; 1444 } 1445 1446 Cost += calcGlobalSplitCost(Cand); 1447 DEBUG({ 1448 dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost) 1449 << " with bundles"; 1450 for (int i = Cand.LiveBundles.find_first(); i>=0; 1451 i = Cand.LiveBundles.find_next(i)) 1452 dbgs() << " EB#" << i; 1453 dbgs() << ".\n"; 1454 }); 1455 if (Cost < BestCost) { 1456 BestCand = NumCands; 1457 BestCost = Cost; 1458 } 1459 ++NumCands; 1460 } 1461 return BestCand; 1462 } 1463 1464 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1465 bool HasCompact, 1466 SmallVectorImpl<unsigned> &NewVRegs) { 1467 SmallVector<unsigned, 8> UsedCands; 1468 // Prepare split editor. 1469 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1470 SE->reset(LREdit, SplitSpillMode); 1471 1472 // Assign all edge bundles to the preferred candidate, or NoCand. 1473 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1474 1475 // Assign bundles for the best candidate region. 1476 if (BestCand != NoCand) { 1477 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1478 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1479 UsedCands.push_back(BestCand); 1480 Cand.IntvIdx = SE->openIntv(); 1481 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in " 1482 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1483 (void)B; 1484 } 1485 } 1486 1487 // Assign bundles for the compact region. 1488 if (HasCompact) { 1489 GlobalSplitCandidate &Cand = GlobalCand.front(); 1490 assert(!Cand.PhysReg && "Compact region has no physreg"); 1491 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1492 UsedCands.push_back(0); 1493 Cand.IntvIdx = SE->openIntv(); 1494 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1495 << Cand.IntvIdx << ".\n"); 1496 (void)B; 1497 } 1498 } 1499 1500 splitAroundRegion(LREdit, UsedCands); 1501 return 0; 1502 } 1503 1504 1505 //===----------------------------------------------------------------------===// 1506 // Per-Block Splitting 1507 //===----------------------------------------------------------------------===// 1508 1509 /// tryBlockSplit - Split a global live range around every block with uses. This 1510 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1511 /// they don't allocate. 1512 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1513 SmallVectorImpl<unsigned> &NewVRegs) { 1514 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1515 unsigned Reg = VirtReg.reg; 1516 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1517 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1518 SE->reset(LREdit, SplitSpillMode); 1519 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1520 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1521 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1522 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1523 SE->splitSingleBlock(BI); 1524 } 1525 // No blocks were split. 1526 if (LREdit.empty()) 1527 return 0; 1528 1529 // We did split for some blocks. 1530 SmallVector<unsigned, 8> IntvMap; 1531 SE->finish(&IntvMap); 1532 1533 // Tell LiveDebugVariables about the new ranges. 1534 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1535 1536 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1537 1538 // Sort out the new intervals created by splitting. The remainder interval 1539 // goes straight to spilling, the new local ranges get to stay RS_New. 1540 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1541 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 1542 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1543 setStage(LI, RS_Spill); 1544 } 1545 1546 if (VerifyEnabled) 1547 MF->verify(this, "After splitting live range around basic blocks"); 1548 return 0; 1549 } 1550 1551 1552 //===----------------------------------------------------------------------===// 1553 // Per-Instruction Splitting 1554 //===----------------------------------------------------------------------===// 1555 1556 /// Get the number of allocatable registers that match the constraints of \p Reg 1557 /// on \p MI and that are also in \p SuperRC. 1558 static unsigned getNumAllocatableRegsForConstraints( 1559 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 1560 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1561 const RegisterClassInfo &RCI) { 1562 assert(SuperRC && "Invalid register class"); 1563 1564 const TargetRegisterClass *ConstrainedRC = 1565 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1566 /* ExploreBundle */ true); 1567 if (!ConstrainedRC) 1568 return 0; 1569 return RCI.getNumAllocatableRegs(ConstrainedRC); 1570 } 1571 1572 /// tryInstructionSplit - Split a live range around individual instructions. 1573 /// This is normally not worthwhile since the spiller is doing essentially the 1574 /// same thing. However, when the live range is in a constrained register 1575 /// class, it may help to insert copies such that parts of the live range can 1576 /// be moved to a larger register class. 1577 /// 1578 /// This is similar to spilling to a larger register class. 1579 unsigned 1580 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1581 SmallVectorImpl<unsigned> &NewVRegs) { 1582 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 1583 // There is no point to this if there are no larger sub-classes. 1584 if (!RegClassInfo.isProperSubClass(CurRC)) 1585 return 0; 1586 1587 // Always enable split spill mode, since we're effectively spilling to a 1588 // register. 1589 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1590 SE->reset(LREdit, SplitEditor::SM_Size); 1591 1592 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1593 if (Uses.size() <= 1) 1594 return 0; 1595 1596 DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n"); 1597 1598 const TargetRegisterClass *SuperRC = 1599 TRI->getLargestLegalSuperClass(CurRC, *MF); 1600 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 1601 // Split around every non-copy instruction if this split will relax 1602 // the constraints on the virtual register. 1603 // Otherwise, splitting just inserts uncoalescable copies that do not help 1604 // the allocation. 1605 for (unsigned i = 0; i != Uses.size(); ++i) { 1606 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 1607 if (MI->isFullCopy() || 1608 SuperRCNumAllocatableRegs == 1609 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, 1610 TRI, RCI)) { 1611 DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 1612 continue; 1613 } 1614 SE->openIntv(); 1615 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 1616 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 1617 SE->useIntv(SegStart, SegStop); 1618 } 1619 1620 if (LREdit.empty()) { 1621 DEBUG(dbgs() << "All uses were copies.\n"); 1622 return 0; 1623 } 1624 1625 SmallVector<unsigned, 8> IntvMap; 1626 SE->finish(&IntvMap); 1627 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 1628 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1629 1630 // Assign all new registers to RS_Spill. This was the last chance. 1631 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1632 return 0; 1633 } 1634 1635 1636 //===----------------------------------------------------------------------===// 1637 // Local Splitting 1638 //===----------------------------------------------------------------------===// 1639 1640 1641 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1642 /// in order to use PhysReg between two entries in SA->UseSlots. 1643 /// 1644 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 1645 /// 1646 void RAGreedy::calcGapWeights(unsigned PhysReg, 1647 SmallVectorImpl<float> &GapWeight) { 1648 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1649 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1650 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1651 const unsigned NumGaps = Uses.size()-1; 1652 1653 // Start and end points for the interference check. 1654 SlotIndex StartIdx = 1655 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1656 SlotIndex StopIdx = 1657 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1658 1659 GapWeight.assign(NumGaps, 0.0f); 1660 1661 // Add interference from each overlapping register. 1662 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1663 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1664 .checkInterference()) 1665 continue; 1666 1667 // We know that VirtReg is a continuous interval from FirstInstr to 1668 // LastInstr, so we don't need InterferenceQuery. 1669 // 1670 // Interference that overlaps an instruction is counted in both gaps 1671 // surrounding the instruction. The exception is interference before 1672 // StartIdx and after StopIdx. 1673 // 1674 LiveIntervalUnion::SegmentIter IntI = 1675 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1676 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1677 // Skip the gaps before IntI. 1678 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1679 if (++Gap == NumGaps) 1680 break; 1681 if (Gap == NumGaps) 1682 break; 1683 1684 // Update the gaps covered by IntI. 1685 const float weight = IntI.value()->weight; 1686 for (; Gap != NumGaps; ++Gap) { 1687 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1688 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1689 break; 1690 } 1691 if (Gap == NumGaps) 1692 break; 1693 } 1694 } 1695 1696 // Add fixed interference. 1697 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1698 const LiveRange &LR = LIS->getRegUnit(*Units); 1699 LiveRange::const_iterator I = LR.find(StartIdx); 1700 LiveRange::const_iterator E = LR.end(); 1701 1702 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1703 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1704 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1705 if (++Gap == NumGaps) 1706 break; 1707 if (Gap == NumGaps) 1708 break; 1709 1710 for (; Gap != NumGaps; ++Gap) { 1711 GapWeight[Gap] = llvm::huge_valf; 1712 if (Uses[Gap+1].getBaseIndex() >= I->end) 1713 break; 1714 } 1715 if (Gap == NumGaps) 1716 break; 1717 } 1718 } 1719 } 1720 1721 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1722 /// basic block. 1723 /// 1724 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1725 SmallVectorImpl<unsigned> &NewVRegs) { 1726 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1727 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1728 1729 // Note that it is possible to have an interval that is live-in or live-out 1730 // while only covering a single block - A phi-def can use undef values from 1731 // predecessors, and the block could be a single-block loop. 1732 // We don't bother doing anything clever about such a case, we simply assume 1733 // that the interval is continuous from FirstInstr to LastInstr. We should 1734 // make sure that we don't do anything illegal to such an interval, though. 1735 1736 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1737 if (Uses.size() <= 2) 1738 return 0; 1739 const unsigned NumGaps = Uses.size()-1; 1740 1741 DEBUG({ 1742 dbgs() << "tryLocalSplit: "; 1743 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 1744 dbgs() << ' ' << Uses[i]; 1745 dbgs() << '\n'; 1746 }); 1747 1748 // If VirtReg is live across any register mask operands, compute a list of 1749 // gaps with register masks. 1750 SmallVector<unsigned, 8> RegMaskGaps; 1751 if (Matrix->checkRegMaskInterference(VirtReg)) { 1752 // Get regmask slots for the whole block. 1753 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1754 DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1755 // Constrain to VirtReg's live range. 1756 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 1757 Uses.front().getRegSlot()) - RMS.begin(); 1758 unsigned re = RMS.size(); 1759 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 1760 // Look for Uses[i] <= RMS <= Uses[i+1]. 1761 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 1762 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 1763 continue; 1764 // Skip a regmask on the same instruction as the last use. It doesn't 1765 // overlap the live range. 1766 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 1767 break; 1768 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]); 1769 RegMaskGaps.push_back(i); 1770 // Advance ri to the next gap. A regmask on one of the uses counts in 1771 // both gaps. 1772 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 1773 ++ri; 1774 } 1775 DEBUG(dbgs() << '\n'); 1776 } 1777 1778 // Since we allow local split results to be split again, there is a risk of 1779 // creating infinite loops. It is tempting to require that the new live 1780 // ranges have less instructions than the original. That would guarantee 1781 // convergence, but it is too strict. A live range with 3 instructions can be 1782 // split 2+3 (including the COPY), and we want to allow that. 1783 // 1784 // Instead we use these rules: 1785 // 1786 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1787 // noop split, of course). 1788 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1789 // the new ranges must have fewer instructions than before the split. 1790 // 3. New ranges with the same number of instructions are marked RS_Split2, 1791 // smaller ranges are marked RS_New. 1792 // 1793 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1794 // excessive splitting and infinite loops. 1795 // 1796 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 1797 1798 // Best split candidate. 1799 unsigned BestBefore = NumGaps; 1800 unsigned BestAfter = 0; 1801 float BestDiff = 0; 1802 1803 const float blockFreq = 1804 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1805 (1.0f / MBFI->getEntryFreq()); 1806 SmallVector<float, 8> GapWeight; 1807 1808 Order.rewind(); 1809 while (unsigned PhysReg = Order.next()) { 1810 // Keep track of the largest spill weight that would need to be evicted in 1811 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 1812 calcGapWeights(PhysReg, GapWeight); 1813 1814 // Remove any gaps with regmask clobbers. 1815 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1816 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 1817 GapWeight[RegMaskGaps[i]] = llvm::huge_valf; 1818 1819 // Try to find the best sequence of gaps to close. 1820 // The new spill weight must be larger than any gap interference. 1821 1822 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1823 unsigned SplitBefore = 0, SplitAfter = 1; 1824 1825 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1826 // It is the spill weight that needs to be evicted. 1827 float MaxGap = GapWeight[0]; 1828 1829 for (;;) { 1830 // Live before/after split? 1831 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1832 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1833 1834 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' 1835 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 1836 << " i=" << MaxGap); 1837 1838 // Stop before the interval gets so big we wouldn't be making progress. 1839 if (!LiveBefore && !LiveAfter) { 1840 DEBUG(dbgs() << " all\n"); 1841 break; 1842 } 1843 // Should the interval be extended or shrunk? 1844 bool Shrink = true; 1845 1846 // How many gaps would the new range have? 1847 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1848 1849 // Legally, without causing looping? 1850 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1851 1852 if (Legal && MaxGap < llvm::huge_valf) { 1853 // Estimate the new spill weight. Each instruction reads or writes the 1854 // register. Conservatively assume there are no read-modify-write 1855 // instructions. 1856 // 1857 // Try to guess the size of the new interval. 1858 const float EstWeight = normalizeSpillWeight( 1859 blockFreq * (NewGaps + 1), 1860 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1861 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1862 1); 1863 // Would this split be possible to allocate? 1864 // Never allocate all gaps, we wouldn't be making progress. 1865 DEBUG(dbgs() << " w=" << EstWeight); 1866 if (EstWeight * Hysteresis >= MaxGap) { 1867 Shrink = false; 1868 float Diff = EstWeight - MaxGap; 1869 if (Diff > BestDiff) { 1870 DEBUG(dbgs() << " (best)"); 1871 BestDiff = Hysteresis * Diff; 1872 BestBefore = SplitBefore; 1873 BestAfter = SplitAfter; 1874 } 1875 } 1876 } 1877 1878 // Try to shrink. 1879 if (Shrink) { 1880 if (++SplitBefore < SplitAfter) { 1881 DEBUG(dbgs() << " shrink\n"); 1882 // Recompute the max when necessary. 1883 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1884 MaxGap = GapWeight[SplitBefore]; 1885 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 1886 MaxGap = std::max(MaxGap, GapWeight[i]); 1887 } 1888 continue; 1889 } 1890 MaxGap = 0; 1891 } 1892 1893 // Try to extend the interval. 1894 if (SplitAfter >= NumGaps) { 1895 DEBUG(dbgs() << " end\n"); 1896 break; 1897 } 1898 1899 DEBUG(dbgs() << " extend\n"); 1900 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1901 } 1902 } 1903 1904 // Didn't find any candidates? 1905 if (BestBefore == NumGaps) 1906 return 0; 1907 1908 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 1909 << '-' << Uses[BestAfter] << ", " << BestDiff 1910 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 1911 1912 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1913 SE->reset(LREdit); 1914 1915 SE->openIntv(); 1916 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1917 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1918 SE->useIntv(SegStart, SegStop); 1919 SmallVector<unsigned, 8> IntvMap; 1920 SE->finish(&IntvMap); 1921 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 1922 1923 // If the new range has the same number of instructions as before, mark it as 1924 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1925 // leave the new intervals as RS_New so they can compete. 1926 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1927 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1928 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1929 if (NewGaps >= NumGaps) { 1930 DEBUG(dbgs() << "Tagging non-progress ranges: "); 1931 assert(!ProgressRequired && "Didn't make progress when it was required."); 1932 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 1933 if (IntvMap[i] == 1) { 1934 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 1935 DEBUG(dbgs() << PrintReg(LREdit.get(i))); 1936 } 1937 DEBUG(dbgs() << '\n'); 1938 } 1939 ++NumLocalSplits; 1940 1941 return 0; 1942 } 1943 1944 //===----------------------------------------------------------------------===// 1945 // Live Range Splitting 1946 //===----------------------------------------------------------------------===// 1947 1948 /// trySplit - Try to split VirtReg or one of its interferences, making it 1949 /// assignable. 1950 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1951 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 1952 SmallVectorImpl<unsigned>&NewVRegs) { 1953 // Ranges must be Split2 or less. 1954 if (getStage(VirtReg) >= RS_Spill) 1955 return 0; 1956 1957 // Local intervals are handled separately. 1958 if (LIS->intervalIsInOneMBB(VirtReg)) { 1959 NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled); 1960 SA->analyze(&VirtReg); 1961 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1962 if (PhysReg || !NewVRegs.empty()) 1963 return PhysReg; 1964 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1965 } 1966 1967 NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled); 1968 1969 SA->analyze(&VirtReg); 1970 1971 // FIXME: SplitAnalysis may repair broken live ranges coming from the 1972 // coalescer. That may cause the range to become allocatable which means that 1973 // tryRegionSplit won't be making progress. This check should be replaced with 1974 // an assertion when the coalescer is fixed. 1975 if (SA->didRepairRange()) { 1976 // VirtReg has changed, so all cached queries are invalid. 1977 Matrix->invalidateVirtRegs(); 1978 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1979 return PhysReg; 1980 } 1981 1982 // First try to split around a region spanning multiple blocks. RS_Split2 1983 // ranges already made dubious progress with region splitting, so they go 1984 // straight to single block splitting. 1985 if (getStage(VirtReg) < RS_Split2) { 1986 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1987 if (PhysReg || !NewVRegs.empty()) 1988 return PhysReg; 1989 } 1990 1991 // Then isolate blocks. 1992 return tryBlockSplit(VirtReg, Order, NewVRegs); 1993 } 1994 1995 //===----------------------------------------------------------------------===// 1996 // Last Chance Recoloring 1997 //===----------------------------------------------------------------------===// 1998 1999 /// mayRecolorAllInterferences - Check if the virtual registers that 2000 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2001 /// recolored to free \p PhysReg. 2002 /// When true is returned, \p RecoloringCandidates has been augmented with all 2003 /// the live intervals that need to be recolored in order to free \p PhysReg 2004 /// for \p VirtReg. 2005 /// \p FixedRegisters contains all the virtual registers that cannot be 2006 /// recolored. 2007 bool 2008 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 2009 SmallLISet &RecoloringCandidates, 2010 const SmallVirtRegSet &FixedRegisters) { 2011 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2012 2013 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2014 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2015 // If there is LastChanceRecoloringMaxInterference or more interferences, 2016 // chances are one would not be recolorable. 2017 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2018 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2019 DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2020 CutOffInfo |= CO_Interf; 2021 return false; 2022 } 2023 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 2024 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 2025 // If Intf is done and sit on the same register class as VirtReg, 2026 // it would not be recolorable as it is in the same state as VirtReg. 2027 if ((getStage(*Intf) == RS_Done && 2028 MRI->getRegClass(Intf->reg) == CurRC) || 2029 FixedRegisters.count(Intf->reg)) { 2030 DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n"); 2031 return false; 2032 } 2033 RecoloringCandidates.insert(Intf); 2034 } 2035 } 2036 return true; 2037 } 2038 2039 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2040 /// its interferences. 2041 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2042 /// virtual register that was using it. The recoloring process may recursively 2043 /// use the last chance recoloring. Therefore, when a virtual register has been 2044 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2045 /// be last-chance-recolored again during this recoloring "session". 2046 /// E.g., 2047 /// Let 2048 /// vA can use {R1, R2 } 2049 /// vB can use { R2, R3} 2050 /// vC can use {R1 } 2051 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2052 /// instance) and they all interfere. 2053 /// 2054 /// vA is assigned R1 2055 /// vB is assigned R2 2056 /// vC tries to evict vA but vA is already done. 2057 /// Regular register allocation fails. 2058 /// 2059 /// Last chance recoloring kicks in: 2060 /// vC does as if vA was evicted => vC uses R1. 2061 /// vC is marked as fixed. 2062 /// vA needs to find a color. 2063 /// None are available. 2064 /// vA cannot evict vC: vC is a fixed virtual register now. 2065 /// vA does as if vB was evicted => vA uses R2. 2066 /// vB needs to find a color. 2067 /// R3 is available. 2068 /// Recoloring => vC = R1, vA = R2, vB = R3 2069 /// 2070 /// \p Order defines the preferred allocation order for \p VirtReg. 2071 /// \p NewRegs will contain any new virtual register that have been created 2072 /// (split, spill) during the process and that must be assigned. 2073 /// \p FixedRegisters contains all the virtual registers that cannot be 2074 /// recolored. 2075 /// \p Depth gives the current depth of the last chance recoloring. 2076 /// \return a physical register that can be used for VirtReg or ~0u if none 2077 /// exists. 2078 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2079 AllocationOrder &Order, 2080 SmallVectorImpl<unsigned> &NewVRegs, 2081 SmallVirtRegSet &FixedRegisters, 2082 unsigned Depth) { 2083 DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2084 // Ranges must be Done. 2085 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2086 "Last chance recoloring should really be last chance"); 2087 // Set the max depth to LastChanceRecoloringMaxDepth. 2088 // We may want to reconsider that if we end up with a too large search space 2089 // for target with hundreds of registers. 2090 // Indeed, in that case we may want to cut the search space earlier. 2091 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2092 DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2093 CutOffInfo |= CO_Depth; 2094 return ~0u; 2095 } 2096 2097 // Set of Live intervals that will need to be recolored. 2098 SmallLISet RecoloringCandidates; 2099 // Record the original mapping virtual register to physical register in case 2100 // the recoloring fails. 2101 DenseMap<unsigned, unsigned> VirtRegToPhysReg; 2102 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2103 // this recoloring "session". 2104 FixedRegisters.insert(VirtReg.reg); 2105 2106 Order.rewind(); 2107 while (unsigned PhysReg = Order.next()) { 2108 DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2109 << PrintReg(PhysReg, TRI) << '\n'); 2110 RecoloringCandidates.clear(); 2111 VirtRegToPhysReg.clear(); 2112 2113 // It is only possible to recolor virtual register interference. 2114 if (Matrix->checkInterference(VirtReg, PhysReg) > 2115 LiveRegMatrix::IK_VirtReg) { 2116 DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n"); 2117 2118 continue; 2119 } 2120 2121 // Early give up on this PhysReg if it is obvious we cannot recolor all 2122 // the interferences. 2123 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2124 FixedRegisters)) { 2125 DEBUG(dbgs() << "Some inteferences cannot be recolored.\n"); 2126 continue; 2127 } 2128 2129 // RecoloringCandidates contains all the virtual registers that interfer 2130 // with VirtReg on PhysReg (or one of its aliases). 2131 // Enqueue them for recoloring and perform the actual recoloring. 2132 PQueue RecoloringQueue; 2133 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2134 EndIt = RecoloringCandidates.end(); 2135 It != EndIt; ++It) { 2136 unsigned ItVirtReg = (*It)->reg; 2137 enqueue(RecoloringQueue, *It); 2138 assert(VRM->hasPhys(ItVirtReg) && 2139 "Interferences are supposed to be with allocated vairables"); 2140 2141 // Record the current allocation. 2142 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2143 // unset the related struct. 2144 Matrix->unassign(**It); 2145 } 2146 2147 // Do as if VirtReg was assigned to PhysReg so that the underlying 2148 // recoloring has the right information about the interferes and 2149 // available colors. 2150 Matrix->assign(VirtReg, PhysReg); 2151 2152 // Save the current recoloring state. 2153 // If we cannot recolor all the interferences, we will have to start again 2154 // at this point for the next physical register. 2155 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2156 if (tryRecoloringCandidates(RecoloringQueue, NewVRegs, FixedRegisters, 2157 Depth)) { 2158 // Do not mess up with the global assignment process. 2159 // I.e., VirtReg must be unassigned. 2160 Matrix->unassign(VirtReg); 2161 return PhysReg; 2162 } 2163 2164 DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2165 << PrintReg(PhysReg, TRI) << '\n'); 2166 2167 // The recoloring attempt failed, undo the changes. 2168 FixedRegisters = SaveFixedRegisters; 2169 Matrix->unassign(VirtReg); 2170 2171 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2172 EndIt = RecoloringCandidates.end(); 2173 It != EndIt; ++It) { 2174 unsigned ItVirtReg = (*It)->reg; 2175 if (VRM->hasPhys(ItVirtReg)) 2176 Matrix->unassign(**It); 2177 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2178 Matrix->assign(**It, ItPhysReg); 2179 } 2180 } 2181 2182 // Last chance recoloring did not worked either, give up. 2183 return ~0u; 2184 } 2185 2186 /// tryRecoloringCandidates - Try to assign a new color to every register 2187 /// in \RecoloringQueue. 2188 /// \p NewRegs will contain any new virtual register created during the 2189 /// recoloring process. 2190 /// \p FixedRegisters[in/out] contains all the registers that have been 2191 /// recolored. 2192 /// \return true if all virtual registers in RecoloringQueue were successfully 2193 /// recolored, false otherwise. 2194 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2195 SmallVectorImpl<unsigned> &NewVRegs, 2196 SmallVirtRegSet &FixedRegisters, 2197 unsigned Depth) { 2198 while (!RecoloringQueue.empty()) { 2199 LiveInterval *LI = dequeue(RecoloringQueue); 2200 DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2201 unsigned PhysReg; 2202 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2203 if (PhysReg == ~0u || !PhysReg) 2204 return false; 2205 DEBUG(dbgs() << "Recoloring of " << *LI 2206 << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n'); 2207 Matrix->assign(*LI, PhysReg); 2208 FixedRegisters.insert(LI->reg); 2209 } 2210 return true; 2211 } 2212 2213 //===----------------------------------------------------------------------===// 2214 // Main Entry Point 2215 //===----------------------------------------------------------------------===// 2216 2217 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2218 SmallVectorImpl<unsigned> &NewVRegs) { 2219 CutOffInfo = CO_None; 2220 LLVMContext &Ctx = MF->getFunction()->getContext(); 2221 SmallVirtRegSet FixedRegisters; 2222 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2223 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2224 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2225 if (CutOffEncountered == CO_Depth) 2226 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2227 "reached. Use -fexhaustive-register-search to skip " 2228 "cutoffs"); 2229 else if (CutOffEncountered == CO_Interf) 2230 Ctx.emitError("register allocation failed: maximum interference for " 2231 "recoloring reached. Use -fexhaustive-register-search " 2232 "to skip cutoffs"); 2233 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2234 Ctx.emitError("register allocation failed: maximum interference and " 2235 "depth for recoloring reached. Use " 2236 "-fexhaustive-register-search to skip cutoffs"); 2237 } 2238 return Reg; 2239 } 2240 2241 /// Using a CSR for the first time has a cost because it causes push|pop 2242 /// to be added to prologue|epilogue. Splitting a cold section of the live 2243 /// range can have lower cost than using the CSR for the first time; 2244 /// Spilling a live range in the cold path can have lower cost than using 2245 /// the CSR for the first time. Returns the physical register if we decide 2246 /// to use the CSR; otherwise return 0. 2247 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2248 AllocationOrder &Order, 2249 unsigned PhysReg, 2250 unsigned &CostPerUseLimit, 2251 SmallVectorImpl<unsigned> &NewVRegs) { 2252 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2253 // We choose spill over using the CSR for the first time if the spill cost 2254 // is lower than CSRCost. 2255 SA->analyze(&VirtReg); 2256 if (calcSpillCost() >= CSRCost) 2257 return PhysReg; 2258 2259 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2260 // we will not use a callee-saved register in tryEvict. 2261 CostPerUseLimit = 1; 2262 return 0; 2263 } 2264 if (getStage(VirtReg) < RS_Split) { 2265 // We choose pre-splitting over using the CSR for the first time if 2266 // the cost of splitting is lower than CSRCost. 2267 SA->analyze(&VirtReg); 2268 unsigned NumCands = 0; 2269 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2270 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2271 NumCands, true /*IgnoreCSR*/); 2272 if (BestCand == NoCand) 2273 // Use the CSR if we can't find a region split below CSRCost. 2274 return PhysReg; 2275 2276 // Perform the actual pre-splitting. 2277 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2278 return 0; 2279 } 2280 return PhysReg; 2281 } 2282 2283 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2284 // Do not keep invalid information around. 2285 SetOfBrokenHints.remove(&LI); 2286 } 2287 2288 void RAGreedy::initializeCSRCost() { 2289 // We use the larger one out of the command-line option and the value report 2290 // by TRI. 2291 CSRCost = BlockFrequency( 2292 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2293 if (!CSRCost.getFrequency()) 2294 return; 2295 2296 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2297 uint64_t ActualEntry = MBFI->getEntryFreq(); 2298 if (!ActualEntry) { 2299 CSRCost = 0; 2300 return; 2301 } 2302 uint64_t FixedEntry = 1 << 14; 2303 if (ActualEntry < FixedEntry) 2304 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2305 else if (ActualEntry <= UINT32_MAX) 2306 // Invert the fraction and divide. 2307 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2308 else 2309 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2310 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2311 } 2312 2313 /// \brief Collect the hint info for \p Reg. 2314 /// The results are stored into \p Out. 2315 /// \p Out is not cleared before being populated. 2316 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2317 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2318 if (!Instr.isFullCopy()) 2319 continue; 2320 // Look for the other end of the copy. 2321 unsigned OtherReg = Instr.getOperand(0).getReg(); 2322 if (OtherReg == Reg) { 2323 OtherReg = Instr.getOperand(1).getReg(); 2324 if (OtherReg == Reg) 2325 continue; 2326 } 2327 // Get the current assignment. 2328 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg) 2329 ? OtherReg 2330 : VRM->getPhys(OtherReg); 2331 // Push the collected information. 2332 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2333 OtherPhysReg)); 2334 } 2335 } 2336 2337 /// \brief Using the given \p List, compute the cost of the broken hints if 2338 /// \p PhysReg was used. 2339 /// \return The cost of \p List for \p PhysReg. 2340 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2341 unsigned PhysReg) { 2342 BlockFrequency Cost = 0; 2343 for (const HintInfo &Info : List) { 2344 if (Info.PhysReg != PhysReg) 2345 Cost += Info.Freq; 2346 } 2347 return Cost; 2348 } 2349 2350 /// \brief Using the register assigned to \p VirtReg, try to recolor 2351 /// all the live ranges that are copy-related with \p VirtReg. 2352 /// The recoloring is then propagated to all the live-ranges that have 2353 /// been recolored and so on, until no more copies can be coalesced or 2354 /// it is not profitable. 2355 /// For a given live range, profitability is determined by the sum of the 2356 /// frequencies of the non-identity copies it would introduce with the old 2357 /// and new register. 2358 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2359 // We have a broken hint, check if it is possible to fix it by 2360 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2361 // some register and PhysReg may be available for the other live-ranges. 2362 SmallSet<unsigned, 4> Visited; 2363 SmallVector<unsigned, 2> RecoloringCandidates; 2364 HintsInfo Info; 2365 unsigned Reg = VirtReg.reg; 2366 unsigned PhysReg = VRM->getPhys(Reg); 2367 // Start the recoloring algorithm from the input live-interval, then 2368 // it will propagate to the ones that are copy-related with it. 2369 Visited.insert(Reg); 2370 RecoloringCandidates.push_back(Reg); 2371 2372 DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '(' 2373 << PrintReg(PhysReg, TRI) << ")\n"); 2374 2375 do { 2376 Reg = RecoloringCandidates.pop_back_val(); 2377 2378 // We cannot recolor physcal register. 2379 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 2380 continue; 2381 2382 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2383 2384 // Get the live interval mapped with this virtual register to be able 2385 // to check for the interference with the new color. 2386 LiveInterval &LI = LIS->getInterval(Reg); 2387 unsigned CurrPhys = VRM->getPhys(Reg); 2388 // Check that the new color matches the register class constraints and 2389 // that it is free for this live range. 2390 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2391 Matrix->checkInterference(LI, PhysReg))) 2392 continue; 2393 2394 DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI) 2395 << ") is recolorable.\n"); 2396 2397 // Gather the hint info. 2398 Info.clear(); 2399 collectHintInfo(Reg, Info); 2400 // Check if recoloring the live-range will increase the cost of the 2401 // non-identity copies. 2402 if (CurrPhys != PhysReg) { 2403 DEBUG(dbgs() << "Checking profitability:\n"); 2404 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2405 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2406 DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2407 << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n'); 2408 if (OldCopiesCost < NewCopiesCost) { 2409 DEBUG(dbgs() << "=> Not profitable.\n"); 2410 continue; 2411 } 2412 // At this point, the cost is either cheaper or equal. If it is 2413 // equal, we consider this is profitable because it may expose 2414 // more recoloring opportunities. 2415 DEBUG(dbgs() << "=> Profitable.\n"); 2416 // Recolor the live-range. 2417 Matrix->unassign(LI); 2418 Matrix->assign(LI, PhysReg); 2419 } 2420 // Push all copy-related live-ranges to keep reconciling the broken 2421 // hints. 2422 for (const HintInfo &HI : Info) { 2423 if (Visited.insert(HI.Reg).second) 2424 RecoloringCandidates.push_back(HI.Reg); 2425 } 2426 } while (!RecoloringCandidates.empty()); 2427 } 2428 2429 /// \brief Try to recolor broken hints. 2430 /// Broken hints may be repaired by recoloring when an evicted variable 2431 /// freed up a register for a larger live-range. 2432 /// Consider the following example: 2433 /// BB1: 2434 /// a = 2435 /// b = 2436 /// BB2: 2437 /// ... 2438 /// = b 2439 /// = a 2440 /// Let us assume b gets split: 2441 /// BB1: 2442 /// a = 2443 /// b = 2444 /// BB2: 2445 /// c = b 2446 /// ... 2447 /// d = c 2448 /// = d 2449 /// = a 2450 /// Because of how the allocation work, b, c, and d may be assigned different 2451 /// colors. Now, if a gets evicted later: 2452 /// BB1: 2453 /// a = 2454 /// st a, SpillSlot 2455 /// b = 2456 /// BB2: 2457 /// c = b 2458 /// ... 2459 /// d = c 2460 /// = d 2461 /// e = ld SpillSlot 2462 /// = e 2463 /// This is likely that we can assign the same register for b, c, and d, 2464 /// getting rid of 2 copies. 2465 void RAGreedy::tryHintsRecoloring() { 2466 for (LiveInterval *LI : SetOfBrokenHints) { 2467 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) && 2468 "Recoloring is possible only for virtual registers"); 2469 // Some dead defs may be around (e.g., because of debug uses). 2470 // Ignore those. 2471 if (!VRM->hasPhys(LI->reg)) 2472 continue; 2473 tryHintRecoloring(*LI); 2474 } 2475 } 2476 2477 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2478 SmallVectorImpl<unsigned> &NewVRegs, 2479 SmallVirtRegSet &FixedRegisters, 2480 unsigned Depth) { 2481 unsigned CostPerUseLimit = ~0u; 2482 // First try assigning a free register. 2483 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 2484 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) { 2485 // When NewVRegs is not empty, we may have made decisions such as evicting 2486 // a virtual register, go with the earlier decisions and use the physical 2487 // register. 2488 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 2489 NewVRegs.empty()) { 2490 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2491 CostPerUseLimit, NewVRegs); 2492 if (CSRReg || !NewVRegs.empty()) 2493 // Return now if we decide to use a CSR or create new vregs due to 2494 // pre-splitting. 2495 return CSRReg; 2496 } else 2497 return PhysReg; 2498 } 2499 2500 LiveRangeStage Stage = getStage(VirtReg); 2501 DEBUG(dbgs() << StageName[Stage] 2502 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 2503 2504 // Try to evict a less worthy live range, but only for ranges from the primary 2505 // queue. The RS_Split ranges already failed to do this, and they should not 2506 // get a second chance until they have been split. 2507 if (Stage != RS_Split) 2508 if (unsigned PhysReg = 2509 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) { 2510 unsigned Hint = MRI->getSimpleHint(VirtReg.reg); 2511 // If VirtReg has a hint and that hint is broken record this 2512 // virtual register as a recoloring candidate for broken hint. 2513 // Indeed, since we evicted a variable in its neighborhood it is 2514 // likely we can at least partially recolor some of the 2515 // copy-related live-ranges. 2516 if (Hint && Hint != PhysReg) 2517 SetOfBrokenHints.insert(&VirtReg); 2518 return PhysReg; 2519 } 2520 2521 assert(NewVRegs.empty() && "Cannot append to existing NewVRegs"); 2522 2523 // The first time we see a live range, don't try to split or spill. 2524 // Wait until the second time, when all smaller ranges have been allocated. 2525 // This gives a better picture of the interference to split around. 2526 if (Stage < RS_Split) { 2527 setStage(VirtReg, RS_Split); 2528 DEBUG(dbgs() << "wait for second round\n"); 2529 NewVRegs.push_back(VirtReg.reg); 2530 return 0; 2531 } 2532 2533 // If we couldn't allocate a register from spilling, there is probably some 2534 // invalid inline assembly. The base class wil report it. 2535 if (Stage >= RS_Done || !VirtReg.isSpillable()) 2536 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2537 Depth); 2538 2539 // Try splitting VirtReg or interferences. 2540 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 2541 if (PhysReg || !NewVRegs.empty()) 2542 return PhysReg; 2543 2544 // Finally spill VirtReg itself. 2545 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) { 2546 // TODO: This is experimental and in particular, we do not model 2547 // the live range splitting done by spilling correctly. 2548 // We would need a deep integration with the spiller to do the 2549 // right thing here. Anyway, that is still good for early testing. 2550 setStage(VirtReg, RS_Memory); 2551 DEBUG(dbgs() << "Do as if this register is in memory\n"); 2552 NewVRegs.push_back(VirtReg.reg); 2553 } else { 2554 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled); 2555 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2556 spiller().spill(LRE); 2557 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2558 2559 if (VerifyEnabled) 2560 MF->verify(this, "After spilling"); 2561 } 2562 2563 // The live virtual register requesting allocation was spilled, so tell 2564 // the caller not to allocate anything during this round. 2565 return 0; 2566 } 2567 2568 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2569 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2570 << "********** Function: " << mf.getName() << '\n'); 2571 2572 MF = &mf; 2573 TRI = MF->getSubtarget().getRegisterInfo(); 2574 TII = MF->getSubtarget().getInstrInfo(); 2575 RCI.runOnMachineFunction(mf); 2576 2577 EnableLocalReassign = EnableLocalReassignment || 2578 MF->getSubtarget().enableRALocalReassignment( 2579 MF->getTarget().getOptLevel()); 2580 2581 if (VerifyEnabled) 2582 MF->verify(this, "Before greedy register allocator"); 2583 2584 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2585 getAnalysis<LiveIntervals>(), 2586 getAnalysis<LiveRegMatrix>()); 2587 Indexes = &getAnalysis<SlotIndexes>(); 2588 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2589 DomTree = &getAnalysis<MachineDominatorTree>(); 2590 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 2591 Loops = &getAnalysis<MachineLoopInfo>(); 2592 Bundles = &getAnalysis<EdgeBundles>(); 2593 SpillPlacer = &getAnalysis<SpillPlacement>(); 2594 DebugVars = &getAnalysis<LiveDebugVariables>(); 2595 2596 initializeCSRCost(); 2597 2598 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); 2599 2600 DEBUG(LIS->dump()); 2601 2602 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2603 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI)); 2604 ExtraRegInfo.clear(); 2605 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2606 NextCascade = 1; 2607 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2608 GlobalCand.resize(32); // This will grow as needed. 2609 SetOfBrokenHints.clear(); 2610 2611 allocatePhysRegs(); 2612 tryHintsRecoloring(); 2613 postOptimization(); 2614 2615 releaseMemory(); 2616 return true; 2617 } 2618