1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "llvm/CodeGen/Passes.h" 17 #include "AllocationOrder.h" 18 #include "InterferenceCache.h" 19 #include "LiveDebugVariables.h" 20 #include "RegAllocBase.h" 21 #include "SpillPlacement.h" 22 #include "Spiller.h" 23 #include "SplitKit.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/CalcSpillWeights.h" 27 #include "llvm/CodeGen/EdgeBundles.h" 28 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 29 #include "llvm/CodeGen/LiveRangeEdit.h" 30 #include "llvm/CodeGen/LiveRegMatrix.h" 31 #include "llvm/CodeGen/LiveStackAnalysis.h" 32 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineLoopInfo.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/RegAllocRegistry.h" 38 #include "llvm/CodeGen/VirtRegMap.h" 39 #include "llvm/PassAnalysisSupport.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/Timer.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <queue> 46 47 using namespace llvm; 48 49 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 50 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 51 STATISTIC(NumEvicted, "Number of interferences evicted"); 52 53 static cl::opt<SplitEditor::ComplementSpillMode> 54 SplitSpillMode("split-spill-mode", cl::Hidden, 55 cl::desc("Spill mode for splitting live ranges"), 56 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 57 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 58 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"), 59 clEnumValEnd), 60 cl::init(SplitEditor::SM_Partition)); 61 62 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 63 createGreedyRegisterAllocator); 64 65 namespace { 66 class RAGreedy : public MachineFunctionPass, 67 public RegAllocBase, 68 private LiveRangeEdit::Delegate { 69 70 // context 71 MachineFunction *MF; 72 73 // analyses 74 SlotIndexes *Indexes; 75 MachineBlockFrequencyInfo *MBFI; 76 MachineDominatorTree *DomTree; 77 MachineLoopInfo *Loops; 78 EdgeBundles *Bundles; 79 SpillPlacement *SpillPlacer; 80 LiveDebugVariables *DebugVars; 81 82 // state 83 OwningPtr<Spiller> SpillerInstance; 84 std::priority_queue<std::pair<unsigned, unsigned> > Queue; 85 unsigned NextCascade; 86 87 // Live ranges pass through a number of stages as we try to allocate them. 88 // Some of the stages may also create new live ranges: 89 // 90 // - Region splitting. 91 // - Per-block splitting. 92 // - Local splitting. 93 // - Spilling. 94 // 95 // Ranges produced by one of the stages skip the previous stages when they are 96 // dequeued. This improves performance because we can skip interference checks 97 // that are unlikely to give any results. It also guarantees that the live 98 // range splitting algorithm terminates, something that is otherwise hard to 99 // ensure. 100 enum LiveRangeStage { 101 /// Newly created live range that has never been queued. 102 RS_New, 103 104 /// Only attempt assignment and eviction. Then requeue as RS_Split. 105 RS_Assign, 106 107 /// Attempt live range splitting if assignment is impossible. 108 RS_Split, 109 110 /// Attempt more aggressive live range splitting that is guaranteed to make 111 /// progress. This is used for split products that may not be making 112 /// progress. 113 RS_Split2, 114 115 /// Live range will be spilled. No more splitting will be attempted. 116 RS_Spill, 117 118 /// There is nothing more we can do to this live range. Abort compilation 119 /// if it can't be assigned. 120 RS_Done 121 }; 122 123 static const char *const StageName[]; 124 125 // RegInfo - Keep additional information about each live range. 126 struct RegInfo { 127 LiveRangeStage Stage; 128 129 // Cascade - Eviction loop prevention. See canEvictInterference(). 130 unsigned Cascade; 131 132 RegInfo() : Stage(RS_New), Cascade(0) {} 133 }; 134 135 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 136 137 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 138 return ExtraRegInfo[VirtReg.reg].Stage; 139 } 140 141 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 142 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 143 ExtraRegInfo[VirtReg.reg].Stage = Stage; 144 } 145 146 template<typename Iterator> 147 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 148 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 149 for (;Begin != End; ++Begin) { 150 unsigned Reg = (*Begin)->reg; 151 if (ExtraRegInfo[Reg].Stage == RS_New) 152 ExtraRegInfo[Reg].Stage = NewStage; 153 } 154 } 155 156 /// Cost of evicting interference. 157 struct EvictionCost { 158 unsigned BrokenHints; ///< Total number of broken hints. 159 float MaxWeight; ///< Maximum spill weight evicted. 160 161 EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {} 162 163 bool operator<(const EvictionCost &O) const { 164 if (BrokenHints != O.BrokenHints) 165 return BrokenHints < O.BrokenHints; 166 return MaxWeight < O.MaxWeight; 167 } 168 }; 169 170 // splitting state. 171 OwningPtr<SplitAnalysis> SA; 172 OwningPtr<SplitEditor> SE; 173 174 /// Cached per-block interference maps 175 InterferenceCache IntfCache; 176 177 /// All basic blocks where the current register has uses. 178 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 179 180 /// Global live range splitting candidate info. 181 struct GlobalSplitCandidate { 182 // Register intended for assignment, or 0. 183 unsigned PhysReg; 184 185 // SplitKit interval index for this candidate. 186 unsigned IntvIdx; 187 188 // Interference for PhysReg. 189 InterferenceCache::Cursor Intf; 190 191 // Bundles where this candidate should be live. 192 BitVector LiveBundles; 193 SmallVector<unsigned, 8> ActiveBlocks; 194 195 void reset(InterferenceCache &Cache, unsigned Reg) { 196 PhysReg = Reg; 197 IntvIdx = 0; 198 Intf.setPhysReg(Cache, Reg); 199 LiveBundles.clear(); 200 ActiveBlocks.clear(); 201 } 202 203 // Set B[i] = C for every live bundle where B[i] was NoCand. 204 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 205 unsigned Count = 0; 206 for (int i = LiveBundles.find_first(); i >= 0; 207 i = LiveBundles.find_next(i)) 208 if (B[i] == NoCand) { 209 B[i] = C; 210 Count++; 211 } 212 return Count; 213 } 214 }; 215 216 /// Candidate info for for each PhysReg in AllocationOrder. 217 /// This vector never shrinks, but grows to the size of the largest register 218 /// class. 219 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 220 221 enum { NoCand = ~0u }; 222 223 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 224 /// NoCand which indicates the stack interval. 225 SmallVector<unsigned, 32> BundleCand; 226 227 public: 228 RAGreedy(); 229 230 /// Return the pass name. 231 virtual const char* getPassName() const { 232 return "Greedy Register Allocator"; 233 } 234 235 /// RAGreedy analysis usage. 236 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 237 virtual void releaseMemory(); 238 virtual Spiller &spiller() { return *SpillerInstance; } 239 virtual void enqueue(LiveInterval *LI); 240 virtual LiveInterval *dequeue(); 241 virtual unsigned selectOrSplit(LiveInterval&, 242 SmallVectorImpl<LiveInterval*>&); 243 244 /// Perform register allocation. 245 virtual bool runOnMachineFunction(MachineFunction &mf); 246 247 static char ID; 248 249 private: 250 bool LRE_CanEraseVirtReg(unsigned); 251 void LRE_WillShrinkVirtReg(unsigned); 252 void LRE_DidCloneVirtReg(unsigned, unsigned); 253 254 BlockFrequency calcSpillCost(); 255 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 256 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 257 void growRegion(GlobalSplitCandidate &Cand); 258 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&); 259 bool calcCompactRegion(GlobalSplitCandidate&); 260 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 261 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 262 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 263 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 264 void evictInterference(LiveInterval&, unsigned, 265 SmallVectorImpl<LiveInterval*>&); 266 267 unsigned tryAssign(LiveInterval&, AllocationOrder&, 268 SmallVectorImpl<LiveInterval*>&); 269 unsigned tryEvict(LiveInterval&, AllocationOrder&, 270 SmallVectorImpl<LiveInterval*>&, unsigned = ~0u); 271 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 272 SmallVectorImpl<LiveInterval*>&); 273 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 274 SmallVectorImpl<LiveInterval*>&); 275 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 276 SmallVectorImpl<LiveInterval*>&); 277 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 278 SmallVectorImpl<LiveInterval*>&); 279 unsigned trySplit(LiveInterval&, AllocationOrder&, 280 SmallVectorImpl<LiveInterval*>&); 281 }; 282 } // end anonymous namespace 283 284 char RAGreedy::ID = 0; 285 286 #ifndef NDEBUG 287 const char *const RAGreedy::StageName[] = { 288 "RS_New", 289 "RS_Assign", 290 "RS_Split", 291 "RS_Split2", 292 "RS_Spill", 293 "RS_Done" 294 }; 295 #endif 296 297 // Hysteresis to use when comparing floats. 298 // This helps stabilize decisions based on float comparisons. 299 const float Hysteresis = 0.98f; 300 301 302 FunctionPass* llvm::createGreedyRegisterAllocator() { 303 return new RAGreedy(); 304 } 305 306 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 307 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 308 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 309 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 310 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 311 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 312 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); 313 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); 314 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 315 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); 316 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); 317 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 318 initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry()); 319 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); 320 initializeSpillPlacementPass(*PassRegistry::getPassRegistry()); 321 } 322 323 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 324 AU.setPreservesCFG(); 325 AU.addRequired<MachineBlockFrequencyInfo>(); 326 AU.addPreserved<MachineBlockFrequencyInfo>(); 327 AU.addRequired<AliasAnalysis>(); 328 AU.addPreserved<AliasAnalysis>(); 329 AU.addRequired<LiveIntervals>(); 330 AU.addPreserved<LiveIntervals>(); 331 AU.addRequired<SlotIndexes>(); 332 AU.addPreserved<SlotIndexes>(); 333 AU.addRequired<LiveDebugVariables>(); 334 AU.addPreserved<LiveDebugVariables>(); 335 AU.addRequired<LiveStacks>(); 336 AU.addPreserved<LiveStacks>(); 337 AU.addRequired<CalculateSpillWeights>(); 338 AU.addRequired<MachineDominatorTree>(); 339 AU.addPreserved<MachineDominatorTree>(); 340 AU.addRequired<MachineLoopInfo>(); 341 AU.addPreserved<MachineLoopInfo>(); 342 AU.addRequired<VirtRegMap>(); 343 AU.addPreserved<VirtRegMap>(); 344 AU.addRequired<LiveRegMatrix>(); 345 AU.addPreserved<LiveRegMatrix>(); 346 AU.addRequired<EdgeBundles>(); 347 AU.addRequired<SpillPlacement>(); 348 MachineFunctionPass::getAnalysisUsage(AU); 349 } 350 351 352 //===----------------------------------------------------------------------===// 353 // LiveRangeEdit delegate methods 354 //===----------------------------------------------------------------------===// 355 356 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 357 if (VRM->hasPhys(VirtReg)) { 358 Matrix->unassign(LIS->getInterval(VirtReg)); 359 return true; 360 } 361 // Unassigned virtreg is probably in the priority queue. 362 // RegAllocBase will erase it after dequeueing. 363 return false; 364 } 365 366 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 367 if (!VRM->hasPhys(VirtReg)) 368 return; 369 370 // Register is assigned, put it back on the queue for reassignment. 371 LiveInterval &LI = LIS->getInterval(VirtReg); 372 Matrix->unassign(LI); 373 enqueue(&LI); 374 } 375 376 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 377 // Cloning a register we haven't even heard about yet? Just ignore it. 378 if (!ExtraRegInfo.inBounds(Old)) 379 return; 380 381 // LRE may clone a virtual register because dead code elimination causes it to 382 // be split into connected components. The new components are much smaller 383 // than the original, so they should get a new chance at being assigned. 384 // same stage as the parent. 385 ExtraRegInfo[Old].Stage = RS_Assign; 386 ExtraRegInfo.grow(New); 387 ExtraRegInfo[New] = ExtraRegInfo[Old]; 388 } 389 390 void RAGreedy::releaseMemory() { 391 SpillerInstance.reset(0); 392 ExtraRegInfo.clear(); 393 GlobalCand.clear(); 394 } 395 396 void RAGreedy::enqueue(LiveInterval *LI) { 397 // Prioritize live ranges by size, assigning larger ranges first. 398 // The queue holds (size, reg) pairs. 399 const unsigned Size = LI->getSize(); 400 const unsigned Reg = LI->reg; 401 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 402 "Can only enqueue virtual registers"); 403 unsigned Prio; 404 405 ExtraRegInfo.grow(Reg); 406 if (ExtraRegInfo[Reg].Stage == RS_New) 407 ExtraRegInfo[Reg].Stage = RS_Assign; 408 409 if (ExtraRegInfo[Reg].Stage == RS_Split) { 410 // Unsplit ranges that couldn't be allocated immediately are deferred until 411 // everything else has been allocated. 412 Prio = Size; 413 } else { 414 // Everything is allocated in long->short order. Long ranges that don't fit 415 // should be spilled (or split) ASAP so they don't create interference. 416 Prio = (1u << 31) + Size; 417 418 // Boost ranges that have a physical register hint. 419 if (VRM->hasKnownPreference(Reg)) 420 Prio |= (1u << 30); 421 } 422 423 Queue.push(std::make_pair(Prio, ~Reg)); 424 } 425 426 LiveInterval *RAGreedy::dequeue() { 427 if (Queue.empty()) 428 return 0; 429 LiveInterval *LI = &LIS->getInterval(~Queue.top().second); 430 Queue.pop(); 431 return LI; 432 } 433 434 435 //===----------------------------------------------------------------------===// 436 // Direct Assignment 437 //===----------------------------------------------------------------------===// 438 439 /// tryAssign - Try to assign VirtReg to an available register. 440 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 441 AllocationOrder &Order, 442 SmallVectorImpl<LiveInterval*> &NewVRegs) { 443 Order.rewind(); 444 unsigned PhysReg; 445 while ((PhysReg = Order.next())) 446 if (!Matrix->checkInterference(VirtReg, PhysReg)) 447 break; 448 if (!PhysReg || Order.isHint()) 449 return PhysReg; 450 451 // PhysReg is available, but there may be a better choice. 452 453 // If we missed a simple hint, try to cheaply evict interference from the 454 // preferred register. 455 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 456 if (Order.isHint(Hint)) { 457 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n'); 458 EvictionCost MaxCost(1); 459 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 460 evictInterference(VirtReg, Hint, NewVRegs); 461 return Hint; 462 } 463 } 464 465 // Try to evict interference from a cheaper alternative. 466 unsigned Cost = TRI->getCostPerUse(PhysReg); 467 468 // Most registers have 0 additional cost. 469 if (!Cost) 470 return PhysReg; 471 472 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost 473 << '\n'); 474 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 475 return CheapReg ? CheapReg : PhysReg; 476 } 477 478 479 //===----------------------------------------------------------------------===// 480 // Interference eviction 481 //===----------------------------------------------------------------------===// 482 483 /// shouldEvict - determine if A should evict the assigned live range B. The 484 /// eviction policy defined by this function together with the allocation order 485 /// defined by enqueue() decides which registers ultimately end up being split 486 /// and spilled. 487 /// 488 /// Cascade numbers are used to prevent infinite loops if this function is a 489 /// cyclic relation. 490 /// 491 /// @param A The live range to be assigned. 492 /// @param IsHint True when A is about to be assigned to its preferred 493 /// register. 494 /// @param B The live range to be evicted. 495 /// @param BreaksHint True when B is already assigned to its preferred register. 496 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 497 LiveInterval &B, bool BreaksHint) { 498 bool CanSplit = getStage(B) < RS_Spill; 499 500 // Be fairly aggressive about following hints as long as the evictee can be 501 // split. 502 if (CanSplit && IsHint && !BreaksHint) 503 return true; 504 505 return A.weight > B.weight; 506 } 507 508 /// canEvictInterference - Return true if all interferences between VirtReg and 509 /// PhysReg can be evicted. When OnlyCheap is set, don't do anything 510 /// 511 /// @param VirtReg Live range that is about to be assigned. 512 /// @param PhysReg Desired register for assignment. 513 /// @param IsHint True when PhysReg is VirtReg's preferred register. 514 /// @param MaxCost Only look for cheaper candidates and update with new cost 515 /// when returning true. 516 /// @returns True when interference can be evicted cheaper than MaxCost. 517 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 518 bool IsHint, EvictionCost &MaxCost) { 519 // It is only possible to evict virtual register interference. 520 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 521 return false; 522 523 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 524 // involved in an eviction before. If a cascade number was assigned, deny 525 // evicting anything with the same or a newer cascade number. This prevents 526 // infinite eviction loops. 527 // 528 // This works out so a register without a cascade number is allowed to evict 529 // anything, and it can be evicted by anything. 530 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 531 if (!Cascade) 532 Cascade = NextCascade; 533 534 EvictionCost Cost; 535 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 536 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 537 // If there is 10 or more interferences, chances are one is heavier. 538 if (Q.collectInterferingVRegs(10) >= 10) 539 return false; 540 541 // Check if any interfering live range is heavier than MaxWeight. 542 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 543 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 544 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && 545 "Only expecting virtual register interference from query"); 546 // Never evict spill products. They cannot split or spill. 547 if (getStage(*Intf) == RS_Done) 548 return false; 549 // Once a live range becomes small enough, it is urgent that we find a 550 // register for it. This is indicated by an infinite spill weight. These 551 // urgent live ranges get to evict almost anything. 552 // 553 // Also allow urgent evictions of unspillable ranges from a strictly 554 // larger allocation order. 555 bool Urgent = !VirtReg.isSpillable() && 556 (Intf->isSpillable() || 557 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 558 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 559 // Only evict older cascades or live ranges without a cascade. 560 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 561 if (Cascade <= IntfCascade) { 562 if (!Urgent) 563 return false; 564 // We permit breaking cascades for urgent evictions. It should be the 565 // last resort, though, so make it really expensive. 566 Cost.BrokenHints += 10; 567 } 568 // Would this break a satisfied hint? 569 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 570 // Update eviction cost. 571 Cost.BrokenHints += BreaksHint; 572 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 573 // Abort if this would be too expensive. 574 if (!(Cost < MaxCost)) 575 return false; 576 // Finally, apply the eviction policy for non-urgent evictions. 577 if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 578 return false; 579 } 580 } 581 MaxCost = Cost; 582 return true; 583 } 584 585 /// evictInterference - Evict any interferring registers that prevent VirtReg 586 /// from being assigned to Physreg. This assumes that canEvictInterference 587 /// returned true. 588 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 589 SmallVectorImpl<LiveInterval*> &NewVRegs) { 590 // Make sure that VirtReg has a cascade number, and assign that cascade 591 // number to every evicted register. These live ranges than then only be 592 // evicted by a newer cascade, preventing infinite loops. 593 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 594 if (!Cascade) 595 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 596 597 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI) 598 << " interference: Cascade " << Cascade << '\n'); 599 600 // Collect all interfering virtregs first. 601 SmallVector<LiveInterval*, 8> Intfs; 602 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 603 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 604 assert(Q.seenAllInterferences() && "Didn't check all interfererences."); 605 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 606 Intfs.append(IVR.begin(), IVR.end()); 607 } 608 609 // Evict them second. This will invalidate the queries. 610 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 611 LiveInterval *Intf = Intfs[i]; 612 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 613 if (!VRM->hasPhys(Intf->reg)) 614 continue; 615 Matrix->unassign(*Intf); 616 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 617 VirtReg.isSpillable() < Intf->isSpillable()) && 618 "Cannot decrease cascade number, illegal eviction"); 619 ExtraRegInfo[Intf->reg].Cascade = Cascade; 620 ++NumEvicted; 621 NewVRegs.push_back(Intf); 622 } 623 } 624 625 /// tryEvict - Try to evict all interferences for a physreg. 626 /// @param VirtReg Currently unassigned virtual register. 627 /// @param Order Physregs to try. 628 /// @return Physreg to assign VirtReg, or 0. 629 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 630 AllocationOrder &Order, 631 SmallVectorImpl<LiveInterval*> &NewVRegs, 632 unsigned CostPerUseLimit) { 633 NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled); 634 635 // Keep track of the cheapest interference seen so far. 636 EvictionCost BestCost(~0u); 637 unsigned BestPhys = 0; 638 unsigned OrderLimit = Order.getOrder().size(); 639 640 // When we are just looking for a reduced cost per use, don't break any 641 // hints, and only evict smaller spill weights. 642 if (CostPerUseLimit < ~0u) { 643 BestCost.BrokenHints = 0; 644 BestCost.MaxWeight = VirtReg.weight; 645 646 // Check of any registers in RC are below CostPerUseLimit. 647 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 648 unsigned MinCost = RegClassInfo.getMinCost(RC); 649 if (MinCost >= CostPerUseLimit) { 650 DEBUG(dbgs() << RC->getName() << " minimum cost = " << MinCost 651 << ", no cheaper registers to be found.\n"); 652 return 0; 653 } 654 655 // It is normal for register classes to have a long tail of registers with 656 // the same cost. We don't need to look at them if they're too expensive. 657 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 658 OrderLimit = RegClassInfo.getLastCostChange(RC); 659 DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n"); 660 } 661 } 662 663 Order.rewind(); 664 while (unsigned PhysReg = Order.nextWithDups(OrderLimit)) { 665 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 666 continue; 667 // The first use of a callee-saved register in a function has cost 1. 668 // Don't start using a CSR when the CostPerUseLimit is low. 669 if (CostPerUseLimit == 1) 670 if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg)) 671 if (!MRI->isPhysRegUsed(CSR)) { 672 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR " 673 << PrintReg(CSR, TRI) << '\n'); 674 continue; 675 } 676 677 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 678 continue; 679 680 // Best so far. 681 BestPhys = PhysReg; 682 683 // Stop if the hint can be used. 684 if (Order.isHint()) 685 break; 686 } 687 688 if (!BestPhys) 689 return 0; 690 691 evictInterference(VirtReg, BestPhys, NewVRegs); 692 return BestPhys; 693 } 694 695 696 //===----------------------------------------------------------------------===// 697 // Region Splitting 698 //===----------------------------------------------------------------------===// 699 700 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 701 /// interference pattern in Physreg and its aliases. Add the constraints to 702 /// SpillPlacement and return the static cost of this split in Cost, assuming 703 /// that all preferences in SplitConstraints are met. 704 /// Return false if there are no bundles with positive bias. 705 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 706 BlockFrequency &Cost) { 707 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 708 709 // Reset interference dependent info. 710 SplitConstraints.resize(UseBlocks.size()); 711 BlockFrequency StaticCost = 0; 712 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 713 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 714 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 715 716 BC.Number = BI.MBB->getNumber(); 717 Intf.moveToBlock(BC.Number); 718 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 719 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 720 BC.ChangesValue = BI.FirstDef.isValid(); 721 722 if (!Intf.hasInterference()) 723 continue; 724 725 // Number of spill code instructions to insert. 726 unsigned Ins = 0; 727 728 // Interference for the live-in value. 729 if (BI.LiveIn) { 730 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) 731 BC.Entry = SpillPlacement::MustSpill, ++Ins; 732 else if (Intf.first() < BI.FirstInstr) 733 BC.Entry = SpillPlacement::PrefSpill, ++Ins; 734 else if (Intf.first() < BI.LastInstr) 735 ++Ins; 736 } 737 738 // Interference for the live-out value. 739 if (BI.LiveOut) { 740 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) 741 BC.Exit = SpillPlacement::MustSpill, ++Ins; 742 else if (Intf.last() > BI.LastInstr) 743 BC.Exit = SpillPlacement::PrefSpill, ++Ins; 744 else if (Intf.last() > BI.FirstInstr) 745 ++Ins; 746 } 747 748 // Accumulate the total frequency of inserted spill code. 749 while (Ins--) 750 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 751 } 752 Cost = StaticCost; 753 754 // Add constraints for use-blocks. Note that these are the only constraints 755 // that may add a positive bias, it is downhill from here. 756 SpillPlacer->addConstraints(SplitConstraints); 757 return SpillPlacer->scanActiveBundles(); 758 } 759 760 761 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 762 /// live-through blocks in Blocks. 763 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 764 ArrayRef<unsigned> Blocks) { 765 const unsigned GroupSize = 8; 766 SpillPlacement::BlockConstraint BCS[GroupSize]; 767 unsigned TBS[GroupSize]; 768 unsigned B = 0, T = 0; 769 770 for (unsigned i = 0; i != Blocks.size(); ++i) { 771 unsigned Number = Blocks[i]; 772 Intf.moveToBlock(Number); 773 774 if (!Intf.hasInterference()) { 775 assert(T < GroupSize && "Array overflow"); 776 TBS[T] = Number; 777 if (++T == GroupSize) { 778 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 779 T = 0; 780 } 781 continue; 782 } 783 784 assert(B < GroupSize && "Array overflow"); 785 BCS[B].Number = Number; 786 787 // Interference for the live-in value. 788 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 789 BCS[B].Entry = SpillPlacement::MustSpill; 790 else 791 BCS[B].Entry = SpillPlacement::PrefSpill; 792 793 // Interference for the live-out value. 794 if (Intf.last() >= SA->getLastSplitPoint(Number)) 795 BCS[B].Exit = SpillPlacement::MustSpill; 796 else 797 BCS[B].Exit = SpillPlacement::PrefSpill; 798 799 if (++B == GroupSize) { 800 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B); 801 SpillPlacer->addConstraints(Array); 802 B = 0; 803 } 804 } 805 806 ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B); 807 SpillPlacer->addConstraints(Array); 808 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 809 } 810 811 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 812 // Keep track of through blocks that have not been added to SpillPlacer. 813 BitVector Todo = SA->getThroughBlocks(); 814 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 815 unsigned AddedTo = 0; 816 #ifndef NDEBUG 817 unsigned Visited = 0; 818 #endif 819 820 for (;;) { 821 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 822 // Find new through blocks in the periphery of PrefRegBundles. 823 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 824 unsigned Bundle = NewBundles[i]; 825 // Look at all blocks connected to Bundle in the full graph. 826 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 827 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 828 I != E; ++I) { 829 unsigned Block = *I; 830 if (!Todo.test(Block)) 831 continue; 832 Todo.reset(Block); 833 // This is a new through block. Add it to SpillPlacer later. 834 ActiveBlocks.push_back(Block); 835 #ifndef NDEBUG 836 ++Visited; 837 #endif 838 } 839 } 840 // Any new blocks to add? 841 if (ActiveBlocks.size() == AddedTo) 842 break; 843 844 // Compute through constraints from the interference, or assume that all 845 // through blocks prefer spilling when forming compact regions. 846 ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 847 if (Cand.PhysReg) 848 addThroughConstraints(Cand.Intf, NewBlocks); 849 else 850 // Provide a strong negative bias on through blocks to prevent unwanted 851 // liveness on loop backedges. 852 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 853 AddedTo = ActiveBlocks.size(); 854 855 // Perhaps iterating can enable more bundles? 856 SpillPlacer->iterate(); 857 } 858 DEBUG(dbgs() << ", v=" << Visited); 859 } 860 861 /// calcCompactRegion - Compute the set of edge bundles that should be live 862 /// when splitting the current live range into compact regions. Compact 863 /// regions can be computed without looking at interference. They are the 864 /// regions formed by removing all the live-through blocks from the live range. 865 /// 866 /// Returns false if the current live range is already compact, or if the 867 /// compact regions would form single block regions anyway. 868 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 869 // Without any through blocks, the live range is already compact. 870 if (!SA->getNumThroughBlocks()) 871 return false; 872 873 // Compact regions don't correspond to any physreg. 874 Cand.reset(IntfCache, 0); 875 876 DEBUG(dbgs() << "Compact region bundles"); 877 878 // Use the spill placer to determine the live bundles. GrowRegion pretends 879 // that all the through blocks have interference when PhysReg is unset. 880 SpillPlacer->prepare(Cand.LiveBundles); 881 882 // The static split cost will be zero since Cand.Intf reports no interference. 883 BlockFrequency Cost; 884 if (!addSplitConstraints(Cand.Intf, Cost)) { 885 DEBUG(dbgs() << ", none.\n"); 886 return false; 887 } 888 889 growRegion(Cand); 890 SpillPlacer->finish(); 891 892 if (!Cand.LiveBundles.any()) { 893 DEBUG(dbgs() << ", none.\n"); 894 return false; 895 } 896 897 DEBUG({ 898 for (int i = Cand.LiveBundles.find_first(); i>=0; 899 i = Cand.LiveBundles.find_next(i)) 900 dbgs() << " EB#" << i; 901 dbgs() << ".\n"; 902 }); 903 return true; 904 } 905 906 /// calcSpillCost - Compute how expensive it would be to split the live range in 907 /// SA around all use blocks instead of forming bundle regions. 908 BlockFrequency RAGreedy::calcSpillCost() { 909 BlockFrequency Cost = 0; 910 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 911 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 912 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 913 unsigned Number = BI.MBB->getNumber(); 914 // We normally only need one spill instruction - a load or a store. 915 Cost += SpillPlacer->getBlockFrequency(Number); 916 917 // Unless the value is redefined in the block. 918 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 919 Cost += SpillPlacer->getBlockFrequency(Number); 920 } 921 return Cost; 922 } 923 924 /// calcGlobalSplitCost - Return the global split cost of following the split 925 /// pattern in LiveBundles. This cost should be added to the local cost of the 926 /// interference pattern in SplitConstraints. 927 /// 928 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) { 929 BlockFrequency GlobalCost = 0; 930 const BitVector &LiveBundles = Cand.LiveBundles; 931 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 932 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 933 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 934 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 935 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)]; 936 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)]; 937 unsigned Ins = 0; 938 939 if (BI.LiveIn) 940 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 941 if (BI.LiveOut) 942 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 943 while (Ins--) 944 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 945 } 946 947 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 948 unsigned Number = Cand.ActiveBlocks[i]; 949 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)]; 950 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)]; 951 if (!RegIn && !RegOut) 952 continue; 953 if (RegIn && RegOut) { 954 // We need double spill code if this block has interference. 955 Cand.Intf.moveToBlock(Number); 956 if (Cand.Intf.hasInterference()) { 957 GlobalCost += SpillPlacer->getBlockFrequency(Number); 958 GlobalCost += SpillPlacer->getBlockFrequency(Number); 959 } 960 continue; 961 } 962 // live-in / stack-out or stack-in live-out. 963 GlobalCost += SpillPlacer->getBlockFrequency(Number); 964 } 965 return GlobalCost; 966 } 967 968 /// splitAroundRegion - Split the current live range around the regions 969 /// determined by BundleCand and GlobalCand. 970 /// 971 /// Before calling this function, GlobalCand and BundleCand must be initialized 972 /// so each bundle is assigned to a valid candidate, or NoCand for the 973 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 974 /// objects must be initialized for the current live range, and intervals 975 /// created for the used candidates. 976 /// 977 /// @param LREdit The LiveRangeEdit object handling the current split. 978 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 979 /// must appear in this list. 980 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 981 ArrayRef<unsigned> UsedCands) { 982 // These are the intervals created for new global ranges. We may create more 983 // intervals for local ranges. 984 const unsigned NumGlobalIntvs = LREdit.size(); 985 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 986 assert(NumGlobalIntvs && "No global intervals configured"); 987 988 // Isolate even single instructions when dealing with a proper sub-class. 989 // That guarantees register class inflation for the stack interval because it 990 // is all copies. 991 unsigned Reg = SA->getParent().reg; 992 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 993 994 // First handle all the blocks with uses. 995 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 996 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 997 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 998 unsigned Number = BI.MBB->getNumber(); 999 unsigned IntvIn = 0, IntvOut = 0; 1000 SlotIndex IntfIn, IntfOut; 1001 if (BI.LiveIn) { 1002 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1003 if (CandIn != NoCand) { 1004 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1005 IntvIn = Cand.IntvIdx; 1006 Cand.Intf.moveToBlock(Number); 1007 IntfIn = Cand.Intf.first(); 1008 } 1009 } 1010 if (BI.LiveOut) { 1011 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1012 if (CandOut != NoCand) { 1013 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1014 IntvOut = Cand.IntvIdx; 1015 Cand.Intf.moveToBlock(Number); 1016 IntfOut = Cand.Intf.last(); 1017 } 1018 } 1019 1020 // Create separate intervals for isolated blocks with multiple uses. 1021 if (!IntvIn && !IntvOut) { 1022 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n"); 1023 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1024 SE->splitSingleBlock(BI); 1025 continue; 1026 } 1027 1028 if (IntvIn && IntvOut) 1029 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1030 else if (IntvIn) 1031 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1032 else 1033 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1034 } 1035 1036 // Handle live-through blocks. The relevant live-through blocks are stored in 1037 // the ActiveBlocks list with each candidate. We need to filter out 1038 // duplicates. 1039 BitVector Todo = SA->getThroughBlocks(); 1040 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1041 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1042 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1043 unsigned Number = Blocks[i]; 1044 if (!Todo.test(Number)) 1045 continue; 1046 Todo.reset(Number); 1047 1048 unsigned IntvIn = 0, IntvOut = 0; 1049 SlotIndex IntfIn, IntfOut; 1050 1051 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)]; 1052 if (CandIn != NoCand) { 1053 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1054 IntvIn = Cand.IntvIdx; 1055 Cand.Intf.moveToBlock(Number); 1056 IntfIn = Cand.Intf.first(); 1057 } 1058 1059 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)]; 1060 if (CandOut != NoCand) { 1061 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1062 IntvOut = Cand.IntvIdx; 1063 Cand.Intf.moveToBlock(Number); 1064 IntfOut = Cand.Intf.last(); 1065 } 1066 if (!IntvIn && !IntvOut) 1067 continue; 1068 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1069 } 1070 } 1071 1072 ++NumGlobalSplits; 1073 1074 SmallVector<unsigned, 8> IntvMap; 1075 SE->finish(&IntvMap); 1076 DebugVars->splitRegister(Reg, LREdit.regs()); 1077 1078 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1079 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1080 1081 // Sort out the new intervals created by splitting. We get four kinds: 1082 // - Remainder intervals should not be split again. 1083 // - Candidate intervals can be assigned to Cand.PhysReg. 1084 // - Block-local splits are candidates for local splitting. 1085 // - DCE leftovers should go back on the queue. 1086 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1087 LiveInterval &Reg = *LREdit.get(i); 1088 1089 // Ignore old intervals from DCE. 1090 if (getStage(Reg) != RS_New) 1091 continue; 1092 1093 // Remainder interval. Don't try splitting again, spill if it doesn't 1094 // allocate. 1095 if (IntvMap[i] == 0) { 1096 setStage(Reg, RS_Spill); 1097 continue; 1098 } 1099 1100 // Global intervals. Allow repeated splitting as long as the number of live 1101 // blocks is strictly decreasing. 1102 if (IntvMap[i] < NumGlobalIntvs) { 1103 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1104 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1105 << " blocks as original.\n"); 1106 // Don't allow repeated splitting as a safe guard against looping. 1107 setStage(Reg, RS_Split2); 1108 } 1109 continue; 1110 } 1111 1112 // Other intervals are treated as new. This includes local intervals created 1113 // for blocks with multiple uses, and anything created by DCE. 1114 } 1115 1116 if (VerifyEnabled) 1117 MF->verify(this, "After splitting live range around region"); 1118 } 1119 1120 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1121 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1122 unsigned NumCands = 0; 1123 unsigned BestCand = NoCand; 1124 BlockFrequency BestCost; 1125 SmallVector<unsigned, 8> UsedCands; 1126 1127 // Check if we can split this live range around a compact region. 1128 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1129 if (HasCompact) { 1130 // Yes, keep GlobalCand[0] as the compact region candidate. 1131 NumCands = 1; 1132 BestCost = BlockFrequency::getMaxFrequency(); 1133 } else { 1134 // No benefit from the compact region, our fallback will be per-block 1135 // splitting. Make sure we find a solution that is cheaper than spilling. 1136 BestCost = calcSpillCost(); 1137 DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n'); 1138 } 1139 1140 Order.rewind(); 1141 while (unsigned PhysReg = Order.next()) { 1142 // Discard bad candidates before we run out of interference cache cursors. 1143 // This will only affect register classes with a lot of registers (>32). 1144 if (NumCands == IntfCache.getMaxCursors()) { 1145 unsigned WorstCount = ~0u; 1146 unsigned Worst = 0; 1147 for (unsigned i = 0; i != NumCands; ++i) { 1148 if (i == BestCand || !GlobalCand[i].PhysReg) 1149 continue; 1150 unsigned Count = GlobalCand[i].LiveBundles.count(); 1151 if (Count < WorstCount) 1152 Worst = i, WorstCount = Count; 1153 } 1154 --NumCands; 1155 GlobalCand[Worst] = GlobalCand[NumCands]; 1156 if (BestCand == NumCands) 1157 BestCand = Worst; 1158 } 1159 1160 if (GlobalCand.size() <= NumCands) 1161 GlobalCand.resize(NumCands+1); 1162 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1163 Cand.reset(IntfCache, PhysReg); 1164 1165 SpillPlacer->prepare(Cand.LiveBundles); 1166 BlockFrequency Cost; 1167 if (!addSplitConstraints(Cand.Intf, Cost)) { 1168 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n"); 1169 continue; 1170 } 1171 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost); 1172 if (Cost >= BestCost) { 1173 DEBUG({ 1174 if (BestCand == NoCand) 1175 dbgs() << " worse than no bundles\n"; 1176 else 1177 dbgs() << " worse than " 1178 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1179 }); 1180 continue; 1181 } 1182 growRegion(Cand); 1183 1184 SpillPlacer->finish(); 1185 1186 // No live bundles, defer to splitSingleBlocks(). 1187 if (!Cand.LiveBundles.any()) { 1188 DEBUG(dbgs() << " no bundles.\n"); 1189 continue; 1190 } 1191 1192 Cost += calcGlobalSplitCost(Cand); 1193 DEBUG({ 1194 dbgs() << ", total = " << Cost << " with bundles"; 1195 for (int i = Cand.LiveBundles.find_first(); i>=0; 1196 i = Cand.LiveBundles.find_next(i)) 1197 dbgs() << " EB#" << i; 1198 dbgs() << ".\n"; 1199 }); 1200 if (Cost < BestCost) { 1201 BestCand = NumCands; 1202 BestCost = Cost; 1203 } 1204 ++NumCands; 1205 } 1206 1207 // No solutions found, fall back to single block splitting. 1208 if (!HasCompact && BestCand == NoCand) 1209 return 0; 1210 1211 // Prepare split editor. 1212 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1213 SE->reset(LREdit, SplitSpillMode); 1214 1215 // Assign all edge bundles to the preferred candidate, or NoCand. 1216 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1217 1218 // Assign bundles for the best candidate region. 1219 if (BestCand != NoCand) { 1220 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1221 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1222 UsedCands.push_back(BestCand); 1223 Cand.IntvIdx = SE->openIntv(); 1224 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in " 1225 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1226 (void)B; 1227 } 1228 } 1229 1230 // Assign bundles for the compact region. 1231 if (HasCompact) { 1232 GlobalSplitCandidate &Cand = GlobalCand.front(); 1233 assert(!Cand.PhysReg && "Compact region has no physreg"); 1234 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1235 UsedCands.push_back(0); 1236 Cand.IntvIdx = SE->openIntv(); 1237 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1238 << Cand.IntvIdx << ".\n"); 1239 (void)B; 1240 } 1241 } 1242 1243 splitAroundRegion(LREdit, UsedCands); 1244 return 0; 1245 } 1246 1247 1248 //===----------------------------------------------------------------------===// 1249 // Per-Block Splitting 1250 //===----------------------------------------------------------------------===// 1251 1252 /// tryBlockSplit - Split a global live range around every block with uses. This 1253 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1254 /// they don't allocate. 1255 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1256 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1257 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1258 unsigned Reg = VirtReg.reg; 1259 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1260 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1261 SE->reset(LREdit, SplitSpillMode); 1262 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1263 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1264 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1265 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1266 SE->splitSingleBlock(BI); 1267 } 1268 // No blocks were split. 1269 if (LREdit.empty()) 1270 return 0; 1271 1272 // We did split for some blocks. 1273 SmallVector<unsigned, 8> IntvMap; 1274 SE->finish(&IntvMap); 1275 1276 // Tell LiveDebugVariables about the new ranges. 1277 DebugVars->splitRegister(Reg, LREdit.regs()); 1278 1279 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1280 1281 // Sort out the new intervals created by splitting. The remainder interval 1282 // goes straight to spilling, the new local ranges get to stay RS_New. 1283 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1284 LiveInterval &LI = *LREdit.get(i); 1285 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1286 setStage(LI, RS_Spill); 1287 } 1288 1289 if (VerifyEnabled) 1290 MF->verify(this, "After splitting live range around basic blocks"); 1291 return 0; 1292 } 1293 1294 1295 //===----------------------------------------------------------------------===// 1296 // Per-Instruction Splitting 1297 //===----------------------------------------------------------------------===// 1298 1299 /// tryInstructionSplit - Split a live range around individual instructions. 1300 /// This is normally not worthwhile since the spiller is doing essentially the 1301 /// same thing. However, when the live range is in a constrained register 1302 /// class, it may help to insert copies such that parts of the live range can 1303 /// be moved to a larger register class. 1304 /// 1305 /// This is similar to spilling to a larger register class. 1306 unsigned 1307 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1308 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1309 // There is no point to this if there are no larger sub-classes. 1310 if (!RegClassInfo.isProperSubClass(MRI->getRegClass(VirtReg.reg))) 1311 return 0; 1312 1313 // Always enable split spill mode, since we're effectively spilling to a 1314 // register. 1315 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1316 SE->reset(LREdit, SplitEditor::SM_Size); 1317 1318 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1319 if (Uses.size() <= 1) 1320 return 0; 1321 1322 DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n"); 1323 1324 // Split around every non-copy instruction. 1325 for (unsigned i = 0; i != Uses.size(); ++i) { 1326 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 1327 if (MI->isFullCopy()) { 1328 DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 1329 continue; 1330 } 1331 SE->openIntv(); 1332 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 1333 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 1334 SE->useIntv(SegStart, SegStop); 1335 } 1336 1337 if (LREdit.empty()) { 1338 DEBUG(dbgs() << "All uses were copies.\n"); 1339 return 0; 1340 } 1341 1342 SmallVector<unsigned, 8> IntvMap; 1343 SE->finish(&IntvMap); 1344 DebugVars->splitRegister(VirtReg.reg, LREdit.regs()); 1345 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1346 1347 // Assign all new registers to RS_Spill. This was the last chance. 1348 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1349 return 0; 1350 } 1351 1352 1353 //===----------------------------------------------------------------------===// 1354 // Local Splitting 1355 //===----------------------------------------------------------------------===// 1356 1357 1358 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1359 /// in order to use PhysReg between two entries in SA->UseSlots. 1360 /// 1361 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 1362 /// 1363 void RAGreedy::calcGapWeights(unsigned PhysReg, 1364 SmallVectorImpl<float> &GapWeight) { 1365 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1366 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1367 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1368 const unsigned NumGaps = Uses.size()-1; 1369 1370 // Start and end points for the interference check. 1371 SlotIndex StartIdx = 1372 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1373 SlotIndex StopIdx = 1374 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1375 1376 GapWeight.assign(NumGaps, 0.0f); 1377 1378 // Add interference from each overlapping register. 1379 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1380 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1381 .checkInterference()) 1382 continue; 1383 1384 // We know that VirtReg is a continuous interval from FirstInstr to 1385 // LastInstr, so we don't need InterferenceQuery. 1386 // 1387 // Interference that overlaps an instruction is counted in both gaps 1388 // surrounding the instruction. The exception is interference before 1389 // StartIdx and after StopIdx. 1390 // 1391 LiveIntervalUnion::SegmentIter IntI = 1392 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1393 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1394 // Skip the gaps before IntI. 1395 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1396 if (++Gap == NumGaps) 1397 break; 1398 if (Gap == NumGaps) 1399 break; 1400 1401 // Update the gaps covered by IntI. 1402 const float weight = IntI.value()->weight; 1403 for (; Gap != NumGaps; ++Gap) { 1404 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1405 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1406 break; 1407 } 1408 if (Gap == NumGaps) 1409 break; 1410 } 1411 } 1412 1413 // Add fixed interference. 1414 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1415 const LiveInterval &LI = LIS->getRegUnit(*Units); 1416 LiveInterval::const_iterator I = LI.find(StartIdx); 1417 LiveInterval::const_iterator E = LI.end(); 1418 1419 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1420 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1421 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1422 if (++Gap == NumGaps) 1423 break; 1424 if (Gap == NumGaps) 1425 break; 1426 1427 for (; Gap != NumGaps; ++Gap) { 1428 GapWeight[Gap] = HUGE_VALF; 1429 if (Uses[Gap+1].getBaseIndex() >= I->end) 1430 break; 1431 } 1432 if (Gap == NumGaps) 1433 break; 1434 } 1435 } 1436 } 1437 1438 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1439 /// basic block. 1440 /// 1441 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1442 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1443 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1444 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1445 1446 // Note that it is possible to have an interval that is live-in or live-out 1447 // while only covering a single block - A phi-def can use undef values from 1448 // predecessors, and the block could be a single-block loop. 1449 // We don't bother doing anything clever about such a case, we simply assume 1450 // that the interval is continuous from FirstInstr to LastInstr. We should 1451 // make sure that we don't do anything illegal to such an interval, though. 1452 1453 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1454 if (Uses.size() <= 2) 1455 return 0; 1456 const unsigned NumGaps = Uses.size()-1; 1457 1458 DEBUG({ 1459 dbgs() << "tryLocalSplit: "; 1460 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 1461 dbgs() << ' ' << Uses[i]; 1462 dbgs() << '\n'; 1463 }); 1464 1465 // If VirtReg is live across any register mask operands, compute a list of 1466 // gaps with register masks. 1467 SmallVector<unsigned, 8> RegMaskGaps; 1468 if (Matrix->checkRegMaskInterference(VirtReg)) { 1469 // Get regmask slots for the whole block. 1470 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1471 DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1472 // Constrain to VirtReg's live range. 1473 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 1474 Uses.front().getRegSlot()) - RMS.begin(); 1475 unsigned re = RMS.size(); 1476 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 1477 // Look for Uses[i] <= RMS <= Uses[i+1]. 1478 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 1479 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 1480 continue; 1481 // Skip a regmask on the same instruction as the last use. It doesn't 1482 // overlap the live range. 1483 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 1484 break; 1485 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]); 1486 RegMaskGaps.push_back(i); 1487 // Advance ri to the next gap. A regmask on one of the uses counts in 1488 // both gaps. 1489 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 1490 ++ri; 1491 } 1492 DEBUG(dbgs() << '\n'); 1493 } 1494 1495 // Since we allow local split results to be split again, there is a risk of 1496 // creating infinite loops. It is tempting to require that the new live 1497 // ranges have less instructions than the original. That would guarantee 1498 // convergence, but it is too strict. A live range with 3 instructions can be 1499 // split 2+3 (including the COPY), and we want to allow that. 1500 // 1501 // Instead we use these rules: 1502 // 1503 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1504 // noop split, of course). 1505 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1506 // the new ranges must have fewer instructions than before the split. 1507 // 3. New ranges with the same number of instructions are marked RS_Split2, 1508 // smaller ranges are marked RS_New. 1509 // 1510 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1511 // excessive splitting and infinite loops. 1512 // 1513 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 1514 1515 // Best split candidate. 1516 unsigned BestBefore = NumGaps; 1517 unsigned BestAfter = 0; 1518 float BestDiff = 0; 1519 1520 const float blockFreq = 1521 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1522 (1.0f / BlockFrequency::getEntryFrequency()); 1523 SmallVector<float, 8> GapWeight; 1524 1525 Order.rewind(); 1526 while (unsigned PhysReg = Order.next()) { 1527 // Keep track of the largest spill weight that would need to be evicted in 1528 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 1529 calcGapWeights(PhysReg, GapWeight); 1530 1531 // Remove any gaps with regmask clobbers. 1532 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1533 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 1534 GapWeight[RegMaskGaps[i]] = HUGE_VALF; 1535 1536 // Try to find the best sequence of gaps to close. 1537 // The new spill weight must be larger than any gap interference. 1538 1539 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1540 unsigned SplitBefore = 0, SplitAfter = 1; 1541 1542 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1543 // It is the spill weight that needs to be evicted. 1544 float MaxGap = GapWeight[0]; 1545 1546 for (;;) { 1547 // Live before/after split? 1548 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1549 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1550 1551 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' 1552 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 1553 << " i=" << MaxGap); 1554 1555 // Stop before the interval gets so big we wouldn't be making progress. 1556 if (!LiveBefore && !LiveAfter) { 1557 DEBUG(dbgs() << " all\n"); 1558 break; 1559 } 1560 // Should the interval be extended or shrunk? 1561 bool Shrink = true; 1562 1563 // How many gaps would the new range have? 1564 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1565 1566 // Legally, without causing looping? 1567 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1568 1569 if (Legal && MaxGap < HUGE_VALF) { 1570 // Estimate the new spill weight. Each instruction reads or writes the 1571 // register. Conservatively assume there are no read-modify-write 1572 // instructions. 1573 // 1574 // Try to guess the size of the new interval. 1575 const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1), 1576 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1577 (LiveBefore + LiveAfter)*SlotIndex::InstrDist); 1578 // Would this split be possible to allocate? 1579 // Never allocate all gaps, we wouldn't be making progress. 1580 DEBUG(dbgs() << " w=" << EstWeight); 1581 if (EstWeight * Hysteresis >= MaxGap) { 1582 Shrink = false; 1583 float Diff = EstWeight - MaxGap; 1584 if (Diff > BestDiff) { 1585 DEBUG(dbgs() << " (best)"); 1586 BestDiff = Hysteresis * Diff; 1587 BestBefore = SplitBefore; 1588 BestAfter = SplitAfter; 1589 } 1590 } 1591 } 1592 1593 // Try to shrink. 1594 if (Shrink) { 1595 if (++SplitBefore < SplitAfter) { 1596 DEBUG(dbgs() << " shrink\n"); 1597 // Recompute the max when necessary. 1598 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1599 MaxGap = GapWeight[SplitBefore]; 1600 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 1601 MaxGap = std::max(MaxGap, GapWeight[i]); 1602 } 1603 continue; 1604 } 1605 MaxGap = 0; 1606 } 1607 1608 // Try to extend the interval. 1609 if (SplitAfter >= NumGaps) { 1610 DEBUG(dbgs() << " end\n"); 1611 break; 1612 } 1613 1614 DEBUG(dbgs() << " extend\n"); 1615 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1616 } 1617 } 1618 1619 // Didn't find any candidates? 1620 if (BestBefore == NumGaps) 1621 return 0; 1622 1623 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 1624 << '-' << Uses[BestAfter] << ", " << BestDiff 1625 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 1626 1627 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1628 SE->reset(LREdit); 1629 1630 SE->openIntv(); 1631 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1632 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1633 SE->useIntv(SegStart, SegStop); 1634 SmallVector<unsigned, 8> IntvMap; 1635 SE->finish(&IntvMap); 1636 DebugVars->splitRegister(VirtReg.reg, LREdit.regs()); 1637 1638 // If the new range has the same number of instructions as before, mark it as 1639 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1640 // leave the new intervals as RS_New so they can compete. 1641 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1642 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1643 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1644 if (NewGaps >= NumGaps) { 1645 DEBUG(dbgs() << "Tagging non-progress ranges: "); 1646 assert(!ProgressRequired && "Didn't make progress when it was required."); 1647 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 1648 if (IntvMap[i] == 1) { 1649 setStage(*LREdit.get(i), RS_Split2); 1650 DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg)); 1651 } 1652 DEBUG(dbgs() << '\n'); 1653 } 1654 ++NumLocalSplits; 1655 1656 return 0; 1657 } 1658 1659 //===----------------------------------------------------------------------===// 1660 // Live Range Splitting 1661 //===----------------------------------------------------------------------===// 1662 1663 /// trySplit - Try to split VirtReg or one of its interferences, making it 1664 /// assignable. 1665 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1666 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 1667 SmallVectorImpl<LiveInterval*>&NewVRegs) { 1668 // Ranges must be Split2 or less. 1669 if (getStage(VirtReg) >= RS_Spill) 1670 return 0; 1671 1672 // Local intervals are handled separately. 1673 if (LIS->intervalIsInOneMBB(VirtReg)) { 1674 NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled); 1675 SA->analyze(&VirtReg); 1676 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1677 if (PhysReg || !NewVRegs.empty()) 1678 return PhysReg; 1679 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1680 } 1681 1682 NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled); 1683 1684 SA->analyze(&VirtReg); 1685 1686 // FIXME: SplitAnalysis may repair broken live ranges coming from the 1687 // coalescer. That may cause the range to become allocatable which means that 1688 // tryRegionSplit won't be making progress. This check should be replaced with 1689 // an assertion when the coalescer is fixed. 1690 if (SA->didRepairRange()) { 1691 // VirtReg has changed, so all cached queries are invalid. 1692 Matrix->invalidateVirtRegs(); 1693 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1694 return PhysReg; 1695 } 1696 1697 // First try to split around a region spanning multiple blocks. RS_Split2 1698 // ranges already made dubious progress with region splitting, so they go 1699 // straight to single block splitting. 1700 if (getStage(VirtReg) < RS_Split2) { 1701 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1702 if (PhysReg || !NewVRegs.empty()) 1703 return PhysReg; 1704 } 1705 1706 // Then isolate blocks. 1707 return tryBlockSplit(VirtReg, Order, NewVRegs); 1708 } 1709 1710 1711 //===----------------------------------------------------------------------===// 1712 // Main Entry Point 1713 //===----------------------------------------------------------------------===// 1714 1715 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 1716 SmallVectorImpl<LiveInterval*> &NewVRegs) { 1717 // First try assigning a free register. 1718 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo); 1719 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 1720 return PhysReg; 1721 1722 LiveRangeStage Stage = getStage(VirtReg); 1723 DEBUG(dbgs() << StageName[Stage] 1724 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 1725 1726 // Try to evict a less worthy live range, but only for ranges from the primary 1727 // queue. The RS_Split ranges already failed to do this, and they should not 1728 // get a second chance until they have been split. 1729 if (Stage != RS_Split) 1730 if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs)) 1731 return PhysReg; 1732 1733 assert(NewVRegs.empty() && "Cannot append to existing NewVRegs"); 1734 1735 // The first time we see a live range, don't try to split or spill. 1736 // Wait until the second time, when all smaller ranges have been allocated. 1737 // This gives a better picture of the interference to split around. 1738 if (Stage < RS_Split) { 1739 setStage(VirtReg, RS_Split); 1740 DEBUG(dbgs() << "wait for second round\n"); 1741 NewVRegs.push_back(&VirtReg); 1742 return 0; 1743 } 1744 1745 // If we couldn't allocate a register from spilling, there is probably some 1746 // invalid inline assembly. The base class wil report it. 1747 if (Stage >= RS_Done || !VirtReg.isSpillable()) 1748 return ~0u; 1749 1750 // Try splitting VirtReg or interferences. 1751 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 1752 if (PhysReg || !NewVRegs.empty()) 1753 return PhysReg; 1754 1755 // Finally spill VirtReg itself. 1756 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled); 1757 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this); 1758 spiller().spill(LRE); 1759 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 1760 1761 if (VerifyEnabled) 1762 MF->verify(this, "After spilling"); 1763 1764 // The live virtual register requesting allocation was spilled, so tell 1765 // the caller not to allocate anything during this round. 1766 return 0; 1767 } 1768 1769 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 1770 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 1771 << "********** Function: " << mf.getName() << '\n'); 1772 1773 MF = &mf; 1774 if (VerifyEnabled) 1775 MF->verify(this, "Before greedy register allocator"); 1776 1777 RegAllocBase::init(getAnalysis<VirtRegMap>(), 1778 getAnalysis<LiveIntervals>(), 1779 getAnalysis<LiveRegMatrix>()); 1780 Indexes = &getAnalysis<SlotIndexes>(); 1781 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 1782 DomTree = &getAnalysis<MachineDominatorTree>(); 1783 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 1784 Loops = &getAnalysis<MachineLoopInfo>(); 1785 Bundles = &getAnalysis<EdgeBundles>(); 1786 SpillPlacer = &getAnalysis<SpillPlacement>(); 1787 DebugVars = &getAnalysis<LiveDebugVariables>(); 1788 1789 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 1790 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI)); 1791 ExtraRegInfo.clear(); 1792 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1793 NextCascade = 1; 1794 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 1795 GlobalCand.resize(32); // This will grow as needed. 1796 1797 allocatePhysRegs(); 1798 releaseMemory(); 1799 return true; 1800 } 1801