1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "SpillPlacement.h" 19 #include "SplitKit.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/IndexedMap.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/CodeGen/CalcSpillWeights.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervalUnion.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveRegMatrix.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RegAllocRegistry.h" 53 #include "llvm/CodeGen/RegisterClassInfo.h" 54 #include "llvm/CodeGen/SlotIndexes.h" 55 #include "llvm/CodeGen/Spiller.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/BlockFrequency.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/Timer.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include "llvm/IR/DebugInfoMetadata.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <memory> 77 #include <queue> 78 #include <tuple> 79 #include <utility> 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "regalloc" 84 85 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 86 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 87 STATISTIC(NumEvicted, "Number of interferences evicted"); 88 89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 90 "split-spill-mode", cl::Hidden, 91 cl::desc("Spill mode for splitting live ranges"), 92 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 93 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 94 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 95 cl::init(SplitEditor::SM_Speed)); 96 97 static cl::opt<unsigned> 98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 99 cl::desc("Last chance recoloring max depth"), 100 cl::init(5)); 101 102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 103 "lcr-max-interf", cl::Hidden, 104 cl::desc("Last chance recoloring maximum number of considered" 105 " interference at a time"), 106 cl::init(8)); 107 108 static cl::opt<bool> ExhaustiveSearch( 109 "exhaustive-register-search", cl::NotHidden, 110 cl::desc("Exhaustive Search for registers bypassing the depth " 111 "and interference cutoffs of last chance recoloring"), 112 cl::Hidden); 113 114 static cl::opt<bool> EnableLocalReassignment( 115 "enable-local-reassign", cl::Hidden, 116 cl::desc("Local reassignment can yield better allocation decisions, but " 117 "may be compile time intensive"), 118 cl::init(false)); 119 120 static cl::opt<bool> EnableDeferredSpilling( 121 "enable-deferred-spilling", cl::Hidden, 122 cl::desc("Instead of spilling a variable right away, defer the actual " 123 "code insertion to the end of the allocation. That way the " 124 "allocator might still find a suitable coloring for this " 125 "variable because of other evicted variables."), 126 cl::init(false)); 127 128 // FIXME: Find a good default for this flag and remove the flag. 129 static cl::opt<unsigned> 130 CSRFirstTimeCost("regalloc-csr-first-time-cost", 131 cl::desc("Cost for first time use of callee-saved register."), 132 cl::init(0), cl::Hidden); 133 134 static cl::opt<bool> ConsiderLocalIntervalCost( 135 "consider-local-interval-cost", cl::Hidden, 136 cl::desc("Consider the cost of local intervals created by a split " 137 "candidate when choosing the best split candidate."), 138 cl::init(false)); 139 140 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 141 createGreedyRegisterAllocator); 142 143 namespace { 144 145 class RAGreedy : public MachineFunctionPass, 146 public RegAllocBase, 147 private LiveRangeEdit::Delegate { 148 // Convenient shortcuts. 149 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 150 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 151 using SmallVirtRegSet = SmallSet<Register, 16>; 152 153 // context 154 MachineFunction *MF; 155 156 // Shortcuts to some useful interface. 157 const TargetInstrInfo *TII; 158 const TargetRegisterInfo *TRI; 159 RegisterClassInfo RCI; 160 161 // analyses 162 SlotIndexes *Indexes; 163 MachineBlockFrequencyInfo *MBFI; 164 MachineDominatorTree *DomTree; 165 MachineLoopInfo *Loops; 166 MachineOptimizationRemarkEmitter *ORE; 167 EdgeBundles *Bundles; 168 SpillPlacement *SpillPlacer; 169 LiveDebugVariables *DebugVars; 170 AliasAnalysis *AA; 171 172 // state 173 std::unique_ptr<Spiller> SpillerInstance; 174 PQueue Queue; 175 unsigned NextCascade; 176 std::unique_ptr<VirtRegAuxInfo> VRAI; 177 178 // Live ranges pass through a number of stages as we try to allocate them. 179 // Some of the stages may also create new live ranges: 180 // 181 // - Region splitting. 182 // - Per-block splitting. 183 // - Local splitting. 184 // - Spilling. 185 // 186 // Ranges produced by one of the stages skip the previous stages when they are 187 // dequeued. This improves performance because we can skip interference checks 188 // that are unlikely to give any results. It also guarantees that the live 189 // range splitting algorithm terminates, something that is otherwise hard to 190 // ensure. 191 enum LiveRangeStage { 192 /// Newly created live range that has never been queued. 193 RS_New, 194 195 /// Only attempt assignment and eviction. Then requeue as RS_Split. 196 RS_Assign, 197 198 /// Attempt live range splitting if assignment is impossible. 199 RS_Split, 200 201 /// Attempt more aggressive live range splitting that is guaranteed to make 202 /// progress. This is used for split products that may not be making 203 /// progress. 204 RS_Split2, 205 206 /// Live range will be spilled. No more splitting will be attempted. 207 RS_Spill, 208 209 210 /// Live range is in memory. Because of other evictions, it might get moved 211 /// in a register in the end. 212 RS_Memory, 213 214 /// There is nothing more we can do to this live range. Abort compilation 215 /// if it can't be assigned. 216 RS_Done 217 }; 218 219 // Enum CutOffStage to keep a track whether the register allocation failed 220 // because of the cutoffs encountered in last chance recoloring. 221 // Note: This is used as bitmask. New value should be next power of 2. 222 enum CutOffStage { 223 // No cutoffs encountered 224 CO_None = 0, 225 226 // lcr-max-depth cutoff encountered 227 CO_Depth = 1, 228 229 // lcr-max-interf cutoff encountered 230 CO_Interf = 2 231 }; 232 233 uint8_t CutOffInfo; 234 235 #ifndef NDEBUG 236 static const char *const StageName[]; 237 #endif 238 239 // RegInfo - Keep additional information about each live range. 240 struct RegInfo { 241 LiveRangeStage Stage = RS_New; 242 243 // Cascade - Eviction loop prevention. See canEvictInterference(). 244 unsigned Cascade = 0; 245 246 RegInfo() = default; 247 }; 248 249 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 250 251 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 252 return ExtraRegInfo[VirtReg.reg()].Stage; 253 } 254 255 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 256 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 257 ExtraRegInfo[VirtReg.reg()].Stage = Stage; 258 } 259 260 template<typename Iterator> 261 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 262 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 263 for (;Begin != End; ++Begin) { 264 Register Reg = *Begin; 265 if (ExtraRegInfo[Reg].Stage == RS_New) 266 ExtraRegInfo[Reg].Stage = NewStage; 267 } 268 } 269 270 /// Cost of evicting interference. 271 struct EvictionCost { 272 unsigned BrokenHints = 0; ///< Total number of broken hints. 273 float MaxWeight = 0; ///< Maximum spill weight evicted. 274 275 EvictionCost() = default; 276 277 bool isMax() const { return BrokenHints == ~0u; } 278 279 void setMax() { BrokenHints = ~0u; } 280 281 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 282 283 bool operator<(const EvictionCost &O) const { 284 return std::tie(BrokenHints, MaxWeight) < 285 std::tie(O.BrokenHints, O.MaxWeight); 286 } 287 }; 288 289 /// EvictionTrack - Keeps track of past evictions in order to optimize region 290 /// split decision. 291 class EvictionTrack { 292 293 public: 294 using EvictorInfo = 295 std::pair<Register /* evictor */, MCRegister /* physreg */>; 296 using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>; 297 298 private: 299 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 300 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 301 EvicteeInfo Evictees; 302 303 public: 304 /// Clear all eviction information. 305 void clear() { Evictees.clear(); } 306 307 /// Clear eviction information for the given evictee Vreg. 308 /// E.g. when Vreg get's a new allocation, the old eviction info is no 309 /// longer relevant. 310 /// \param Evictee The evictee Vreg for whom we want to clear collected 311 /// eviction info. 312 void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); } 313 314 /// Track new eviction. 315 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 316 /// \param PhysReg The physical register Evictee was evicted from. 317 /// \param Evictor The evictor Vreg that evicted Evictee. 318 /// \param Evictee The evictee Vreg. 319 void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) { 320 Evictees[Evictee].first = Evictor; 321 Evictees[Evictee].second = PhysReg; 322 } 323 324 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 325 /// \param Evictee The evictee vreg. 326 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 327 /// nobody has evicted Evictee from PhysReg. 328 EvictorInfo getEvictor(Register Evictee) { 329 if (Evictees.count(Evictee)) { 330 return Evictees[Evictee]; 331 } 332 333 return EvictorInfo(0, 0); 334 } 335 }; 336 337 // Keeps track of past evictions in order to optimize region split decision. 338 EvictionTrack LastEvicted; 339 340 // splitting state. 341 std::unique_ptr<SplitAnalysis> SA; 342 std::unique_ptr<SplitEditor> SE; 343 344 /// Cached per-block interference maps 345 InterferenceCache IntfCache; 346 347 /// All basic blocks where the current register has uses. 348 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 349 350 /// Global live range splitting candidate info. 351 struct GlobalSplitCandidate { 352 // Register intended for assignment, or 0. 353 MCRegister PhysReg; 354 355 // SplitKit interval index for this candidate. 356 unsigned IntvIdx; 357 358 // Interference for PhysReg. 359 InterferenceCache::Cursor Intf; 360 361 // Bundles where this candidate should be live. 362 BitVector LiveBundles; 363 SmallVector<unsigned, 8> ActiveBlocks; 364 365 void reset(InterferenceCache &Cache, MCRegister Reg) { 366 PhysReg = Reg; 367 IntvIdx = 0; 368 Intf.setPhysReg(Cache, Reg); 369 LiveBundles.clear(); 370 ActiveBlocks.clear(); 371 } 372 373 // Set B[I] = C for every live bundle where B[I] was NoCand. 374 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 375 unsigned Count = 0; 376 for (unsigned I : LiveBundles.set_bits()) 377 if (B[I] == NoCand) { 378 B[I] = C; 379 Count++; 380 } 381 return Count; 382 } 383 }; 384 385 /// Candidate info for each PhysReg in AllocationOrder. 386 /// This vector never shrinks, but grows to the size of the largest register 387 /// class. 388 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 389 390 enum : unsigned { NoCand = ~0u }; 391 392 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 393 /// NoCand which indicates the stack interval. 394 SmallVector<unsigned, 32> BundleCand; 395 396 /// Callee-save register cost, calculated once per machine function. 397 BlockFrequency CSRCost; 398 399 /// Run or not the local reassignment heuristic. This information is 400 /// obtained from the TargetSubtargetInfo. 401 bool EnableLocalReassign; 402 403 /// Enable or not the consideration of the cost of local intervals created 404 /// by a split candidate when choosing the best split candidate. 405 bool EnableAdvancedRASplitCost; 406 407 /// Set of broken hints that may be reconciled later because of eviction. 408 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 409 410 /// The register cost values. This list will be recreated for each Machine 411 /// Function 412 ArrayRef<uint8_t> RegCosts; 413 414 public: 415 RAGreedy(); 416 417 /// Return the pass name. 418 StringRef getPassName() const override { return "Greedy Register Allocator"; } 419 420 /// RAGreedy analysis usage. 421 void getAnalysisUsage(AnalysisUsage &AU) const override; 422 void releaseMemory() override; 423 Spiller &spiller() override { return *SpillerInstance; } 424 void enqueue(LiveInterval *LI) override; 425 LiveInterval *dequeue() override; 426 MCRegister selectOrSplit(LiveInterval &, 427 SmallVectorImpl<Register> &) override; 428 void aboutToRemoveInterval(LiveInterval &) override; 429 430 /// Perform register allocation. 431 bool runOnMachineFunction(MachineFunction &mf) override; 432 433 MachineFunctionProperties getRequiredProperties() const override { 434 return MachineFunctionProperties().set( 435 MachineFunctionProperties::Property::NoPHIs); 436 } 437 438 MachineFunctionProperties getClearedProperties() const override { 439 return MachineFunctionProperties().set( 440 MachineFunctionProperties::Property::IsSSA); 441 } 442 443 static char ID; 444 445 private: 446 MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &, 447 SmallVirtRegSet &, unsigned = 0); 448 449 bool LRE_CanEraseVirtReg(Register) override; 450 void LRE_WillShrinkVirtReg(Register) override; 451 void LRE_DidCloneVirtReg(Register, Register) override; 452 void enqueue(PQueue &CurQueue, LiveInterval *LI); 453 LiveInterval *dequeue(PQueue &CurQueue); 454 455 BlockFrequency calcSpillCost(); 456 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 457 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 458 bool growRegion(GlobalSplitCandidate &Cand); 459 bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand, 460 unsigned BBNumber, 461 const AllocationOrder &Order); 462 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 463 GlobalSplitCandidate &Cand, unsigned BBNumber, 464 const AllocationOrder &Order); 465 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 466 const AllocationOrder &Order, 467 bool *CanCauseEvictionChain); 468 bool calcCompactRegion(GlobalSplitCandidate&); 469 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 470 void calcGapWeights(MCRegister, SmallVectorImpl<float> &); 471 Register canReassign(LiveInterval &VirtReg, Register PrevReg) const; 472 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const; 473 bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &, 474 const SmallVirtRegSet &) const; 475 bool canEvictInterferenceInRange(const LiveInterval &VirtReg, 476 MCRegister PhysReg, SlotIndex Start, 477 SlotIndex End, EvictionCost &MaxCost) const; 478 MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order, 479 const LiveInterval &VirtReg, 480 SlotIndex Start, SlotIndex End, 481 float *BestEvictWeight) const; 482 void evictInterference(LiveInterval &, MCRegister, 483 SmallVectorImpl<Register> &); 484 bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg, 485 SmallLISet &RecoloringCandidates, 486 const SmallVirtRegSet &FixedRegisters); 487 488 MCRegister tryAssign(LiveInterval&, AllocationOrder&, 489 SmallVectorImpl<Register>&, 490 const SmallVirtRegSet&); 491 MCRegister tryEvict(LiveInterval &, AllocationOrder &, 492 SmallVectorImpl<Register> &, uint8_t, 493 const SmallVirtRegSet &); 494 MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &, 495 SmallVectorImpl<Register> &); 496 /// Calculate cost of region splitting. 497 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 498 AllocationOrder &Order, 499 BlockFrequency &BestCost, 500 unsigned &NumCands, bool IgnoreCSR, 501 bool *CanCauseEvictionChain = nullptr); 502 /// Perform region splitting. 503 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 504 bool HasCompact, 505 SmallVectorImpl<Register> &NewVRegs); 506 /// Check other options before using a callee-saved register for the first 507 /// time. 508 MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg, 509 AllocationOrder &Order, MCRegister PhysReg, 510 uint8_t &CostPerUseLimit, 511 SmallVectorImpl<Register> &NewVRegs); 512 void initializeCSRCost(); 513 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 514 SmallVectorImpl<Register>&); 515 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 516 SmallVectorImpl<Register>&); 517 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 518 SmallVectorImpl<Register>&); 519 unsigned trySplit(LiveInterval&, AllocationOrder&, 520 SmallVectorImpl<Register>&, 521 const SmallVirtRegSet&); 522 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 523 SmallVectorImpl<Register> &, 524 SmallVirtRegSet &, unsigned); 525 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &, 526 SmallVirtRegSet &, unsigned); 527 void tryHintRecoloring(LiveInterval &); 528 void tryHintsRecoloring(); 529 530 /// Model the information carried by one end of a copy. 531 struct HintInfo { 532 /// The frequency of the copy. 533 BlockFrequency Freq; 534 /// The virtual register or physical register. 535 Register Reg; 536 /// Its currently assigned register. 537 /// In case of a physical register Reg == PhysReg. 538 MCRegister PhysReg; 539 540 HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg) 541 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 542 }; 543 using HintsInfo = SmallVector<HintInfo, 4>; 544 545 BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister); 546 void collectHintInfo(Register, HintsInfo &); 547 548 bool isUnusedCalleeSavedReg(MCRegister PhysReg) const; 549 550 /// Greedy RA statistic to remark. 551 struct RAGreedyStats { 552 unsigned Reloads = 0; 553 unsigned FoldedReloads = 0; 554 unsigned ZeroCostFoldedReloads = 0; 555 unsigned Spills = 0; 556 unsigned FoldedSpills = 0; 557 unsigned Copies = 0; 558 559 bool isEmpty() { 560 return !(Reloads || FoldedReloads || Spills || FoldedSpills || 561 ZeroCostFoldedReloads || Copies); 562 } 563 564 void add(RAGreedyStats other) { 565 Reloads += other.Reloads; 566 FoldedReloads += other.FoldedReloads; 567 ZeroCostFoldedReloads += other.ZeroCostFoldedReloads; 568 Spills += other.Spills; 569 FoldedSpills += other.FoldedSpills; 570 Copies += other.Copies; 571 } 572 573 void report(MachineOptimizationRemarkMissed &R); 574 }; 575 576 /// Compute statistic for a basic block. 577 RAGreedyStats computeStats(MachineBasicBlock &MBB); 578 579 /// Compute and report statistic through a remark. 580 RAGreedyStats reportStats(MachineLoop *L); 581 582 /// Report the statistic for each loop. 583 void reportStats(); 584 }; 585 586 } // end anonymous namespace 587 588 char RAGreedy::ID = 0; 589 char &llvm::RAGreedyID = RAGreedy::ID; 590 591 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 592 "Greedy Register Allocator", false, false) 593 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 594 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 595 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 596 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 597 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 598 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 599 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 600 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 601 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 602 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 603 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 604 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 605 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 606 INITIALIZE_PASS_END(RAGreedy, "greedy", 607 "Greedy Register Allocator", false, false) 608 609 #ifndef NDEBUG 610 const char *const RAGreedy::StageName[] = { 611 "RS_New", 612 "RS_Assign", 613 "RS_Split", 614 "RS_Split2", 615 "RS_Spill", 616 "RS_Memory", 617 "RS_Done" 618 }; 619 #endif 620 621 // Hysteresis to use when comparing floats. 622 // This helps stabilize decisions based on float comparisons. 623 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 624 625 FunctionPass* llvm::createGreedyRegisterAllocator() { 626 return new RAGreedy(); 627 } 628 629 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 630 } 631 632 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 633 AU.setPreservesCFG(); 634 AU.addRequired<MachineBlockFrequencyInfo>(); 635 AU.addPreserved<MachineBlockFrequencyInfo>(); 636 AU.addRequired<AAResultsWrapperPass>(); 637 AU.addPreserved<AAResultsWrapperPass>(); 638 AU.addRequired<LiveIntervals>(); 639 AU.addPreserved<LiveIntervals>(); 640 AU.addRequired<SlotIndexes>(); 641 AU.addPreserved<SlotIndexes>(); 642 AU.addRequired<LiveDebugVariables>(); 643 AU.addPreserved<LiveDebugVariables>(); 644 AU.addRequired<LiveStacks>(); 645 AU.addPreserved<LiveStacks>(); 646 AU.addRequired<MachineDominatorTree>(); 647 AU.addPreserved<MachineDominatorTree>(); 648 AU.addRequired<MachineLoopInfo>(); 649 AU.addPreserved<MachineLoopInfo>(); 650 AU.addRequired<VirtRegMap>(); 651 AU.addPreserved<VirtRegMap>(); 652 AU.addRequired<LiveRegMatrix>(); 653 AU.addPreserved<LiveRegMatrix>(); 654 AU.addRequired<EdgeBundles>(); 655 AU.addRequired<SpillPlacement>(); 656 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 657 MachineFunctionPass::getAnalysisUsage(AU); 658 } 659 660 //===----------------------------------------------------------------------===// 661 // LiveRangeEdit delegate methods 662 //===----------------------------------------------------------------------===// 663 664 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 665 LiveInterval &LI = LIS->getInterval(VirtReg); 666 if (VRM->hasPhys(VirtReg)) { 667 Matrix->unassign(LI); 668 aboutToRemoveInterval(LI); 669 return true; 670 } 671 // Unassigned virtreg is probably in the priority queue. 672 // RegAllocBase will erase it after dequeueing. 673 // Nonetheless, clear the live-range so that the debug 674 // dump will show the right state for that VirtReg. 675 LI.clear(); 676 return false; 677 } 678 679 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 680 if (!VRM->hasPhys(VirtReg)) 681 return; 682 683 // Register is assigned, put it back on the queue for reassignment. 684 LiveInterval &LI = LIS->getInterval(VirtReg); 685 Matrix->unassign(LI); 686 enqueue(&LI); 687 } 688 689 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 690 // Cloning a register we haven't even heard about yet? Just ignore it. 691 if (!ExtraRegInfo.inBounds(Old)) 692 return; 693 694 // LRE may clone a virtual register because dead code elimination causes it to 695 // be split into connected components. The new components are much smaller 696 // than the original, so they should get a new chance at being assigned. 697 // same stage as the parent. 698 ExtraRegInfo[Old].Stage = RS_Assign; 699 ExtraRegInfo.grow(New); 700 ExtraRegInfo[New] = ExtraRegInfo[Old]; 701 } 702 703 void RAGreedy::releaseMemory() { 704 SpillerInstance.reset(); 705 ExtraRegInfo.clear(); 706 GlobalCand.clear(); 707 } 708 709 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 710 711 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 712 // Prioritize live ranges by size, assigning larger ranges first. 713 // The queue holds (size, reg) pairs. 714 const unsigned Size = LI->getSize(); 715 const Register Reg = LI->reg(); 716 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 717 unsigned Prio; 718 719 ExtraRegInfo.grow(Reg); 720 if (ExtraRegInfo[Reg].Stage == RS_New) 721 ExtraRegInfo[Reg].Stage = RS_Assign; 722 723 if (ExtraRegInfo[Reg].Stage == RS_Split) { 724 // Unsplit ranges that couldn't be allocated immediately are deferred until 725 // everything else has been allocated. 726 Prio = Size; 727 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 728 // Memory operand should be considered last. 729 // Change the priority such that Memory operand are assigned in 730 // the reverse order that they came in. 731 // TODO: Make this a member variable and probably do something about hints. 732 static unsigned MemOp = 0; 733 Prio = MemOp++; 734 } else { 735 // Giant live ranges fall back to the global assignment heuristic, which 736 // prevents excessive spilling in pathological cases. 737 bool ReverseLocal = TRI->reverseLocalAssignment(); 738 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 739 bool ForceGlobal = !ReverseLocal && 740 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 741 742 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 743 LIS->intervalIsInOneMBB(*LI)) { 744 // Allocate original local ranges in linear instruction order. Since they 745 // are singly defined, this produces optimal coloring in the absence of 746 // global interference and other constraints. 747 if (!ReverseLocal) 748 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 749 else { 750 // Allocating bottom up may allow many short LRGs to be assigned first 751 // to one of the cheap registers. This could be much faster for very 752 // large blocks on targets with many physical registers. 753 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 754 } 755 Prio |= RC.AllocationPriority << 24; 756 } else { 757 // Allocate global and split ranges in long->short order. Long ranges that 758 // don't fit should be spilled (or split) ASAP so they don't create 759 // interference. Mark a bit to prioritize global above local ranges. 760 Prio = (1u << 29) + Size; 761 } 762 // Mark a higher bit to prioritize global and local above RS_Split. 763 Prio |= (1u << 31); 764 765 // Boost ranges that have a physical register hint. 766 if (VRM->hasKnownPreference(Reg)) 767 Prio |= (1u << 30); 768 } 769 // The virtual register number is a tie breaker for same-sized ranges. 770 // Give lower vreg numbers higher priority to assign them first. 771 CurQueue.push(std::make_pair(Prio, ~Reg)); 772 } 773 774 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 775 776 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 777 if (CurQueue.empty()) 778 return nullptr; 779 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 780 CurQueue.pop(); 781 return LI; 782 } 783 784 //===----------------------------------------------------------------------===// 785 // Direct Assignment 786 //===----------------------------------------------------------------------===// 787 788 /// tryAssign - Try to assign VirtReg to an available register. 789 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg, 790 AllocationOrder &Order, 791 SmallVectorImpl<Register> &NewVRegs, 792 const SmallVirtRegSet &FixedRegisters) { 793 MCRegister PhysReg; 794 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 795 assert(*I); 796 if (!Matrix->checkInterference(VirtReg, *I)) { 797 if (I.isHint()) 798 return *I; 799 else 800 PhysReg = *I; 801 } 802 } 803 if (!PhysReg.isValid()) 804 return PhysReg; 805 806 // PhysReg is available, but there may be a better choice. 807 808 // If we missed a simple hint, try to cheaply evict interference from the 809 // preferred register. 810 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 811 if (Order.isHint(Hint)) { 812 MCRegister PhysHint = Hint.asMCReg(); 813 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 814 EvictionCost MaxCost; 815 MaxCost.setBrokenHints(1); 816 if (canEvictInterference(VirtReg, PhysHint, true, MaxCost, 817 FixedRegisters)) { 818 evictInterference(VirtReg, PhysHint, NewVRegs); 819 return PhysHint; 820 } 821 // Record the missed hint, we may be able to recover 822 // at the end if the surrounding allocation changed. 823 SetOfBrokenHints.insert(&VirtReg); 824 } 825 826 // Try to evict interference from a cheaper alternative. 827 uint8_t Cost = RegCosts[PhysReg]; 828 829 // Most registers have 0 additional cost. 830 if (!Cost) 831 return PhysReg; 832 833 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 834 << Cost << '\n'); 835 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 836 return CheapReg ? CheapReg : PhysReg; 837 } 838 839 //===----------------------------------------------------------------------===// 840 // Interference eviction 841 //===----------------------------------------------------------------------===// 842 843 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const { 844 auto Order = 845 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 846 MCRegister PhysReg; 847 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 848 if ((*I).id() == PrevReg.id()) 849 continue; 850 851 MCRegUnitIterator Units(*I, TRI); 852 for (; Units.isValid(); ++Units) { 853 // Instantiate a "subquery", not to be confused with the Queries array. 854 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 855 if (subQ.checkInterference()) 856 break; 857 } 858 // If no units have interference, break out with the current PhysReg. 859 if (!Units.isValid()) 860 PhysReg = *I; 861 } 862 if (PhysReg) 863 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 864 << printReg(PrevReg, TRI) << " to " 865 << printReg(PhysReg, TRI) << '\n'); 866 return PhysReg; 867 } 868 869 /// shouldEvict - determine if A should evict the assigned live range B. The 870 /// eviction policy defined by this function together with the allocation order 871 /// defined by enqueue() decides which registers ultimately end up being split 872 /// and spilled. 873 /// 874 /// Cascade numbers are used to prevent infinite loops if this function is a 875 /// cyclic relation. 876 /// 877 /// @param A The live range to be assigned. 878 /// @param IsHint True when A is about to be assigned to its preferred 879 /// register. 880 /// @param B The live range to be evicted. 881 /// @param BreaksHint True when B is already assigned to its preferred register. 882 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 883 LiveInterval &B, bool BreaksHint) const { 884 bool CanSplit = getStage(B) < RS_Spill; 885 886 // Be fairly aggressive about following hints as long as the evictee can be 887 // split. 888 if (CanSplit && IsHint && !BreaksHint) 889 return true; 890 891 if (A.weight() > B.weight()) { 892 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n'); 893 return true; 894 } 895 return false; 896 } 897 898 /// canEvictInterference - Return true if all interferences between VirtReg and 899 /// PhysReg can be evicted. 900 /// 901 /// @param VirtReg Live range that is about to be assigned. 902 /// @param PhysReg Desired register for assignment. 903 /// @param IsHint True when PhysReg is VirtReg's preferred register. 904 /// @param MaxCost Only look for cheaper candidates and update with new cost 905 /// when returning true. 906 /// @returns True when interference can be evicted cheaper than MaxCost. 907 bool RAGreedy::canEvictInterference( 908 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 909 EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const { 910 // It is only possible to evict virtual register interference. 911 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 912 return false; 913 914 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 915 916 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 917 // involved in an eviction before. If a cascade number was assigned, deny 918 // evicting anything with the same or a newer cascade number. This prevents 919 // infinite eviction loops. 920 // 921 // This works out so a register without a cascade number is allowed to evict 922 // anything, and it can be evicted by anything. 923 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 924 if (!Cascade) 925 Cascade = NextCascade; 926 927 EvictionCost Cost; 928 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 929 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 930 // If there is 10 or more interferences, chances are one is heavier. 931 if (Q.collectInterferingVRegs(10) >= 10) 932 return false; 933 934 // Check if any interfering live range is heavier than MaxWeight. 935 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 936 assert(Register::isVirtualRegister(Intf->reg()) && 937 "Only expecting virtual register interference from query"); 938 939 // Do not allow eviction of a virtual register if we are in the middle 940 // of last-chance recoloring and this virtual register is one that we 941 // have scavenged a physical register for. 942 if (FixedRegisters.count(Intf->reg())) 943 return false; 944 945 // Never evict spill products. They cannot split or spill. 946 if (getStage(*Intf) == RS_Done) 947 return false; 948 // Once a live range becomes small enough, it is urgent that we find a 949 // register for it. This is indicated by an infinite spill weight. These 950 // urgent live ranges get to evict almost anything. 951 // 952 // Also allow urgent evictions of unspillable ranges from a strictly 953 // larger allocation order. 954 bool Urgent = 955 !VirtReg.isSpillable() && 956 (Intf->isSpillable() || 957 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 958 RegClassInfo.getNumAllocatableRegs( 959 MRI->getRegClass(Intf->reg()))); 960 // Only evict older cascades or live ranges without a cascade. 961 unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade; 962 if (Cascade <= IntfCascade) { 963 if (!Urgent) 964 return false; 965 // We permit breaking cascades for urgent evictions. It should be the 966 // last resort, though, so make it really expensive. 967 Cost.BrokenHints += 10; 968 } 969 // Would this break a satisfied hint? 970 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 971 // Update eviction cost. 972 Cost.BrokenHints += BreaksHint; 973 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 974 // Abort if this would be too expensive. 975 if (!(Cost < MaxCost)) 976 return false; 977 if (Urgent) 978 continue; 979 // Apply the eviction policy for non-urgent evictions. 980 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 981 return false; 982 // If !MaxCost.isMax(), then we're just looking for a cheap register. 983 // Evicting another local live range in this case could lead to suboptimal 984 // coloring. 985 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 986 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 987 return false; 988 } 989 } 990 } 991 MaxCost = Cost; 992 return true; 993 } 994 995 /// Return true if all interferences between VirtReg and PhysReg between 996 /// Start and End can be evicted. 997 /// 998 /// \param VirtReg Live range that is about to be assigned. 999 /// \param PhysReg Desired register for assignment. 1000 /// \param Start Start of range to look for interferences. 1001 /// \param End End of range to look for interferences. 1002 /// \param MaxCost Only look for cheaper candidates and update with new cost 1003 /// when returning true. 1004 /// \return True when interference can be evicted cheaper than MaxCost. 1005 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg, 1006 MCRegister PhysReg, SlotIndex Start, 1007 SlotIndex End, 1008 EvictionCost &MaxCost) const { 1009 EvictionCost Cost; 1010 1011 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1012 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1013 Q.collectInterferingVRegs(); 1014 1015 // Check if any interfering live range is heavier than MaxWeight. 1016 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 1017 // Check if interference overlast the segment in interest. 1018 if (!Intf->overlaps(Start, End)) 1019 continue; 1020 1021 // Cannot evict non virtual reg interference. 1022 if (!Register::isVirtualRegister(Intf->reg())) 1023 return false; 1024 // Never evict spill products. They cannot split or spill. 1025 if (getStage(*Intf) == RS_Done) 1026 return false; 1027 1028 // Would this break a satisfied hint? 1029 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 1030 // Update eviction cost. 1031 Cost.BrokenHints += BreaksHint; 1032 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 1033 // Abort if this would be too expensive. 1034 if (!(Cost < MaxCost)) 1035 return false; 1036 } 1037 } 1038 1039 if (Cost.MaxWeight == 0) 1040 return false; 1041 1042 MaxCost = Cost; 1043 return true; 1044 } 1045 1046 /// Return the physical register that will be best 1047 /// candidate for eviction by a local split interval that will be created 1048 /// between Start and End. 1049 /// 1050 /// \param Order The allocation order 1051 /// \param VirtReg Live range that is about to be assigned. 1052 /// \param Start Start of range to look for interferences 1053 /// \param End End of range to look for interferences 1054 /// \param BestEvictweight The eviction cost of that eviction 1055 /// \return The PhysReg which is the best candidate for eviction and the 1056 /// eviction cost in BestEvictweight 1057 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1058 const LiveInterval &VirtReg, 1059 SlotIndex Start, SlotIndex End, 1060 float *BestEvictweight) const { 1061 EvictionCost BestEvictCost; 1062 BestEvictCost.setMax(); 1063 BestEvictCost.MaxWeight = VirtReg.weight(); 1064 MCRegister BestEvicteePhys; 1065 1066 // Go over all physical registers and find the best candidate for eviction 1067 for (MCRegister PhysReg : Order.getOrder()) { 1068 1069 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1070 BestEvictCost)) 1071 continue; 1072 1073 // Best so far. 1074 BestEvicteePhys = PhysReg; 1075 } 1076 *BestEvictweight = BestEvictCost.MaxWeight; 1077 return BestEvicteePhys; 1078 } 1079 1080 /// evictInterference - Evict any interferring registers that prevent VirtReg 1081 /// from being assigned to Physreg. This assumes that canEvictInterference 1082 /// returned true. 1083 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg, 1084 SmallVectorImpl<Register> &NewVRegs) { 1085 // Make sure that VirtReg has a cascade number, and assign that cascade 1086 // number to every evicted register. These live ranges than then only be 1087 // evicted by a newer cascade, preventing infinite loops. 1088 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 1089 if (!Cascade) 1090 Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++; 1091 1092 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1093 << " interference: Cascade " << Cascade << '\n'); 1094 1095 // Collect all interfering virtregs first. 1096 SmallVector<LiveInterval*, 8> Intfs; 1097 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1098 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1099 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1100 // should be fast, we may need to recalculate if when different physregs 1101 // overlap the same register unit so we had different SubRanges queried 1102 // against it. 1103 Q.collectInterferingVRegs(); 1104 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1105 Intfs.append(IVR.begin(), IVR.end()); 1106 } 1107 1108 // Evict them second. This will invalidate the queries. 1109 for (LiveInterval *Intf : Intfs) { 1110 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1111 if (!VRM->hasPhys(Intf->reg())) 1112 continue; 1113 1114 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 1115 1116 Matrix->unassign(*Intf); 1117 assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade || 1118 VirtReg.isSpillable() < Intf->isSpillable()) && 1119 "Cannot decrease cascade number, illegal eviction"); 1120 ExtraRegInfo[Intf->reg()].Cascade = Cascade; 1121 ++NumEvicted; 1122 NewVRegs.push_back(Intf->reg()); 1123 } 1124 } 1125 1126 /// Returns true if the given \p PhysReg is a callee saved register and has not 1127 /// been used for allocation yet. 1128 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 1129 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1130 if (!CSR) 1131 return false; 1132 1133 return !Matrix->isPhysRegUsed(PhysReg); 1134 } 1135 1136 /// tryEvict - Try to evict all interferences for a physreg. 1137 /// @param VirtReg Currently unassigned virtual register. 1138 /// @param Order Physregs to try. 1139 /// @return Physreg to assign VirtReg, or 0. 1140 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order, 1141 SmallVectorImpl<Register> &NewVRegs, 1142 uint8_t CostPerUseLimit, 1143 const SmallVirtRegSet &FixedRegisters) { 1144 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1145 TimePassesIsEnabled); 1146 1147 // Keep track of the cheapest interference seen so far. 1148 EvictionCost BestCost; 1149 BestCost.setMax(); 1150 MCRegister BestPhys; 1151 unsigned OrderLimit = Order.getOrder().size(); 1152 1153 // When we are just looking for a reduced cost per use, don't break any 1154 // hints, and only evict smaller spill weights. 1155 if (CostPerUseLimit < uint8_t(~0u)) { 1156 BestCost.BrokenHints = 0; 1157 BestCost.MaxWeight = VirtReg.weight(); 1158 1159 // Check of any registers in RC are below CostPerUseLimit. 1160 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 1161 uint8_t MinCost = RegClassInfo.getMinCost(RC); 1162 if (MinCost >= CostPerUseLimit) { 1163 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1164 << MinCost << ", no cheaper registers to be found.\n"); 1165 return 0; 1166 } 1167 1168 // It is normal for register classes to have a long tail of registers with 1169 // the same cost. We don't need to look at them if they're too expensive. 1170 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 1171 OrderLimit = RegClassInfo.getLastCostChange(RC); 1172 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1173 << " regs.\n"); 1174 } 1175 } 1176 1177 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 1178 ++I) { 1179 MCRegister PhysReg = *I; 1180 assert(PhysReg); 1181 if (RegCosts[PhysReg] >= CostPerUseLimit) 1182 continue; 1183 // The first use of a callee-saved register in a function has cost 1. 1184 // Don't start using a CSR when the CostPerUseLimit is low. 1185 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1186 LLVM_DEBUG( 1187 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1188 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1189 << '\n'); 1190 continue; 1191 } 1192 1193 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost, 1194 FixedRegisters)) 1195 continue; 1196 1197 // Best so far. 1198 BestPhys = PhysReg; 1199 1200 // Stop if the hint can be used. 1201 if (I.isHint()) 1202 break; 1203 } 1204 1205 if (BestPhys.isValid()) 1206 evictInterference(VirtReg, BestPhys, NewVRegs); 1207 return BestPhys; 1208 } 1209 1210 //===----------------------------------------------------------------------===// 1211 // Region Splitting 1212 //===----------------------------------------------------------------------===// 1213 1214 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1215 /// interference pattern in Physreg and its aliases. Add the constraints to 1216 /// SpillPlacement and return the static cost of this split in Cost, assuming 1217 /// that all preferences in SplitConstraints are met. 1218 /// Return false if there are no bundles with positive bias. 1219 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1220 BlockFrequency &Cost) { 1221 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1222 1223 // Reset interference dependent info. 1224 SplitConstraints.resize(UseBlocks.size()); 1225 BlockFrequency StaticCost = 0; 1226 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1227 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1228 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1229 1230 BC.Number = BI.MBB->getNumber(); 1231 Intf.moveToBlock(BC.Number); 1232 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1233 BC.Exit = (BI.LiveOut && 1234 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1235 ? SpillPlacement::PrefReg 1236 : SpillPlacement::DontCare; 1237 BC.ChangesValue = BI.FirstDef.isValid(); 1238 1239 if (!Intf.hasInterference()) 1240 continue; 1241 1242 // Number of spill code instructions to insert. 1243 unsigned Ins = 0; 1244 1245 // Interference for the live-in value. 1246 if (BI.LiveIn) { 1247 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1248 BC.Entry = SpillPlacement::MustSpill; 1249 ++Ins; 1250 } else if (Intf.first() < BI.FirstInstr) { 1251 BC.Entry = SpillPlacement::PrefSpill; 1252 ++Ins; 1253 } else if (Intf.first() < BI.LastInstr) { 1254 ++Ins; 1255 } 1256 1257 // Abort if the spill cannot be inserted at the MBB' start 1258 if (((BC.Entry == SpillPlacement::MustSpill) || 1259 (BC.Entry == SpillPlacement::PrefSpill)) && 1260 SlotIndex::isEarlierInstr(BI.FirstInstr, 1261 SA->getFirstSplitPoint(BC.Number))) 1262 return false; 1263 } 1264 1265 // Interference for the live-out value. 1266 if (BI.LiveOut) { 1267 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1268 BC.Exit = SpillPlacement::MustSpill; 1269 ++Ins; 1270 } else if (Intf.last() > BI.LastInstr) { 1271 BC.Exit = SpillPlacement::PrefSpill; 1272 ++Ins; 1273 } else if (Intf.last() > BI.FirstInstr) { 1274 ++Ins; 1275 } 1276 } 1277 1278 // Accumulate the total frequency of inserted spill code. 1279 while (Ins--) 1280 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1281 } 1282 Cost = StaticCost; 1283 1284 // Add constraints for use-blocks. Note that these are the only constraints 1285 // that may add a positive bias, it is downhill from here. 1286 SpillPlacer->addConstraints(SplitConstraints); 1287 return SpillPlacer->scanActiveBundles(); 1288 } 1289 1290 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1291 /// live-through blocks in Blocks. 1292 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1293 ArrayRef<unsigned> Blocks) { 1294 const unsigned GroupSize = 8; 1295 SpillPlacement::BlockConstraint BCS[GroupSize]; 1296 unsigned TBS[GroupSize]; 1297 unsigned B = 0, T = 0; 1298 1299 for (unsigned Number : Blocks) { 1300 Intf.moveToBlock(Number); 1301 1302 if (!Intf.hasInterference()) { 1303 assert(T < GroupSize && "Array overflow"); 1304 TBS[T] = Number; 1305 if (++T == GroupSize) { 1306 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1307 T = 0; 1308 } 1309 continue; 1310 } 1311 1312 assert(B < GroupSize && "Array overflow"); 1313 BCS[B].Number = Number; 1314 1315 // Abort if the spill cannot be inserted at the MBB' start 1316 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1317 if (!MBB->empty() && 1318 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()), 1319 SA->getFirstSplitPoint(Number))) 1320 return false; 1321 // Interference for the live-in value. 1322 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1323 BCS[B].Entry = SpillPlacement::MustSpill; 1324 else 1325 BCS[B].Entry = SpillPlacement::PrefSpill; 1326 1327 // Interference for the live-out value. 1328 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1329 BCS[B].Exit = SpillPlacement::MustSpill; 1330 else 1331 BCS[B].Exit = SpillPlacement::PrefSpill; 1332 1333 if (++B == GroupSize) { 1334 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1335 B = 0; 1336 } 1337 } 1338 1339 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1340 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1341 return true; 1342 } 1343 1344 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1345 // Keep track of through blocks that have not been added to SpillPlacer. 1346 BitVector Todo = SA->getThroughBlocks(); 1347 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1348 unsigned AddedTo = 0; 1349 #ifndef NDEBUG 1350 unsigned Visited = 0; 1351 #endif 1352 1353 while (true) { 1354 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1355 // Find new through blocks in the periphery of PrefRegBundles. 1356 for (unsigned Bundle : NewBundles) { 1357 // Look at all blocks connected to Bundle in the full graph. 1358 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1359 for (unsigned Block : Blocks) { 1360 if (!Todo.test(Block)) 1361 continue; 1362 Todo.reset(Block); 1363 // This is a new through block. Add it to SpillPlacer later. 1364 ActiveBlocks.push_back(Block); 1365 #ifndef NDEBUG 1366 ++Visited; 1367 #endif 1368 } 1369 } 1370 // Any new blocks to add? 1371 if (ActiveBlocks.size() == AddedTo) 1372 break; 1373 1374 // Compute through constraints from the interference, or assume that all 1375 // through blocks prefer spilling when forming compact regions. 1376 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1377 if (Cand.PhysReg) { 1378 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1379 return false; 1380 } else 1381 // Provide a strong negative bias on through blocks to prevent unwanted 1382 // liveness on loop backedges. 1383 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1384 AddedTo = ActiveBlocks.size(); 1385 1386 // Perhaps iterating can enable more bundles? 1387 SpillPlacer->iterate(); 1388 } 1389 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1390 return true; 1391 } 1392 1393 /// calcCompactRegion - Compute the set of edge bundles that should be live 1394 /// when splitting the current live range into compact regions. Compact 1395 /// regions can be computed without looking at interference. They are the 1396 /// regions formed by removing all the live-through blocks from the live range. 1397 /// 1398 /// Returns false if the current live range is already compact, or if the 1399 /// compact regions would form single block regions anyway. 1400 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1401 // Without any through blocks, the live range is already compact. 1402 if (!SA->getNumThroughBlocks()) 1403 return false; 1404 1405 // Compact regions don't correspond to any physreg. 1406 Cand.reset(IntfCache, MCRegister::NoRegister); 1407 1408 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1409 1410 // Use the spill placer to determine the live bundles. GrowRegion pretends 1411 // that all the through blocks have interference when PhysReg is unset. 1412 SpillPlacer->prepare(Cand.LiveBundles); 1413 1414 // The static split cost will be zero since Cand.Intf reports no interference. 1415 BlockFrequency Cost; 1416 if (!addSplitConstraints(Cand.Intf, Cost)) { 1417 LLVM_DEBUG(dbgs() << ", none.\n"); 1418 return false; 1419 } 1420 1421 if (!growRegion(Cand)) { 1422 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1423 return false; 1424 } 1425 1426 SpillPlacer->finish(); 1427 1428 if (!Cand.LiveBundles.any()) { 1429 LLVM_DEBUG(dbgs() << ", none.\n"); 1430 return false; 1431 } 1432 1433 LLVM_DEBUG({ 1434 for (int I : Cand.LiveBundles.set_bits()) 1435 dbgs() << " EB#" << I; 1436 dbgs() << ".\n"; 1437 }); 1438 return true; 1439 } 1440 1441 /// calcSpillCost - Compute how expensive it would be to split the live range in 1442 /// SA around all use blocks instead of forming bundle regions. 1443 BlockFrequency RAGreedy::calcSpillCost() { 1444 BlockFrequency Cost = 0; 1445 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1446 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1447 unsigned Number = BI.MBB->getNumber(); 1448 // We normally only need one spill instruction - a load or a store. 1449 Cost += SpillPlacer->getBlockFrequency(Number); 1450 1451 // Unless the value is redefined in the block. 1452 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1453 Cost += SpillPlacer->getBlockFrequency(Number); 1454 } 1455 return Cost; 1456 } 1457 1458 /// Check if splitting Evictee will create a local split interval in 1459 /// basic block number BBNumber that may cause a bad eviction chain. This is 1460 /// intended to prevent bad eviction sequences like: 1461 /// movl %ebp, 8(%esp) # 4-byte Spill 1462 /// movl %ecx, %ebp 1463 /// movl %ebx, %ecx 1464 /// movl %edi, %ebx 1465 /// movl %edx, %edi 1466 /// cltd 1467 /// idivl %esi 1468 /// movl %edi, %edx 1469 /// movl %ebx, %edi 1470 /// movl %ecx, %ebx 1471 /// movl %ebp, %ecx 1472 /// movl 16(%esp), %ebp # 4 - byte Reload 1473 /// 1474 /// Such sequences are created in 2 scenarios: 1475 /// 1476 /// Scenario #1: 1477 /// %0 is evicted from physreg0 by %1. 1478 /// Evictee %0 is intended for region splitting with split candidate 1479 /// physreg0 (the reg %0 was evicted from). 1480 /// Region splitting creates a local interval because of interference with the 1481 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1482 /// and "by stack" intervals and local interval created when interference 1483 /// occurs). 1484 /// One of the split intervals ends up evicting %2 from physreg1. 1485 /// Evictee %2 is intended for region splitting with split candidate 1486 /// physreg1. 1487 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1488 /// 1489 /// Scenario #2 1490 /// %0 is evicted from physreg0 by %1. 1491 /// %2 is evicted from physreg2 by %3 etc. 1492 /// Evictee %0 is intended for region splitting with split candidate 1493 /// physreg1. 1494 /// Region splitting creates a local interval because of interference with the 1495 /// evictor %1. 1496 /// One of the split intervals ends up evicting back original evictor %1 1497 /// from physreg0 (the reg %0 was evicted from). 1498 /// Another evictee %2 is intended for region splitting with split candidate 1499 /// physreg1. 1500 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1501 /// 1502 /// \param Evictee The register considered to be split. 1503 /// \param Cand The split candidate that determines the physical register 1504 /// we are splitting for and the interferences. 1505 /// \param BBNumber The number of a BB for which the region split process will 1506 /// create a local split interval. 1507 /// \param Order The physical registers that may get evicted by a split 1508 /// artifact of Evictee. 1509 /// \return True if splitting Evictee may cause a bad eviction chain, false 1510 /// otherwise. 1511 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 1512 GlobalSplitCandidate &Cand, 1513 unsigned BBNumber, 1514 const AllocationOrder &Order) { 1515 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1516 unsigned Evictor = VregEvictorInfo.first; 1517 MCRegister PhysReg = VregEvictorInfo.second; 1518 1519 // No actual evictor. 1520 if (!Evictor || !PhysReg) 1521 return false; 1522 1523 float MaxWeight = 0; 1524 MCRegister FutureEvictedPhysReg = 1525 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1526 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1527 1528 // The bad eviction chain occurs when either the split candidate is the 1529 // evicting reg or one of the split artifact will evict the evicting reg. 1530 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1531 return false; 1532 1533 Cand.Intf.moveToBlock(BBNumber); 1534 1535 // Check to see if the Evictor contains interference (with Evictee) in the 1536 // given BB. If so, this interference caused the eviction of Evictee from 1537 // PhysReg. This suggest that we will create a local interval during the 1538 // region split to avoid this interference This local interval may cause a bad 1539 // eviction chain. 1540 if (!LIS->hasInterval(Evictor)) 1541 return false; 1542 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1543 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1544 return false; 1545 1546 // Now, check to see if the local interval we will create is going to be 1547 // expensive enough to evict somebody If so, this may cause a bad eviction 1548 // chain. 1549 float splitArtifactWeight = 1550 VRAI->futureWeight(LIS->getInterval(Evictee), 1551 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1552 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1553 return false; 1554 1555 return true; 1556 } 1557 1558 /// Check if splitting VirtRegToSplit will create a local split interval 1559 /// in basic block number BBNumber that may cause a spill. 1560 /// 1561 /// \param VirtRegToSplit The register considered to be split. 1562 /// \param Cand The split candidate that determines the physical 1563 /// register we are splitting for and the interferences. 1564 /// \param BBNumber The number of a BB for which the region split process 1565 /// will create a local split interval. 1566 /// \param Order The physical registers that may get evicted by a 1567 /// split artifact of VirtRegToSplit. 1568 /// \return True if splitting VirtRegToSplit may cause a spill, false 1569 /// otherwise. 1570 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1571 GlobalSplitCandidate &Cand, 1572 unsigned BBNumber, 1573 const AllocationOrder &Order) { 1574 Cand.Intf.moveToBlock(BBNumber); 1575 1576 // Check if the local interval will find a non interfereing assignment. 1577 for (auto PhysReg : Order.getOrder()) { 1578 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1579 Cand.Intf.last(), PhysReg)) 1580 return false; 1581 } 1582 1583 // The local interval is not able to find non interferencing assignment 1584 // and not able to evict a less worthy interval, therfore, it can cause a 1585 // spill. 1586 return true; 1587 } 1588 1589 /// calcGlobalSplitCost - Return the global split cost of following the split 1590 /// pattern in LiveBundles. This cost should be added to the local cost of the 1591 /// interference pattern in SplitConstraints. 1592 /// 1593 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1594 const AllocationOrder &Order, 1595 bool *CanCauseEvictionChain) { 1596 BlockFrequency GlobalCost = 0; 1597 const BitVector &LiveBundles = Cand.LiveBundles; 1598 Register VirtRegToSplit = SA->getParent().reg(); 1599 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1600 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1601 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1602 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1603 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1604 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1605 unsigned Ins = 0; 1606 1607 Cand.Intf.moveToBlock(BC.Number); 1608 // Check wheather a local interval is going to be created during the region 1609 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1610 // is enabled. 1611 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1612 BI.LiveOut && RegIn && RegOut) { 1613 1614 if (CanCauseEvictionChain && 1615 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1616 // This interference causes our eviction from this assignment, we might 1617 // evict somebody else and eventually someone will spill, add that cost. 1618 // See splitCanCauseEvictionChain for detailed description of scenarios. 1619 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1620 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1621 1622 *CanCauseEvictionChain = true; 1623 1624 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1625 Order)) { 1626 // This interference causes local interval to spill, add that cost. 1627 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1628 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1629 } 1630 } 1631 1632 if (BI.LiveIn) 1633 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1634 if (BI.LiveOut) 1635 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1636 while (Ins--) 1637 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1638 } 1639 1640 for (unsigned Number : Cand.ActiveBlocks) { 1641 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1642 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1643 if (!RegIn && !RegOut) 1644 continue; 1645 if (RegIn && RegOut) { 1646 // We need double spill code if this block has interference. 1647 Cand.Intf.moveToBlock(Number); 1648 if (Cand.Intf.hasInterference()) { 1649 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1650 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1651 1652 // Check wheather a local interval is going to be created during the 1653 // region split. 1654 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1655 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1656 // This interference cause our eviction from this assignment, we might 1657 // evict somebody else, add that cost. 1658 // See splitCanCauseEvictionChain for detailed description of 1659 // scenarios. 1660 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1661 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1662 1663 *CanCauseEvictionChain = true; 1664 } 1665 } 1666 continue; 1667 } 1668 // live-in / stack-out or stack-in live-out. 1669 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1670 } 1671 return GlobalCost; 1672 } 1673 1674 /// splitAroundRegion - Split the current live range around the regions 1675 /// determined by BundleCand and GlobalCand. 1676 /// 1677 /// Before calling this function, GlobalCand and BundleCand must be initialized 1678 /// so each bundle is assigned to a valid candidate, or NoCand for the 1679 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1680 /// objects must be initialized for the current live range, and intervals 1681 /// created for the used candidates. 1682 /// 1683 /// @param LREdit The LiveRangeEdit object handling the current split. 1684 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1685 /// must appear in this list. 1686 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1687 ArrayRef<unsigned> UsedCands) { 1688 // These are the intervals created for new global ranges. We may create more 1689 // intervals for local ranges. 1690 const unsigned NumGlobalIntvs = LREdit.size(); 1691 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1692 << " globals.\n"); 1693 assert(NumGlobalIntvs && "No global intervals configured"); 1694 1695 // Isolate even single instructions when dealing with a proper sub-class. 1696 // That guarantees register class inflation for the stack interval because it 1697 // is all copies. 1698 Register Reg = SA->getParent().reg(); 1699 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1700 1701 // First handle all the blocks with uses. 1702 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1703 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1704 unsigned Number = BI.MBB->getNumber(); 1705 unsigned IntvIn = 0, IntvOut = 0; 1706 SlotIndex IntfIn, IntfOut; 1707 if (BI.LiveIn) { 1708 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1709 if (CandIn != NoCand) { 1710 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1711 IntvIn = Cand.IntvIdx; 1712 Cand.Intf.moveToBlock(Number); 1713 IntfIn = Cand.Intf.first(); 1714 } 1715 } 1716 if (BI.LiveOut) { 1717 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1718 if (CandOut != NoCand) { 1719 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1720 IntvOut = Cand.IntvIdx; 1721 Cand.Intf.moveToBlock(Number); 1722 IntfOut = Cand.Intf.last(); 1723 } 1724 } 1725 1726 // Create separate intervals for isolated blocks with multiple uses. 1727 if (!IntvIn && !IntvOut) { 1728 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1729 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1730 SE->splitSingleBlock(BI); 1731 continue; 1732 } 1733 1734 if (IntvIn && IntvOut) 1735 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1736 else if (IntvIn) 1737 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1738 else 1739 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1740 } 1741 1742 // Handle live-through blocks. The relevant live-through blocks are stored in 1743 // the ActiveBlocks list with each candidate. We need to filter out 1744 // duplicates. 1745 BitVector Todo = SA->getThroughBlocks(); 1746 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1747 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1748 for (unsigned Number : Blocks) { 1749 if (!Todo.test(Number)) 1750 continue; 1751 Todo.reset(Number); 1752 1753 unsigned IntvIn = 0, IntvOut = 0; 1754 SlotIndex IntfIn, IntfOut; 1755 1756 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1757 if (CandIn != NoCand) { 1758 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1759 IntvIn = Cand.IntvIdx; 1760 Cand.Intf.moveToBlock(Number); 1761 IntfIn = Cand.Intf.first(); 1762 } 1763 1764 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1765 if (CandOut != NoCand) { 1766 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1767 IntvOut = Cand.IntvIdx; 1768 Cand.Intf.moveToBlock(Number); 1769 IntfOut = Cand.Intf.last(); 1770 } 1771 if (!IntvIn && !IntvOut) 1772 continue; 1773 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1774 } 1775 } 1776 1777 ++NumGlobalSplits; 1778 1779 SmallVector<unsigned, 8> IntvMap; 1780 SE->finish(&IntvMap); 1781 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1782 1783 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1784 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1785 1786 // Sort out the new intervals created by splitting. We get four kinds: 1787 // - Remainder intervals should not be split again. 1788 // - Candidate intervals can be assigned to Cand.PhysReg. 1789 // - Block-local splits are candidates for local splitting. 1790 // - DCE leftovers should go back on the queue. 1791 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1792 LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1793 1794 // Ignore old intervals from DCE. 1795 if (getStage(Reg) != RS_New) 1796 continue; 1797 1798 // Remainder interval. Don't try splitting again, spill if it doesn't 1799 // allocate. 1800 if (IntvMap[I] == 0) { 1801 setStage(Reg, RS_Spill); 1802 continue; 1803 } 1804 1805 // Global intervals. Allow repeated splitting as long as the number of live 1806 // blocks is strictly decreasing. 1807 if (IntvMap[I] < NumGlobalIntvs) { 1808 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1809 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1810 << " blocks as original.\n"); 1811 // Don't allow repeated splitting as a safe guard against looping. 1812 setStage(Reg, RS_Split2); 1813 } 1814 continue; 1815 } 1816 1817 // Other intervals are treated as new. This includes local intervals created 1818 // for blocks with multiple uses, and anything created by DCE. 1819 } 1820 1821 if (VerifyEnabled) 1822 MF->verify(this, "After splitting live range around region"); 1823 } 1824 1825 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg, 1826 AllocationOrder &Order, 1827 SmallVectorImpl<Register> &NewVRegs) { 1828 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1829 return MCRegister::NoRegister; 1830 unsigned NumCands = 0; 1831 BlockFrequency SpillCost = calcSpillCost(); 1832 BlockFrequency BestCost; 1833 1834 // Check if we can split this live range around a compact region. 1835 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1836 if (HasCompact) { 1837 // Yes, keep GlobalCand[0] as the compact region candidate. 1838 NumCands = 1; 1839 BestCost = BlockFrequency::getMaxFrequency(); 1840 } else { 1841 // No benefit from the compact region, our fallback will be per-block 1842 // splitting. Make sure we find a solution that is cheaper than spilling. 1843 BestCost = SpillCost; 1844 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1845 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1846 } 1847 1848 bool CanCauseEvictionChain = false; 1849 unsigned BestCand = 1850 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1851 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1852 1853 // Split candidates with compact regions can cause a bad eviction sequence. 1854 // See splitCanCauseEvictionChain for detailed description of scenarios. 1855 // To avoid it, we need to comapre the cost with the spill cost and not the 1856 // current max frequency. 1857 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1858 CanCauseEvictionChain) { 1859 return MCRegister::NoRegister; 1860 } 1861 1862 // No solutions found, fall back to single block splitting. 1863 if (!HasCompact && BestCand == NoCand) 1864 return MCRegister::NoRegister; 1865 1866 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1867 } 1868 1869 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1870 AllocationOrder &Order, 1871 BlockFrequency &BestCost, 1872 unsigned &NumCands, bool IgnoreCSR, 1873 bool *CanCauseEvictionChain) { 1874 unsigned BestCand = NoCand; 1875 for (MCPhysReg PhysReg : Order) { 1876 assert(PhysReg); 1877 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1878 continue; 1879 1880 // Discard bad candidates before we run out of interference cache cursors. 1881 // This will only affect register classes with a lot of registers (>32). 1882 if (NumCands == IntfCache.getMaxCursors()) { 1883 unsigned WorstCount = ~0u; 1884 unsigned Worst = 0; 1885 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1886 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1887 continue; 1888 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1889 if (Count < WorstCount) { 1890 Worst = CandIndex; 1891 WorstCount = Count; 1892 } 1893 } 1894 --NumCands; 1895 GlobalCand[Worst] = GlobalCand[NumCands]; 1896 if (BestCand == NumCands) 1897 BestCand = Worst; 1898 } 1899 1900 if (GlobalCand.size() <= NumCands) 1901 GlobalCand.resize(NumCands+1); 1902 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1903 Cand.reset(IntfCache, PhysReg); 1904 1905 SpillPlacer->prepare(Cand.LiveBundles); 1906 BlockFrequency Cost; 1907 if (!addSplitConstraints(Cand.Intf, Cost)) { 1908 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1909 continue; 1910 } 1911 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1912 MBFI->printBlockFreq(dbgs(), Cost)); 1913 if (Cost >= BestCost) { 1914 LLVM_DEBUG({ 1915 if (BestCand == NoCand) 1916 dbgs() << " worse than no bundles\n"; 1917 else 1918 dbgs() << " worse than " 1919 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1920 }); 1921 continue; 1922 } 1923 if (!growRegion(Cand)) { 1924 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1925 continue; 1926 } 1927 1928 SpillPlacer->finish(); 1929 1930 // No live bundles, defer to splitSingleBlocks(). 1931 if (!Cand.LiveBundles.any()) { 1932 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1933 continue; 1934 } 1935 1936 bool HasEvictionChain = false; 1937 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1938 LLVM_DEBUG({ 1939 dbgs() << ", total = "; 1940 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1941 for (int I : Cand.LiveBundles.set_bits()) 1942 dbgs() << " EB#" << I; 1943 dbgs() << ".\n"; 1944 }); 1945 if (Cost < BestCost) { 1946 BestCand = NumCands; 1947 BestCost = Cost; 1948 // See splitCanCauseEvictionChain for detailed description of bad 1949 // eviction chain scenarios. 1950 if (CanCauseEvictionChain) 1951 *CanCauseEvictionChain = HasEvictionChain; 1952 } 1953 ++NumCands; 1954 } 1955 1956 if (CanCauseEvictionChain && BestCand != NoCand) { 1957 // See splitCanCauseEvictionChain for detailed description of bad 1958 // eviction chain scenarios. 1959 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1960 << printReg(VirtReg.reg(), TRI) << " may "); 1961 if (!(*CanCauseEvictionChain)) 1962 LLVM_DEBUG(dbgs() << "not "); 1963 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1964 } 1965 1966 return BestCand; 1967 } 1968 1969 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1970 bool HasCompact, 1971 SmallVectorImpl<Register> &NewVRegs) { 1972 SmallVector<unsigned, 8> UsedCands; 1973 // Prepare split editor. 1974 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1975 SE->reset(LREdit, SplitSpillMode); 1976 1977 // Assign all edge bundles to the preferred candidate, or NoCand. 1978 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1979 1980 // Assign bundles for the best candidate region. 1981 if (BestCand != NoCand) { 1982 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1983 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1984 UsedCands.push_back(BestCand); 1985 Cand.IntvIdx = SE->openIntv(); 1986 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1987 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1988 (void)B; 1989 } 1990 } 1991 1992 // Assign bundles for the compact region. 1993 if (HasCompact) { 1994 GlobalSplitCandidate &Cand = GlobalCand.front(); 1995 assert(!Cand.PhysReg && "Compact region has no physreg"); 1996 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1997 UsedCands.push_back(0); 1998 Cand.IntvIdx = SE->openIntv(); 1999 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 2000 << " bundles, intv " << Cand.IntvIdx << ".\n"); 2001 (void)B; 2002 } 2003 } 2004 2005 splitAroundRegion(LREdit, UsedCands); 2006 return 0; 2007 } 2008 2009 //===----------------------------------------------------------------------===// 2010 // Per-Block Splitting 2011 //===----------------------------------------------------------------------===// 2012 2013 /// tryBlockSplit - Split a global live range around every block with uses. This 2014 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 2015 /// they don't allocate. 2016 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2017 SmallVectorImpl<Register> &NewVRegs) { 2018 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 2019 Register Reg = VirtReg.reg(); 2020 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 2021 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2022 SE->reset(LREdit, SplitSpillMode); 2023 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 2024 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 2025 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 2026 SE->splitSingleBlock(BI); 2027 } 2028 // No blocks were split. 2029 if (LREdit.empty()) 2030 return 0; 2031 2032 // We did split for some blocks. 2033 SmallVector<unsigned, 8> IntvMap; 2034 SE->finish(&IntvMap); 2035 2036 // Tell LiveDebugVariables about the new ranges. 2037 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2038 2039 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2040 2041 // Sort out the new intervals created by splitting. The remainder interval 2042 // goes straight to spilling, the new local ranges get to stay RS_New. 2043 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 2044 LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 2045 if (getStage(LI) == RS_New && IntvMap[I] == 0) 2046 setStage(LI, RS_Spill); 2047 } 2048 2049 if (VerifyEnabled) 2050 MF->verify(this, "After splitting live range around basic blocks"); 2051 return 0; 2052 } 2053 2054 //===----------------------------------------------------------------------===// 2055 // Per-Instruction Splitting 2056 //===----------------------------------------------------------------------===// 2057 2058 /// Get the number of allocatable registers that match the constraints of \p Reg 2059 /// on \p MI and that are also in \p SuperRC. 2060 static unsigned getNumAllocatableRegsForConstraints( 2061 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 2062 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2063 const RegisterClassInfo &RCI) { 2064 assert(SuperRC && "Invalid register class"); 2065 2066 const TargetRegisterClass *ConstrainedRC = 2067 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2068 /* ExploreBundle */ true); 2069 if (!ConstrainedRC) 2070 return 0; 2071 return RCI.getNumAllocatableRegs(ConstrainedRC); 2072 } 2073 2074 /// tryInstructionSplit - Split a live range around individual instructions. 2075 /// This is normally not worthwhile since the spiller is doing essentially the 2076 /// same thing. However, when the live range is in a constrained register 2077 /// class, it may help to insert copies such that parts of the live range can 2078 /// be moved to a larger register class. 2079 /// 2080 /// This is similar to spilling to a larger register class. 2081 unsigned 2082 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2083 SmallVectorImpl<Register> &NewVRegs) { 2084 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2085 // There is no point to this if there are no larger sub-classes. 2086 if (!RegClassInfo.isProperSubClass(CurRC)) 2087 return 0; 2088 2089 // Always enable split spill mode, since we're effectively spilling to a 2090 // register. 2091 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2092 SE->reset(LREdit, SplitEditor::SM_Size); 2093 2094 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2095 if (Uses.size() <= 1) 2096 return 0; 2097 2098 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2099 << " individual instrs.\n"); 2100 2101 const TargetRegisterClass *SuperRC = 2102 TRI->getLargestLegalSuperClass(CurRC, *MF); 2103 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2104 // Split around every non-copy instruction if this split will relax 2105 // the constraints on the virtual register. 2106 // Otherwise, splitting just inserts uncoalescable copies that do not help 2107 // the allocation. 2108 for (const auto &Use : Uses) { 2109 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 2110 if (MI->isFullCopy() || 2111 SuperRCNumAllocatableRegs == 2112 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 2113 TII, TRI, RCI)) { 2114 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 2115 continue; 2116 } 2117 SE->openIntv(); 2118 SlotIndex SegStart = SE->enterIntvBefore(Use); 2119 SlotIndex SegStop = SE->leaveIntvAfter(Use); 2120 SE->useIntv(SegStart, SegStop); 2121 } 2122 2123 if (LREdit.empty()) { 2124 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2125 return 0; 2126 } 2127 2128 SmallVector<unsigned, 8> IntvMap; 2129 SE->finish(&IntvMap); 2130 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2131 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2132 2133 // Assign all new registers to RS_Spill. This was the last chance. 2134 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2135 return 0; 2136 } 2137 2138 //===----------------------------------------------------------------------===// 2139 // Local Splitting 2140 //===----------------------------------------------------------------------===// 2141 2142 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2143 /// in order to use PhysReg between two entries in SA->UseSlots. 2144 /// 2145 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 2146 /// 2147 void RAGreedy::calcGapWeights(MCRegister PhysReg, 2148 SmallVectorImpl<float> &GapWeight) { 2149 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2150 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2151 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2152 const unsigned NumGaps = Uses.size()-1; 2153 2154 // Start and end points for the interference check. 2155 SlotIndex StartIdx = 2156 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2157 SlotIndex StopIdx = 2158 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2159 2160 GapWeight.assign(NumGaps, 0.0f); 2161 2162 // Add interference from each overlapping register. 2163 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2164 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2165 .checkInterference()) 2166 continue; 2167 2168 // We know that VirtReg is a continuous interval from FirstInstr to 2169 // LastInstr, so we don't need InterferenceQuery. 2170 // 2171 // Interference that overlaps an instruction is counted in both gaps 2172 // surrounding the instruction. The exception is interference before 2173 // StartIdx and after StopIdx. 2174 // 2175 LiveIntervalUnion::SegmentIter IntI = 2176 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2177 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2178 // Skip the gaps before IntI. 2179 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2180 if (++Gap == NumGaps) 2181 break; 2182 if (Gap == NumGaps) 2183 break; 2184 2185 // Update the gaps covered by IntI. 2186 const float weight = IntI.value()->weight(); 2187 for (; Gap != NumGaps; ++Gap) { 2188 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2189 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2190 break; 2191 } 2192 if (Gap == NumGaps) 2193 break; 2194 } 2195 } 2196 2197 // Add fixed interference. 2198 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2199 const LiveRange &LR = LIS->getRegUnit(*Units); 2200 LiveRange::const_iterator I = LR.find(StartIdx); 2201 LiveRange::const_iterator E = LR.end(); 2202 2203 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2204 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2205 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2206 if (++Gap == NumGaps) 2207 break; 2208 if (Gap == NumGaps) 2209 break; 2210 2211 for (; Gap != NumGaps; ++Gap) { 2212 GapWeight[Gap] = huge_valf; 2213 if (Uses[Gap+1].getBaseIndex() >= I->end) 2214 break; 2215 } 2216 if (Gap == NumGaps) 2217 break; 2218 } 2219 } 2220 } 2221 2222 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2223 /// basic block. 2224 /// 2225 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2226 SmallVectorImpl<Register> &NewVRegs) { 2227 // TODO: the function currently only handles a single UseBlock; it should be 2228 // possible to generalize. 2229 if (SA->getUseBlocks().size() != 1) 2230 return 0; 2231 2232 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2233 2234 // Note that it is possible to have an interval that is live-in or live-out 2235 // while only covering a single block - A phi-def can use undef values from 2236 // predecessors, and the block could be a single-block loop. 2237 // We don't bother doing anything clever about such a case, we simply assume 2238 // that the interval is continuous from FirstInstr to LastInstr. We should 2239 // make sure that we don't do anything illegal to such an interval, though. 2240 2241 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2242 if (Uses.size() <= 2) 2243 return 0; 2244 const unsigned NumGaps = Uses.size()-1; 2245 2246 LLVM_DEBUG({ 2247 dbgs() << "tryLocalSplit: "; 2248 for (const auto &Use : Uses) 2249 dbgs() << ' ' << Use; 2250 dbgs() << '\n'; 2251 }); 2252 2253 // If VirtReg is live across any register mask operands, compute a list of 2254 // gaps with register masks. 2255 SmallVector<unsigned, 8> RegMaskGaps; 2256 if (Matrix->checkRegMaskInterference(VirtReg)) { 2257 // Get regmask slots for the whole block. 2258 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2259 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2260 // Constrain to VirtReg's live range. 2261 unsigned RI = 2262 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 2263 unsigned RE = RMS.size(); 2264 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 2265 // Look for Uses[I] <= RMS <= Uses[I + 1]. 2266 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 2267 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 2268 continue; 2269 // Skip a regmask on the same instruction as the last use. It doesn't 2270 // overlap the live range. 2271 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 2272 break; 2273 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 2274 << Uses[I + 1]); 2275 RegMaskGaps.push_back(I); 2276 // Advance ri to the next gap. A regmask on one of the uses counts in 2277 // both gaps. 2278 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 2279 ++RI; 2280 } 2281 LLVM_DEBUG(dbgs() << '\n'); 2282 } 2283 2284 // Since we allow local split results to be split again, there is a risk of 2285 // creating infinite loops. It is tempting to require that the new live 2286 // ranges have less instructions than the original. That would guarantee 2287 // convergence, but it is too strict. A live range with 3 instructions can be 2288 // split 2+3 (including the COPY), and we want to allow that. 2289 // 2290 // Instead we use these rules: 2291 // 2292 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2293 // noop split, of course). 2294 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2295 // the new ranges must have fewer instructions than before the split. 2296 // 3. New ranges with the same number of instructions are marked RS_Split2, 2297 // smaller ranges are marked RS_New. 2298 // 2299 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2300 // excessive splitting and infinite loops. 2301 // 2302 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2303 2304 // Best split candidate. 2305 unsigned BestBefore = NumGaps; 2306 unsigned BestAfter = 0; 2307 float BestDiff = 0; 2308 2309 const float blockFreq = 2310 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2311 (1.0f / MBFI->getEntryFreq()); 2312 SmallVector<float, 8> GapWeight; 2313 2314 for (MCPhysReg PhysReg : Order) { 2315 assert(PhysReg); 2316 // Keep track of the largest spill weight that would need to be evicted in 2317 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 2318 calcGapWeights(PhysReg, GapWeight); 2319 2320 // Remove any gaps with regmask clobbers. 2321 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2322 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 2323 GapWeight[RegMaskGaps[I]] = huge_valf; 2324 2325 // Try to find the best sequence of gaps to close. 2326 // The new spill weight must be larger than any gap interference. 2327 2328 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2329 unsigned SplitBefore = 0, SplitAfter = 1; 2330 2331 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2332 // It is the spill weight that needs to be evicted. 2333 float MaxGap = GapWeight[0]; 2334 2335 while (true) { 2336 // Live before/after split? 2337 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2338 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2339 2340 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2341 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 2342 2343 // Stop before the interval gets so big we wouldn't be making progress. 2344 if (!LiveBefore && !LiveAfter) { 2345 LLVM_DEBUG(dbgs() << " all\n"); 2346 break; 2347 } 2348 // Should the interval be extended or shrunk? 2349 bool Shrink = true; 2350 2351 // How many gaps would the new range have? 2352 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2353 2354 // Legally, without causing looping? 2355 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2356 2357 if (Legal && MaxGap < huge_valf) { 2358 // Estimate the new spill weight. Each instruction reads or writes the 2359 // register. Conservatively assume there are no read-modify-write 2360 // instructions. 2361 // 2362 // Try to guess the size of the new interval. 2363 const float EstWeight = normalizeSpillWeight( 2364 blockFreq * (NewGaps + 1), 2365 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2366 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2367 1); 2368 // Would this split be possible to allocate? 2369 // Never allocate all gaps, we wouldn't be making progress. 2370 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2371 if (EstWeight * Hysteresis >= MaxGap) { 2372 Shrink = false; 2373 float Diff = EstWeight - MaxGap; 2374 if (Diff > BestDiff) { 2375 LLVM_DEBUG(dbgs() << " (best)"); 2376 BestDiff = Hysteresis * Diff; 2377 BestBefore = SplitBefore; 2378 BestAfter = SplitAfter; 2379 } 2380 } 2381 } 2382 2383 // Try to shrink. 2384 if (Shrink) { 2385 if (++SplitBefore < SplitAfter) { 2386 LLVM_DEBUG(dbgs() << " shrink\n"); 2387 // Recompute the max when necessary. 2388 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2389 MaxGap = GapWeight[SplitBefore]; 2390 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 2391 MaxGap = std::max(MaxGap, GapWeight[I]); 2392 } 2393 continue; 2394 } 2395 MaxGap = 0; 2396 } 2397 2398 // Try to extend the interval. 2399 if (SplitAfter >= NumGaps) { 2400 LLVM_DEBUG(dbgs() << " end\n"); 2401 break; 2402 } 2403 2404 LLVM_DEBUG(dbgs() << " extend\n"); 2405 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2406 } 2407 } 2408 2409 // Didn't find any candidates? 2410 if (BestBefore == NumGaps) 2411 return 0; 2412 2413 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2414 << Uses[BestAfter] << ", " << BestDiff << ", " 2415 << (BestAfter - BestBefore + 1) << " instrs\n"); 2416 2417 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2418 SE->reset(LREdit); 2419 2420 SE->openIntv(); 2421 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2422 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2423 SE->useIntv(SegStart, SegStop); 2424 SmallVector<unsigned, 8> IntvMap; 2425 SE->finish(&IntvMap); 2426 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2427 2428 // If the new range has the same number of instructions as before, mark it as 2429 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2430 // leave the new intervals as RS_New so they can compete. 2431 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2432 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2433 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2434 if (NewGaps >= NumGaps) { 2435 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: "); 2436 assert(!ProgressRequired && "Didn't make progress when it was required."); 2437 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 2438 if (IntvMap[I] == 1) { 2439 setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 2440 LLVM_DEBUG(dbgs() << printReg(LREdit.get(I))); 2441 } 2442 LLVM_DEBUG(dbgs() << '\n'); 2443 } 2444 ++NumLocalSplits; 2445 2446 return 0; 2447 } 2448 2449 //===----------------------------------------------------------------------===// 2450 // Live Range Splitting 2451 //===----------------------------------------------------------------------===// 2452 2453 /// trySplit - Try to split VirtReg or one of its interferences, making it 2454 /// assignable. 2455 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2456 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2457 SmallVectorImpl<Register> &NewVRegs, 2458 const SmallVirtRegSet &FixedRegisters) { 2459 // Ranges must be Split2 or less. 2460 if (getStage(VirtReg) >= RS_Spill) 2461 return 0; 2462 2463 // Local intervals are handled separately. 2464 if (LIS->intervalIsInOneMBB(VirtReg)) { 2465 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2466 TimerGroupDescription, TimePassesIsEnabled); 2467 SA->analyze(&VirtReg); 2468 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2469 if (PhysReg || !NewVRegs.empty()) 2470 return PhysReg; 2471 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2472 } 2473 2474 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2475 TimerGroupDescription, TimePassesIsEnabled); 2476 2477 SA->analyze(&VirtReg); 2478 2479 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2480 // coalescer. That may cause the range to become allocatable which means that 2481 // tryRegionSplit won't be making progress. This check should be replaced with 2482 // an assertion when the coalescer is fixed. 2483 if (SA->didRepairRange()) { 2484 // VirtReg has changed, so all cached queries are invalid. 2485 Matrix->invalidateVirtRegs(); 2486 if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) 2487 return PhysReg; 2488 } 2489 2490 // First try to split around a region spanning multiple blocks. RS_Split2 2491 // ranges already made dubious progress with region splitting, so they go 2492 // straight to single block splitting. 2493 if (getStage(VirtReg) < RS_Split2) { 2494 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2495 if (PhysReg || !NewVRegs.empty()) 2496 return PhysReg; 2497 } 2498 2499 // Then isolate blocks. 2500 return tryBlockSplit(VirtReg, Order, NewVRegs); 2501 } 2502 2503 //===----------------------------------------------------------------------===// 2504 // Last Chance Recoloring 2505 //===----------------------------------------------------------------------===// 2506 2507 /// Return true if \p reg has any tied def operand. 2508 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2509 for (const MachineOperand &MO : MRI->def_operands(reg)) 2510 if (MO.isTied()) 2511 return true; 2512 2513 return false; 2514 } 2515 2516 /// mayRecolorAllInterferences - Check if the virtual registers that 2517 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2518 /// recolored to free \p PhysReg. 2519 /// When true is returned, \p RecoloringCandidates has been augmented with all 2520 /// the live intervals that need to be recolored in order to free \p PhysReg 2521 /// for \p VirtReg. 2522 /// \p FixedRegisters contains all the virtual registers that cannot be 2523 /// recolored. 2524 bool RAGreedy::mayRecolorAllInterferences( 2525 MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates, 2526 const SmallVirtRegSet &FixedRegisters) { 2527 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2528 2529 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2530 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2531 // If there is LastChanceRecoloringMaxInterference or more interferences, 2532 // chances are one would not be recolorable. 2533 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2534 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2535 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2536 CutOffInfo |= CO_Interf; 2537 return false; 2538 } 2539 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 2540 // If Intf is done and sit on the same register class as VirtReg, 2541 // it would not be recolorable as it is in the same state as VirtReg. 2542 // However, if VirtReg has tied defs and Intf doesn't, then 2543 // there is still a point in examining if it can be recolorable. 2544 if (((getStage(*Intf) == RS_Done && 2545 MRI->getRegClass(Intf->reg()) == CurRC) && 2546 !(hasTiedDef(MRI, VirtReg.reg()) && 2547 !hasTiedDef(MRI, Intf->reg()))) || 2548 FixedRegisters.count(Intf->reg())) { 2549 LLVM_DEBUG( 2550 dbgs() << "Early abort: the interference is not recolorable.\n"); 2551 return false; 2552 } 2553 RecoloringCandidates.insert(Intf); 2554 } 2555 } 2556 return true; 2557 } 2558 2559 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2560 /// its interferences. 2561 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2562 /// virtual register that was using it. The recoloring process may recursively 2563 /// use the last chance recoloring. Therefore, when a virtual register has been 2564 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2565 /// be last-chance-recolored again during this recoloring "session". 2566 /// E.g., 2567 /// Let 2568 /// vA can use {R1, R2 } 2569 /// vB can use { R2, R3} 2570 /// vC can use {R1 } 2571 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2572 /// instance) and they all interfere. 2573 /// 2574 /// vA is assigned R1 2575 /// vB is assigned R2 2576 /// vC tries to evict vA but vA is already done. 2577 /// Regular register allocation fails. 2578 /// 2579 /// Last chance recoloring kicks in: 2580 /// vC does as if vA was evicted => vC uses R1. 2581 /// vC is marked as fixed. 2582 /// vA needs to find a color. 2583 /// None are available. 2584 /// vA cannot evict vC: vC is a fixed virtual register now. 2585 /// vA does as if vB was evicted => vA uses R2. 2586 /// vB needs to find a color. 2587 /// R3 is available. 2588 /// Recoloring => vC = R1, vA = R2, vB = R3 2589 /// 2590 /// \p Order defines the preferred allocation order for \p VirtReg. 2591 /// \p NewRegs will contain any new virtual register that have been created 2592 /// (split, spill) during the process and that must be assigned. 2593 /// \p FixedRegisters contains all the virtual registers that cannot be 2594 /// recolored. 2595 /// \p Depth gives the current depth of the last chance recoloring. 2596 /// \return a physical register that can be used for VirtReg or ~0u if none 2597 /// exists. 2598 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2599 AllocationOrder &Order, 2600 SmallVectorImpl<Register> &NewVRegs, 2601 SmallVirtRegSet &FixedRegisters, 2602 unsigned Depth) { 2603 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 2604 return ~0u; 2605 2606 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2607 // Ranges must be Done. 2608 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2609 "Last chance recoloring should really be last chance"); 2610 // Set the max depth to LastChanceRecoloringMaxDepth. 2611 // We may want to reconsider that if we end up with a too large search space 2612 // for target with hundreds of registers. 2613 // Indeed, in that case we may want to cut the search space earlier. 2614 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2615 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2616 CutOffInfo |= CO_Depth; 2617 return ~0u; 2618 } 2619 2620 // Set of Live intervals that will need to be recolored. 2621 SmallLISet RecoloringCandidates; 2622 // Record the original mapping virtual register to physical register in case 2623 // the recoloring fails. 2624 DenseMap<Register, MCRegister> VirtRegToPhysReg; 2625 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2626 // this recoloring "session". 2627 assert(!FixedRegisters.count(VirtReg.reg())); 2628 FixedRegisters.insert(VirtReg.reg()); 2629 SmallVector<Register, 4> CurrentNewVRegs; 2630 2631 for (MCRegister PhysReg : Order) { 2632 assert(PhysReg.isValid()); 2633 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2634 << printReg(PhysReg, TRI) << '\n'); 2635 RecoloringCandidates.clear(); 2636 VirtRegToPhysReg.clear(); 2637 CurrentNewVRegs.clear(); 2638 2639 // It is only possible to recolor virtual register interference. 2640 if (Matrix->checkInterference(VirtReg, PhysReg) > 2641 LiveRegMatrix::IK_VirtReg) { 2642 LLVM_DEBUG( 2643 dbgs() << "Some interferences are not with virtual registers.\n"); 2644 2645 continue; 2646 } 2647 2648 // Early give up on this PhysReg if it is obvious we cannot recolor all 2649 // the interferences. 2650 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2651 FixedRegisters)) { 2652 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2653 continue; 2654 } 2655 2656 // RecoloringCandidates contains all the virtual registers that interfer 2657 // with VirtReg on PhysReg (or one of its aliases). 2658 // Enqueue them for recoloring and perform the actual recoloring. 2659 PQueue RecoloringQueue; 2660 for (LiveInterval *RC : RecoloringCandidates) { 2661 Register ItVirtReg = RC->reg(); 2662 enqueue(RecoloringQueue, RC); 2663 assert(VRM->hasPhys(ItVirtReg) && 2664 "Interferences are supposed to be with allocated variables"); 2665 2666 // Record the current allocation. 2667 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2668 // unset the related struct. 2669 Matrix->unassign(*RC); 2670 } 2671 2672 // Do as if VirtReg was assigned to PhysReg so that the underlying 2673 // recoloring has the right information about the interferes and 2674 // available colors. 2675 Matrix->assign(VirtReg, PhysReg); 2676 2677 // Save the current recoloring state. 2678 // If we cannot recolor all the interferences, we will have to start again 2679 // at this point for the next physical register. 2680 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2681 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2682 FixedRegisters, Depth)) { 2683 // Push the queued vregs into the main queue. 2684 for (Register NewVReg : CurrentNewVRegs) 2685 NewVRegs.push_back(NewVReg); 2686 // Do not mess up with the global assignment process. 2687 // I.e., VirtReg must be unassigned. 2688 Matrix->unassign(VirtReg); 2689 return PhysReg; 2690 } 2691 2692 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2693 << printReg(PhysReg, TRI) << '\n'); 2694 2695 // The recoloring attempt failed, undo the changes. 2696 FixedRegisters = SaveFixedRegisters; 2697 Matrix->unassign(VirtReg); 2698 2699 // For a newly created vreg which is also in RecoloringCandidates, 2700 // don't add it to NewVRegs because its physical register will be restored 2701 // below. Other vregs in CurrentNewVRegs are created by calling 2702 // selectOrSplit and should be added into NewVRegs. 2703 for (Register &R : CurrentNewVRegs) { 2704 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2705 continue; 2706 NewVRegs.push_back(R); 2707 } 2708 2709 for (LiveInterval *RC : RecoloringCandidates) { 2710 Register ItVirtReg = RC->reg(); 2711 if (VRM->hasPhys(ItVirtReg)) 2712 Matrix->unassign(*RC); 2713 MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2714 Matrix->assign(*RC, ItPhysReg); 2715 } 2716 } 2717 2718 // Last chance recoloring did not worked either, give up. 2719 return ~0u; 2720 } 2721 2722 /// tryRecoloringCandidates - Try to assign a new color to every register 2723 /// in \RecoloringQueue. 2724 /// \p NewRegs will contain any new virtual register created during the 2725 /// recoloring process. 2726 /// \p FixedRegisters[in/out] contains all the registers that have been 2727 /// recolored. 2728 /// \return true if all virtual registers in RecoloringQueue were successfully 2729 /// recolored, false otherwise. 2730 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2731 SmallVectorImpl<Register> &NewVRegs, 2732 SmallVirtRegSet &FixedRegisters, 2733 unsigned Depth) { 2734 while (!RecoloringQueue.empty()) { 2735 LiveInterval *LI = dequeue(RecoloringQueue); 2736 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2737 MCRegister PhysReg = 2738 selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2739 // When splitting happens, the live-range may actually be empty. 2740 // In that case, this is okay to continue the recoloring even 2741 // if we did not find an alternative color for it. Indeed, 2742 // there will not be anything to color for LI in the end. 2743 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2744 return false; 2745 2746 if (!PhysReg) { 2747 assert(LI->empty() && "Only empty live-range do not require a register"); 2748 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2749 << " succeeded. Empty LI.\n"); 2750 continue; 2751 } 2752 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2753 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2754 2755 Matrix->assign(*LI, PhysReg); 2756 FixedRegisters.insert(LI->reg()); 2757 } 2758 return true; 2759 } 2760 2761 //===----------------------------------------------------------------------===// 2762 // Main Entry Point 2763 //===----------------------------------------------------------------------===// 2764 2765 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2766 SmallVectorImpl<Register> &NewVRegs) { 2767 CutOffInfo = CO_None; 2768 LLVMContext &Ctx = MF->getFunction().getContext(); 2769 SmallVirtRegSet FixedRegisters; 2770 MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2771 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2772 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2773 if (CutOffEncountered == CO_Depth) 2774 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2775 "reached. Use -fexhaustive-register-search to skip " 2776 "cutoffs"); 2777 else if (CutOffEncountered == CO_Interf) 2778 Ctx.emitError("register allocation failed: maximum interference for " 2779 "recoloring reached. Use -fexhaustive-register-search " 2780 "to skip cutoffs"); 2781 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2782 Ctx.emitError("register allocation failed: maximum interference and " 2783 "depth for recoloring reached. Use " 2784 "-fexhaustive-register-search to skip cutoffs"); 2785 } 2786 return Reg; 2787 } 2788 2789 /// Using a CSR for the first time has a cost because it causes push|pop 2790 /// to be added to prologue|epilogue. Splitting a cold section of the live 2791 /// range can have lower cost than using the CSR for the first time; 2792 /// Spilling a live range in the cold path can have lower cost than using 2793 /// the CSR for the first time. Returns the physical register if we decide 2794 /// to use the CSR; otherwise return 0. 2795 MCRegister 2796 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 2797 MCRegister PhysReg, uint8_t &CostPerUseLimit, 2798 SmallVectorImpl<Register> &NewVRegs) { 2799 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2800 // We choose spill over using the CSR for the first time if the spill cost 2801 // is lower than CSRCost. 2802 SA->analyze(&VirtReg); 2803 if (calcSpillCost() >= CSRCost) 2804 return PhysReg; 2805 2806 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2807 // we will not use a callee-saved register in tryEvict. 2808 CostPerUseLimit = 1; 2809 return 0; 2810 } 2811 if (getStage(VirtReg) < RS_Split) { 2812 // We choose pre-splitting over using the CSR for the first time if 2813 // the cost of splitting is lower than CSRCost. 2814 SA->analyze(&VirtReg); 2815 unsigned NumCands = 0; 2816 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2817 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2818 NumCands, true /*IgnoreCSR*/); 2819 if (BestCand == NoCand) 2820 // Use the CSR if we can't find a region split below CSRCost. 2821 return PhysReg; 2822 2823 // Perform the actual pre-splitting. 2824 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2825 return 0; 2826 } 2827 return PhysReg; 2828 } 2829 2830 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2831 // Do not keep invalid information around. 2832 SetOfBrokenHints.remove(&LI); 2833 } 2834 2835 void RAGreedy::initializeCSRCost() { 2836 // We use the larger one out of the command-line option and the value report 2837 // by TRI. 2838 CSRCost = BlockFrequency( 2839 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2840 if (!CSRCost.getFrequency()) 2841 return; 2842 2843 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2844 uint64_t ActualEntry = MBFI->getEntryFreq(); 2845 if (!ActualEntry) { 2846 CSRCost = 0; 2847 return; 2848 } 2849 uint64_t FixedEntry = 1 << 14; 2850 if (ActualEntry < FixedEntry) 2851 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2852 else if (ActualEntry <= UINT32_MAX) 2853 // Invert the fraction and divide. 2854 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2855 else 2856 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2857 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2858 } 2859 2860 /// Collect the hint info for \p Reg. 2861 /// The results are stored into \p Out. 2862 /// \p Out is not cleared before being populated. 2863 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2864 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2865 if (!Instr.isFullCopy()) 2866 continue; 2867 // Look for the other end of the copy. 2868 Register OtherReg = Instr.getOperand(0).getReg(); 2869 if (OtherReg == Reg) { 2870 OtherReg = Instr.getOperand(1).getReg(); 2871 if (OtherReg == Reg) 2872 continue; 2873 } 2874 // Get the current assignment. 2875 MCRegister OtherPhysReg = 2876 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2877 // Push the collected information. 2878 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2879 OtherPhysReg)); 2880 } 2881 } 2882 2883 /// Using the given \p List, compute the cost of the broken hints if 2884 /// \p PhysReg was used. 2885 /// \return The cost of \p List for \p PhysReg. 2886 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2887 MCRegister PhysReg) { 2888 BlockFrequency Cost = 0; 2889 for (const HintInfo &Info : List) { 2890 if (Info.PhysReg != PhysReg) 2891 Cost += Info.Freq; 2892 } 2893 return Cost; 2894 } 2895 2896 /// Using the register assigned to \p VirtReg, try to recolor 2897 /// all the live ranges that are copy-related with \p VirtReg. 2898 /// The recoloring is then propagated to all the live-ranges that have 2899 /// been recolored and so on, until no more copies can be coalesced or 2900 /// it is not profitable. 2901 /// For a given live range, profitability is determined by the sum of the 2902 /// frequencies of the non-identity copies it would introduce with the old 2903 /// and new register. 2904 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2905 // We have a broken hint, check if it is possible to fix it by 2906 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2907 // some register and PhysReg may be available for the other live-ranges. 2908 SmallSet<Register, 4> Visited; 2909 SmallVector<unsigned, 2> RecoloringCandidates; 2910 HintsInfo Info; 2911 Register Reg = VirtReg.reg(); 2912 MCRegister PhysReg = VRM->getPhys(Reg); 2913 // Start the recoloring algorithm from the input live-interval, then 2914 // it will propagate to the ones that are copy-related with it. 2915 Visited.insert(Reg); 2916 RecoloringCandidates.push_back(Reg); 2917 2918 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2919 << '(' << printReg(PhysReg, TRI) << ")\n"); 2920 2921 do { 2922 Reg = RecoloringCandidates.pop_back_val(); 2923 2924 // We cannot recolor physical register. 2925 if (Register::isPhysicalRegister(Reg)) 2926 continue; 2927 2928 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2929 2930 // Get the live interval mapped with this virtual register to be able 2931 // to check for the interference with the new color. 2932 LiveInterval &LI = LIS->getInterval(Reg); 2933 MCRegister CurrPhys = VRM->getPhys(Reg); 2934 // Check that the new color matches the register class constraints and 2935 // that it is free for this live range. 2936 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2937 Matrix->checkInterference(LI, PhysReg))) 2938 continue; 2939 2940 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2941 << ") is recolorable.\n"); 2942 2943 // Gather the hint info. 2944 Info.clear(); 2945 collectHintInfo(Reg, Info); 2946 // Check if recoloring the live-range will increase the cost of the 2947 // non-identity copies. 2948 if (CurrPhys != PhysReg) { 2949 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2950 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2951 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2952 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2953 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2954 << '\n'); 2955 if (OldCopiesCost < NewCopiesCost) { 2956 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2957 continue; 2958 } 2959 // At this point, the cost is either cheaper or equal. If it is 2960 // equal, we consider this is profitable because it may expose 2961 // more recoloring opportunities. 2962 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2963 // Recolor the live-range. 2964 Matrix->unassign(LI); 2965 Matrix->assign(LI, PhysReg); 2966 } 2967 // Push all copy-related live-ranges to keep reconciling the broken 2968 // hints. 2969 for (const HintInfo &HI : Info) { 2970 if (Visited.insert(HI.Reg).second) 2971 RecoloringCandidates.push_back(HI.Reg); 2972 } 2973 } while (!RecoloringCandidates.empty()); 2974 } 2975 2976 /// Try to recolor broken hints. 2977 /// Broken hints may be repaired by recoloring when an evicted variable 2978 /// freed up a register for a larger live-range. 2979 /// Consider the following example: 2980 /// BB1: 2981 /// a = 2982 /// b = 2983 /// BB2: 2984 /// ... 2985 /// = b 2986 /// = a 2987 /// Let us assume b gets split: 2988 /// BB1: 2989 /// a = 2990 /// b = 2991 /// BB2: 2992 /// c = b 2993 /// ... 2994 /// d = c 2995 /// = d 2996 /// = a 2997 /// Because of how the allocation work, b, c, and d may be assigned different 2998 /// colors. Now, if a gets evicted later: 2999 /// BB1: 3000 /// a = 3001 /// st a, SpillSlot 3002 /// b = 3003 /// BB2: 3004 /// c = b 3005 /// ... 3006 /// d = c 3007 /// = d 3008 /// e = ld SpillSlot 3009 /// = e 3010 /// This is likely that we can assign the same register for b, c, and d, 3011 /// getting rid of 2 copies. 3012 void RAGreedy::tryHintsRecoloring() { 3013 for (LiveInterval *LI : SetOfBrokenHints) { 3014 assert(Register::isVirtualRegister(LI->reg()) && 3015 "Recoloring is possible only for virtual registers"); 3016 // Some dead defs may be around (e.g., because of debug uses). 3017 // Ignore those. 3018 if (!VRM->hasPhys(LI->reg())) 3019 continue; 3020 tryHintRecoloring(*LI); 3021 } 3022 } 3023 3024 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 3025 SmallVectorImpl<Register> &NewVRegs, 3026 SmallVirtRegSet &FixedRegisters, 3027 unsigned Depth) { 3028 uint8_t CostPerUseLimit = uint8_t(~0u); 3029 // First try assigning a free register. 3030 auto Order = 3031 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 3032 if (MCRegister PhysReg = 3033 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 3034 // If VirtReg got an assignment, the eviction info is no longer relevant. 3035 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3036 // When NewVRegs is not empty, we may have made decisions such as evicting 3037 // a virtual register, go with the earlier decisions and use the physical 3038 // register. 3039 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3040 NewVRegs.empty()) { 3041 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3042 CostPerUseLimit, NewVRegs); 3043 if (CSRReg || !NewVRegs.empty()) 3044 // Return now if we decide to use a CSR or create new vregs due to 3045 // pre-splitting. 3046 return CSRReg; 3047 } else 3048 return PhysReg; 3049 } 3050 3051 LiveRangeStage Stage = getStage(VirtReg); 3052 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3053 << ExtraRegInfo[VirtReg.reg()].Cascade << '\n'); 3054 3055 // Try to evict a less worthy live range, but only for ranges from the primary 3056 // queue. The RS_Split ranges already failed to do this, and they should not 3057 // get a second chance until they have been split. 3058 if (Stage != RS_Split) 3059 if (Register PhysReg = 3060 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 3061 FixedRegisters)) { 3062 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 3063 // If VirtReg has a hint and that hint is broken record this 3064 // virtual register as a recoloring candidate for broken hint. 3065 // Indeed, since we evicted a variable in its neighborhood it is 3066 // likely we can at least partially recolor some of the 3067 // copy-related live-ranges. 3068 if (Hint && Hint != PhysReg) 3069 SetOfBrokenHints.insert(&VirtReg); 3070 // If VirtReg eviction someone, the eviction info for it as an evictee is 3071 // no longer relevant. 3072 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3073 return PhysReg; 3074 } 3075 3076 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3077 3078 // The first time we see a live range, don't try to split or spill. 3079 // Wait until the second time, when all smaller ranges have been allocated. 3080 // This gives a better picture of the interference to split around. 3081 if (Stage < RS_Split) { 3082 setStage(VirtReg, RS_Split); 3083 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3084 NewVRegs.push_back(VirtReg.reg()); 3085 return 0; 3086 } 3087 3088 if (Stage < RS_Spill) { 3089 // Try splitting VirtReg or interferences. 3090 unsigned NewVRegSizeBefore = NewVRegs.size(); 3091 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 3092 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3093 // If VirtReg got split, the eviction info is no longer relevant. 3094 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3095 return PhysReg; 3096 } 3097 } 3098 3099 // If we couldn't allocate a register from spilling, there is probably some 3100 // invalid inline assembly. The base class will report it. 3101 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3102 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3103 Depth); 3104 3105 // Finally spill VirtReg itself. 3106 if ((EnableDeferredSpilling || 3107 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 3108 getStage(VirtReg) < RS_Memory) { 3109 // TODO: This is experimental and in particular, we do not model 3110 // the live range splitting done by spilling correctly. 3111 // We would need a deep integration with the spiller to do the 3112 // right thing here. Anyway, that is still good for early testing. 3113 setStage(VirtReg, RS_Memory); 3114 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3115 NewVRegs.push_back(VirtReg.reg()); 3116 } else { 3117 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3118 TimerGroupDescription, TimePassesIsEnabled); 3119 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3120 spiller().spill(LRE); 3121 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3122 3123 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 3124 // the new regs are kept in LDV (still mapping to the old register), until 3125 // we rewrite spilled locations in LDV at a later stage. 3126 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 3127 3128 if (VerifyEnabled) 3129 MF->verify(this, "After spilling"); 3130 } 3131 3132 // The live virtual register requesting allocation was spilled, so tell 3133 // the caller not to allocate anything during this round. 3134 return 0; 3135 } 3136 3137 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 3138 using namespace ore; 3139 if (Spills) 3140 R << NV("NumSpills", Spills) << " spills "; 3141 if (FoldedSpills) 3142 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3143 if (Reloads) 3144 R << NV("NumReloads", Reloads) << " reloads "; 3145 if (FoldedReloads) 3146 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3147 if (ZeroCostFoldedReloads) 3148 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 3149 << " zero cost folded reloads "; 3150 if (Copies) 3151 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 3152 } 3153 3154 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 3155 RAGreedyStats Stats; 3156 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3157 int FI; 3158 3159 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3160 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 3161 A->getPseudoValue())->getFrameIndex()); 3162 }; 3163 auto isPatchpointInstr = [](const MachineInstr &MI) { 3164 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 3165 MI.getOpcode() == TargetOpcode::STACKMAP || 3166 MI.getOpcode() == TargetOpcode::STATEPOINT; 3167 }; 3168 for (MachineInstr &MI : MBB) { 3169 if (MI.isCopy()) { 3170 MachineOperand &Dest = MI.getOperand(0); 3171 MachineOperand &Src = MI.getOperand(1); 3172 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 3173 Src.getReg().isVirtual()) 3174 ++Stats.Copies; 3175 continue; 3176 } 3177 3178 SmallVector<const MachineMemOperand *, 2> Accesses; 3179 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3180 ++Stats.Reloads; 3181 continue; 3182 } 3183 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3184 ++Stats.Spills; 3185 continue; 3186 } 3187 if (TII->hasLoadFromStackSlot(MI, Accesses) && 3188 llvm::any_of(Accesses, isSpillSlotAccess)) { 3189 if (!isPatchpointInstr(MI)) { 3190 Stats.FoldedReloads += Accesses.size(); 3191 continue; 3192 } 3193 // For statepoint there may be folded and zero cost folded stack reloads. 3194 std::pair<unsigned, unsigned> NonZeroCostRange = 3195 TII->getPatchpointUnfoldableRange(MI); 3196 SmallSet<unsigned, 16> FoldedReloads; 3197 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 3198 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 3199 MachineOperand &MO = MI.getOperand(Idx); 3200 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 3201 continue; 3202 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 3203 FoldedReloads.insert(MO.getIndex()); 3204 else 3205 ZeroCostFoldedReloads.insert(MO.getIndex()); 3206 } 3207 // If stack slot is used in folded reload it is not zero cost then. 3208 for (unsigned Slot : FoldedReloads) 3209 ZeroCostFoldedReloads.erase(Slot); 3210 Stats.FoldedReloads += FoldedReloads.size(); 3211 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 3212 continue; 3213 } 3214 Accesses.clear(); 3215 if (TII->hasStoreToStackSlot(MI, Accesses) && 3216 llvm::any_of(Accesses, isSpillSlotAccess)) { 3217 Stats.FoldedSpills += Accesses.size(); 3218 } 3219 } 3220 return Stats; 3221 } 3222 3223 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 3224 RAGreedyStats Stats; 3225 3226 // Sum up the spill and reloads in subloops. 3227 for (MachineLoop *SubLoop : *L) 3228 Stats.add(reportStats(SubLoop)); 3229 3230 for (MachineBasicBlock *MBB : L->getBlocks()) 3231 // Handle blocks that were not included in subloops. 3232 if (Loops->getLoopFor(MBB) == L) 3233 Stats.add(computeStats(*MBB)); 3234 3235 if (!Stats.isEmpty()) { 3236 using namespace ore; 3237 3238 ORE->emit([&]() { 3239 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 3240 L->getStartLoc(), L->getHeader()); 3241 Stats.report(R); 3242 R << "generated in loop"; 3243 return R; 3244 }); 3245 } 3246 return Stats; 3247 } 3248 3249 void RAGreedy::reportStats() { 3250 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 3251 return; 3252 RAGreedyStats Stats; 3253 for (MachineLoop *L : *Loops) 3254 Stats.add(reportStats(L)); 3255 // Process non-loop blocks. 3256 for (MachineBasicBlock &MBB : *MF) 3257 if (!Loops->getLoopFor(&MBB)) 3258 Stats.add(computeStats(MBB)); 3259 if (!Stats.isEmpty()) { 3260 using namespace ore; 3261 3262 ORE->emit([&]() { 3263 DebugLoc Loc; 3264 if (auto *SP = MF->getFunction().getSubprogram()) 3265 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 3266 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 3267 &MF->front()); 3268 Stats.report(R); 3269 R << "generated in function"; 3270 return R; 3271 }); 3272 } 3273 } 3274 3275 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3276 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3277 << "********** Function: " << mf.getName() << '\n'); 3278 3279 MF = &mf; 3280 TRI = MF->getSubtarget().getRegisterInfo(); 3281 TII = MF->getSubtarget().getInstrInfo(); 3282 RCI.runOnMachineFunction(mf); 3283 3284 EnableLocalReassign = EnableLocalReassignment || 3285 MF->getSubtarget().enableRALocalReassignment( 3286 MF->getTarget().getOptLevel()); 3287 3288 EnableAdvancedRASplitCost = 3289 ConsiderLocalIntervalCost.getNumOccurrences() 3290 ? ConsiderLocalIntervalCost 3291 : MF->getSubtarget().enableAdvancedRASplitCost(); 3292 3293 if (VerifyEnabled) 3294 MF->verify(this, "Before greedy register allocator"); 3295 3296 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3297 getAnalysis<LiveIntervals>(), 3298 getAnalysis<LiveRegMatrix>()); 3299 Indexes = &getAnalysis<SlotIndexes>(); 3300 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3301 DomTree = &getAnalysis<MachineDominatorTree>(); 3302 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3303 Loops = &getAnalysis<MachineLoopInfo>(); 3304 Bundles = &getAnalysis<EdgeBundles>(); 3305 SpillPlacer = &getAnalysis<SpillPlacement>(); 3306 DebugVars = &getAnalysis<LiveDebugVariables>(); 3307 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3308 3309 initializeCSRCost(); 3310 3311 RegCosts = TRI->getRegisterCosts(*MF); 3312 3313 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 3314 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 3315 3316 VRAI->calculateSpillWeightsAndHints(); 3317 3318 LLVM_DEBUG(LIS->dump()); 3319 3320 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3321 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 3322 ExtraRegInfo.clear(); 3323 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3324 NextCascade = 1; 3325 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3326 GlobalCand.resize(32); // This will grow as needed. 3327 SetOfBrokenHints.clear(); 3328 LastEvicted.clear(); 3329 3330 allocatePhysRegs(); 3331 tryHintsRecoloring(); 3332 3333 if (VerifyEnabled) 3334 MF->verify(this, "Before post optimization"); 3335 postOptimization(); 3336 reportStats(); 3337 3338 releaseMemory(); 3339 return true; 3340 } 3341