1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RegAllocGreedy.h"
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "RegAllocEvictionAdvisor.h"
20 #include "SpillPlacement.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/DebugInfoMetadata.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/MC/MCRegisterInfo.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/BlockFrequency.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/Timer.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <utility>
77 
78 using namespace llvm;
79 
80 #define DEBUG_TYPE "regalloc"
81 
82 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
83 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
84 STATISTIC(NumEvicted,      "Number of interferences evicted");
85 
86 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
87     "split-spill-mode", cl::Hidden,
88     cl::desc("Spill mode for splitting live ranges"),
89     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
90                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
91                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
92     cl::init(SplitEditor::SM_Speed));
93 
94 static cl::opt<unsigned>
95 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
96                              cl::desc("Last chance recoloring max depth"),
97                              cl::init(5));
98 
99 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
100     "lcr-max-interf", cl::Hidden,
101     cl::desc("Last chance recoloring maximum number of considered"
102              " interference at a time"),
103     cl::init(8));
104 
105 static cl::opt<bool> ExhaustiveSearch(
106     "exhaustive-register-search", cl::NotHidden,
107     cl::desc("Exhaustive Search for registers bypassing the depth "
108              "and interference cutoffs of last chance recoloring"),
109     cl::Hidden);
110 
111 static cl::opt<bool> EnableDeferredSpilling(
112     "enable-deferred-spilling", cl::Hidden,
113     cl::desc("Instead of spilling a variable right away, defer the actual "
114              "code insertion to the end of the allocation. That way the "
115              "allocator might still find a suitable coloring for this "
116              "variable because of other evicted variables."),
117     cl::init(false));
118 
119 // FIXME: Find a good default for this flag and remove the flag.
120 static cl::opt<unsigned>
121 CSRFirstTimeCost("regalloc-csr-first-time-cost",
122               cl::desc("Cost for first time use of callee-saved register."),
123               cl::init(0), cl::Hidden);
124 
125 static cl::opt<unsigned long> GrowRegionComplexityBudget(
126     "grow-region-complexity-budget",
127     cl::desc("growRegion() does not scale with the number of BB edges, so "
128              "limit its budget and bail out once we reach the limit."),
129     cl::init(10000), cl::Hidden);
130 
131 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
132                                        createGreedyRegisterAllocator);
133 
134 char RAGreedy::ID = 0;
135 char &llvm::RAGreedyID = RAGreedy::ID;
136 
137 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
138                 "Greedy Register Allocator", false, false)
139 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
140 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
141 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
142 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
143 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
144 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
145 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
146 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
147 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
148 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
149 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
150 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
151 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
152 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
153 INITIALIZE_PASS_END(RAGreedy, "greedy",
154                 "Greedy Register Allocator", false, false)
155 
156 #ifndef NDEBUG
157 const char *const RAGreedy::StageName[] = {
158     "RS_New",
159     "RS_Assign",
160     "RS_Split",
161     "RS_Split2",
162     "RS_Spill",
163     "RS_Memory",
164     "RS_Done"
165 };
166 #endif
167 
168 // Hysteresis to use when comparing floats.
169 // This helps stabilize decisions based on float comparisons.
170 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
171 
172 FunctionPass* llvm::createGreedyRegisterAllocator() {
173   return new RAGreedy();
174 }
175 
176 namespace llvm {
177 FunctionPass* createGreedyRegisterAllocator(
178   std::function<bool(const TargetRegisterInfo &TRI,
179                      const TargetRegisterClass &RC)> Ftor);
180 
181 }
182 
183 FunctionPass* llvm::createGreedyRegisterAllocator(
184   std::function<bool(const TargetRegisterInfo &TRI,
185                      const TargetRegisterClass &RC)> Ftor) {
186   return new RAGreedy(Ftor);
187 }
188 
189 RAGreedy::RAGreedy(RegClassFilterFunc F):
190   MachineFunctionPass(ID),
191   RegAllocBase(F) {
192 }
193 
194 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
195   AU.setPreservesCFG();
196   AU.addRequired<MachineBlockFrequencyInfo>();
197   AU.addPreserved<MachineBlockFrequencyInfo>();
198   AU.addRequired<AAResultsWrapperPass>();
199   AU.addPreserved<AAResultsWrapperPass>();
200   AU.addRequired<LiveIntervals>();
201   AU.addPreserved<LiveIntervals>();
202   AU.addRequired<SlotIndexes>();
203   AU.addPreserved<SlotIndexes>();
204   AU.addRequired<LiveDebugVariables>();
205   AU.addPreserved<LiveDebugVariables>();
206   AU.addRequired<LiveStacks>();
207   AU.addPreserved<LiveStacks>();
208   AU.addRequired<MachineDominatorTree>();
209   AU.addPreserved<MachineDominatorTree>();
210   AU.addRequired<MachineLoopInfo>();
211   AU.addPreserved<MachineLoopInfo>();
212   AU.addRequired<VirtRegMap>();
213   AU.addPreserved<VirtRegMap>();
214   AU.addRequired<LiveRegMatrix>();
215   AU.addPreserved<LiveRegMatrix>();
216   AU.addRequired<EdgeBundles>();
217   AU.addRequired<SpillPlacement>();
218   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
219   AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
220   MachineFunctionPass::getAnalysisUsage(AU);
221 }
222 
223 //===----------------------------------------------------------------------===//
224 //                     LiveRangeEdit delegate methods
225 //===----------------------------------------------------------------------===//
226 
227 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
228   LiveInterval &LI = LIS->getInterval(VirtReg);
229   if (VRM->hasPhys(VirtReg)) {
230     Matrix->unassign(LI);
231     aboutToRemoveInterval(LI);
232     return true;
233   }
234   // Unassigned virtreg is probably in the priority queue.
235   // RegAllocBase will erase it after dequeueing.
236   // Nonetheless, clear the live-range so that the debug
237   // dump will show the right state for that VirtReg.
238   LI.clear();
239   return false;
240 }
241 
242 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
243   if (!VRM->hasPhys(VirtReg))
244     return;
245 
246   // Register is assigned, put it back on the queue for reassignment.
247   LiveInterval &LI = LIS->getInterval(VirtReg);
248   Matrix->unassign(LI);
249   RegAllocBase::enqueue(&LI);
250 }
251 
252 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
253   ExtraInfo->LRE_DidCloneVirtReg(New, Old);
254 }
255 
256 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
257   // Cloning a register we haven't even heard about yet?  Just ignore it.
258   if (!Info.inBounds(Old))
259     return;
260 
261   // LRE may clone a virtual register because dead code elimination causes it to
262   // be split into connected components. The new components are much smaller
263   // than the original, so they should get a new chance at being assigned.
264   // same stage as the parent.
265   Info[Old].Stage = RS_Assign;
266   Info.grow(New.id());
267   Info[New] = Info[Old];
268 }
269 
270 void RAGreedy::releaseMemory() {
271   SpillerInstance.reset();
272   GlobalCand.clear();
273 }
274 
275 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); }
276 
277 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) {
278   // Prioritize live ranges by size, assigning larger ranges first.
279   // The queue holds (size, reg) pairs.
280   const unsigned Size = LI->getSize();
281   const Register Reg = LI->reg();
282   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
283   unsigned Prio;
284 
285   auto Stage = ExtraInfo->getOrInitStage(Reg);
286   if (Stage == RS_New) {
287     Stage = RS_Assign;
288     ExtraInfo->setStage(Reg, Stage);
289   }
290   if (Stage == RS_Split) {
291     // Unsplit ranges that couldn't be allocated immediately are deferred until
292     // everything else has been allocated.
293     Prio = Size;
294   } else if (Stage == RS_Memory) {
295     // Memory operand should be considered last.
296     // Change the priority such that Memory operand are assigned in
297     // the reverse order that they came in.
298     // TODO: Make this a member variable and probably do something about hints.
299     static unsigned MemOp = 0;
300     Prio = MemOp++;
301   } else {
302     // Giant live ranges fall back to the global assignment heuristic, which
303     // prevents excessive spilling in pathological cases.
304     bool ReverseLocal = TRI->reverseLocalAssignment();
305     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
306     bool ForceGlobal = !ReverseLocal &&
307       (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC));
308 
309     if (Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
310         LIS->intervalIsInOneMBB(*LI)) {
311       // Allocate original local ranges in linear instruction order. Since they
312       // are singly defined, this produces optimal coloring in the absence of
313       // global interference and other constraints.
314       if (!ReverseLocal)
315         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
316       else {
317         // Allocating bottom up may allow many short LRGs to be assigned first
318         // to one of the cheap registers. This could be much faster for very
319         // large blocks on targets with many physical registers.
320         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
321       }
322     } else {
323       // Allocate global and split ranges in long->short order. Long ranges that
324       // don't fit should be spilled (or split) ASAP so they don't create
325       // interference.  Mark a bit to prioritize global above local ranges.
326       Prio = (1u << 29) + Size;
327     }
328     Prio |= RC.AllocationPriority << 24;
329 
330     // Mark a higher bit to prioritize global and local above RS_Split.
331     Prio |= (1u << 31);
332 
333     // Boost ranges that have a physical register hint.
334     if (VRM->hasKnownPreference(Reg))
335       Prio |= (1u << 30);
336   }
337   // The virtual register number is a tie breaker for same-sized ranges.
338   // Give lower vreg numbers higher priority to assign them first.
339   CurQueue.push(std::make_pair(Prio, ~Reg));
340 }
341 
342 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
343 
344 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
345   if (CurQueue.empty())
346     return nullptr;
347   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
348   CurQueue.pop();
349   return LI;
350 }
351 
352 //===----------------------------------------------------------------------===//
353 //                            Direct Assignment
354 //===----------------------------------------------------------------------===//
355 
356 /// tryAssign - Try to assign VirtReg to an available register.
357 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg,
358                                AllocationOrder &Order,
359                                SmallVectorImpl<Register> &NewVRegs,
360                                const SmallVirtRegSet &FixedRegisters) {
361   MCRegister PhysReg;
362   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
363     assert(*I);
364     if (!Matrix->checkInterference(VirtReg, *I)) {
365       if (I.isHint())
366         return *I;
367       else
368         PhysReg = *I;
369     }
370   }
371   if (!PhysReg.isValid())
372     return PhysReg;
373 
374   // PhysReg is available, but there may be a better choice.
375 
376   // If we missed a simple hint, try to cheaply evict interference from the
377   // preferred register.
378   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
379     if (Order.isHint(Hint)) {
380       MCRegister PhysHint = Hint.asMCReg();
381       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
382 
383       if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
384                                                  FixedRegisters)) {
385         evictInterference(VirtReg, PhysHint, NewVRegs);
386         return PhysHint;
387       }
388       // Record the missed hint, we may be able to recover
389       // at the end if the surrounding allocation changed.
390       SetOfBrokenHints.insert(&VirtReg);
391     }
392 
393   // Try to evict interference from a cheaper alternative.
394   uint8_t Cost = RegCosts[PhysReg];
395 
396   // Most registers have 0 additional cost.
397   if (!Cost)
398     return PhysReg;
399 
400   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
401                     << (unsigned)Cost << '\n');
402   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
403   return CheapReg ? CheapReg : PhysReg;
404 }
405 
406 //===----------------------------------------------------------------------===//
407 //                         Interference eviction
408 //===----------------------------------------------------------------------===//
409 
410 Register RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg,
411                                               Register PrevReg) const {
412   auto Order =
413       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
414   MCRegister PhysReg;
415   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
416     if ((*I).id() == PrevReg.id())
417       continue;
418 
419     MCRegUnitIterator Units(*I, TRI);
420     for (; Units.isValid(); ++Units) {
421       // Instantiate a "subquery", not to be confused with the Queries array.
422       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
423       if (subQ.checkInterference())
424         break;
425     }
426     // If no units have interference, break out with the current PhysReg.
427     if (!Units.isValid())
428       PhysReg = *I;
429   }
430   if (PhysReg)
431     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
432                       << printReg(PrevReg, TRI) << " to "
433                       << printReg(PhysReg, TRI) << '\n');
434   return PhysReg;
435 }
436 
437 /// Return true if all interferences between VirtReg and PhysReg between
438 /// Start and End can be evicted.
439 ///
440 /// \param VirtReg Live range that is about to be assigned.
441 /// \param PhysReg Desired register for assignment.
442 /// \param Start   Start of range to look for interferences.
443 /// \param End     End of range to look for interferences.
444 /// \param MaxCost Only look for cheaper candidates and update with new cost
445 ///                when returning true.
446 /// \return True when interference can be evicted cheaper than MaxCost.
447 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg,
448                                            MCRegister PhysReg, SlotIndex Start,
449                                            SlotIndex End,
450                                            EvictionCost &MaxCost) const {
451   EvictionCost Cost;
452 
453   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
454     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
455 
456     // Check if any interfering live range is heavier than MaxWeight.
457     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
458       // Check if interference overlast the segment in interest.
459       if (!Intf->overlaps(Start, End))
460         continue;
461 
462       // Never evict spill products. They cannot split or spill.
463       if (ExtraInfo->getStage(*Intf) == RS_Done)
464         return false;
465 
466       // Would this break a satisfied hint?
467       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
468       // Update eviction cost.
469       Cost.BrokenHints += BreaksHint;
470       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
471       // Abort if this would be too expensive.
472       if (!(Cost < MaxCost))
473         return false;
474     }
475   }
476 
477   if (Cost.MaxWeight == 0)
478     return false;
479 
480   MaxCost = Cost;
481   return true;
482 }
483 
484 /// Return the physical register that will be best
485 /// candidate for eviction by a local split interval that will be created
486 /// between Start and End.
487 ///
488 /// \param Order            The allocation order
489 /// \param VirtReg          Live range that is about to be assigned.
490 /// \param Start            Start of range to look for interferences
491 /// \param End              End of range to look for interferences
492 /// \param BestEvictweight  The eviction cost of that eviction
493 /// \return The PhysReg which is the best candidate for eviction and the
494 /// eviction cost in BestEvictweight
495 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
496                                               const LiveInterval &VirtReg,
497                                               SlotIndex Start, SlotIndex End,
498                                               float *BestEvictweight) const {
499   EvictionCost BestEvictCost;
500   BestEvictCost.setMax();
501   BestEvictCost.MaxWeight = VirtReg.weight();
502   MCRegister BestEvicteePhys;
503 
504   // Go over all physical registers and find the best candidate for eviction
505   for (MCRegister PhysReg : Order.getOrder()) {
506 
507     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
508                                      BestEvictCost))
509       continue;
510 
511     // Best so far.
512     BestEvicteePhys = PhysReg;
513   }
514   *BestEvictweight = BestEvictCost.MaxWeight;
515   return BestEvicteePhys;
516 }
517 
518 /// evictInterference - Evict any interferring registers that prevent VirtReg
519 /// from being assigned to Physreg. This assumes that canEvictInterference
520 /// returned true.
521 void RAGreedy::evictInterference(const LiveInterval &VirtReg,
522                                  MCRegister PhysReg,
523                                  SmallVectorImpl<Register> &NewVRegs) {
524   // Make sure that VirtReg has a cascade number, and assign that cascade
525   // number to every evicted register. These live ranges than then only be
526   // evicted by a newer cascade, preventing infinite loops.
527   unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
528 
529   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
530                     << " interference: Cascade " << Cascade << '\n');
531 
532   // Collect all interfering virtregs first.
533   SmallVector<const LiveInterval *, 8> Intfs;
534   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
535     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
536     // We usually have the interfering VRegs cached so collectInterferingVRegs()
537     // should be fast, we may need to recalculate if when different physregs
538     // overlap the same register unit so we had different SubRanges queried
539     // against it.
540     ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs();
541     Intfs.append(IVR.begin(), IVR.end());
542   }
543 
544   // Evict them second. This will invalidate the queries.
545   for (const LiveInterval *Intf : Intfs) {
546     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
547     if (!VRM->hasPhys(Intf->reg()))
548       continue;
549 
550     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
551 
552     Matrix->unassign(*Intf);
553     assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
554             VirtReg.isSpillable() < Intf->isSpillable()) &&
555            "Cannot decrease cascade number, illegal eviction");
556     ExtraInfo->setCascade(Intf->reg(), Cascade);
557     ++NumEvicted;
558     NewVRegs.push_back(Intf->reg());
559   }
560 }
561 
562 /// Returns true if the given \p PhysReg is a callee saved register and has not
563 /// been used for allocation yet.
564 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
565   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
566   if (!CSR)
567     return false;
568 
569   return !Matrix->isPhysRegUsed(PhysReg);
570 }
571 
572 Optional<unsigned>
573 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg,
574                                        const AllocationOrder &Order,
575                                        unsigned CostPerUseLimit) const {
576   unsigned OrderLimit = Order.getOrder().size();
577 
578   if (CostPerUseLimit < uint8_t(~0u)) {
579     // Check of any registers in RC are below CostPerUseLimit.
580     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
581     uint8_t MinCost = RegClassInfo.getMinCost(RC);
582     if (MinCost >= CostPerUseLimit) {
583       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
584                         << MinCost << ", no cheaper registers to be found.\n");
585       return None;
586     }
587 
588     // It is normal for register classes to have a long tail of registers with
589     // the same cost. We don't need to look at them if they're too expensive.
590     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
591       OrderLimit = RegClassInfo.getLastCostChange(RC);
592       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
593                         << " regs.\n");
594     }
595   }
596   return OrderLimit;
597 }
598 
599 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit,
600                                                  MCRegister PhysReg) const {
601   if (RegCosts[PhysReg] >= CostPerUseLimit)
602     return false;
603   // The first use of a callee-saved register in a function has cost 1.
604   // Don't start using a CSR when the CostPerUseLimit is low.
605   if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
606     LLVM_DEBUG(
607         dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
608                << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
609                << '\n');
610     return false;
611   }
612   return true;
613 }
614 
615 /// tryEvict - Try to evict all interferences for a physreg.
616 /// @param  VirtReg Currently unassigned virtual register.
617 /// @param  Order   Physregs to try.
618 /// @return         Physreg to assign VirtReg, or 0.
619 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg,
620                               AllocationOrder &Order,
621                               SmallVectorImpl<Register> &NewVRegs,
622                               uint8_t CostPerUseLimit,
623                               const SmallVirtRegSet &FixedRegisters) {
624   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
625                      TimePassesIsEnabled);
626 
627   MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
628       VirtReg, Order, CostPerUseLimit, FixedRegisters);
629   if (BestPhys.isValid())
630     evictInterference(VirtReg, BestPhys, NewVRegs);
631   return BestPhys;
632 }
633 
634 //===----------------------------------------------------------------------===//
635 //                              Region Splitting
636 //===----------------------------------------------------------------------===//
637 
638 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
639 /// interference pattern in Physreg and its aliases. Add the constraints to
640 /// SpillPlacement and return the static cost of this split in Cost, assuming
641 /// that all preferences in SplitConstraints are met.
642 /// Return false if there are no bundles with positive bias.
643 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
644                                    BlockFrequency &Cost) {
645   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
646 
647   // Reset interference dependent info.
648   SplitConstraints.resize(UseBlocks.size());
649   BlockFrequency StaticCost = 0;
650   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
651     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
652     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
653 
654     BC.Number = BI.MBB->getNumber();
655     Intf.moveToBlock(BC.Number);
656     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
657     BC.Exit = (BI.LiveOut &&
658                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
659                   ? SpillPlacement::PrefReg
660                   : SpillPlacement::DontCare;
661     BC.ChangesValue = BI.FirstDef.isValid();
662 
663     if (!Intf.hasInterference())
664       continue;
665 
666     // Number of spill code instructions to insert.
667     unsigned Ins = 0;
668 
669     // Interference for the live-in value.
670     if (BI.LiveIn) {
671       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
672         BC.Entry = SpillPlacement::MustSpill;
673         ++Ins;
674       } else if (Intf.first() < BI.FirstInstr) {
675         BC.Entry = SpillPlacement::PrefSpill;
676         ++Ins;
677       } else if (Intf.first() < BI.LastInstr) {
678         ++Ins;
679       }
680 
681       // Abort if the spill cannot be inserted at the MBB' start
682       if (((BC.Entry == SpillPlacement::MustSpill) ||
683            (BC.Entry == SpillPlacement::PrefSpill)) &&
684           SlotIndex::isEarlierInstr(BI.FirstInstr,
685                                     SA->getFirstSplitPoint(BC.Number)))
686         return false;
687     }
688 
689     // Interference for the live-out value.
690     if (BI.LiveOut) {
691       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
692         BC.Exit = SpillPlacement::MustSpill;
693         ++Ins;
694       } else if (Intf.last() > BI.LastInstr) {
695         BC.Exit = SpillPlacement::PrefSpill;
696         ++Ins;
697       } else if (Intf.last() > BI.FirstInstr) {
698         ++Ins;
699       }
700     }
701 
702     // Accumulate the total frequency of inserted spill code.
703     while (Ins--)
704       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
705   }
706   Cost = StaticCost;
707 
708   // Add constraints for use-blocks. Note that these are the only constraints
709   // that may add a positive bias, it is downhill from here.
710   SpillPlacer->addConstraints(SplitConstraints);
711   return SpillPlacer->scanActiveBundles();
712 }
713 
714 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
715 /// live-through blocks in Blocks.
716 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
717                                      ArrayRef<unsigned> Blocks) {
718   const unsigned GroupSize = 8;
719   SpillPlacement::BlockConstraint BCS[GroupSize];
720   unsigned TBS[GroupSize];
721   unsigned B = 0, T = 0;
722 
723   for (unsigned Number : Blocks) {
724     Intf.moveToBlock(Number);
725 
726     if (!Intf.hasInterference()) {
727       assert(T < GroupSize && "Array overflow");
728       TBS[T] = Number;
729       if (++T == GroupSize) {
730         SpillPlacer->addLinks(makeArrayRef(TBS, T));
731         T = 0;
732       }
733       continue;
734     }
735 
736     assert(B < GroupSize && "Array overflow");
737     BCS[B].Number = Number;
738 
739     // Abort if the spill cannot be inserted at the MBB' start
740     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
741     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
742     if (FirstNonDebugInstr != MBB->end() &&
743         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
744                                   SA->getFirstSplitPoint(Number)))
745       return false;
746     // Interference for the live-in value.
747     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
748       BCS[B].Entry = SpillPlacement::MustSpill;
749     else
750       BCS[B].Entry = SpillPlacement::PrefSpill;
751 
752     // Interference for the live-out value.
753     if (Intf.last() >= SA->getLastSplitPoint(Number))
754       BCS[B].Exit = SpillPlacement::MustSpill;
755     else
756       BCS[B].Exit = SpillPlacement::PrefSpill;
757 
758     if (++B == GroupSize) {
759       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
760       B = 0;
761     }
762   }
763 
764   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
765   SpillPlacer->addLinks(makeArrayRef(TBS, T));
766   return true;
767 }
768 
769 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
770   // Keep track of through blocks that have not been added to SpillPlacer.
771   BitVector Todo = SA->getThroughBlocks();
772   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
773   unsigned AddedTo = 0;
774 #ifndef NDEBUG
775   unsigned Visited = 0;
776 #endif
777 
778   unsigned long Budget = GrowRegionComplexityBudget;
779   while (true) {
780     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
781     // Find new through blocks in the periphery of PrefRegBundles.
782     for (unsigned Bundle : NewBundles) {
783       // Look at all blocks connected to Bundle in the full graph.
784       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
785       // Limit compilation time by bailing out after we use all our budget.
786       if (Blocks.size() >= Budget)
787         return false;
788       Budget -= Blocks.size();
789       for (unsigned Block : Blocks) {
790         if (!Todo.test(Block))
791           continue;
792         Todo.reset(Block);
793         // This is a new through block. Add it to SpillPlacer later.
794         ActiveBlocks.push_back(Block);
795 #ifndef NDEBUG
796         ++Visited;
797 #endif
798       }
799     }
800     // Any new blocks to add?
801     if (ActiveBlocks.size() == AddedTo)
802       break;
803 
804     // Compute through constraints from the interference, or assume that all
805     // through blocks prefer spilling when forming compact regions.
806     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
807     if (Cand.PhysReg) {
808       if (!addThroughConstraints(Cand.Intf, NewBlocks))
809         return false;
810     } else
811       // Provide a strong negative bias on through blocks to prevent unwanted
812       // liveness on loop backedges.
813       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
814     AddedTo = ActiveBlocks.size();
815 
816     // Perhaps iterating can enable more bundles?
817     SpillPlacer->iterate();
818   }
819   LLVM_DEBUG(dbgs() << ", v=" << Visited);
820   return true;
821 }
822 
823 /// calcCompactRegion - Compute the set of edge bundles that should be live
824 /// when splitting the current live range into compact regions.  Compact
825 /// regions can be computed without looking at interference.  They are the
826 /// regions formed by removing all the live-through blocks from the live range.
827 ///
828 /// Returns false if the current live range is already compact, or if the
829 /// compact regions would form single block regions anyway.
830 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
831   // Without any through blocks, the live range is already compact.
832   if (!SA->getNumThroughBlocks())
833     return false;
834 
835   // Compact regions don't correspond to any physreg.
836   Cand.reset(IntfCache, MCRegister::NoRegister);
837 
838   LLVM_DEBUG(dbgs() << "Compact region bundles");
839 
840   // Use the spill placer to determine the live bundles. GrowRegion pretends
841   // that all the through blocks have interference when PhysReg is unset.
842   SpillPlacer->prepare(Cand.LiveBundles);
843 
844   // The static split cost will be zero since Cand.Intf reports no interference.
845   BlockFrequency Cost;
846   if (!addSplitConstraints(Cand.Intf, Cost)) {
847     LLVM_DEBUG(dbgs() << ", none.\n");
848     return false;
849   }
850 
851   if (!growRegion(Cand)) {
852     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
853     return false;
854   }
855 
856   SpillPlacer->finish();
857 
858   if (!Cand.LiveBundles.any()) {
859     LLVM_DEBUG(dbgs() << ", none.\n");
860     return false;
861   }
862 
863   LLVM_DEBUG({
864     for (int I : Cand.LiveBundles.set_bits())
865       dbgs() << " EB#" << I;
866     dbgs() << ".\n";
867   });
868   return true;
869 }
870 
871 /// calcSpillCost - Compute how expensive it would be to split the live range in
872 /// SA around all use blocks instead of forming bundle regions.
873 BlockFrequency RAGreedy::calcSpillCost() {
874   BlockFrequency Cost = 0;
875   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
876   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
877     unsigned Number = BI.MBB->getNumber();
878     // We normally only need one spill instruction - a load or a store.
879     Cost += SpillPlacer->getBlockFrequency(Number);
880 
881     // Unless the value is redefined in the block.
882     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
883       Cost += SpillPlacer->getBlockFrequency(Number);
884   }
885   return Cost;
886 }
887 
888 /// Check if splitting Evictee will create a local split interval in
889 /// basic block number BBNumber that may cause a bad eviction chain. This is
890 /// intended to prevent bad eviction sequences like:
891 /// movl	%ebp, 8(%esp)           # 4-byte Spill
892 /// movl	%ecx, %ebp
893 /// movl	%ebx, %ecx
894 /// movl	%edi, %ebx
895 /// movl	%edx, %edi
896 /// cltd
897 /// idivl	%esi
898 /// movl	%edi, %edx
899 /// movl	%ebx, %edi
900 /// movl	%ecx, %ebx
901 /// movl	%ebp, %ecx
902 /// movl	16(%esp), %ebp          # 4 - byte Reload
903 ///
904 /// Such sequences are created in 2 scenarios:
905 ///
906 /// Scenario #1:
907 /// %0 is evicted from physreg0 by %1.
908 /// Evictee %0 is intended for region splitting with split candidate
909 /// physreg0 (the reg %0 was evicted from).
910 /// Region splitting creates a local interval because of interference with the
911 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
912 /// and "by stack" intervals and local interval created when interference
913 /// occurs).
914 /// One of the split intervals ends up evicting %2 from physreg1.
915 /// Evictee %2 is intended for region splitting with split candidate
916 /// physreg1.
917 /// One of the split intervals ends up evicting %3 from physreg2, etc.
918 ///
919 /// Scenario #2
920 /// %0 is evicted from physreg0 by %1.
921 /// %2 is evicted from physreg2 by %3 etc.
922 /// Evictee %0 is intended for region splitting with split candidate
923 /// physreg1.
924 /// Region splitting creates a local interval because of interference with the
925 /// evictor %1.
926 /// One of the split intervals ends up evicting back original evictor %1
927 /// from physreg0 (the reg %0 was evicted from).
928 /// Another evictee %2 is intended for region splitting with split candidate
929 /// physreg1.
930 /// One of the split intervals ends up evicting %3 from physreg2, etc.
931 ///
932 /// \param Evictee  The register considered to be split.
933 /// \param Cand     The split candidate that determines the physical register
934 ///                 we are splitting for and the interferences.
935 /// \param BBNumber The number of a BB for which the region split process will
936 ///                 create a local split interval.
937 /// \param Order    The physical registers that may get evicted by a split
938 ///                 artifact of Evictee.
939 /// \return True if splitting Evictee may cause a bad eviction chain, false
940 /// otherwise.
941 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
942                                           GlobalSplitCandidate &Cand,
943                                           unsigned BBNumber,
944                                           const AllocationOrder &Order) {
945   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
946   unsigned Evictor = VregEvictorInfo.first;
947   MCRegister PhysReg = VregEvictorInfo.second;
948 
949   // No actual evictor.
950   if (!Evictor || !PhysReg)
951     return false;
952 
953   float MaxWeight = 0;
954   MCRegister FutureEvictedPhysReg =
955       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
956                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
957 
958   // The bad eviction chain occurs when either the split candidate is the
959   // evicting reg or one of the split artifact will evict the evicting reg.
960   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
961     return false;
962 
963   Cand.Intf.moveToBlock(BBNumber);
964 
965   // Check to see if the Evictor contains interference (with Evictee) in the
966   // given BB. If so, this interference caused the eviction of Evictee from
967   // PhysReg. This suggest that we will create a local interval during the
968   // region split to avoid this interference This local interval may cause a bad
969   // eviction chain.
970   if (!LIS->hasInterval(Evictor))
971     return false;
972   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
973   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
974     return false;
975 
976   // Now, check to see if the local interval we will create is going to be
977   // expensive enough to evict somebody If so, this may cause a bad eviction
978   // chain.
979   float splitArtifactWeight =
980       VRAI->futureWeight(LIS->getInterval(Evictee),
981                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
982   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
983     return false;
984 
985   return true;
986 }
987 
988 /// calcGlobalSplitCost - Return the global split cost of following the split
989 /// pattern in LiveBundles. This cost should be added to the local cost of the
990 /// interference pattern in SplitConstraints.
991 ///
992 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
993                                              const AllocationOrder &Order) {
994   BlockFrequency GlobalCost = 0;
995   const BitVector &LiveBundles = Cand.LiveBundles;
996   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
997   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
998     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
999     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1000     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1001     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1002     unsigned Ins = 0;
1003 
1004     Cand.Intf.moveToBlock(BC.Number);
1005 
1006     if (BI.LiveIn)
1007       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1008     if (BI.LiveOut)
1009       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1010     while (Ins--)
1011       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1012   }
1013 
1014   for (unsigned Number : Cand.ActiveBlocks) {
1015     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1016     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1017     if (!RegIn && !RegOut)
1018       continue;
1019     if (RegIn && RegOut) {
1020       // We need double spill code if this block has interference.
1021       Cand.Intf.moveToBlock(Number);
1022       if (Cand.Intf.hasInterference()) {
1023         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1024         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1025       }
1026       continue;
1027     }
1028     // live-in / stack-out or stack-in live-out.
1029     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1030   }
1031   return GlobalCost;
1032 }
1033 
1034 /// splitAroundRegion - Split the current live range around the regions
1035 /// determined by BundleCand and GlobalCand.
1036 ///
1037 /// Before calling this function, GlobalCand and BundleCand must be initialized
1038 /// so each bundle is assigned to a valid candidate, or NoCand for the
1039 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1040 /// objects must be initialized for the current live range, and intervals
1041 /// created for the used candidates.
1042 ///
1043 /// @param LREdit    The LiveRangeEdit object handling the current split.
1044 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1045 ///                  must appear in this list.
1046 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1047                                  ArrayRef<unsigned> UsedCands) {
1048   // These are the intervals created for new global ranges. We may create more
1049   // intervals for local ranges.
1050   const unsigned NumGlobalIntvs = LREdit.size();
1051   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1052                     << " globals.\n");
1053   assert(NumGlobalIntvs && "No global intervals configured");
1054 
1055   // Isolate even single instructions when dealing with a proper sub-class.
1056   // That guarantees register class inflation for the stack interval because it
1057   // is all copies.
1058   Register Reg = SA->getParent().reg();
1059   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1060 
1061   // First handle all the blocks with uses.
1062   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1063   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1064     unsigned Number = BI.MBB->getNumber();
1065     unsigned IntvIn = 0, IntvOut = 0;
1066     SlotIndex IntfIn, IntfOut;
1067     if (BI.LiveIn) {
1068       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1069       if (CandIn != NoCand) {
1070         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1071         IntvIn = Cand.IntvIdx;
1072         Cand.Intf.moveToBlock(Number);
1073         IntfIn = Cand.Intf.first();
1074       }
1075     }
1076     if (BI.LiveOut) {
1077       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1078       if (CandOut != NoCand) {
1079         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1080         IntvOut = Cand.IntvIdx;
1081         Cand.Intf.moveToBlock(Number);
1082         IntfOut = Cand.Intf.last();
1083       }
1084     }
1085 
1086     // Create separate intervals for isolated blocks with multiple uses.
1087     if (!IntvIn && !IntvOut) {
1088       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1089       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1090         SE->splitSingleBlock(BI);
1091       continue;
1092     }
1093 
1094     if (IntvIn && IntvOut)
1095       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1096     else if (IntvIn)
1097       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1098     else
1099       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1100   }
1101 
1102   // Handle live-through blocks. The relevant live-through blocks are stored in
1103   // the ActiveBlocks list with each candidate. We need to filter out
1104   // duplicates.
1105   BitVector Todo = SA->getThroughBlocks();
1106   for (unsigned UsedCand : UsedCands) {
1107     ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
1108     for (unsigned Number : Blocks) {
1109       if (!Todo.test(Number))
1110         continue;
1111       Todo.reset(Number);
1112 
1113       unsigned IntvIn = 0, IntvOut = 0;
1114       SlotIndex IntfIn, IntfOut;
1115 
1116       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1117       if (CandIn != NoCand) {
1118         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1119         IntvIn = Cand.IntvIdx;
1120         Cand.Intf.moveToBlock(Number);
1121         IntfIn = Cand.Intf.first();
1122       }
1123 
1124       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1125       if (CandOut != NoCand) {
1126         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1127         IntvOut = Cand.IntvIdx;
1128         Cand.Intf.moveToBlock(Number);
1129         IntfOut = Cand.Intf.last();
1130       }
1131       if (!IntvIn && !IntvOut)
1132         continue;
1133       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1134     }
1135   }
1136 
1137   ++NumGlobalSplits;
1138 
1139   SmallVector<unsigned, 8> IntvMap;
1140   SE->finish(&IntvMap);
1141   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1142 
1143   unsigned OrigBlocks = SA->getNumLiveBlocks();
1144 
1145   // Sort out the new intervals created by splitting. We get four kinds:
1146   // - Remainder intervals should not be split again.
1147   // - Candidate intervals can be assigned to Cand.PhysReg.
1148   // - Block-local splits are candidates for local splitting.
1149   // - DCE leftovers should go back on the queue.
1150   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1151     const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1152 
1153     // Ignore old intervals from DCE.
1154     if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
1155       continue;
1156 
1157     // Remainder interval. Don't try splitting again, spill if it doesn't
1158     // allocate.
1159     if (IntvMap[I] == 0) {
1160       ExtraInfo->setStage(Reg, RS_Spill);
1161       continue;
1162     }
1163 
1164     // Global intervals. Allow repeated splitting as long as the number of live
1165     // blocks is strictly decreasing.
1166     if (IntvMap[I] < NumGlobalIntvs) {
1167       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1168         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1169                           << " blocks as original.\n");
1170         // Don't allow repeated splitting as a safe guard against looping.
1171         ExtraInfo->setStage(Reg, RS_Split2);
1172       }
1173       continue;
1174     }
1175 
1176     // Other intervals are treated as new. This includes local intervals created
1177     // for blocks with multiple uses, and anything created by DCE.
1178   }
1179 
1180   if (VerifyEnabled)
1181     MF->verify(this, "After splitting live range around region");
1182 }
1183 
1184 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg,
1185                                     AllocationOrder &Order,
1186                                     SmallVectorImpl<Register> &NewVRegs) {
1187   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1188     return MCRegister::NoRegister;
1189   unsigned NumCands = 0;
1190   BlockFrequency SpillCost = calcSpillCost();
1191   BlockFrequency BestCost;
1192 
1193   // Check if we can split this live range around a compact region.
1194   bool HasCompact = calcCompactRegion(GlobalCand.front());
1195   if (HasCompact) {
1196     // Yes, keep GlobalCand[0] as the compact region candidate.
1197     NumCands = 1;
1198     BestCost = BlockFrequency::getMaxFrequency();
1199   } else {
1200     // No benefit from the compact region, our fallback will be per-block
1201     // splitting. Make sure we find a solution that is cheaper than spilling.
1202     BestCost = SpillCost;
1203     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1204                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1205   }
1206 
1207   unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
1208                                                NumCands, false /*IgnoreCSR*/);
1209 
1210   // No solutions found, fall back to single block splitting.
1211   if (!HasCompact && BestCand == NoCand)
1212     return MCRegister::NoRegister;
1213 
1214   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1215 }
1216 
1217 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg,
1218                                             AllocationOrder &Order,
1219                                             BlockFrequency &BestCost,
1220                                             unsigned &NumCands,
1221                                             bool IgnoreCSR) {
1222   unsigned BestCand = NoCand;
1223   for (MCPhysReg PhysReg : Order) {
1224     assert(PhysReg);
1225     if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
1226       continue;
1227 
1228     // Discard bad candidates before we run out of interference cache cursors.
1229     // This will only affect register classes with a lot of registers (>32).
1230     if (NumCands == IntfCache.getMaxCursors()) {
1231       unsigned WorstCount = ~0u;
1232       unsigned Worst = 0;
1233       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1234         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1235           continue;
1236         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1237         if (Count < WorstCount) {
1238           Worst = CandIndex;
1239           WorstCount = Count;
1240         }
1241       }
1242       --NumCands;
1243       GlobalCand[Worst] = GlobalCand[NumCands];
1244       if (BestCand == NumCands)
1245         BestCand = Worst;
1246     }
1247 
1248     if (GlobalCand.size() <= NumCands)
1249       GlobalCand.resize(NumCands+1);
1250     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1251     Cand.reset(IntfCache, PhysReg);
1252 
1253     SpillPlacer->prepare(Cand.LiveBundles);
1254     BlockFrequency Cost;
1255     if (!addSplitConstraints(Cand.Intf, Cost)) {
1256       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1257       continue;
1258     }
1259     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1260                MBFI->printBlockFreq(dbgs(), Cost));
1261     if (Cost >= BestCost) {
1262       LLVM_DEBUG({
1263         if (BestCand == NoCand)
1264           dbgs() << " worse than no bundles\n";
1265         else
1266           dbgs() << " worse than "
1267                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1268       });
1269       continue;
1270     }
1271     if (!growRegion(Cand)) {
1272       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1273       continue;
1274     }
1275 
1276     SpillPlacer->finish();
1277 
1278     // No live bundles, defer to splitSingleBlocks().
1279     if (!Cand.LiveBundles.any()) {
1280       LLVM_DEBUG(dbgs() << " no bundles.\n");
1281       continue;
1282     }
1283 
1284     Cost += calcGlobalSplitCost(Cand, Order);
1285     LLVM_DEBUG({
1286       dbgs() << ", total = ";
1287       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1288       for (int I : Cand.LiveBundles.set_bits())
1289         dbgs() << " EB#" << I;
1290       dbgs() << ".\n";
1291     });
1292     if (Cost < BestCost) {
1293       BestCand = NumCands;
1294       BestCost = Cost;
1295     }
1296     ++NumCands;
1297   }
1298 
1299   return BestCand;
1300 }
1301 
1302 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand,
1303                                  bool HasCompact,
1304                                  SmallVectorImpl<Register> &NewVRegs) {
1305   SmallVector<unsigned, 8> UsedCands;
1306   // Prepare split editor.
1307   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1308   SE->reset(LREdit, SplitSpillMode);
1309 
1310   // Assign all edge bundles to the preferred candidate, or NoCand.
1311   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1312 
1313   // Assign bundles for the best candidate region.
1314   if (BestCand != NoCand) {
1315     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1316     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1317       UsedCands.push_back(BestCand);
1318       Cand.IntvIdx = SE->openIntv();
1319       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1320                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1321       (void)B;
1322     }
1323   }
1324 
1325   // Assign bundles for the compact region.
1326   if (HasCompact) {
1327     GlobalSplitCandidate &Cand = GlobalCand.front();
1328     assert(!Cand.PhysReg && "Compact region has no physreg");
1329     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1330       UsedCands.push_back(0);
1331       Cand.IntvIdx = SE->openIntv();
1332       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1333                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1334       (void)B;
1335     }
1336   }
1337 
1338   splitAroundRegion(LREdit, UsedCands);
1339   return 0;
1340 }
1341 
1342 //===----------------------------------------------------------------------===//
1343 //                            Per-Block Splitting
1344 //===----------------------------------------------------------------------===//
1345 
1346 /// tryBlockSplit - Split a global live range around every block with uses. This
1347 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1348 /// they don't allocate.
1349 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg,
1350                                  AllocationOrder &Order,
1351                                  SmallVectorImpl<Register> &NewVRegs) {
1352   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1353   Register Reg = VirtReg.reg();
1354   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1355   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1356   SE->reset(LREdit, SplitSpillMode);
1357   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1358   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1359     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1360       SE->splitSingleBlock(BI);
1361   }
1362   // No blocks were split.
1363   if (LREdit.empty())
1364     return 0;
1365 
1366   // We did split for some blocks.
1367   SmallVector<unsigned, 8> IntvMap;
1368   SE->finish(&IntvMap);
1369 
1370   // Tell LiveDebugVariables about the new ranges.
1371   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1372 
1373   // Sort out the new intervals created by splitting. The remainder interval
1374   // goes straight to spilling, the new local ranges get to stay RS_New.
1375   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1376     const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
1377     if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
1378       ExtraInfo->setStage(LI, RS_Spill);
1379   }
1380 
1381   if (VerifyEnabled)
1382     MF->verify(this, "After splitting live range around basic blocks");
1383   return 0;
1384 }
1385 
1386 //===----------------------------------------------------------------------===//
1387 //                         Per-Instruction Splitting
1388 //===----------------------------------------------------------------------===//
1389 
1390 /// Get the number of allocatable registers that match the constraints of \p Reg
1391 /// on \p MI and that are also in \p SuperRC.
1392 static unsigned getNumAllocatableRegsForConstraints(
1393     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
1394     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1395     const RegisterClassInfo &RCI) {
1396   assert(SuperRC && "Invalid register class");
1397 
1398   const TargetRegisterClass *ConstrainedRC =
1399       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1400                                              /* ExploreBundle */ true);
1401   if (!ConstrainedRC)
1402     return 0;
1403   return RCI.getNumAllocatableRegs(ConstrainedRC);
1404 }
1405 
1406 /// tryInstructionSplit - Split a live range around individual instructions.
1407 /// This is normally not worthwhile since the spiller is doing essentially the
1408 /// same thing. However, when the live range is in a constrained register
1409 /// class, it may help to insert copies such that parts of the live range can
1410 /// be moved to a larger register class.
1411 ///
1412 /// This is similar to spilling to a larger register class.
1413 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg,
1414                                        AllocationOrder &Order,
1415                                        SmallVectorImpl<Register> &NewVRegs) {
1416   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1417   // There is no point to this if there are no larger sub-classes.
1418   if (!RegClassInfo.isProperSubClass(CurRC))
1419     return 0;
1420 
1421   // Always enable split spill mode, since we're effectively spilling to a
1422   // register.
1423   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1424   SE->reset(LREdit, SplitEditor::SM_Size);
1425 
1426   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1427   if (Uses.size() <= 1)
1428     return 0;
1429 
1430   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
1431                     << " individual instrs.\n");
1432 
1433   const TargetRegisterClass *SuperRC =
1434       TRI->getLargestLegalSuperClass(CurRC, *MF);
1435   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
1436   // Split around every non-copy instruction if this split will relax
1437   // the constraints on the virtual register.
1438   // Otherwise, splitting just inserts uncoalescable copies that do not help
1439   // the allocation.
1440   for (const SlotIndex Use : Uses) {
1441     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
1442       if (MI->isFullCopy() ||
1443           SuperRCNumAllocatableRegs ==
1444               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
1445                                                   TII, TRI, RCI)) {
1446         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
1447         continue;
1448       }
1449     SE->openIntv();
1450     SlotIndex SegStart = SE->enterIntvBefore(Use);
1451     SlotIndex SegStop = SE->leaveIntvAfter(Use);
1452     SE->useIntv(SegStart, SegStop);
1453   }
1454 
1455   if (LREdit.empty()) {
1456     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
1457     return 0;
1458   }
1459 
1460   SmallVector<unsigned, 8> IntvMap;
1461   SE->finish(&IntvMap);
1462   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1463   // Assign all new registers to RS_Spill. This was the last chance.
1464   ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1465   return 0;
1466 }
1467 
1468 //===----------------------------------------------------------------------===//
1469 //                             Local Splitting
1470 //===----------------------------------------------------------------------===//
1471 
1472 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1473 /// in order to use PhysReg between two entries in SA->UseSlots.
1474 ///
1475 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
1476 ///
1477 void RAGreedy::calcGapWeights(MCRegister PhysReg,
1478                               SmallVectorImpl<float> &GapWeight) {
1479   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1480   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1481   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1482   const unsigned NumGaps = Uses.size()-1;
1483 
1484   // Start and end points for the interference check.
1485   SlotIndex StartIdx =
1486     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1487   SlotIndex StopIdx =
1488     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1489 
1490   GapWeight.assign(NumGaps, 0.0f);
1491 
1492   // Add interference from each overlapping register.
1493   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1494     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1495           .checkInterference())
1496       continue;
1497 
1498     // We know that VirtReg is a continuous interval from FirstInstr to
1499     // LastInstr, so we don't need InterferenceQuery.
1500     //
1501     // Interference that overlaps an instruction is counted in both gaps
1502     // surrounding the instruction. The exception is interference before
1503     // StartIdx and after StopIdx.
1504     //
1505     LiveIntervalUnion::SegmentIter IntI =
1506       Matrix->getLiveUnions()[*Units] .find(StartIdx);
1507     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1508       // Skip the gaps before IntI.
1509       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1510         if (++Gap == NumGaps)
1511           break;
1512       if (Gap == NumGaps)
1513         break;
1514 
1515       // Update the gaps covered by IntI.
1516       const float weight = IntI.value()->weight();
1517       for (; Gap != NumGaps; ++Gap) {
1518         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1519         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1520           break;
1521       }
1522       if (Gap == NumGaps)
1523         break;
1524     }
1525   }
1526 
1527   // Add fixed interference.
1528   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1529     const LiveRange &LR = LIS->getRegUnit(*Units);
1530     LiveRange::const_iterator I = LR.find(StartIdx);
1531     LiveRange::const_iterator E = LR.end();
1532 
1533     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1534     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1535       while (Uses[Gap+1].getBoundaryIndex() < I->start)
1536         if (++Gap == NumGaps)
1537           break;
1538       if (Gap == NumGaps)
1539         break;
1540 
1541       for (; Gap != NumGaps; ++Gap) {
1542         GapWeight[Gap] = huge_valf;
1543         if (Uses[Gap+1].getBaseIndex() >= I->end)
1544           break;
1545       }
1546       if (Gap == NumGaps)
1547         break;
1548     }
1549   }
1550 }
1551 
1552 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1553 /// basic block.
1554 ///
1555 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg,
1556                                  AllocationOrder &Order,
1557                                  SmallVectorImpl<Register> &NewVRegs) {
1558   // TODO: the function currently only handles a single UseBlock; it should be
1559   // possible to generalize.
1560   if (SA->getUseBlocks().size() != 1)
1561     return 0;
1562 
1563   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1564 
1565   // Note that it is possible to have an interval that is live-in or live-out
1566   // while only covering a single block - A phi-def can use undef values from
1567   // predecessors, and the block could be a single-block loop.
1568   // We don't bother doing anything clever about such a case, we simply assume
1569   // that the interval is continuous from FirstInstr to LastInstr. We should
1570   // make sure that we don't do anything illegal to such an interval, though.
1571 
1572   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1573   if (Uses.size() <= 2)
1574     return 0;
1575   const unsigned NumGaps = Uses.size()-1;
1576 
1577   LLVM_DEBUG({
1578     dbgs() << "tryLocalSplit: ";
1579     for (const auto &Use : Uses)
1580       dbgs() << ' ' << Use;
1581     dbgs() << '\n';
1582   });
1583 
1584   // If VirtReg is live across any register mask operands, compute a list of
1585   // gaps with register masks.
1586   SmallVector<unsigned, 8> RegMaskGaps;
1587   if (Matrix->checkRegMaskInterference(VirtReg)) {
1588     // Get regmask slots for the whole block.
1589     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1590     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1591     // Constrain to VirtReg's live range.
1592     unsigned RI =
1593         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
1594     unsigned RE = RMS.size();
1595     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
1596       // Look for Uses[I] <= RMS <= Uses[I + 1].
1597       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
1598       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
1599         continue;
1600       // Skip a regmask on the same instruction as the last use. It doesn't
1601       // overlap the live range.
1602       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
1603         break;
1604       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
1605                         << Uses[I + 1]);
1606       RegMaskGaps.push_back(I);
1607       // Advance ri to the next gap. A regmask on one of the uses counts in
1608       // both gaps.
1609       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
1610         ++RI;
1611     }
1612     LLVM_DEBUG(dbgs() << '\n');
1613   }
1614 
1615   // Since we allow local split results to be split again, there is a risk of
1616   // creating infinite loops. It is tempting to require that the new live
1617   // ranges have less instructions than the original. That would guarantee
1618   // convergence, but it is too strict. A live range with 3 instructions can be
1619   // split 2+3 (including the COPY), and we want to allow that.
1620   //
1621   // Instead we use these rules:
1622   //
1623   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1624   //    noop split, of course).
1625   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1626   //    the new ranges must have fewer instructions than before the split.
1627   // 3. New ranges with the same number of instructions are marked RS_Split2,
1628   //    smaller ranges are marked RS_New.
1629   //
1630   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1631   // excessive splitting and infinite loops.
1632   //
1633   bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
1634 
1635   // Best split candidate.
1636   unsigned BestBefore = NumGaps;
1637   unsigned BestAfter = 0;
1638   float BestDiff = 0;
1639 
1640   const float blockFreq =
1641     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1642     (1.0f / MBFI->getEntryFreq());
1643   SmallVector<float, 8> GapWeight;
1644 
1645   for (MCPhysReg PhysReg : Order) {
1646     assert(PhysReg);
1647     // Keep track of the largest spill weight that would need to be evicted in
1648     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
1649     calcGapWeights(PhysReg, GapWeight);
1650 
1651     // Remove any gaps with regmask clobbers.
1652     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1653       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
1654         GapWeight[RegMaskGaps[I]] = huge_valf;
1655 
1656     // Try to find the best sequence of gaps to close.
1657     // The new spill weight must be larger than any gap interference.
1658 
1659     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1660     unsigned SplitBefore = 0, SplitAfter = 1;
1661 
1662     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1663     // It is the spill weight that needs to be evicted.
1664     float MaxGap = GapWeight[0];
1665 
1666     while (true) {
1667       // Live before/after split?
1668       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1669       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1670 
1671       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
1672                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
1673 
1674       // Stop before the interval gets so big we wouldn't be making progress.
1675       if (!LiveBefore && !LiveAfter) {
1676         LLVM_DEBUG(dbgs() << " all\n");
1677         break;
1678       }
1679       // Should the interval be extended or shrunk?
1680       bool Shrink = true;
1681 
1682       // How many gaps would the new range have?
1683       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1684 
1685       // Legally, without causing looping?
1686       bool Legal = !ProgressRequired || NewGaps < NumGaps;
1687 
1688       if (Legal && MaxGap < huge_valf) {
1689         // Estimate the new spill weight. Each instruction reads or writes the
1690         // register. Conservatively assume there are no read-modify-write
1691         // instructions.
1692         //
1693         // Try to guess the size of the new interval.
1694         const float EstWeight = normalizeSpillWeight(
1695             blockFreq * (NewGaps + 1),
1696             Uses[SplitBefore].distance(Uses[SplitAfter]) +
1697                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1698             1);
1699         // Would this split be possible to allocate?
1700         // Never allocate all gaps, we wouldn't be making progress.
1701         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
1702         if (EstWeight * Hysteresis >= MaxGap) {
1703           Shrink = false;
1704           float Diff = EstWeight - MaxGap;
1705           if (Diff > BestDiff) {
1706             LLVM_DEBUG(dbgs() << " (best)");
1707             BestDiff = Hysteresis * Diff;
1708             BestBefore = SplitBefore;
1709             BestAfter = SplitAfter;
1710           }
1711         }
1712       }
1713 
1714       // Try to shrink.
1715       if (Shrink) {
1716         if (++SplitBefore < SplitAfter) {
1717           LLVM_DEBUG(dbgs() << " shrink\n");
1718           // Recompute the max when necessary.
1719           if (GapWeight[SplitBefore - 1] >= MaxGap) {
1720             MaxGap = GapWeight[SplitBefore];
1721             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
1722               MaxGap = std::max(MaxGap, GapWeight[I]);
1723           }
1724           continue;
1725         }
1726         MaxGap = 0;
1727       }
1728 
1729       // Try to extend the interval.
1730       if (SplitAfter >= NumGaps) {
1731         LLVM_DEBUG(dbgs() << " end\n");
1732         break;
1733       }
1734 
1735       LLVM_DEBUG(dbgs() << " extend\n");
1736       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1737     }
1738   }
1739 
1740   // Didn't find any candidates?
1741   if (BestBefore == NumGaps)
1742     return 0;
1743 
1744   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
1745                     << Uses[BestAfter] << ", " << BestDiff << ", "
1746                     << (BestAfter - BestBefore + 1) << " instrs\n");
1747 
1748   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1749   SE->reset(LREdit);
1750 
1751   SE->openIntv();
1752   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1753   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1754   SE->useIntv(SegStart, SegStop);
1755   SmallVector<unsigned, 8> IntvMap;
1756   SE->finish(&IntvMap);
1757   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1758   // If the new range has the same number of instructions as before, mark it as
1759   // RS_Split2 so the next split will be forced to make progress. Otherwise,
1760   // leave the new intervals as RS_New so they can compete.
1761   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1762   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1763   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1764   if (NewGaps >= NumGaps) {
1765     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1766     assert(!ProgressRequired && "Didn't make progress when it was required.");
1767     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
1768       if (IntvMap[I] == 1) {
1769         ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
1770         LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
1771       }
1772     LLVM_DEBUG(dbgs() << '\n');
1773   }
1774   ++NumLocalSplits;
1775 
1776   return 0;
1777 }
1778 
1779 //===----------------------------------------------------------------------===//
1780 //                          Live Range Splitting
1781 //===----------------------------------------------------------------------===//
1782 
1783 /// trySplit - Try to split VirtReg or one of its interferences, making it
1784 /// assignable.
1785 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1786 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order,
1787                             SmallVectorImpl<Register> &NewVRegs,
1788                             const SmallVirtRegSet &FixedRegisters) {
1789   // Ranges must be Split2 or less.
1790   if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
1791     return 0;
1792 
1793   // Local intervals are handled separately.
1794   if (LIS->intervalIsInOneMBB(VirtReg)) {
1795     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
1796                        TimerGroupDescription, TimePassesIsEnabled);
1797     SA->analyze(&VirtReg);
1798     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1799     if (PhysReg || !NewVRegs.empty())
1800       return PhysReg;
1801     return tryInstructionSplit(VirtReg, Order, NewVRegs);
1802   }
1803 
1804   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
1805                      TimerGroupDescription, TimePassesIsEnabled);
1806 
1807   SA->analyze(&VirtReg);
1808 
1809   // First try to split around a region spanning multiple blocks. RS_Split2
1810   // ranges already made dubious progress with region splitting, so they go
1811   // straight to single block splitting.
1812   if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
1813     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1814     if (PhysReg || !NewVRegs.empty())
1815       return PhysReg;
1816   }
1817 
1818   // Then isolate blocks.
1819   return tryBlockSplit(VirtReg, Order, NewVRegs);
1820 }
1821 
1822 //===----------------------------------------------------------------------===//
1823 //                          Last Chance Recoloring
1824 //===----------------------------------------------------------------------===//
1825 
1826 /// Return true if \p reg has any tied def operand.
1827 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
1828   for (const MachineOperand &MO : MRI->def_operands(reg))
1829     if (MO.isTied())
1830       return true;
1831 
1832   return false;
1833 }
1834 
1835 /// Return true if the existing assignment of \p Intf overlaps, but is not the
1836 /// same, as \p PhysReg.
1837 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI,
1838                                          const VirtRegMap &VRM,
1839                                          MCRegister PhysReg,
1840                                          const LiveInterval &Intf) {
1841   MCRegister AssignedReg = VRM.getPhys(Intf.reg());
1842   if (PhysReg == AssignedReg)
1843     return false;
1844   return TRI.regsOverlap(PhysReg, AssignedReg);
1845 }
1846 
1847 /// mayRecolorAllInterferences - Check if the virtual registers that
1848 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1849 /// recolored to free \p PhysReg.
1850 /// When true is returned, \p RecoloringCandidates has been augmented with all
1851 /// the live intervals that need to be recolored in order to free \p PhysReg
1852 /// for \p VirtReg.
1853 /// \p FixedRegisters contains all the virtual registers that cannot be
1854 /// recolored.
1855 bool RAGreedy::mayRecolorAllInterferences(
1856     MCRegister PhysReg, const LiveInterval &VirtReg,
1857     SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) {
1858   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1859 
1860   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1861     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1862     // If there is LastChanceRecoloringMaxInterference or more interferences,
1863     // chances are one would not be recolorable.
1864     if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
1865             LastChanceRecoloringMaxInterference &&
1866         !ExhaustiveSearch) {
1867       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1868       CutOffInfo |= CO_Interf;
1869       return false;
1870     }
1871     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1872       // If Intf is done and sits on the same register class as VirtReg, it
1873       // would not be recolorable as it is in the same state as
1874       // VirtReg. However there are at least two exceptions.
1875       //
1876       // If VirtReg has tied defs and Intf doesn't, then
1877       // there is still a point in examining if it can be recolorable.
1878       //
1879       // Additionally, if the register class has overlapping tuple members, it
1880       // may still be recolorable using a different tuple. This is more likely
1881       // if the existing assignment aliases with the candidate.
1882       //
1883       if (((ExtraInfo->getStage(*Intf) == RS_Done &&
1884             MRI->getRegClass(Intf->reg()) == CurRC &&
1885             !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) &&
1886            !(hasTiedDef(MRI, VirtReg.reg()) &&
1887              !hasTiedDef(MRI, Intf->reg()))) ||
1888           FixedRegisters.count(Intf->reg())) {
1889         LLVM_DEBUG(
1890             dbgs() << "Early abort: the interference is not recolorable.\n");
1891         return false;
1892       }
1893       RecoloringCandidates.insert(Intf);
1894     }
1895   }
1896   return true;
1897 }
1898 
1899 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1900 /// its interferences.
1901 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
1902 /// virtual register that was using it. The recoloring process may recursively
1903 /// use the last chance recoloring. Therefore, when a virtual register has been
1904 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
1905 /// be last-chance-recolored again during this recoloring "session".
1906 /// E.g.,
1907 /// Let
1908 /// vA can use {R1, R2    }
1909 /// vB can use {    R2, R3}
1910 /// vC can use {R1        }
1911 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
1912 /// instance) and they all interfere.
1913 ///
1914 /// vA is assigned R1
1915 /// vB is assigned R2
1916 /// vC tries to evict vA but vA is already done.
1917 /// Regular register allocation fails.
1918 ///
1919 /// Last chance recoloring kicks in:
1920 /// vC does as if vA was evicted => vC uses R1.
1921 /// vC is marked as fixed.
1922 /// vA needs to find a color.
1923 /// None are available.
1924 /// vA cannot evict vC: vC is a fixed virtual register now.
1925 /// vA does as if vB was evicted => vA uses R2.
1926 /// vB needs to find a color.
1927 /// R3 is available.
1928 /// Recoloring => vC = R1, vA = R2, vB = R3
1929 ///
1930 /// \p Order defines the preferred allocation order for \p VirtReg.
1931 /// \p NewRegs will contain any new virtual register that have been created
1932 /// (split, spill) during the process and that must be assigned.
1933 /// \p FixedRegisters contains all the virtual registers that cannot be
1934 /// recolored.
1935 ///
1936 /// \p RecolorStack tracks the original assignments of successfully recolored
1937 /// registers.
1938 ///
1939 /// \p Depth gives the current depth of the last chance recoloring.
1940 /// \return a physical register that can be used for VirtReg or ~0u if none
1941 /// exists.
1942 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg,
1943                                            AllocationOrder &Order,
1944                                            SmallVectorImpl<Register> &NewVRegs,
1945                                            SmallVirtRegSet &FixedRegisters,
1946                                            RecoloringStack &RecolorStack,
1947                                            unsigned Depth) {
1948   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
1949     return ~0u;
1950 
1951   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
1952 
1953   const ssize_t EntryStackSize = RecolorStack.size();
1954 
1955   // Ranges must be Done.
1956   assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
1957          "Last chance recoloring should really be last chance");
1958   // Set the max depth to LastChanceRecoloringMaxDepth.
1959   // We may want to reconsider that if we end up with a too large search space
1960   // for target with hundreds of registers.
1961   // Indeed, in that case we may want to cut the search space earlier.
1962   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
1963     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
1964     CutOffInfo |= CO_Depth;
1965     return ~0u;
1966   }
1967 
1968   // Set of Live intervals that will need to be recolored.
1969   SmallLISet RecoloringCandidates;
1970 
1971   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
1972   // this recoloring "session".
1973   assert(!FixedRegisters.count(VirtReg.reg()));
1974   FixedRegisters.insert(VirtReg.reg());
1975   SmallVector<Register, 4> CurrentNewVRegs;
1976 
1977   for (MCRegister PhysReg : Order) {
1978     assert(PhysReg.isValid());
1979     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
1980                       << printReg(PhysReg, TRI) << '\n');
1981     RecoloringCandidates.clear();
1982     CurrentNewVRegs.clear();
1983 
1984     // It is only possible to recolor virtual register interference.
1985     if (Matrix->checkInterference(VirtReg, PhysReg) >
1986         LiveRegMatrix::IK_VirtReg) {
1987       LLVM_DEBUG(
1988           dbgs() << "Some interferences are not with virtual registers.\n");
1989 
1990       continue;
1991     }
1992 
1993     // Early give up on this PhysReg if it is obvious we cannot recolor all
1994     // the interferences.
1995     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
1996                                     FixedRegisters)) {
1997       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
1998       continue;
1999     }
2000 
2001     // RecoloringCandidates contains all the virtual registers that interfere
2002     // with VirtReg on PhysReg (or one of its aliases). Enqueue them for
2003     // recoloring and perform the actual recoloring.
2004     PQueue RecoloringQueue;
2005     for (const LiveInterval *RC : RecoloringCandidates) {
2006       Register ItVirtReg = RC->reg();
2007       enqueue(RecoloringQueue, RC);
2008       assert(VRM->hasPhys(ItVirtReg) &&
2009              "Interferences are supposed to be with allocated variables");
2010 
2011       // Record the current allocation.
2012       RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg)));
2013 
2014       // unset the related struct.
2015       Matrix->unassign(*RC);
2016     }
2017 
2018     // Do as if VirtReg was assigned to PhysReg so that the underlying
2019     // recoloring has the right information about the interferes and
2020     // available colors.
2021     Matrix->assign(VirtReg, PhysReg);
2022 
2023     // Save the current recoloring state.
2024     // If we cannot recolor all the interferences, we will have to start again
2025     // at this point for the next physical register.
2026     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2027     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2028                                 FixedRegisters, RecolorStack, Depth)) {
2029       // Push the queued vregs into the main queue.
2030       for (Register NewVReg : CurrentNewVRegs)
2031         NewVRegs.push_back(NewVReg);
2032       // Do not mess up with the global assignment process.
2033       // I.e., VirtReg must be unassigned.
2034       Matrix->unassign(VirtReg);
2035       return PhysReg;
2036     }
2037 
2038     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2039                       << printReg(PhysReg, TRI) << '\n');
2040 
2041     // The recoloring attempt failed, undo the changes.
2042     FixedRegisters = SaveFixedRegisters;
2043     Matrix->unassign(VirtReg);
2044 
2045     // For a newly created vreg which is also in RecoloringCandidates,
2046     // don't add it to NewVRegs because its physical register will be restored
2047     // below. Other vregs in CurrentNewVRegs are created by calling
2048     // selectOrSplit and should be added into NewVRegs.
2049     for (Register &R : CurrentNewVRegs) {
2050       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2051         continue;
2052       NewVRegs.push_back(R);
2053     }
2054 
2055     // Roll back our unsuccessful recoloring. Also roll back any successful
2056     // recolorings in any recursive recoloring attempts, since it's possible
2057     // they would have introduced conflicts with assignments we will be
2058     // restoring further up the stack. Perform all unassignments prior to
2059     // reassigning, since sub-recolorings may have conflicted with the registers
2060     // we are going to restore to their original assignments.
2061     for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) {
2062       const LiveInterval *LI;
2063       MCRegister PhysReg;
2064       std::tie(LI, PhysReg) = RecolorStack[I];
2065 
2066       if (VRM->hasPhys(LI->reg()))
2067         Matrix->unassign(*LI);
2068     }
2069 
2070     for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) {
2071       const LiveInterval *LI;
2072       MCRegister PhysReg;
2073       std::tie(LI, PhysReg) = RecolorStack[I];
2074       Matrix->assign(*LI, PhysReg);
2075     }
2076 
2077     // Pop the stack of recoloring attempts.
2078     RecolorStack.resize(EntryStackSize);
2079   }
2080 
2081   // Last chance recoloring did not worked either, give up.
2082   return ~0u;
2083 }
2084 
2085 /// tryRecoloringCandidates - Try to assign a new color to every register
2086 /// in \RecoloringQueue.
2087 /// \p NewRegs will contain any new virtual register created during the
2088 /// recoloring process.
2089 /// \p FixedRegisters[in/out] contains all the registers that have been
2090 /// recolored.
2091 /// \return true if all virtual registers in RecoloringQueue were successfully
2092 /// recolored, false otherwise.
2093 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2094                                        SmallVectorImpl<Register> &NewVRegs,
2095                                        SmallVirtRegSet &FixedRegisters,
2096                                        RecoloringStack &RecolorStack,
2097                                        unsigned Depth) {
2098   while (!RecoloringQueue.empty()) {
2099     const LiveInterval *LI = dequeue(RecoloringQueue);
2100     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2101     MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters,
2102                                            RecolorStack, Depth + 1);
2103     // When splitting happens, the live-range may actually be empty.
2104     // In that case, this is okay to continue the recoloring even
2105     // if we did not find an alternative color for it. Indeed,
2106     // there will not be anything to color for LI in the end.
2107     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2108       return false;
2109 
2110     if (!PhysReg) {
2111       assert(LI->empty() && "Only empty live-range do not require a register");
2112       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2113                         << " succeeded. Empty LI.\n");
2114       continue;
2115     }
2116     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2117                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2118 
2119     Matrix->assign(*LI, PhysReg);
2120     FixedRegisters.insert(LI->reg());
2121   }
2122   return true;
2123 }
2124 
2125 //===----------------------------------------------------------------------===//
2126 //                            Main Entry Point
2127 //===----------------------------------------------------------------------===//
2128 
2129 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg,
2130                                    SmallVectorImpl<Register> &NewVRegs) {
2131   CutOffInfo = CO_None;
2132   LLVMContext &Ctx = MF->getFunction().getContext();
2133   SmallVirtRegSet FixedRegisters;
2134   RecoloringStack RecolorStack;
2135   MCRegister Reg =
2136       selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack);
2137   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2138     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2139     if (CutOffEncountered == CO_Depth)
2140       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2141                     "reached. Use -fexhaustive-register-search to skip "
2142                     "cutoffs");
2143     else if (CutOffEncountered == CO_Interf)
2144       Ctx.emitError("register allocation failed: maximum interference for "
2145                     "recoloring reached. Use -fexhaustive-register-search "
2146                     "to skip cutoffs");
2147     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2148       Ctx.emitError("register allocation failed: maximum interference and "
2149                     "depth for recoloring reached. Use "
2150                     "-fexhaustive-register-search to skip cutoffs");
2151   }
2152   return Reg;
2153 }
2154 
2155 /// Using a CSR for the first time has a cost because it causes push|pop
2156 /// to be added to prologue|epilogue. Splitting a cold section of the live
2157 /// range can have lower cost than using the CSR for the first time;
2158 /// Spilling a live range in the cold path can have lower cost than using
2159 /// the CSR for the first time. Returns the physical register if we decide
2160 /// to use the CSR; otherwise return 0.
2161 MCRegister RAGreedy::tryAssignCSRFirstTime(
2162     const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg,
2163     uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) {
2164   if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2165     // We choose spill over using the CSR for the first time if the spill cost
2166     // is lower than CSRCost.
2167     SA->analyze(&VirtReg);
2168     if (calcSpillCost() >= CSRCost)
2169       return PhysReg;
2170 
2171     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2172     // we will not use a callee-saved register in tryEvict.
2173     CostPerUseLimit = 1;
2174     return 0;
2175   }
2176   if (ExtraInfo->getStage(VirtReg) < RS_Split) {
2177     // We choose pre-splitting over using the CSR for the first time if
2178     // the cost of splitting is lower than CSRCost.
2179     SA->analyze(&VirtReg);
2180     unsigned NumCands = 0;
2181     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2182     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2183                                                  NumCands, true /*IgnoreCSR*/);
2184     if (BestCand == NoCand)
2185       // Use the CSR if we can't find a region split below CSRCost.
2186       return PhysReg;
2187 
2188     // Perform the actual pre-splitting.
2189     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2190     return 0;
2191   }
2192   return PhysReg;
2193 }
2194 
2195 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) {
2196   // Do not keep invalid information around.
2197   SetOfBrokenHints.remove(&LI);
2198 }
2199 
2200 void RAGreedy::initializeCSRCost() {
2201   // We use the larger one out of the command-line option and the value report
2202   // by TRI.
2203   CSRCost = BlockFrequency(
2204       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2205   if (!CSRCost.getFrequency())
2206     return;
2207 
2208   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2209   uint64_t ActualEntry = MBFI->getEntryFreq();
2210   if (!ActualEntry) {
2211     CSRCost = 0;
2212     return;
2213   }
2214   uint64_t FixedEntry = 1 << 14;
2215   if (ActualEntry < FixedEntry)
2216     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2217   else if (ActualEntry <= UINT32_MAX)
2218     // Invert the fraction and divide.
2219     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2220   else
2221     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2222     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2223 }
2224 
2225 /// Collect the hint info for \p Reg.
2226 /// The results are stored into \p Out.
2227 /// \p Out is not cleared before being populated.
2228 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2229   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2230     if (!Instr.isFullCopy())
2231       continue;
2232     // Look for the other end of the copy.
2233     Register OtherReg = Instr.getOperand(0).getReg();
2234     if (OtherReg == Reg) {
2235       OtherReg = Instr.getOperand(1).getReg();
2236       if (OtherReg == Reg)
2237         continue;
2238     }
2239     // Get the current assignment.
2240     MCRegister OtherPhysReg =
2241         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2242     // Push the collected information.
2243     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2244                            OtherPhysReg));
2245   }
2246 }
2247 
2248 /// Using the given \p List, compute the cost of the broken hints if
2249 /// \p PhysReg was used.
2250 /// \return The cost of \p List for \p PhysReg.
2251 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2252                                            MCRegister PhysReg) {
2253   BlockFrequency Cost = 0;
2254   for (const HintInfo &Info : List) {
2255     if (Info.PhysReg != PhysReg)
2256       Cost += Info.Freq;
2257   }
2258   return Cost;
2259 }
2260 
2261 /// Using the register assigned to \p VirtReg, try to recolor
2262 /// all the live ranges that are copy-related with \p VirtReg.
2263 /// The recoloring is then propagated to all the live-ranges that have
2264 /// been recolored and so on, until no more copies can be coalesced or
2265 /// it is not profitable.
2266 /// For a given live range, profitability is determined by the sum of the
2267 /// frequencies of the non-identity copies it would introduce with the old
2268 /// and new register.
2269 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) {
2270   // We have a broken hint, check if it is possible to fix it by
2271   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2272   // some register and PhysReg may be available for the other live-ranges.
2273   SmallSet<Register, 4> Visited;
2274   SmallVector<unsigned, 2> RecoloringCandidates;
2275   HintsInfo Info;
2276   Register Reg = VirtReg.reg();
2277   MCRegister PhysReg = VRM->getPhys(Reg);
2278   // Start the recoloring algorithm from the input live-interval, then
2279   // it will propagate to the ones that are copy-related with it.
2280   Visited.insert(Reg);
2281   RecoloringCandidates.push_back(Reg);
2282 
2283   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2284                     << '(' << printReg(PhysReg, TRI) << ")\n");
2285 
2286   do {
2287     Reg = RecoloringCandidates.pop_back_val();
2288 
2289     // We cannot recolor physical register.
2290     if (Register::isPhysicalRegister(Reg))
2291       continue;
2292 
2293     // This may be a skipped class
2294     if (!VRM->hasPhys(Reg)) {
2295       assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2296              "We have an unallocated variable which should have been handled");
2297       continue;
2298     }
2299 
2300     // Get the live interval mapped with this virtual register to be able
2301     // to check for the interference with the new color.
2302     LiveInterval &LI = LIS->getInterval(Reg);
2303     MCRegister CurrPhys = VRM->getPhys(Reg);
2304     // Check that the new color matches the register class constraints and
2305     // that it is free for this live range.
2306     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2307                                 Matrix->checkInterference(LI, PhysReg)))
2308       continue;
2309 
2310     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2311                       << ") is recolorable.\n");
2312 
2313     // Gather the hint info.
2314     Info.clear();
2315     collectHintInfo(Reg, Info);
2316     // Check if recoloring the live-range will increase the cost of the
2317     // non-identity copies.
2318     if (CurrPhys != PhysReg) {
2319       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2320       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2321       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2322       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2323                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2324                         << '\n');
2325       if (OldCopiesCost < NewCopiesCost) {
2326         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2327         continue;
2328       }
2329       // At this point, the cost is either cheaper or equal. If it is
2330       // equal, we consider this is profitable because it may expose
2331       // more recoloring opportunities.
2332       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2333       // Recolor the live-range.
2334       Matrix->unassign(LI);
2335       Matrix->assign(LI, PhysReg);
2336     }
2337     // Push all copy-related live-ranges to keep reconciling the broken
2338     // hints.
2339     for (const HintInfo &HI : Info) {
2340       if (Visited.insert(HI.Reg).second)
2341         RecoloringCandidates.push_back(HI.Reg);
2342     }
2343   } while (!RecoloringCandidates.empty());
2344 }
2345 
2346 /// Try to recolor broken hints.
2347 /// Broken hints may be repaired by recoloring when an evicted variable
2348 /// freed up a register for a larger live-range.
2349 /// Consider the following example:
2350 /// BB1:
2351 ///   a =
2352 ///   b =
2353 /// BB2:
2354 ///   ...
2355 ///   = b
2356 ///   = a
2357 /// Let us assume b gets split:
2358 /// BB1:
2359 ///   a =
2360 ///   b =
2361 /// BB2:
2362 ///   c = b
2363 ///   ...
2364 ///   d = c
2365 ///   = d
2366 ///   = a
2367 /// Because of how the allocation work, b, c, and d may be assigned different
2368 /// colors. Now, if a gets evicted later:
2369 /// BB1:
2370 ///   a =
2371 ///   st a, SpillSlot
2372 ///   b =
2373 /// BB2:
2374 ///   c = b
2375 ///   ...
2376 ///   d = c
2377 ///   = d
2378 ///   e = ld SpillSlot
2379 ///   = e
2380 /// This is likely that we can assign the same register for b, c, and d,
2381 /// getting rid of 2 copies.
2382 void RAGreedy::tryHintsRecoloring() {
2383   for (const LiveInterval *LI : SetOfBrokenHints) {
2384     assert(Register::isVirtualRegister(LI->reg()) &&
2385            "Recoloring is possible only for virtual registers");
2386     // Some dead defs may be around (e.g., because of debug uses).
2387     // Ignore those.
2388     if (!VRM->hasPhys(LI->reg()))
2389       continue;
2390     tryHintRecoloring(*LI);
2391   }
2392 }
2393 
2394 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg,
2395                                        SmallVectorImpl<Register> &NewVRegs,
2396                                        SmallVirtRegSet &FixedRegisters,
2397                                        RecoloringStack &RecolorStack,
2398                                        unsigned Depth) {
2399   uint8_t CostPerUseLimit = uint8_t(~0u);
2400   // First try assigning a free register.
2401   auto Order =
2402       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
2403   if (MCRegister PhysReg =
2404           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
2405     // If VirtReg got an assignment, the eviction info is no longer relevant.
2406     LastEvicted.clearEvicteeInfo(VirtReg.reg());
2407     // When NewVRegs is not empty, we may have made decisions such as evicting
2408     // a virtual register, go with the earlier decisions and use the physical
2409     // register.
2410     if (CSRCost.getFrequency() &&
2411         EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
2412       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2413                                                 CostPerUseLimit, NewVRegs);
2414       if (CSRReg || !NewVRegs.empty())
2415         // Return now if we decide to use a CSR or create new vregs due to
2416         // pre-splitting.
2417         return CSRReg;
2418     } else
2419       return PhysReg;
2420   }
2421 
2422   LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
2423   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2424                     << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
2425 
2426   // Try to evict a less worthy live range, but only for ranges from the primary
2427   // queue. The RS_Split ranges already failed to do this, and they should not
2428   // get a second chance until they have been split.
2429   if (Stage != RS_Split)
2430     if (Register PhysReg =
2431             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
2432                      FixedRegisters)) {
2433       Register Hint = MRI->getSimpleHint(VirtReg.reg());
2434       // If VirtReg has a hint and that hint is broken record this
2435       // virtual register as a recoloring candidate for broken hint.
2436       // Indeed, since we evicted a variable in its neighborhood it is
2437       // likely we can at least partially recolor some of the
2438       // copy-related live-ranges.
2439       if (Hint && Hint != PhysReg)
2440         SetOfBrokenHints.insert(&VirtReg);
2441       // If VirtReg eviction someone, the eviction info for it as an evictee is
2442       // no longer relevant.
2443       LastEvicted.clearEvicteeInfo(VirtReg.reg());
2444       return PhysReg;
2445     }
2446 
2447   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2448 
2449   // The first time we see a live range, don't try to split or spill.
2450   // Wait until the second time, when all smaller ranges have been allocated.
2451   // This gives a better picture of the interference to split around.
2452   if (Stage < RS_Split) {
2453     ExtraInfo->setStage(VirtReg, RS_Split);
2454     LLVM_DEBUG(dbgs() << "wait for second round\n");
2455     NewVRegs.push_back(VirtReg.reg());
2456     return 0;
2457   }
2458 
2459   if (Stage < RS_Spill) {
2460     // Try splitting VirtReg or interferences.
2461     unsigned NewVRegSizeBefore = NewVRegs.size();
2462     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
2463     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
2464       // If VirtReg got split, the eviction info is no longer relevant.
2465       LastEvicted.clearEvicteeInfo(VirtReg.reg());
2466       return PhysReg;
2467     }
2468   }
2469 
2470   // If we couldn't allocate a register from spilling, there is probably some
2471   // invalid inline assembly. The base class will report it.
2472   if (Stage >= RS_Done || !VirtReg.isSpillable()) {
2473     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2474                                    RecolorStack, Depth);
2475   }
2476 
2477   // Finally spill VirtReg itself.
2478   if ((EnableDeferredSpilling ||
2479        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
2480       ExtraInfo->getStage(VirtReg) < RS_Memory) {
2481     // TODO: This is experimental and in particular, we do not model
2482     // the live range splitting done by spilling correctly.
2483     // We would need a deep integration with the spiller to do the
2484     // right thing here. Anyway, that is still good for early testing.
2485     ExtraInfo->setStage(VirtReg, RS_Memory);
2486     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2487     NewVRegs.push_back(VirtReg.reg());
2488   } else {
2489     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
2490                        TimerGroupDescription, TimePassesIsEnabled);
2491     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2492     spiller().spill(LRE);
2493     ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2494 
2495     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
2496     // the new regs are kept in LDV (still mapping to the old register), until
2497     // we rewrite spilled locations in LDV at a later stage.
2498     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
2499 
2500     if (VerifyEnabled)
2501       MF->verify(this, "After spilling");
2502   }
2503 
2504   // The live virtual register requesting allocation was spilled, so tell
2505   // the caller not to allocate anything during this round.
2506   return 0;
2507 }
2508 
2509 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
2510   using namespace ore;
2511   if (Spills) {
2512     R << NV("NumSpills", Spills) << " spills ";
2513     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
2514   }
2515   if (FoldedSpills) {
2516     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2517     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
2518       << " total folded spills cost ";
2519   }
2520   if (Reloads) {
2521     R << NV("NumReloads", Reloads) << " reloads ";
2522     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
2523   }
2524   if (FoldedReloads) {
2525     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2526     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
2527       << " total folded reloads cost ";
2528   }
2529   if (ZeroCostFoldedReloads)
2530     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
2531       << " zero cost folded reloads ";
2532   if (Copies) {
2533     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
2534     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
2535   }
2536 }
2537 
2538 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
2539   RAGreedyStats Stats;
2540   const MachineFrameInfo &MFI = MF->getFrameInfo();
2541   int FI;
2542 
2543   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
2544     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
2545         A->getPseudoValue())->getFrameIndex());
2546   };
2547   auto isPatchpointInstr = [](const MachineInstr &MI) {
2548     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
2549            MI.getOpcode() == TargetOpcode::STACKMAP ||
2550            MI.getOpcode() == TargetOpcode::STATEPOINT;
2551   };
2552   for (MachineInstr &MI : MBB) {
2553     if (MI.isCopy()) {
2554       MachineOperand &Dest = MI.getOperand(0);
2555       MachineOperand &Src = MI.getOperand(1);
2556       if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() &&
2557           Src.getReg().isVirtual())
2558         ++Stats.Copies;
2559       continue;
2560     }
2561 
2562     SmallVector<const MachineMemOperand *, 2> Accesses;
2563     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2564       ++Stats.Reloads;
2565       continue;
2566     }
2567     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2568       ++Stats.Spills;
2569       continue;
2570     }
2571     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
2572         llvm::any_of(Accesses, isSpillSlotAccess)) {
2573       if (!isPatchpointInstr(MI)) {
2574         Stats.FoldedReloads += Accesses.size();
2575         continue;
2576       }
2577       // For statepoint there may be folded and zero cost folded stack reloads.
2578       std::pair<unsigned, unsigned> NonZeroCostRange =
2579           TII->getPatchpointUnfoldableRange(MI);
2580       SmallSet<unsigned, 16> FoldedReloads;
2581       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
2582       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
2583         MachineOperand &MO = MI.getOperand(Idx);
2584         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
2585           continue;
2586         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
2587           FoldedReloads.insert(MO.getIndex());
2588         else
2589           ZeroCostFoldedReloads.insert(MO.getIndex());
2590       }
2591       // If stack slot is used in folded reload it is not zero cost then.
2592       for (unsigned Slot : FoldedReloads)
2593         ZeroCostFoldedReloads.erase(Slot);
2594       Stats.FoldedReloads += FoldedReloads.size();
2595       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
2596       continue;
2597     }
2598     Accesses.clear();
2599     if (TII->hasStoreToStackSlot(MI, Accesses) &&
2600         llvm::any_of(Accesses, isSpillSlotAccess)) {
2601       Stats.FoldedSpills += Accesses.size();
2602     }
2603   }
2604   // Set cost of collected statistic by multiplication to relative frequency of
2605   // this basic block.
2606   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
2607   Stats.ReloadsCost = RelFreq * Stats.Reloads;
2608   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
2609   Stats.SpillsCost = RelFreq * Stats.Spills;
2610   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
2611   Stats.CopiesCost = RelFreq * Stats.Copies;
2612   return Stats;
2613 }
2614 
2615 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
2616   RAGreedyStats Stats;
2617 
2618   // Sum up the spill and reloads in subloops.
2619   for (MachineLoop *SubLoop : *L)
2620     Stats.add(reportStats(SubLoop));
2621 
2622   for (MachineBasicBlock *MBB : L->getBlocks())
2623     // Handle blocks that were not included in subloops.
2624     if (Loops->getLoopFor(MBB) == L)
2625       Stats.add(computeStats(*MBB));
2626 
2627   if (!Stats.isEmpty()) {
2628     using namespace ore;
2629 
2630     ORE->emit([&]() {
2631       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
2632                                         L->getStartLoc(), L->getHeader());
2633       Stats.report(R);
2634       R << "generated in loop";
2635       return R;
2636     });
2637   }
2638   return Stats;
2639 }
2640 
2641 void RAGreedy::reportStats() {
2642   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
2643     return;
2644   RAGreedyStats Stats;
2645   for (MachineLoop *L : *Loops)
2646     Stats.add(reportStats(L));
2647   // Process non-loop blocks.
2648   for (MachineBasicBlock &MBB : *MF)
2649     if (!Loops->getLoopFor(&MBB))
2650       Stats.add(computeStats(MBB));
2651   if (!Stats.isEmpty()) {
2652     using namespace ore;
2653 
2654     ORE->emit([&]() {
2655       DebugLoc Loc;
2656       if (auto *SP = MF->getFunction().getSubprogram())
2657         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
2658       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
2659                                         &MF->front());
2660       Stats.report(R);
2661       R << "generated in function";
2662       return R;
2663     });
2664   }
2665 }
2666 
2667 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2668   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2669                     << "********** Function: " << mf.getName() << '\n');
2670 
2671   MF = &mf;
2672   TRI = MF->getSubtarget().getRegisterInfo();
2673   TII = MF->getSubtarget().getInstrInfo();
2674   RCI.runOnMachineFunction(mf);
2675 
2676   if (VerifyEnabled)
2677     MF->verify(this, "Before greedy register allocator");
2678 
2679   RegAllocBase::init(getAnalysis<VirtRegMap>(),
2680                      getAnalysis<LiveIntervals>(),
2681                      getAnalysis<LiveRegMatrix>());
2682   Indexes = &getAnalysis<SlotIndexes>();
2683   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2684   DomTree = &getAnalysis<MachineDominatorTree>();
2685   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2686   Loops = &getAnalysis<MachineLoopInfo>();
2687   Bundles = &getAnalysis<EdgeBundles>();
2688   SpillPlacer = &getAnalysis<SpillPlacement>();
2689   DebugVars = &getAnalysis<LiveDebugVariables>();
2690   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2691 
2692   initializeCSRCost();
2693 
2694   RegCosts = TRI->getRegisterCosts(*MF);
2695 
2696   ExtraInfo.emplace();
2697   EvictAdvisor =
2698       getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this);
2699 
2700   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
2701   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
2702 
2703   VRAI->calculateSpillWeightsAndHints();
2704 
2705   LLVM_DEBUG(LIS->dump());
2706 
2707   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2708   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
2709 
2710   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2711   GlobalCand.resize(32);  // This will grow as needed.
2712   SetOfBrokenHints.clear();
2713   LastEvicted.clear();
2714 
2715   allocatePhysRegs();
2716   tryHintsRecoloring();
2717 
2718   if (VerifyEnabled)
2719     MF->verify(this, "Before post optimization");
2720   postOptimization();
2721   reportStats();
2722 
2723   releaseMemory();
2724   return true;
2725 }
2726