1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "SplitKit.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <queue>
77 #include <tuple>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "regalloc"
83 
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
86 STATISTIC(NumEvicted,      "Number of interferences evicted");
87 
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89     "split-spill-mode", cl::Hidden,
90     cl::desc("Spill mode for splitting live ranges"),
91     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94     cl::init(SplitEditor::SM_Speed));
95 
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98                              cl::desc("Last chance recoloring max depth"),
99                              cl::init(5));
100 
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102     "lcr-max-interf", cl::Hidden,
103     cl::desc("Last chance recoloring maximum number of considered"
104              " interference at a time"),
105     cl::init(8));
106 
107 static cl::opt<bool> ExhaustiveSearch(
108     "exhaustive-register-search", cl::NotHidden,
109     cl::desc("Exhaustive Search for registers bypassing the depth "
110              "and interference cutoffs of last chance recoloring"),
111     cl::Hidden);
112 
113 static cl::opt<bool> EnableLocalReassignment(
114     "enable-local-reassign", cl::Hidden,
115     cl::desc("Local reassignment can yield better allocation decisions, but "
116              "may be compile time intensive"),
117     cl::init(false));
118 
119 static cl::opt<bool> EnableDeferredSpilling(
120     "enable-deferred-spilling", cl::Hidden,
121     cl::desc("Instead of spilling a variable right away, defer the actual "
122              "code insertion to the end of the allocation. That way the "
123              "allocator might still find a suitable coloring for this "
124              "variable because of other evicted variables."),
125     cl::init(false));
126 
127 // FIXME: Find a good default for this flag and remove the flag.
128 static cl::opt<unsigned>
129 CSRFirstTimeCost("regalloc-csr-first-time-cost",
130               cl::desc("Cost for first time use of callee-saved register."),
131               cl::init(0), cl::Hidden);
132 
133 static cl::opt<bool> ConsiderLocalIntervalCost(
134     "consider-local-interval-cost", cl::Hidden,
135     cl::desc("Consider the cost of local intervals created by a split "
136              "candidate when choosing the best split candidate."),
137     cl::init(false));
138 
139 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
140                                        createGreedyRegisterAllocator);
141 
142 namespace {
143 
144 class RAGreedy : public MachineFunctionPass,
145                  public RegAllocBase,
146                  private LiveRangeEdit::Delegate {
147   // Convenient shortcuts.
148   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
149   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
150   using SmallVirtRegSet = SmallSet<unsigned, 16>;
151 
152   // context
153   MachineFunction *MF;
154 
155   // Shortcuts to some useful interface.
156   const TargetInstrInfo *TII;
157   const TargetRegisterInfo *TRI;
158   RegisterClassInfo RCI;
159 
160   // analyses
161   SlotIndexes *Indexes;
162   MachineBlockFrequencyInfo *MBFI;
163   MachineDominatorTree *DomTree;
164   MachineLoopInfo *Loops;
165   MachineOptimizationRemarkEmitter *ORE;
166   EdgeBundles *Bundles;
167   SpillPlacement *SpillPlacer;
168   LiveDebugVariables *DebugVars;
169   AliasAnalysis *AA;
170 
171   // state
172   std::unique_ptr<Spiller> SpillerInstance;
173   PQueue Queue;
174   unsigned NextCascade;
175   std::unique_ptr<VirtRegAuxInfo> VRAI;
176 
177   // Live ranges pass through a number of stages as we try to allocate them.
178   // Some of the stages may also create new live ranges:
179   //
180   // - Region splitting.
181   // - Per-block splitting.
182   // - Local splitting.
183   // - Spilling.
184   //
185   // Ranges produced by one of the stages skip the previous stages when they are
186   // dequeued. This improves performance because we can skip interference checks
187   // that are unlikely to give any results. It also guarantees that the live
188   // range splitting algorithm terminates, something that is otherwise hard to
189   // ensure.
190   enum LiveRangeStage {
191     /// Newly created live range that has never been queued.
192     RS_New,
193 
194     /// Only attempt assignment and eviction. Then requeue as RS_Split.
195     RS_Assign,
196 
197     /// Attempt live range splitting if assignment is impossible.
198     RS_Split,
199 
200     /// Attempt more aggressive live range splitting that is guaranteed to make
201     /// progress.  This is used for split products that may not be making
202     /// progress.
203     RS_Split2,
204 
205     /// Live range will be spilled.  No more splitting will be attempted.
206     RS_Spill,
207 
208 
209     /// Live range is in memory. Because of other evictions, it might get moved
210     /// in a register in the end.
211     RS_Memory,
212 
213     /// There is nothing more we can do to this live range.  Abort compilation
214     /// if it can't be assigned.
215     RS_Done
216   };
217 
218   // Enum CutOffStage to keep a track whether the register allocation failed
219   // because of the cutoffs encountered in last chance recoloring.
220   // Note: This is used as bitmask. New value should be next power of 2.
221   enum CutOffStage {
222     // No cutoffs encountered
223     CO_None = 0,
224 
225     // lcr-max-depth cutoff encountered
226     CO_Depth = 1,
227 
228     // lcr-max-interf cutoff encountered
229     CO_Interf = 2
230   };
231 
232   uint8_t CutOffInfo;
233 
234 #ifndef NDEBUG
235   static const char *const StageName[];
236 #endif
237 
238   // RegInfo - Keep additional information about each live range.
239   struct RegInfo {
240     LiveRangeStage Stage = RS_New;
241 
242     // Cascade - Eviction loop prevention. See canEvictInterference().
243     unsigned Cascade = 0;
244 
245     RegInfo() = default;
246   };
247 
248   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
249 
250   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
251     return ExtraRegInfo[VirtReg.reg()].Stage;
252   }
253 
254   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
255     ExtraRegInfo.resize(MRI->getNumVirtRegs());
256     ExtraRegInfo[VirtReg.reg()].Stage = Stage;
257   }
258 
259   template<typename Iterator>
260   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
261     ExtraRegInfo.resize(MRI->getNumVirtRegs());
262     for (;Begin != End; ++Begin) {
263       unsigned Reg = *Begin;
264       if (ExtraRegInfo[Reg].Stage == RS_New)
265         ExtraRegInfo[Reg].Stage = NewStage;
266     }
267   }
268 
269   /// Cost of evicting interference.
270   struct EvictionCost {
271     unsigned BrokenHints = 0; ///< Total number of broken hints.
272     float MaxWeight = 0;      ///< Maximum spill weight evicted.
273 
274     EvictionCost() = default;
275 
276     bool isMax() const { return BrokenHints == ~0u; }
277 
278     void setMax() { BrokenHints = ~0u; }
279 
280     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
281 
282     bool operator<(const EvictionCost &O) const {
283       return std::tie(BrokenHints, MaxWeight) <
284              std::tie(O.BrokenHints, O.MaxWeight);
285     }
286   };
287 
288   /// EvictionTrack - Keeps track of past evictions in order to optimize region
289   /// split decision.
290   class EvictionTrack {
291 
292   public:
293     using EvictorInfo =
294         std::pair<unsigned /* evictor */, unsigned /* physreg */>;
295     using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>;
296 
297   private:
298     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
299     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
300     EvicteeInfo Evictees;
301 
302   public:
303     /// Clear all eviction information.
304     void clear() { Evictees.clear(); }
305 
306     ///  Clear eviction information for the given evictee Vreg.
307     /// E.g. when Vreg get's a new allocation, the old eviction info is no
308     /// longer relevant.
309     /// \param Evictee The evictee Vreg for whom we want to clear collected
310     /// eviction info.
311     void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); }
312 
313     /// Track new eviction.
314     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
315     /// \param PhysReg The physical register Evictee was evicted from.
316     /// \param Evictor The evictor Vreg that evicted Evictee.
317     /// \param Evictee The evictee Vreg.
318     void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) {
319       Evictees[Evictee].first = Evictor;
320       Evictees[Evictee].second = PhysReg;
321     }
322 
323     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
324     /// \param Evictee The evictee vreg.
325     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
326     /// nobody has evicted Evictee from PhysReg.
327     EvictorInfo getEvictor(unsigned Evictee) {
328       if (Evictees.count(Evictee)) {
329         return Evictees[Evictee];
330       }
331 
332       return EvictorInfo(0, 0);
333     }
334   };
335 
336   // Keeps track of past evictions in order to optimize region split decision.
337   EvictionTrack LastEvicted;
338 
339   // splitting state.
340   std::unique_ptr<SplitAnalysis> SA;
341   std::unique_ptr<SplitEditor> SE;
342 
343   /// Cached per-block interference maps
344   InterferenceCache IntfCache;
345 
346   /// All basic blocks where the current register has uses.
347   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
348 
349   /// Global live range splitting candidate info.
350   struct GlobalSplitCandidate {
351     // Register intended for assignment, or 0.
352     unsigned PhysReg;
353 
354     // SplitKit interval index for this candidate.
355     unsigned IntvIdx;
356 
357     // Interference for PhysReg.
358     InterferenceCache::Cursor Intf;
359 
360     // Bundles where this candidate should be live.
361     BitVector LiveBundles;
362     SmallVector<unsigned, 8> ActiveBlocks;
363 
364     void reset(InterferenceCache &Cache, unsigned Reg) {
365       PhysReg = Reg;
366       IntvIdx = 0;
367       Intf.setPhysReg(Cache, Reg);
368       LiveBundles.clear();
369       ActiveBlocks.clear();
370     }
371 
372     // Set B[I] = C for every live bundle where B[I] was NoCand.
373     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
374       unsigned Count = 0;
375       for (unsigned I : LiveBundles.set_bits())
376         if (B[I] == NoCand) {
377           B[I] = C;
378           Count++;
379         }
380       return Count;
381     }
382   };
383 
384   /// Candidate info for each PhysReg in AllocationOrder.
385   /// This vector never shrinks, but grows to the size of the largest register
386   /// class.
387   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
388 
389   enum : unsigned { NoCand = ~0u };
390 
391   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
392   /// NoCand which indicates the stack interval.
393   SmallVector<unsigned, 32> BundleCand;
394 
395   /// Callee-save register cost, calculated once per machine function.
396   BlockFrequency CSRCost;
397 
398   /// Run or not the local reassignment heuristic. This information is
399   /// obtained from the TargetSubtargetInfo.
400   bool EnableLocalReassign;
401 
402   /// Enable or not the consideration of the cost of local intervals created
403   /// by a split candidate when choosing the best split candidate.
404   bool EnableAdvancedRASplitCost;
405 
406   /// Set of broken hints that may be reconciled later because of eviction.
407   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
408 
409 public:
410   RAGreedy();
411 
412   /// Return the pass name.
413   StringRef getPassName() const override { return "Greedy Register Allocator"; }
414 
415   /// RAGreedy analysis usage.
416   void getAnalysisUsage(AnalysisUsage &AU) const override;
417   void releaseMemory() override;
418   Spiller &spiller() override { return *SpillerInstance; }
419   void enqueue(LiveInterval *LI) override;
420   LiveInterval *dequeue() override;
421   Register selectOrSplit(LiveInterval&, SmallVectorImpl<Register>&) override;
422   void aboutToRemoveInterval(LiveInterval &) override;
423 
424   /// Perform register allocation.
425   bool runOnMachineFunction(MachineFunction &mf) override;
426 
427   MachineFunctionProperties getRequiredProperties() const override {
428     return MachineFunctionProperties().set(
429         MachineFunctionProperties::Property::NoPHIs);
430   }
431 
432   static char ID;
433 
434 private:
435   Register selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &,
436                              SmallVirtRegSet &, unsigned = 0);
437 
438   bool LRE_CanEraseVirtReg(unsigned) override;
439   void LRE_WillShrinkVirtReg(unsigned) override;
440   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
441   void enqueue(PQueue &CurQueue, LiveInterval *LI);
442   LiveInterval *dequeue(PQueue &CurQueue);
443 
444   BlockFrequency calcSpillCost();
445   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
446   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
447   bool growRegion(GlobalSplitCandidate &Cand);
448   bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand,
449                                   unsigned BBNumber,
450                                   const AllocationOrder &Order);
451   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
452                                GlobalSplitCandidate &Cand, unsigned BBNumber,
453                                const AllocationOrder &Order);
454   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
455                                      const AllocationOrder &Order,
456                                      bool *CanCauseEvictionChain);
457   bool calcCompactRegion(GlobalSplitCandidate&);
458   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
459   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
460   Register canReassign(LiveInterval &VirtReg, Register PrevReg);
461   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
462   bool canEvictInterference(LiveInterval&, Register, bool, EvictionCost&,
463                             const SmallVirtRegSet&);
464   bool canEvictInterferenceInRange(LiveInterval &VirtReg, Register oPhysReg,
465                                    SlotIndex Start, SlotIndex End,
466                                    EvictionCost &MaxCost);
467   unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
468                                     LiveInterval &VirtReg, SlotIndex Start,
469                                     SlotIndex End, float *BestEvictWeight);
470   void evictInterference(LiveInterval&, Register,
471                          SmallVectorImpl<Register>&);
472   bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
473                                   SmallLISet &RecoloringCandidates,
474                                   const SmallVirtRegSet &FixedRegisters);
475 
476   Register tryAssign(LiveInterval&, AllocationOrder&,
477                      SmallVectorImpl<Register>&,
478                      const SmallVirtRegSet&);
479   unsigned tryEvict(LiveInterval&, AllocationOrder&,
480                     SmallVectorImpl<Register>&, unsigned,
481                     const SmallVirtRegSet&);
482   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
483                           SmallVectorImpl<Register>&);
484   /// Calculate cost of region splitting.
485   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
486                                     AllocationOrder &Order,
487                                     BlockFrequency &BestCost,
488                                     unsigned &NumCands, bool IgnoreCSR,
489                                     bool *CanCauseEvictionChain = nullptr);
490   /// Perform region splitting.
491   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
492                          bool HasCompact,
493                          SmallVectorImpl<Register> &NewVRegs);
494   /// Check other options before using a callee-saved register for the first
495   /// time.
496   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
497                                  Register PhysReg, unsigned &CostPerUseLimit,
498                                  SmallVectorImpl<Register> &NewVRegs);
499   void initializeCSRCost();
500   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
501                          SmallVectorImpl<Register>&);
502   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
503                                SmallVectorImpl<Register>&);
504   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
505     SmallVectorImpl<Register>&);
506   unsigned trySplit(LiveInterval&, AllocationOrder&,
507                     SmallVectorImpl<Register>&,
508                     const SmallVirtRegSet&);
509   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
510                                    SmallVectorImpl<Register> &,
511                                    SmallVirtRegSet &, unsigned);
512   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &,
513                                SmallVirtRegSet &, unsigned);
514   void tryHintRecoloring(LiveInterval &);
515   void tryHintsRecoloring();
516 
517   /// Model the information carried by one end of a copy.
518   struct HintInfo {
519     /// The frequency of the copy.
520     BlockFrequency Freq;
521     /// The virtual register or physical register.
522     Register Reg;
523     /// Its currently assigned register.
524     /// In case of a physical register Reg == PhysReg.
525     MCRegister PhysReg;
526 
527     HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg)
528         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
529   };
530   using HintsInfo = SmallVector<HintInfo, 4>;
531 
532   BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
533   void collectHintInfo(unsigned, HintsInfo &);
534 
535   bool isUnusedCalleeSavedReg(MCRegister PhysReg) const;
536 
537   /// Compute and report the number of spills and reloads for a loop.
538   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
539                                     unsigned &FoldedReloads, unsigned &Spills,
540                                     unsigned &FoldedSpills);
541 
542   /// Report the number of spills and reloads for each loop.
543   void reportNumberOfSplillsReloads() {
544     for (MachineLoop *L : *Loops) {
545       unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
546       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
547                                    FoldedSpills);
548     }
549   }
550 };
551 
552 } // end anonymous namespace
553 
554 char RAGreedy::ID = 0;
555 char &llvm::RAGreedyID = RAGreedy::ID;
556 
557 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
558                 "Greedy Register Allocator", false, false)
559 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
560 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
561 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
562 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
563 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
564 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
565 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
566 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
567 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
568 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
569 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
570 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
571 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
572 INITIALIZE_PASS_END(RAGreedy, "greedy",
573                 "Greedy Register Allocator", false, false)
574 
575 #ifndef NDEBUG
576 const char *const RAGreedy::StageName[] = {
577     "RS_New",
578     "RS_Assign",
579     "RS_Split",
580     "RS_Split2",
581     "RS_Spill",
582     "RS_Memory",
583     "RS_Done"
584 };
585 #endif
586 
587 // Hysteresis to use when comparing floats.
588 // This helps stabilize decisions based on float comparisons.
589 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
590 
591 FunctionPass* llvm::createGreedyRegisterAllocator() {
592   return new RAGreedy();
593 }
594 
595 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
596 }
597 
598 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
599   AU.setPreservesCFG();
600   AU.addRequired<MachineBlockFrequencyInfo>();
601   AU.addPreserved<MachineBlockFrequencyInfo>();
602   AU.addRequired<AAResultsWrapperPass>();
603   AU.addPreserved<AAResultsWrapperPass>();
604   AU.addRequired<LiveIntervals>();
605   AU.addPreserved<LiveIntervals>();
606   AU.addRequired<SlotIndexes>();
607   AU.addPreserved<SlotIndexes>();
608   AU.addRequired<LiveDebugVariables>();
609   AU.addPreserved<LiveDebugVariables>();
610   AU.addRequired<LiveStacks>();
611   AU.addPreserved<LiveStacks>();
612   AU.addRequired<MachineDominatorTree>();
613   AU.addPreserved<MachineDominatorTree>();
614   AU.addRequired<MachineLoopInfo>();
615   AU.addPreserved<MachineLoopInfo>();
616   AU.addRequired<VirtRegMap>();
617   AU.addPreserved<VirtRegMap>();
618   AU.addRequired<LiveRegMatrix>();
619   AU.addPreserved<LiveRegMatrix>();
620   AU.addRequired<EdgeBundles>();
621   AU.addRequired<SpillPlacement>();
622   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
623   MachineFunctionPass::getAnalysisUsage(AU);
624 }
625 
626 //===----------------------------------------------------------------------===//
627 //                     LiveRangeEdit delegate methods
628 //===----------------------------------------------------------------------===//
629 
630 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
631   LiveInterval &LI = LIS->getInterval(VirtReg);
632   if (VRM->hasPhys(VirtReg)) {
633     Matrix->unassign(LI);
634     aboutToRemoveInterval(LI);
635     return true;
636   }
637   // Unassigned virtreg is probably in the priority queue.
638   // RegAllocBase will erase it after dequeueing.
639   // Nonetheless, clear the live-range so that the debug
640   // dump will show the right state for that VirtReg.
641   LI.clear();
642   return false;
643 }
644 
645 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
646   if (!VRM->hasPhys(VirtReg))
647     return;
648 
649   // Register is assigned, put it back on the queue for reassignment.
650   LiveInterval &LI = LIS->getInterval(VirtReg);
651   Matrix->unassign(LI);
652   enqueue(&LI);
653 }
654 
655 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
656   // Cloning a register we haven't even heard about yet?  Just ignore it.
657   if (!ExtraRegInfo.inBounds(Old))
658     return;
659 
660   // LRE may clone a virtual register because dead code elimination causes it to
661   // be split into connected components. The new components are much smaller
662   // than the original, so they should get a new chance at being assigned.
663   // same stage as the parent.
664   ExtraRegInfo[Old].Stage = RS_Assign;
665   ExtraRegInfo.grow(New);
666   ExtraRegInfo[New] = ExtraRegInfo[Old];
667 }
668 
669 void RAGreedy::releaseMemory() {
670   SpillerInstance.reset();
671   ExtraRegInfo.clear();
672   GlobalCand.clear();
673 }
674 
675 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
676 
677 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
678   // Prioritize live ranges by size, assigning larger ranges first.
679   // The queue holds (size, reg) pairs.
680   const unsigned Size = LI->getSize();
681   const unsigned Reg = LI->reg();
682   assert(Register::isVirtualRegister(Reg) &&
683          "Can only enqueue virtual registers");
684   unsigned Prio;
685 
686   ExtraRegInfo.grow(Reg);
687   if (ExtraRegInfo[Reg].Stage == RS_New)
688     ExtraRegInfo[Reg].Stage = RS_Assign;
689 
690   if (ExtraRegInfo[Reg].Stage == RS_Split) {
691     // Unsplit ranges that couldn't be allocated immediately are deferred until
692     // everything else has been allocated.
693     Prio = Size;
694   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
695     // Memory operand should be considered last.
696     // Change the priority such that Memory operand are assigned in
697     // the reverse order that they came in.
698     // TODO: Make this a member variable and probably do something about hints.
699     static unsigned MemOp = 0;
700     Prio = MemOp++;
701   } else {
702     // Giant live ranges fall back to the global assignment heuristic, which
703     // prevents excessive spilling in pathological cases.
704     bool ReverseLocal = TRI->reverseLocalAssignment();
705     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
706     bool ForceGlobal = !ReverseLocal &&
707       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
708 
709     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
710         LIS->intervalIsInOneMBB(*LI)) {
711       // Allocate original local ranges in linear instruction order. Since they
712       // are singly defined, this produces optimal coloring in the absence of
713       // global interference and other constraints.
714       if (!ReverseLocal)
715         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
716       else {
717         // Allocating bottom up may allow many short LRGs to be assigned first
718         // to one of the cheap registers. This could be much faster for very
719         // large blocks on targets with many physical registers.
720         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
721       }
722       Prio |= RC.AllocationPriority << 24;
723     } else {
724       // Allocate global and split ranges in long->short order. Long ranges that
725       // don't fit should be spilled (or split) ASAP so they don't create
726       // interference.  Mark a bit to prioritize global above local ranges.
727       Prio = (1u << 29) + Size;
728     }
729     // Mark a higher bit to prioritize global and local above RS_Split.
730     Prio |= (1u << 31);
731 
732     // Boost ranges that have a physical register hint.
733     if (VRM->hasKnownPreference(Reg))
734       Prio |= (1u << 30);
735   }
736   // The virtual register number is a tie breaker for same-sized ranges.
737   // Give lower vreg numbers higher priority to assign them first.
738   CurQueue.push(std::make_pair(Prio, ~Reg));
739 }
740 
741 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
742 
743 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
744   if (CurQueue.empty())
745     return nullptr;
746   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
747   CurQueue.pop();
748   return LI;
749 }
750 
751 //===----------------------------------------------------------------------===//
752 //                            Direct Assignment
753 //===----------------------------------------------------------------------===//
754 
755 /// tryAssign - Try to assign VirtReg to an available register.
756 Register RAGreedy::tryAssign(LiveInterval &VirtReg,
757                              AllocationOrder &Order,
758                              SmallVectorImpl<Register> &NewVRegs,
759                              const SmallVirtRegSet &FixedRegisters) {
760   Order.rewind();
761   Register PhysReg;
762   while ((PhysReg = Order.next()))
763     if (!Matrix->checkInterference(VirtReg, PhysReg))
764       break;
765   if (!PhysReg || Order.isHint())
766     return PhysReg;
767 
768   // PhysReg is available, but there may be a better choice.
769 
770   // If we missed a simple hint, try to cheaply evict interference from the
771   // preferred register.
772   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
773     if (Order.isHint(Hint)) {
774       LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n');
775       EvictionCost MaxCost;
776       MaxCost.setBrokenHints(1);
777       if (canEvictInterference(VirtReg, Hint, true, MaxCost, FixedRegisters)) {
778         evictInterference(VirtReg, Hint, NewVRegs);
779         return Hint;
780       }
781       // Record the missed hint, we may be able to recover
782       // at the end if the surrounding allocation changed.
783       SetOfBrokenHints.insert(&VirtReg);
784     }
785 
786   // Try to evict interference from a cheaper alternative.
787   unsigned Cost = TRI->getCostPerUse(PhysReg);
788 
789   // Most registers have 0 additional cost.
790   if (!Cost)
791     return PhysReg;
792 
793   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
794                     << Cost << '\n');
795   Register CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
796   return CheapReg ? CheapReg : PhysReg;
797 }
798 
799 //===----------------------------------------------------------------------===//
800 //                         Interference eviction
801 //===----------------------------------------------------------------------===//
802 
803 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) {
804   auto Order =
805       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
806   Register PhysReg;
807   while ((PhysReg = Order.next())) {
808     if (PhysReg == PrevReg)
809       continue;
810 
811     MCRegUnitIterator Units(PhysReg, TRI);
812     for (; Units.isValid(); ++Units) {
813       // Instantiate a "subquery", not to be confused with the Queries array.
814       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
815       if (subQ.checkInterference())
816         break;
817     }
818     // If no units have interference, break out with the current PhysReg.
819     if (!Units.isValid())
820       break;
821   }
822   if (PhysReg)
823     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
824                       << printReg(PrevReg, TRI) << " to "
825                       << printReg(PhysReg, TRI) << '\n');
826   return PhysReg;
827 }
828 
829 /// shouldEvict - determine if A should evict the assigned live range B. The
830 /// eviction policy defined by this function together with the allocation order
831 /// defined by enqueue() decides which registers ultimately end up being split
832 /// and spilled.
833 ///
834 /// Cascade numbers are used to prevent infinite loops if this function is a
835 /// cyclic relation.
836 ///
837 /// @param A          The live range to be assigned.
838 /// @param IsHint     True when A is about to be assigned to its preferred
839 ///                   register.
840 /// @param B          The live range to be evicted.
841 /// @param BreaksHint True when B is already assigned to its preferred register.
842 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
843                            LiveInterval &B, bool BreaksHint) {
844   bool CanSplit = getStage(B) < RS_Spill;
845 
846   // Be fairly aggressive about following hints as long as the evictee can be
847   // split.
848   if (CanSplit && IsHint && !BreaksHint)
849     return true;
850 
851   if (A.weight() > B.weight()) {
852     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n');
853     return true;
854   }
855   return false;
856 }
857 
858 /// canEvictInterference - Return true if all interferences between VirtReg and
859 /// PhysReg can be evicted.
860 ///
861 /// @param VirtReg Live range that is about to be assigned.
862 /// @param PhysReg Desired register for assignment.
863 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
864 /// @param MaxCost Only look for cheaper candidates and update with new cost
865 ///                when returning true.
866 /// @returns True when interference can be evicted cheaper than MaxCost.
867 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, Register PhysReg,
868                                     bool IsHint, EvictionCost &MaxCost,
869                                     const SmallVirtRegSet &FixedRegisters) {
870   // It is only possible to evict virtual register interference.
871   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
872     return false;
873 
874   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
875 
876   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
877   // involved in an eviction before. If a cascade number was assigned, deny
878   // evicting anything with the same or a newer cascade number. This prevents
879   // infinite eviction loops.
880   //
881   // This works out so a register without a cascade number is allowed to evict
882   // anything, and it can be evicted by anything.
883   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
884   if (!Cascade)
885     Cascade = NextCascade;
886 
887   EvictionCost Cost;
888   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
889     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
890     // If there is 10 or more interferences, chances are one is heavier.
891     if (Q.collectInterferingVRegs(10) >= 10)
892       return false;
893 
894     // Check if any interfering live range is heavier than MaxWeight.
895     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
896       assert(Register::isVirtualRegister(Intf->reg()) &&
897              "Only expecting virtual register interference from query");
898 
899       // Do not allow eviction of a virtual register if we are in the middle
900       // of last-chance recoloring and this virtual register is one that we
901       // have scavenged a physical register for.
902       if (FixedRegisters.count(Intf->reg()))
903         return false;
904 
905       // Never evict spill products. They cannot split or spill.
906       if (getStage(*Intf) == RS_Done)
907         return false;
908       // Once a live range becomes small enough, it is urgent that we find a
909       // register for it. This is indicated by an infinite spill weight. These
910       // urgent live ranges get to evict almost anything.
911       //
912       // Also allow urgent evictions of unspillable ranges from a strictly
913       // larger allocation order.
914       bool Urgent =
915           !VirtReg.isSpillable() &&
916           (Intf->isSpillable() ||
917            RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
918                RegClassInfo.getNumAllocatableRegs(
919                    MRI->getRegClass(Intf->reg())));
920       // Only evict older cascades or live ranges without a cascade.
921       unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade;
922       if (Cascade <= IntfCascade) {
923         if (!Urgent)
924           return false;
925         // We permit breaking cascades for urgent evictions. It should be the
926         // last resort, though, so make it really expensive.
927         Cost.BrokenHints += 10;
928       }
929       // Would this break a satisfied hint?
930       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
931       // Update eviction cost.
932       Cost.BrokenHints += BreaksHint;
933       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
934       // Abort if this would be too expensive.
935       if (!(Cost < MaxCost))
936         return false;
937       if (Urgent)
938         continue;
939       // Apply the eviction policy for non-urgent evictions.
940       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
941         return false;
942       // If !MaxCost.isMax(), then we're just looking for a cheap register.
943       // Evicting another local live range in this case could lead to suboptimal
944       // coloring.
945       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
946           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
947         return false;
948       }
949     }
950   }
951   MaxCost = Cost;
952   return true;
953 }
954 
955 /// Return true if all interferences between VirtReg and PhysReg between
956 /// Start and End can be evicted.
957 ///
958 /// \param VirtReg Live range that is about to be assigned.
959 /// \param PhysReg Desired register for assignment.
960 /// \param Start   Start of range to look for interferences.
961 /// \param End     End of range to look for interferences.
962 /// \param MaxCost Only look for cheaper candidates and update with new cost
963 ///                when returning true.
964 /// \return True when interference can be evicted cheaper than MaxCost.
965 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
966                                            Register PhysReg, SlotIndex Start,
967                                            SlotIndex End,
968                                            EvictionCost &MaxCost) {
969   EvictionCost Cost;
970 
971   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
972     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
973 
974     // Check if any interfering live range is heavier than MaxWeight.
975     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
976       // Check if interference overlast the segment in interest.
977       if (!Intf->overlaps(Start, End))
978         continue;
979 
980       // Cannot evict non virtual reg interference.
981       if (!Register::isVirtualRegister(Intf->reg()))
982         return false;
983       // Never evict spill products. They cannot split or spill.
984       if (getStage(*Intf) == RS_Done)
985         return false;
986 
987       // Would this break a satisfied hint?
988       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
989       // Update eviction cost.
990       Cost.BrokenHints += BreaksHint;
991       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
992       // Abort if this would be too expensive.
993       if (!(Cost < MaxCost))
994         return false;
995     }
996   }
997 
998   if (Cost.MaxWeight == 0)
999     return false;
1000 
1001   MaxCost = Cost;
1002   return true;
1003 }
1004 
1005 /// Return the physical register that will be best
1006 /// candidate for eviction by a local split interval that will be created
1007 /// between Start and End.
1008 ///
1009 /// \param Order            The allocation order
1010 /// \param VirtReg          Live range that is about to be assigned.
1011 /// \param Start            Start of range to look for interferences
1012 /// \param End              End of range to look for interferences
1013 /// \param BestEvictweight  The eviction cost of that eviction
1014 /// \return The PhysReg which is the best candidate for eviction and the
1015 /// eviction cost in BestEvictweight
1016 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1017                                             LiveInterval &VirtReg,
1018                                             SlotIndex Start, SlotIndex End,
1019                                             float *BestEvictweight) {
1020   EvictionCost BestEvictCost;
1021   BestEvictCost.setMax();
1022   BestEvictCost.MaxWeight = VirtReg.weight();
1023   unsigned BestEvicteePhys = 0;
1024 
1025   // Go over all physical registers and find the best candidate for eviction
1026   for (auto PhysReg : Order.getOrder()) {
1027 
1028     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1029                                      BestEvictCost))
1030       continue;
1031 
1032     // Best so far.
1033     BestEvicteePhys = PhysReg;
1034   }
1035   *BestEvictweight = BestEvictCost.MaxWeight;
1036   return BestEvicteePhys;
1037 }
1038 
1039 /// evictInterference - Evict any interferring registers that prevent VirtReg
1040 /// from being assigned to Physreg. This assumes that canEvictInterference
1041 /// returned true.
1042 void RAGreedy::evictInterference(LiveInterval &VirtReg, Register PhysReg,
1043                                  SmallVectorImpl<Register> &NewVRegs) {
1044   // Make sure that VirtReg has a cascade number, and assign that cascade
1045   // number to every evicted register. These live ranges than then only be
1046   // evicted by a newer cascade, preventing infinite loops.
1047   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
1048   if (!Cascade)
1049     Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++;
1050 
1051   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1052                     << " interference: Cascade " << Cascade << '\n');
1053 
1054   // Collect all interfering virtregs first.
1055   SmallVector<LiveInterval*, 8> Intfs;
1056   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1057     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1058     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1059     // should be fast, we may need to recalculate if when different physregs
1060     // overlap the same register unit so we had different SubRanges queried
1061     // against it.
1062     Q.collectInterferingVRegs();
1063     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1064     Intfs.append(IVR.begin(), IVR.end());
1065   }
1066 
1067   // Evict them second. This will invalidate the queries.
1068   for (LiveInterval *Intf : Intfs) {
1069     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1070     if (!VRM->hasPhys(Intf->reg()))
1071       continue;
1072 
1073     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
1074 
1075     Matrix->unassign(*Intf);
1076     assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade ||
1077             VirtReg.isSpillable() < Intf->isSpillable()) &&
1078            "Cannot decrease cascade number, illegal eviction");
1079     ExtraRegInfo[Intf->reg()].Cascade = Cascade;
1080     ++NumEvicted;
1081     NewVRegs.push_back(Intf->reg());
1082   }
1083 }
1084 
1085 /// Returns true if the given \p PhysReg is a callee saved register and has not
1086 /// been used for allocation yet.
1087 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
1088   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1089   if (!CSR)
1090     return false;
1091 
1092   return !Matrix->isPhysRegUsed(PhysReg);
1093 }
1094 
1095 /// tryEvict - Try to evict all interferences for a physreg.
1096 /// @param  VirtReg Currently unassigned virtual register.
1097 /// @param  Order   Physregs to try.
1098 /// @return         Physreg to assign VirtReg, or 0.
1099 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
1100                             AllocationOrder &Order,
1101                             SmallVectorImpl<Register> &NewVRegs,
1102                             unsigned CostPerUseLimit,
1103                             const SmallVirtRegSet &FixedRegisters) {
1104   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1105                      TimePassesIsEnabled);
1106 
1107   // Keep track of the cheapest interference seen so far.
1108   EvictionCost BestCost;
1109   BestCost.setMax();
1110   unsigned BestPhys = 0;
1111   unsigned OrderLimit = Order.getOrder().size();
1112 
1113   // When we are just looking for a reduced cost per use, don't break any
1114   // hints, and only evict smaller spill weights.
1115   if (CostPerUseLimit < ~0u) {
1116     BestCost.BrokenHints = 0;
1117     BestCost.MaxWeight = VirtReg.weight();
1118 
1119     // Check of any registers in RC are below CostPerUseLimit.
1120     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
1121     unsigned MinCost = RegClassInfo.getMinCost(RC);
1122     if (MinCost >= CostPerUseLimit) {
1123       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1124                         << MinCost << ", no cheaper registers to be found.\n");
1125       return 0;
1126     }
1127 
1128     // It is normal for register classes to have a long tail of registers with
1129     // the same cost. We don't need to look at them if they're too expensive.
1130     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
1131       OrderLimit = RegClassInfo.getLastCostChange(RC);
1132       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1133                         << " regs.\n");
1134     }
1135   }
1136 
1137   Order.rewind();
1138   while (MCRegister PhysReg = Order.next(OrderLimit)) {
1139     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
1140       continue;
1141     // The first use of a callee-saved register in a function has cost 1.
1142     // Don't start using a CSR when the CostPerUseLimit is low.
1143     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1144       LLVM_DEBUG(
1145           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1146                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1147                  << '\n');
1148       continue;
1149     }
1150 
1151     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1152                               FixedRegisters))
1153       continue;
1154 
1155     // Best so far.
1156     BestPhys = PhysReg;
1157 
1158     // Stop if the hint can be used.
1159     if (Order.isHint())
1160       break;
1161   }
1162 
1163   if (!BestPhys)
1164     return 0;
1165 
1166   evictInterference(VirtReg, BestPhys, NewVRegs);
1167   return BestPhys;
1168 }
1169 
1170 //===----------------------------------------------------------------------===//
1171 //                              Region Splitting
1172 //===----------------------------------------------------------------------===//
1173 
1174 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1175 /// interference pattern in Physreg and its aliases. Add the constraints to
1176 /// SpillPlacement and return the static cost of this split in Cost, assuming
1177 /// that all preferences in SplitConstraints are met.
1178 /// Return false if there are no bundles with positive bias.
1179 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1180                                    BlockFrequency &Cost) {
1181   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1182 
1183   // Reset interference dependent info.
1184   SplitConstraints.resize(UseBlocks.size());
1185   BlockFrequency StaticCost = 0;
1186   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1187     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1188     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1189 
1190     BC.Number = BI.MBB->getNumber();
1191     Intf.moveToBlock(BC.Number);
1192     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1193     BC.Exit = (BI.LiveOut &&
1194                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1195                   ? SpillPlacement::PrefReg
1196                   : SpillPlacement::DontCare;
1197     BC.ChangesValue = BI.FirstDef.isValid();
1198 
1199     if (!Intf.hasInterference())
1200       continue;
1201 
1202     // Number of spill code instructions to insert.
1203     unsigned Ins = 0;
1204 
1205     // Interference for the live-in value.
1206     if (BI.LiveIn) {
1207       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1208         BC.Entry = SpillPlacement::MustSpill;
1209         ++Ins;
1210       } else if (Intf.first() < BI.FirstInstr) {
1211         BC.Entry = SpillPlacement::PrefSpill;
1212         ++Ins;
1213       } else if (Intf.first() < BI.LastInstr) {
1214         ++Ins;
1215       }
1216 
1217       // Abort if the spill cannot be inserted at the MBB' start
1218       if (((BC.Entry == SpillPlacement::MustSpill) ||
1219            (BC.Entry == SpillPlacement::PrefSpill)) &&
1220           SlotIndex::isEarlierInstr(BI.FirstInstr,
1221                                     SA->getFirstSplitPoint(BC.Number)))
1222         return false;
1223     }
1224 
1225     // Interference for the live-out value.
1226     if (BI.LiveOut) {
1227       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1228         BC.Exit = SpillPlacement::MustSpill;
1229         ++Ins;
1230       } else if (Intf.last() > BI.LastInstr) {
1231         BC.Exit = SpillPlacement::PrefSpill;
1232         ++Ins;
1233       } else if (Intf.last() > BI.FirstInstr) {
1234         ++Ins;
1235       }
1236     }
1237 
1238     // Accumulate the total frequency of inserted spill code.
1239     while (Ins--)
1240       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1241   }
1242   Cost = StaticCost;
1243 
1244   // Add constraints for use-blocks. Note that these are the only constraints
1245   // that may add a positive bias, it is downhill from here.
1246   SpillPlacer->addConstraints(SplitConstraints);
1247   return SpillPlacer->scanActiveBundles();
1248 }
1249 
1250 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1251 /// live-through blocks in Blocks.
1252 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1253                                      ArrayRef<unsigned> Blocks) {
1254   const unsigned GroupSize = 8;
1255   SpillPlacement::BlockConstraint BCS[GroupSize];
1256   unsigned TBS[GroupSize];
1257   unsigned B = 0, T = 0;
1258 
1259   for (unsigned Number : Blocks) {
1260     Intf.moveToBlock(Number);
1261 
1262     if (!Intf.hasInterference()) {
1263       assert(T < GroupSize && "Array overflow");
1264       TBS[T] = Number;
1265       if (++T == GroupSize) {
1266         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1267         T = 0;
1268       }
1269       continue;
1270     }
1271 
1272     assert(B < GroupSize && "Array overflow");
1273     BCS[B].Number = Number;
1274 
1275     // Abort if the spill cannot be inserted at the MBB' start
1276     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1277     if (!MBB->empty() &&
1278         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
1279                                   SA->getFirstSplitPoint(Number)))
1280       return false;
1281     // Interference for the live-in value.
1282     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1283       BCS[B].Entry = SpillPlacement::MustSpill;
1284     else
1285       BCS[B].Entry = SpillPlacement::PrefSpill;
1286 
1287     // Interference for the live-out value.
1288     if (Intf.last() >= SA->getLastSplitPoint(Number))
1289       BCS[B].Exit = SpillPlacement::MustSpill;
1290     else
1291       BCS[B].Exit = SpillPlacement::PrefSpill;
1292 
1293     if (++B == GroupSize) {
1294       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1295       B = 0;
1296     }
1297   }
1298 
1299   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1300   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1301   return true;
1302 }
1303 
1304 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1305   // Keep track of through blocks that have not been added to SpillPlacer.
1306   BitVector Todo = SA->getThroughBlocks();
1307   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1308   unsigned AddedTo = 0;
1309 #ifndef NDEBUG
1310   unsigned Visited = 0;
1311 #endif
1312 
1313   while (true) {
1314     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1315     // Find new through blocks in the periphery of PrefRegBundles.
1316     for (unsigned Bundle : NewBundles) {
1317       // Look at all blocks connected to Bundle in the full graph.
1318       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1319       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1320            I != E; ++I) {
1321         unsigned Block = *I;
1322         if (!Todo.test(Block))
1323           continue;
1324         Todo.reset(Block);
1325         // This is a new through block. Add it to SpillPlacer later.
1326         ActiveBlocks.push_back(Block);
1327 #ifndef NDEBUG
1328         ++Visited;
1329 #endif
1330       }
1331     }
1332     // Any new blocks to add?
1333     if (ActiveBlocks.size() == AddedTo)
1334       break;
1335 
1336     // Compute through constraints from the interference, or assume that all
1337     // through blocks prefer spilling when forming compact regions.
1338     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1339     if (Cand.PhysReg) {
1340       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1341         return false;
1342     } else
1343       // Provide a strong negative bias on through blocks to prevent unwanted
1344       // liveness on loop backedges.
1345       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1346     AddedTo = ActiveBlocks.size();
1347 
1348     // Perhaps iterating can enable more bundles?
1349     SpillPlacer->iterate();
1350   }
1351   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1352   return true;
1353 }
1354 
1355 /// calcCompactRegion - Compute the set of edge bundles that should be live
1356 /// when splitting the current live range into compact regions.  Compact
1357 /// regions can be computed without looking at interference.  They are the
1358 /// regions formed by removing all the live-through blocks from the live range.
1359 ///
1360 /// Returns false if the current live range is already compact, or if the
1361 /// compact regions would form single block regions anyway.
1362 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1363   // Without any through blocks, the live range is already compact.
1364   if (!SA->getNumThroughBlocks())
1365     return false;
1366 
1367   // Compact regions don't correspond to any physreg.
1368   Cand.reset(IntfCache, 0);
1369 
1370   LLVM_DEBUG(dbgs() << "Compact region bundles");
1371 
1372   // Use the spill placer to determine the live bundles. GrowRegion pretends
1373   // that all the through blocks have interference when PhysReg is unset.
1374   SpillPlacer->prepare(Cand.LiveBundles);
1375 
1376   // The static split cost will be zero since Cand.Intf reports no interference.
1377   BlockFrequency Cost;
1378   if (!addSplitConstraints(Cand.Intf, Cost)) {
1379     LLVM_DEBUG(dbgs() << ", none.\n");
1380     return false;
1381   }
1382 
1383   if (!growRegion(Cand)) {
1384     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1385     return false;
1386   }
1387 
1388   SpillPlacer->finish();
1389 
1390   if (!Cand.LiveBundles.any()) {
1391     LLVM_DEBUG(dbgs() << ", none.\n");
1392     return false;
1393   }
1394 
1395   LLVM_DEBUG({
1396     for (int I : Cand.LiveBundles.set_bits())
1397       dbgs() << " EB#" << I;
1398     dbgs() << ".\n";
1399   });
1400   return true;
1401 }
1402 
1403 /// calcSpillCost - Compute how expensive it would be to split the live range in
1404 /// SA around all use blocks instead of forming bundle regions.
1405 BlockFrequency RAGreedy::calcSpillCost() {
1406   BlockFrequency Cost = 0;
1407   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1408   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1409     unsigned Number = BI.MBB->getNumber();
1410     // We normally only need one spill instruction - a load or a store.
1411     Cost += SpillPlacer->getBlockFrequency(Number);
1412 
1413     // Unless the value is redefined in the block.
1414     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1415       Cost += SpillPlacer->getBlockFrequency(Number);
1416   }
1417   return Cost;
1418 }
1419 
1420 /// Check if splitting Evictee will create a local split interval in
1421 /// basic block number BBNumber that may cause a bad eviction chain. This is
1422 /// intended to prevent bad eviction sequences like:
1423 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1424 /// movl	%ecx, %ebp
1425 /// movl	%ebx, %ecx
1426 /// movl	%edi, %ebx
1427 /// movl	%edx, %edi
1428 /// cltd
1429 /// idivl	%esi
1430 /// movl	%edi, %edx
1431 /// movl	%ebx, %edi
1432 /// movl	%ecx, %ebx
1433 /// movl	%ebp, %ecx
1434 /// movl	16(%esp), %ebp          # 4 - byte Reload
1435 ///
1436 /// Such sequences are created in 2 scenarios:
1437 ///
1438 /// Scenario #1:
1439 /// %0 is evicted from physreg0 by %1.
1440 /// Evictee %0 is intended for region splitting with split candidate
1441 /// physreg0 (the reg %0 was evicted from).
1442 /// Region splitting creates a local interval because of interference with the
1443 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1444 /// and "by stack" intervals and local interval created when interference
1445 /// occurs).
1446 /// One of the split intervals ends up evicting %2 from physreg1.
1447 /// Evictee %2 is intended for region splitting with split candidate
1448 /// physreg1.
1449 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1450 ///
1451 /// Scenario #2
1452 /// %0 is evicted from physreg0 by %1.
1453 /// %2 is evicted from physreg2 by %3 etc.
1454 /// Evictee %0 is intended for region splitting with split candidate
1455 /// physreg1.
1456 /// Region splitting creates a local interval because of interference with the
1457 /// evictor %1.
1458 /// One of the split intervals ends up evicting back original evictor %1
1459 /// from physreg0 (the reg %0 was evicted from).
1460 /// Another evictee %2 is intended for region splitting with split candidate
1461 /// physreg1.
1462 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1463 ///
1464 /// \param Evictee  The register considered to be split.
1465 /// \param Cand     The split candidate that determines the physical register
1466 ///                 we are splitting for and the interferences.
1467 /// \param BBNumber The number of a BB for which the region split process will
1468 ///                 create a local split interval.
1469 /// \param Order    The physical registers that may get evicted by a split
1470 ///                 artifact of Evictee.
1471 /// \return True if splitting Evictee may cause a bad eviction chain, false
1472 /// otherwise.
1473 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee,
1474                                           GlobalSplitCandidate &Cand,
1475                                           unsigned BBNumber,
1476                                           const AllocationOrder &Order) {
1477   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1478   unsigned Evictor = VregEvictorInfo.first;
1479   unsigned PhysReg = VregEvictorInfo.second;
1480 
1481   // No actual evictor.
1482   if (!Evictor || !PhysReg)
1483     return false;
1484 
1485   float MaxWeight = 0;
1486   unsigned FutureEvictedPhysReg =
1487       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1488                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1489 
1490   // The bad eviction chain occurs when either the split candidate is the
1491   // evicting reg or one of the split artifact will evict the evicting reg.
1492   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1493     return false;
1494 
1495   Cand.Intf.moveToBlock(BBNumber);
1496 
1497   // Check to see if the Evictor contains interference (with Evictee) in the
1498   // given BB. If so, this interference caused the eviction of Evictee from
1499   // PhysReg. This suggest that we will create a local interval during the
1500   // region split to avoid this interference This local interval may cause a bad
1501   // eviction chain.
1502   if (!LIS->hasInterval(Evictor))
1503     return false;
1504   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1505   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1506     return false;
1507 
1508   // Now, check to see if the local interval we will create is going to be
1509   // expensive enough to evict somebody If so, this may cause a bad eviction
1510   // chain.
1511   float splitArtifactWeight =
1512       VRAI->futureWeight(LIS->getInterval(Evictee),
1513                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1514   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1515     return false;
1516 
1517   return true;
1518 }
1519 
1520 /// Check if splitting VirtRegToSplit will create a local split interval
1521 /// in basic block number BBNumber that may cause a spill.
1522 ///
1523 /// \param VirtRegToSplit The register considered to be split.
1524 /// \param Cand           The split candidate that determines the physical
1525 ///                       register we are splitting for and the interferences.
1526 /// \param BBNumber       The number of a BB for which the region split process
1527 ///                       will create a local split interval.
1528 /// \param Order          The physical registers that may get evicted by a
1529 ///                       split artifact of VirtRegToSplit.
1530 /// \return True if splitting VirtRegToSplit may cause a spill, false
1531 /// otherwise.
1532 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1533                                        GlobalSplitCandidate &Cand,
1534                                        unsigned BBNumber,
1535                                        const AllocationOrder &Order) {
1536   Cand.Intf.moveToBlock(BBNumber);
1537 
1538   // Check if the local interval will find a non interfereing assignment.
1539   for (auto PhysReg : Order.getOrder()) {
1540     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1541                                    Cand.Intf.last(), PhysReg))
1542       return false;
1543   }
1544 
1545   // Check if the local interval will evict a cheaper interval.
1546   float CheapestEvictWeight = 0;
1547   unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
1548       Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1549       Cand.Intf.last(), &CheapestEvictWeight);
1550 
1551   // Have we found an interval that can be evicted?
1552   if (FutureEvictedPhysReg) {
1553     float splitArtifactWeight =
1554         VRAI->futureWeight(LIS->getInterval(VirtRegToSplit),
1555                            Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1556     // Will the weight of the local interval be higher than the cheapest evictee
1557     // weight? If so it will evict it and will not cause a spill.
1558     if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1559       return false;
1560   }
1561 
1562   // The local interval is not able to find non interferencing assignment and
1563   // not able to evict a less worthy interval, therfore, it can cause a spill.
1564   return true;
1565 }
1566 
1567 /// calcGlobalSplitCost - Return the global split cost of following the split
1568 /// pattern in LiveBundles. This cost should be added to the local cost of the
1569 /// interference pattern in SplitConstraints.
1570 ///
1571 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1572                                              const AllocationOrder &Order,
1573                                              bool *CanCauseEvictionChain) {
1574   BlockFrequency GlobalCost = 0;
1575   const BitVector &LiveBundles = Cand.LiveBundles;
1576   unsigned VirtRegToSplit = SA->getParent().reg();
1577   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1578   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1579     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1580     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1581     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1582     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1583     unsigned Ins = 0;
1584 
1585     Cand.Intf.moveToBlock(BC.Number);
1586     // Check wheather a local interval is going to be created during the region
1587     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1588     // is enabled.
1589     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1590         BI.LiveOut && RegIn && RegOut) {
1591 
1592       if (CanCauseEvictionChain &&
1593           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1594         // This interference causes our eviction from this assignment, we might
1595         // evict somebody else and eventually someone will spill, add that cost.
1596         // See splitCanCauseEvictionChain for detailed description of scenarios.
1597         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1598         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1599 
1600         *CanCauseEvictionChain = true;
1601 
1602       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1603                                          Order)) {
1604         // This interference causes local interval to spill, add that cost.
1605         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1606         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1607       }
1608     }
1609 
1610     if (BI.LiveIn)
1611       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1612     if (BI.LiveOut)
1613       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1614     while (Ins--)
1615       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1616   }
1617 
1618   for (unsigned Number : Cand.ActiveBlocks) {
1619     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1620     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1621     if (!RegIn && !RegOut)
1622       continue;
1623     if (RegIn && RegOut) {
1624       // We need double spill code if this block has interference.
1625       Cand.Intf.moveToBlock(Number);
1626       if (Cand.Intf.hasInterference()) {
1627         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1628         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1629 
1630         // Check wheather a local interval is going to be created during the
1631         // region split.
1632         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1633             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1634           // This interference cause our eviction from this assignment, we might
1635           // evict somebody else, add that cost.
1636           // See splitCanCauseEvictionChain for detailed description of
1637           // scenarios.
1638           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1639           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1640 
1641           *CanCauseEvictionChain = true;
1642         }
1643       }
1644       continue;
1645     }
1646     // live-in / stack-out or stack-in live-out.
1647     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1648   }
1649   return GlobalCost;
1650 }
1651 
1652 /// splitAroundRegion - Split the current live range around the regions
1653 /// determined by BundleCand and GlobalCand.
1654 ///
1655 /// Before calling this function, GlobalCand and BundleCand must be initialized
1656 /// so each bundle is assigned to a valid candidate, or NoCand for the
1657 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1658 /// objects must be initialized for the current live range, and intervals
1659 /// created for the used candidates.
1660 ///
1661 /// @param LREdit    The LiveRangeEdit object handling the current split.
1662 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1663 ///                  must appear in this list.
1664 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1665                                  ArrayRef<unsigned> UsedCands) {
1666   // These are the intervals created for new global ranges. We may create more
1667   // intervals for local ranges.
1668   const unsigned NumGlobalIntvs = LREdit.size();
1669   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1670                     << " globals.\n");
1671   assert(NumGlobalIntvs && "No global intervals configured");
1672 
1673   // Isolate even single instructions when dealing with a proper sub-class.
1674   // That guarantees register class inflation for the stack interval because it
1675   // is all copies.
1676   unsigned Reg = SA->getParent().reg();
1677   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1678 
1679   // First handle all the blocks with uses.
1680   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1681   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1682     unsigned Number = BI.MBB->getNumber();
1683     unsigned IntvIn = 0, IntvOut = 0;
1684     SlotIndex IntfIn, IntfOut;
1685     if (BI.LiveIn) {
1686       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1687       if (CandIn != NoCand) {
1688         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1689         IntvIn = Cand.IntvIdx;
1690         Cand.Intf.moveToBlock(Number);
1691         IntfIn = Cand.Intf.first();
1692       }
1693     }
1694     if (BI.LiveOut) {
1695       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1696       if (CandOut != NoCand) {
1697         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1698         IntvOut = Cand.IntvIdx;
1699         Cand.Intf.moveToBlock(Number);
1700         IntfOut = Cand.Intf.last();
1701       }
1702     }
1703 
1704     // Create separate intervals for isolated blocks with multiple uses.
1705     if (!IntvIn && !IntvOut) {
1706       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1707       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1708         SE->splitSingleBlock(BI);
1709       continue;
1710     }
1711 
1712     if (IntvIn && IntvOut)
1713       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1714     else if (IntvIn)
1715       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1716     else
1717       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1718   }
1719 
1720   // Handle live-through blocks. The relevant live-through blocks are stored in
1721   // the ActiveBlocks list with each candidate. We need to filter out
1722   // duplicates.
1723   BitVector Todo = SA->getThroughBlocks();
1724   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1725     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1726     for (unsigned Number : Blocks) {
1727       if (!Todo.test(Number))
1728         continue;
1729       Todo.reset(Number);
1730 
1731       unsigned IntvIn = 0, IntvOut = 0;
1732       SlotIndex IntfIn, IntfOut;
1733 
1734       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1735       if (CandIn != NoCand) {
1736         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1737         IntvIn = Cand.IntvIdx;
1738         Cand.Intf.moveToBlock(Number);
1739         IntfIn = Cand.Intf.first();
1740       }
1741 
1742       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1743       if (CandOut != NoCand) {
1744         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1745         IntvOut = Cand.IntvIdx;
1746         Cand.Intf.moveToBlock(Number);
1747         IntfOut = Cand.Intf.last();
1748       }
1749       if (!IntvIn && !IntvOut)
1750         continue;
1751       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1752     }
1753   }
1754 
1755   ++NumGlobalSplits;
1756 
1757   SmallVector<unsigned, 8> IntvMap;
1758   SE->finish(&IntvMap);
1759   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1760 
1761   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1762   unsigned OrigBlocks = SA->getNumLiveBlocks();
1763 
1764   // Sort out the new intervals created by splitting. We get four kinds:
1765   // - Remainder intervals should not be split again.
1766   // - Candidate intervals can be assigned to Cand.PhysReg.
1767   // - Block-local splits are candidates for local splitting.
1768   // - DCE leftovers should go back on the queue.
1769   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1770     LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1771 
1772     // Ignore old intervals from DCE.
1773     if (getStage(Reg) != RS_New)
1774       continue;
1775 
1776     // Remainder interval. Don't try splitting again, spill if it doesn't
1777     // allocate.
1778     if (IntvMap[I] == 0) {
1779       setStage(Reg, RS_Spill);
1780       continue;
1781     }
1782 
1783     // Global intervals. Allow repeated splitting as long as the number of live
1784     // blocks is strictly decreasing.
1785     if (IntvMap[I] < NumGlobalIntvs) {
1786       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1787         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1788                           << " blocks as original.\n");
1789         // Don't allow repeated splitting as a safe guard against looping.
1790         setStage(Reg, RS_Split2);
1791       }
1792       continue;
1793     }
1794 
1795     // Other intervals are treated as new. This includes local intervals created
1796     // for blocks with multiple uses, and anything created by DCE.
1797   }
1798 
1799   if (VerifyEnabled)
1800     MF->verify(this, "After splitting live range around region");
1801 }
1802 
1803 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1804                                   SmallVectorImpl<Register> &NewVRegs) {
1805   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1806     return 0;
1807   unsigned NumCands = 0;
1808   BlockFrequency SpillCost = calcSpillCost();
1809   BlockFrequency BestCost;
1810 
1811   // Check if we can split this live range around a compact region.
1812   bool HasCompact = calcCompactRegion(GlobalCand.front());
1813   if (HasCompact) {
1814     // Yes, keep GlobalCand[0] as the compact region candidate.
1815     NumCands = 1;
1816     BestCost = BlockFrequency::getMaxFrequency();
1817   } else {
1818     // No benefit from the compact region, our fallback will be per-block
1819     // splitting. Make sure we find a solution that is cheaper than spilling.
1820     BestCost = SpillCost;
1821     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1822                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1823   }
1824 
1825   bool CanCauseEvictionChain = false;
1826   unsigned BestCand =
1827       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1828                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1829 
1830   // Split candidates with compact regions can cause a bad eviction sequence.
1831   // See splitCanCauseEvictionChain for detailed description of scenarios.
1832   // To avoid it, we need to comapre the cost with the spill cost and not the
1833   // current max frequency.
1834   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1835     CanCauseEvictionChain) {
1836     return 0;
1837   }
1838 
1839   // No solutions found, fall back to single block splitting.
1840   if (!HasCompact && BestCand == NoCand)
1841     return 0;
1842 
1843   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1844 }
1845 
1846 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1847                                             AllocationOrder &Order,
1848                                             BlockFrequency &BestCost,
1849                                             unsigned &NumCands, bool IgnoreCSR,
1850                                             bool *CanCauseEvictionChain) {
1851   unsigned BestCand = NoCand;
1852   Order.rewind();
1853   while (unsigned PhysReg = Order.next()) {
1854     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1855       continue;
1856 
1857     // Discard bad candidates before we run out of interference cache cursors.
1858     // This will only affect register classes with a lot of registers (>32).
1859     if (NumCands == IntfCache.getMaxCursors()) {
1860       unsigned WorstCount = ~0u;
1861       unsigned Worst = 0;
1862       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1863         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1864           continue;
1865         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1866         if (Count < WorstCount) {
1867           Worst = CandIndex;
1868           WorstCount = Count;
1869         }
1870       }
1871       --NumCands;
1872       GlobalCand[Worst] = GlobalCand[NumCands];
1873       if (BestCand == NumCands)
1874         BestCand = Worst;
1875     }
1876 
1877     if (GlobalCand.size() <= NumCands)
1878       GlobalCand.resize(NumCands+1);
1879     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1880     Cand.reset(IntfCache, PhysReg);
1881 
1882     SpillPlacer->prepare(Cand.LiveBundles);
1883     BlockFrequency Cost;
1884     if (!addSplitConstraints(Cand.Intf, Cost)) {
1885       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1886       continue;
1887     }
1888     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1889                MBFI->printBlockFreq(dbgs(), Cost));
1890     if (Cost >= BestCost) {
1891       LLVM_DEBUG({
1892         if (BestCand == NoCand)
1893           dbgs() << " worse than no bundles\n";
1894         else
1895           dbgs() << " worse than "
1896                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1897       });
1898       continue;
1899     }
1900     if (!growRegion(Cand)) {
1901       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1902       continue;
1903     }
1904 
1905     SpillPlacer->finish();
1906 
1907     // No live bundles, defer to splitSingleBlocks().
1908     if (!Cand.LiveBundles.any()) {
1909       LLVM_DEBUG(dbgs() << " no bundles.\n");
1910       continue;
1911     }
1912 
1913     bool HasEvictionChain = false;
1914     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1915     LLVM_DEBUG({
1916       dbgs() << ", total = ";
1917       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1918       for (int I : Cand.LiveBundles.set_bits())
1919         dbgs() << " EB#" << I;
1920       dbgs() << ".\n";
1921     });
1922     if (Cost < BestCost) {
1923       BestCand = NumCands;
1924       BestCost = Cost;
1925       // See splitCanCauseEvictionChain for detailed description of bad
1926       // eviction chain scenarios.
1927       if (CanCauseEvictionChain)
1928         *CanCauseEvictionChain = HasEvictionChain;
1929     }
1930     ++NumCands;
1931   }
1932 
1933   if (CanCauseEvictionChain && BestCand != NoCand) {
1934     // See splitCanCauseEvictionChain for detailed description of bad
1935     // eviction chain scenarios.
1936     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1937                       << printReg(VirtReg.reg(), TRI) << "  may ");
1938     if (!(*CanCauseEvictionChain))
1939       LLVM_DEBUG(dbgs() << "not ");
1940     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1941   }
1942 
1943   return BestCand;
1944 }
1945 
1946 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1947                                  bool HasCompact,
1948                                  SmallVectorImpl<Register> &NewVRegs) {
1949   SmallVector<unsigned, 8> UsedCands;
1950   // Prepare split editor.
1951   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1952   SE->reset(LREdit, SplitSpillMode);
1953 
1954   // Assign all edge bundles to the preferred candidate, or NoCand.
1955   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1956 
1957   // Assign bundles for the best candidate region.
1958   if (BestCand != NoCand) {
1959     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1960     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1961       UsedCands.push_back(BestCand);
1962       Cand.IntvIdx = SE->openIntv();
1963       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1964                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1965       (void)B;
1966     }
1967   }
1968 
1969   // Assign bundles for the compact region.
1970   if (HasCompact) {
1971     GlobalSplitCandidate &Cand = GlobalCand.front();
1972     assert(!Cand.PhysReg && "Compact region has no physreg");
1973     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1974       UsedCands.push_back(0);
1975       Cand.IntvIdx = SE->openIntv();
1976       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1977                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1978       (void)B;
1979     }
1980   }
1981 
1982   splitAroundRegion(LREdit, UsedCands);
1983   return 0;
1984 }
1985 
1986 //===----------------------------------------------------------------------===//
1987 //                            Per-Block Splitting
1988 //===----------------------------------------------------------------------===//
1989 
1990 /// tryBlockSplit - Split a global live range around every block with uses. This
1991 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1992 /// they don't allocate.
1993 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1994                                  SmallVectorImpl<Register> &NewVRegs) {
1995   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1996   Register Reg = VirtReg.reg();
1997   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1998   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1999   SE->reset(LREdit, SplitSpillMode);
2000   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2001   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
2002     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2003       SE->splitSingleBlock(BI);
2004   }
2005   // No blocks were split.
2006   if (LREdit.empty())
2007     return 0;
2008 
2009   // We did split for some blocks.
2010   SmallVector<unsigned, 8> IntvMap;
2011   SE->finish(&IntvMap);
2012 
2013   // Tell LiveDebugVariables about the new ranges.
2014   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2015 
2016   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2017 
2018   // Sort out the new intervals created by splitting. The remainder interval
2019   // goes straight to spilling, the new local ranges get to stay RS_New.
2020   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
2021     LiveInterval &LI = LIS->getInterval(LREdit.get(I));
2022     if (getStage(LI) == RS_New && IntvMap[I] == 0)
2023       setStage(LI, RS_Spill);
2024   }
2025 
2026   if (VerifyEnabled)
2027     MF->verify(this, "After splitting live range around basic blocks");
2028   return 0;
2029 }
2030 
2031 //===----------------------------------------------------------------------===//
2032 //                         Per-Instruction Splitting
2033 //===----------------------------------------------------------------------===//
2034 
2035 /// Get the number of allocatable registers that match the constraints of \p Reg
2036 /// on \p MI and that are also in \p SuperRC.
2037 static unsigned getNumAllocatableRegsForConstraints(
2038     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
2039     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2040     const RegisterClassInfo &RCI) {
2041   assert(SuperRC && "Invalid register class");
2042 
2043   const TargetRegisterClass *ConstrainedRC =
2044       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2045                                              /* ExploreBundle */ true);
2046   if (!ConstrainedRC)
2047     return 0;
2048   return RCI.getNumAllocatableRegs(ConstrainedRC);
2049 }
2050 
2051 /// tryInstructionSplit - Split a live range around individual instructions.
2052 /// This is normally not worthwhile since the spiller is doing essentially the
2053 /// same thing. However, when the live range is in a constrained register
2054 /// class, it may help to insert copies such that parts of the live range can
2055 /// be moved to a larger register class.
2056 ///
2057 /// This is similar to spilling to a larger register class.
2058 unsigned
2059 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2060                               SmallVectorImpl<Register> &NewVRegs) {
2061   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2062   // There is no point to this if there are no larger sub-classes.
2063   if (!RegClassInfo.isProperSubClass(CurRC))
2064     return 0;
2065 
2066   // Always enable split spill mode, since we're effectively spilling to a
2067   // register.
2068   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2069   SE->reset(LREdit, SplitEditor::SM_Size);
2070 
2071   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2072   if (Uses.size() <= 1)
2073     return 0;
2074 
2075   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2076                     << " individual instrs.\n");
2077 
2078   const TargetRegisterClass *SuperRC =
2079       TRI->getLargestLegalSuperClass(CurRC, *MF);
2080   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2081   // Split around every non-copy instruction if this split will relax
2082   // the constraints on the virtual register.
2083   // Otherwise, splitting just inserts uncoalescable copies that do not help
2084   // the allocation.
2085   for (const auto &Use : Uses) {
2086     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
2087       if (MI->isFullCopy() ||
2088           SuperRCNumAllocatableRegs ==
2089               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
2090                                                   TII, TRI, RCI)) {
2091         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
2092         continue;
2093       }
2094     SE->openIntv();
2095     SlotIndex SegStart = SE->enterIntvBefore(Use);
2096     SlotIndex SegStop = SE->leaveIntvAfter(Use);
2097     SE->useIntv(SegStart, SegStop);
2098   }
2099 
2100   if (LREdit.empty()) {
2101     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2102     return 0;
2103   }
2104 
2105   SmallVector<unsigned, 8> IntvMap;
2106   SE->finish(&IntvMap);
2107   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2108   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2109 
2110   // Assign all new registers to RS_Spill. This was the last chance.
2111   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2112   return 0;
2113 }
2114 
2115 //===----------------------------------------------------------------------===//
2116 //                             Local Splitting
2117 //===----------------------------------------------------------------------===//
2118 
2119 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2120 /// in order to use PhysReg between two entries in SA->UseSlots.
2121 ///
2122 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
2123 ///
2124 void RAGreedy::calcGapWeights(unsigned PhysReg,
2125                               SmallVectorImpl<float> &GapWeight) {
2126   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2127   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2128   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2129   const unsigned NumGaps = Uses.size()-1;
2130 
2131   // Start and end points for the interference check.
2132   SlotIndex StartIdx =
2133     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2134   SlotIndex StopIdx =
2135     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2136 
2137   GapWeight.assign(NumGaps, 0.0f);
2138 
2139   // Add interference from each overlapping register.
2140   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2141     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2142           .checkInterference())
2143       continue;
2144 
2145     // We know that VirtReg is a continuous interval from FirstInstr to
2146     // LastInstr, so we don't need InterferenceQuery.
2147     //
2148     // Interference that overlaps an instruction is counted in both gaps
2149     // surrounding the instruction. The exception is interference before
2150     // StartIdx and after StopIdx.
2151     //
2152     LiveIntervalUnion::SegmentIter IntI =
2153       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2154     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2155       // Skip the gaps before IntI.
2156       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2157         if (++Gap == NumGaps)
2158           break;
2159       if (Gap == NumGaps)
2160         break;
2161 
2162       // Update the gaps covered by IntI.
2163       const float weight = IntI.value()->weight();
2164       for (; Gap != NumGaps; ++Gap) {
2165         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2166         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2167           break;
2168       }
2169       if (Gap == NumGaps)
2170         break;
2171     }
2172   }
2173 
2174   // Add fixed interference.
2175   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2176     const LiveRange &LR = LIS->getRegUnit(*Units);
2177     LiveRange::const_iterator I = LR.find(StartIdx);
2178     LiveRange::const_iterator E = LR.end();
2179 
2180     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2181     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2182       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2183         if (++Gap == NumGaps)
2184           break;
2185       if (Gap == NumGaps)
2186         break;
2187 
2188       for (; Gap != NumGaps; ++Gap) {
2189         GapWeight[Gap] = huge_valf;
2190         if (Uses[Gap+1].getBaseIndex() >= I->end)
2191           break;
2192       }
2193       if (Gap == NumGaps)
2194         break;
2195     }
2196   }
2197 }
2198 
2199 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2200 /// basic block.
2201 ///
2202 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2203                                  SmallVectorImpl<Register> &NewVRegs) {
2204   // TODO: the function currently only handles a single UseBlock; it should be
2205   // possible to generalize.
2206   if (SA->getUseBlocks().size() != 1)
2207     return 0;
2208 
2209   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2210 
2211   // Note that it is possible to have an interval that is live-in or live-out
2212   // while only covering a single block - A phi-def can use undef values from
2213   // predecessors, and the block could be a single-block loop.
2214   // We don't bother doing anything clever about such a case, we simply assume
2215   // that the interval is continuous from FirstInstr to LastInstr. We should
2216   // make sure that we don't do anything illegal to such an interval, though.
2217 
2218   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2219   if (Uses.size() <= 2)
2220     return 0;
2221   const unsigned NumGaps = Uses.size()-1;
2222 
2223   LLVM_DEBUG({
2224     dbgs() << "tryLocalSplit: ";
2225     for (const auto &Use : Uses)
2226       dbgs() << ' ' << Use;
2227     dbgs() << '\n';
2228   });
2229 
2230   // If VirtReg is live across any register mask operands, compute a list of
2231   // gaps with register masks.
2232   SmallVector<unsigned, 8> RegMaskGaps;
2233   if (Matrix->checkRegMaskInterference(VirtReg)) {
2234     // Get regmask slots for the whole block.
2235     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2236     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2237     // Constrain to VirtReg's live range.
2238     unsigned RI =
2239         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2240     unsigned RE = RMS.size();
2241     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
2242       // Look for Uses[I] <= RMS <= Uses[I + 1].
2243       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
2244       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
2245         continue;
2246       // Skip a regmask on the same instruction as the last use. It doesn't
2247       // overlap the live range.
2248       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
2249         break;
2250       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
2251                         << Uses[I + 1]);
2252       RegMaskGaps.push_back(I);
2253       // Advance ri to the next gap. A regmask on one of the uses counts in
2254       // both gaps.
2255       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
2256         ++RI;
2257     }
2258     LLVM_DEBUG(dbgs() << '\n');
2259   }
2260 
2261   // Since we allow local split results to be split again, there is a risk of
2262   // creating infinite loops. It is tempting to require that the new live
2263   // ranges have less instructions than the original. That would guarantee
2264   // convergence, but it is too strict. A live range with 3 instructions can be
2265   // split 2+3 (including the COPY), and we want to allow that.
2266   //
2267   // Instead we use these rules:
2268   //
2269   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2270   //    noop split, of course).
2271   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2272   //    the new ranges must have fewer instructions than before the split.
2273   // 3. New ranges with the same number of instructions are marked RS_Split2,
2274   //    smaller ranges are marked RS_New.
2275   //
2276   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2277   // excessive splitting and infinite loops.
2278   //
2279   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2280 
2281   // Best split candidate.
2282   unsigned BestBefore = NumGaps;
2283   unsigned BestAfter = 0;
2284   float BestDiff = 0;
2285 
2286   const float blockFreq =
2287     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2288     (1.0f / MBFI->getEntryFreq());
2289   SmallVector<float, 8> GapWeight;
2290 
2291   Order.rewind();
2292   while (unsigned PhysReg = Order.next()) {
2293     // Keep track of the largest spill weight that would need to be evicted in
2294     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
2295     calcGapWeights(PhysReg, GapWeight);
2296 
2297     // Remove any gaps with regmask clobbers.
2298     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2299       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
2300         GapWeight[RegMaskGaps[I]] = huge_valf;
2301 
2302     // Try to find the best sequence of gaps to close.
2303     // The new spill weight must be larger than any gap interference.
2304 
2305     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2306     unsigned SplitBefore = 0, SplitAfter = 1;
2307 
2308     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2309     // It is the spill weight that needs to be evicted.
2310     float MaxGap = GapWeight[0];
2311 
2312     while (true) {
2313       // Live before/after split?
2314       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2315       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2316 
2317       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2318                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
2319 
2320       // Stop before the interval gets so big we wouldn't be making progress.
2321       if (!LiveBefore && !LiveAfter) {
2322         LLVM_DEBUG(dbgs() << " all\n");
2323         break;
2324       }
2325       // Should the interval be extended or shrunk?
2326       bool Shrink = true;
2327 
2328       // How many gaps would the new range have?
2329       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2330 
2331       // Legally, without causing looping?
2332       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2333 
2334       if (Legal && MaxGap < huge_valf) {
2335         // Estimate the new spill weight. Each instruction reads or writes the
2336         // register. Conservatively assume there are no read-modify-write
2337         // instructions.
2338         //
2339         // Try to guess the size of the new interval.
2340         const float EstWeight = normalizeSpillWeight(
2341             blockFreq * (NewGaps + 1),
2342             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2343                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2344             1);
2345         // Would this split be possible to allocate?
2346         // Never allocate all gaps, we wouldn't be making progress.
2347         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2348         if (EstWeight * Hysteresis >= MaxGap) {
2349           Shrink = false;
2350           float Diff = EstWeight - MaxGap;
2351           if (Diff > BestDiff) {
2352             LLVM_DEBUG(dbgs() << " (best)");
2353             BestDiff = Hysteresis * Diff;
2354             BestBefore = SplitBefore;
2355             BestAfter = SplitAfter;
2356           }
2357         }
2358       }
2359 
2360       // Try to shrink.
2361       if (Shrink) {
2362         if (++SplitBefore < SplitAfter) {
2363           LLVM_DEBUG(dbgs() << " shrink\n");
2364           // Recompute the max when necessary.
2365           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2366             MaxGap = GapWeight[SplitBefore];
2367             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
2368               MaxGap = std::max(MaxGap, GapWeight[I]);
2369           }
2370           continue;
2371         }
2372         MaxGap = 0;
2373       }
2374 
2375       // Try to extend the interval.
2376       if (SplitAfter >= NumGaps) {
2377         LLVM_DEBUG(dbgs() << " end\n");
2378         break;
2379       }
2380 
2381       LLVM_DEBUG(dbgs() << " extend\n");
2382       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2383     }
2384   }
2385 
2386   // Didn't find any candidates?
2387   if (BestBefore == NumGaps)
2388     return 0;
2389 
2390   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2391                     << Uses[BestAfter] << ", " << BestDiff << ", "
2392                     << (BestAfter - BestBefore + 1) << " instrs\n");
2393 
2394   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2395   SE->reset(LREdit);
2396 
2397   SE->openIntv();
2398   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2399   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2400   SE->useIntv(SegStart, SegStop);
2401   SmallVector<unsigned, 8> IntvMap;
2402   SE->finish(&IntvMap);
2403   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2404 
2405   // If the new range has the same number of instructions as before, mark it as
2406   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2407   // leave the new intervals as RS_New so they can compete.
2408   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2409   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2410   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2411   if (NewGaps >= NumGaps) {
2412     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2413     assert(!ProgressRequired && "Didn't make progress when it was required.");
2414     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
2415       if (IntvMap[I] == 1) {
2416         setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
2417         LLVM_DEBUG(dbgs() << printReg(LREdit.get(I)));
2418       }
2419     LLVM_DEBUG(dbgs() << '\n');
2420   }
2421   ++NumLocalSplits;
2422 
2423   return 0;
2424 }
2425 
2426 //===----------------------------------------------------------------------===//
2427 //                          Live Range Splitting
2428 //===----------------------------------------------------------------------===//
2429 
2430 /// trySplit - Try to split VirtReg or one of its interferences, making it
2431 /// assignable.
2432 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2433 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2434                             SmallVectorImpl<Register> &NewVRegs,
2435                             const SmallVirtRegSet &FixedRegisters) {
2436   // Ranges must be Split2 or less.
2437   if (getStage(VirtReg) >= RS_Spill)
2438     return 0;
2439 
2440   // Local intervals are handled separately.
2441   if (LIS->intervalIsInOneMBB(VirtReg)) {
2442     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2443                        TimerGroupDescription, TimePassesIsEnabled);
2444     SA->analyze(&VirtReg);
2445     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2446     if (PhysReg || !NewVRegs.empty())
2447       return PhysReg;
2448     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2449   }
2450 
2451   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2452                      TimerGroupDescription, TimePassesIsEnabled);
2453 
2454   SA->analyze(&VirtReg);
2455 
2456   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2457   // coalescer. That may cause the range to become allocatable which means that
2458   // tryRegionSplit won't be making progress. This check should be replaced with
2459   // an assertion when the coalescer is fixed.
2460   if (SA->didRepairRange()) {
2461     // VirtReg has changed, so all cached queries are invalid.
2462     Matrix->invalidateVirtRegs();
2463     if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
2464       return PhysReg;
2465   }
2466 
2467   // First try to split around a region spanning multiple blocks. RS_Split2
2468   // ranges already made dubious progress with region splitting, so they go
2469   // straight to single block splitting.
2470   if (getStage(VirtReg) < RS_Split2) {
2471     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2472     if (PhysReg || !NewVRegs.empty())
2473       return PhysReg;
2474   }
2475 
2476   // Then isolate blocks.
2477   return tryBlockSplit(VirtReg, Order, NewVRegs);
2478 }
2479 
2480 //===----------------------------------------------------------------------===//
2481 //                          Last Chance Recoloring
2482 //===----------------------------------------------------------------------===//
2483 
2484 /// Return true if \p reg has any tied def operand.
2485 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2486   for (const MachineOperand &MO : MRI->def_operands(reg))
2487     if (MO.isTied())
2488       return true;
2489 
2490   return false;
2491 }
2492 
2493 /// mayRecolorAllInterferences - Check if the virtual registers that
2494 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2495 /// recolored to free \p PhysReg.
2496 /// When true is returned, \p RecoloringCandidates has been augmented with all
2497 /// the live intervals that need to be recolored in order to free \p PhysReg
2498 /// for \p VirtReg.
2499 /// \p FixedRegisters contains all the virtual registers that cannot be
2500 /// recolored.
2501 bool
2502 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2503                                      SmallLISet &RecoloringCandidates,
2504                                      const SmallVirtRegSet &FixedRegisters) {
2505   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2506 
2507   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2508     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2509     // If there is LastChanceRecoloringMaxInterference or more interferences,
2510     // chances are one would not be recolorable.
2511     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2512         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2513       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2514       CutOffInfo |= CO_Interf;
2515       return false;
2516     }
2517     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
2518       // If Intf is done and sit on the same register class as VirtReg,
2519       // it would not be recolorable as it is in the same state as VirtReg.
2520       // However, if VirtReg has tied defs and Intf doesn't, then
2521       // there is still a point in examining if it can be recolorable.
2522       if (((getStage(*Intf) == RS_Done &&
2523             MRI->getRegClass(Intf->reg()) == CurRC) &&
2524            !(hasTiedDef(MRI, VirtReg.reg()) &&
2525              !hasTiedDef(MRI, Intf->reg()))) ||
2526           FixedRegisters.count(Intf->reg())) {
2527         LLVM_DEBUG(
2528             dbgs() << "Early abort: the interference is not recolorable.\n");
2529         return false;
2530       }
2531       RecoloringCandidates.insert(Intf);
2532     }
2533   }
2534   return true;
2535 }
2536 
2537 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2538 /// its interferences.
2539 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2540 /// virtual register that was using it. The recoloring process may recursively
2541 /// use the last chance recoloring. Therefore, when a virtual register has been
2542 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2543 /// be last-chance-recolored again during this recoloring "session".
2544 /// E.g.,
2545 /// Let
2546 /// vA can use {R1, R2    }
2547 /// vB can use {    R2, R3}
2548 /// vC can use {R1        }
2549 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2550 /// instance) and they all interfere.
2551 ///
2552 /// vA is assigned R1
2553 /// vB is assigned R2
2554 /// vC tries to evict vA but vA is already done.
2555 /// Regular register allocation fails.
2556 ///
2557 /// Last chance recoloring kicks in:
2558 /// vC does as if vA was evicted => vC uses R1.
2559 /// vC is marked as fixed.
2560 /// vA needs to find a color.
2561 /// None are available.
2562 /// vA cannot evict vC: vC is a fixed virtual register now.
2563 /// vA does as if vB was evicted => vA uses R2.
2564 /// vB needs to find a color.
2565 /// R3 is available.
2566 /// Recoloring => vC = R1, vA = R2, vB = R3
2567 ///
2568 /// \p Order defines the preferred allocation order for \p VirtReg.
2569 /// \p NewRegs will contain any new virtual register that have been created
2570 /// (split, spill) during the process and that must be assigned.
2571 /// \p FixedRegisters contains all the virtual registers that cannot be
2572 /// recolored.
2573 /// \p Depth gives the current depth of the last chance recoloring.
2574 /// \return a physical register that can be used for VirtReg or ~0u if none
2575 /// exists.
2576 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2577                                            AllocationOrder &Order,
2578                                            SmallVectorImpl<Register> &NewVRegs,
2579                                            SmallVirtRegSet &FixedRegisters,
2580                                            unsigned Depth) {
2581   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2582     return ~0u;
2583 
2584   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2585   // Ranges must be Done.
2586   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2587          "Last chance recoloring should really be last chance");
2588   // Set the max depth to LastChanceRecoloringMaxDepth.
2589   // We may want to reconsider that if we end up with a too large search space
2590   // for target with hundreds of registers.
2591   // Indeed, in that case we may want to cut the search space earlier.
2592   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2593     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2594     CutOffInfo |= CO_Depth;
2595     return ~0u;
2596   }
2597 
2598   // Set of Live intervals that will need to be recolored.
2599   SmallLISet RecoloringCandidates;
2600   // Record the original mapping virtual register to physical register in case
2601   // the recoloring fails.
2602   DenseMap<Register, Register> VirtRegToPhysReg;
2603   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2604   // this recoloring "session".
2605   assert(!FixedRegisters.count(VirtReg.reg()));
2606   FixedRegisters.insert(VirtReg.reg());
2607   SmallVector<Register, 4> CurrentNewVRegs;
2608 
2609   Order.rewind();
2610   while (Register PhysReg = Order.next()) {
2611     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2612                       << printReg(PhysReg, TRI) << '\n');
2613     RecoloringCandidates.clear();
2614     VirtRegToPhysReg.clear();
2615     CurrentNewVRegs.clear();
2616 
2617     // It is only possible to recolor virtual register interference.
2618     if (Matrix->checkInterference(VirtReg, PhysReg) >
2619         LiveRegMatrix::IK_VirtReg) {
2620       LLVM_DEBUG(
2621           dbgs() << "Some interferences are not with virtual registers.\n");
2622 
2623       continue;
2624     }
2625 
2626     // Early give up on this PhysReg if it is obvious we cannot recolor all
2627     // the interferences.
2628     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2629                                     FixedRegisters)) {
2630       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2631       continue;
2632     }
2633 
2634     // RecoloringCandidates contains all the virtual registers that interfer
2635     // with VirtReg on PhysReg (or one of its aliases).
2636     // Enqueue them for recoloring and perform the actual recoloring.
2637     PQueue RecoloringQueue;
2638     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2639                               EndIt = RecoloringCandidates.end();
2640          It != EndIt; ++It) {
2641       Register ItVirtReg = (*It)->reg();
2642       enqueue(RecoloringQueue, *It);
2643       assert(VRM->hasPhys(ItVirtReg) &&
2644              "Interferences are supposed to be with allocated variables");
2645 
2646       // Record the current allocation.
2647       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2648       // unset the related struct.
2649       Matrix->unassign(**It);
2650     }
2651 
2652     // Do as if VirtReg was assigned to PhysReg so that the underlying
2653     // recoloring has the right information about the interferes and
2654     // available colors.
2655     Matrix->assign(VirtReg, PhysReg);
2656 
2657     // Save the current recoloring state.
2658     // If we cannot recolor all the interferences, we will have to start again
2659     // at this point for the next physical register.
2660     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2661     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2662                                 FixedRegisters, Depth)) {
2663       // Push the queued vregs into the main queue.
2664       for (Register NewVReg : CurrentNewVRegs)
2665         NewVRegs.push_back(NewVReg);
2666       // Do not mess up with the global assignment process.
2667       // I.e., VirtReg must be unassigned.
2668       Matrix->unassign(VirtReg);
2669       return PhysReg;
2670     }
2671 
2672     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2673                       << printReg(PhysReg, TRI) << '\n');
2674 
2675     // The recoloring attempt failed, undo the changes.
2676     FixedRegisters = SaveFixedRegisters;
2677     Matrix->unassign(VirtReg);
2678 
2679     // For a newly created vreg which is also in RecoloringCandidates,
2680     // don't add it to NewVRegs because its physical register will be restored
2681     // below. Other vregs in CurrentNewVRegs are created by calling
2682     // selectOrSplit and should be added into NewVRegs.
2683     for (SmallVectorImpl<Register>::iterator Next = CurrentNewVRegs.begin(),
2684                                              End = CurrentNewVRegs.end();
2685          Next != End; ++Next) {
2686       if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2687         continue;
2688       NewVRegs.push_back(*Next);
2689     }
2690 
2691     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2692                               EndIt = RecoloringCandidates.end();
2693          It != EndIt; ++It) {
2694       Register ItVirtReg = (*It)->reg();
2695       if (VRM->hasPhys(ItVirtReg))
2696         Matrix->unassign(**It);
2697       Register ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2698       Matrix->assign(**It, ItPhysReg);
2699     }
2700   }
2701 
2702   // Last chance recoloring did not worked either, give up.
2703   return ~0u;
2704 }
2705 
2706 /// tryRecoloringCandidates - Try to assign a new color to every register
2707 /// in \RecoloringQueue.
2708 /// \p NewRegs will contain any new virtual register created during the
2709 /// recoloring process.
2710 /// \p FixedRegisters[in/out] contains all the registers that have been
2711 /// recolored.
2712 /// \return true if all virtual registers in RecoloringQueue were successfully
2713 /// recolored, false otherwise.
2714 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2715                                        SmallVectorImpl<Register> &NewVRegs,
2716                                        SmallVirtRegSet &FixedRegisters,
2717                                        unsigned Depth) {
2718   while (!RecoloringQueue.empty()) {
2719     LiveInterval *LI = dequeue(RecoloringQueue);
2720     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2721     Register PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters,
2722                                          Depth + 1);
2723     // When splitting happens, the live-range may actually be empty.
2724     // In that case, this is okay to continue the recoloring even
2725     // if we did not find an alternative color for it. Indeed,
2726     // there will not be anything to color for LI in the end.
2727     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2728       return false;
2729 
2730     if (!PhysReg) {
2731       assert(LI->empty() && "Only empty live-range do not require a register");
2732       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2733                         << " succeeded. Empty LI.\n");
2734       continue;
2735     }
2736     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2737                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2738 
2739     Matrix->assign(*LI, PhysReg);
2740     FixedRegisters.insert(LI->reg());
2741   }
2742   return true;
2743 }
2744 
2745 //===----------------------------------------------------------------------===//
2746 //                            Main Entry Point
2747 //===----------------------------------------------------------------------===//
2748 
2749 Register RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2750                                  SmallVectorImpl<Register> &NewVRegs) {
2751   CutOffInfo = CO_None;
2752   LLVMContext &Ctx = MF->getFunction().getContext();
2753   SmallVirtRegSet FixedRegisters;
2754   Register Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2755   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2756     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2757     if (CutOffEncountered == CO_Depth)
2758       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2759                     "reached. Use -fexhaustive-register-search to skip "
2760                     "cutoffs");
2761     else if (CutOffEncountered == CO_Interf)
2762       Ctx.emitError("register allocation failed: maximum interference for "
2763                     "recoloring reached. Use -fexhaustive-register-search "
2764                     "to skip cutoffs");
2765     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2766       Ctx.emitError("register allocation failed: maximum interference and "
2767                     "depth for recoloring reached. Use "
2768                     "-fexhaustive-register-search to skip cutoffs");
2769   }
2770   return Reg;
2771 }
2772 
2773 /// Using a CSR for the first time has a cost because it causes push|pop
2774 /// to be added to prologue|epilogue. Splitting a cold section of the live
2775 /// range can have lower cost than using the CSR for the first time;
2776 /// Spilling a live range in the cold path can have lower cost than using
2777 /// the CSR for the first time. Returns the physical register if we decide
2778 /// to use the CSR; otherwise return 0.
2779 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2780                                          AllocationOrder &Order,
2781                                          Register PhysReg,
2782                                          unsigned &CostPerUseLimit,
2783                                          SmallVectorImpl<Register> &NewVRegs) {
2784   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2785     // We choose spill over using the CSR for the first time if the spill cost
2786     // is lower than CSRCost.
2787     SA->analyze(&VirtReg);
2788     if (calcSpillCost() >= CSRCost)
2789       return PhysReg;
2790 
2791     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2792     // we will not use a callee-saved register in tryEvict.
2793     CostPerUseLimit = 1;
2794     return 0;
2795   }
2796   if (getStage(VirtReg) < RS_Split) {
2797     // We choose pre-splitting over using the CSR for the first time if
2798     // the cost of splitting is lower than CSRCost.
2799     SA->analyze(&VirtReg);
2800     unsigned NumCands = 0;
2801     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2802     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2803                                                  NumCands, true /*IgnoreCSR*/);
2804     if (BestCand == NoCand)
2805       // Use the CSR if we can't find a region split below CSRCost.
2806       return PhysReg;
2807 
2808     // Perform the actual pre-splitting.
2809     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2810     return 0;
2811   }
2812   return PhysReg;
2813 }
2814 
2815 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2816   // Do not keep invalid information around.
2817   SetOfBrokenHints.remove(&LI);
2818 }
2819 
2820 void RAGreedy::initializeCSRCost() {
2821   // We use the larger one out of the command-line option and the value report
2822   // by TRI.
2823   CSRCost = BlockFrequency(
2824       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2825   if (!CSRCost.getFrequency())
2826     return;
2827 
2828   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2829   uint64_t ActualEntry = MBFI->getEntryFreq();
2830   if (!ActualEntry) {
2831     CSRCost = 0;
2832     return;
2833   }
2834   uint64_t FixedEntry = 1 << 14;
2835   if (ActualEntry < FixedEntry)
2836     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2837   else if (ActualEntry <= UINT32_MAX)
2838     // Invert the fraction and divide.
2839     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2840   else
2841     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2842     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2843 }
2844 
2845 /// Collect the hint info for \p Reg.
2846 /// The results are stored into \p Out.
2847 /// \p Out is not cleared before being populated.
2848 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2849   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2850     if (!Instr.isFullCopy())
2851       continue;
2852     // Look for the other end of the copy.
2853     Register OtherReg = Instr.getOperand(0).getReg();
2854     if (OtherReg == Reg) {
2855       OtherReg = Instr.getOperand(1).getReg();
2856       if (OtherReg == Reg)
2857         continue;
2858     }
2859     // Get the current assignment.
2860     Register OtherPhysReg = Register::isPhysicalRegister(OtherReg)
2861                                 ? OtherReg
2862                                 : VRM->getPhys(OtherReg);
2863     // Push the collected information.
2864     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2865                            OtherPhysReg));
2866   }
2867 }
2868 
2869 /// Using the given \p List, compute the cost of the broken hints if
2870 /// \p PhysReg was used.
2871 /// \return The cost of \p List for \p PhysReg.
2872 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2873                                            unsigned PhysReg) {
2874   BlockFrequency Cost = 0;
2875   for (const HintInfo &Info : List) {
2876     if (Info.PhysReg != PhysReg)
2877       Cost += Info.Freq;
2878   }
2879   return Cost;
2880 }
2881 
2882 /// Using the register assigned to \p VirtReg, try to recolor
2883 /// all the live ranges that are copy-related with \p VirtReg.
2884 /// The recoloring is then propagated to all the live-ranges that have
2885 /// been recolored and so on, until no more copies can be coalesced or
2886 /// it is not profitable.
2887 /// For a given live range, profitability is determined by the sum of the
2888 /// frequencies of the non-identity copies it would introduce with the old
2889 /// and new register.
2890 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2891   // We have a broken hint, check if it is possible to fix it by
2892   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2893   // some register and PhysReg may be available for the other live-ranges.
2894   SmallSet<unsigned, 4> Visited;
2895   SmallVector<unsigned, 2> RecoloringCandidates;
2896   HintsInfo Info;
2897   unsigned Reg = VirtReg.reg();
2898   Register PhysReg = VRM->getPhys(Reg);
2899   // Start the recoloring algorithm from the input live-interval, then
2900   // it will propagate to the ones that are copy-related with it.
2901   Visited.insert(Reg);
2902   RecoloringCandidates.push_back(Reg);
2903 
2904   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2905                     << '(' << printReg(PhysReg, TRI) << ")\n");
2906 
2907   do {
2908     Reg = RecoloringCandidates.pop_back_val();
2909 
2910     // We cannot recolor physical register.
2911     if (Register::isPhysicalRegister(Reg))
2912       continue;
2913 
2914     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2915 
2916     // Get the live interval mapped with this virtual register to be able
2917     // to check for the interference with the new color.
2918     LiveInterval &LI = LIS->getInterval(Reg);
2919     Register CurrPhys = VRM->getPhys(Reg);
2920     // Check that the new color matches the register class constraints and
2921     // that it is free for this live range.
2922     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2923                                 Matrix->checkInterference(LI, PhysReg)))
2924       continue;
2925 
2926     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2927                       << ") is recolorable.\n");
2928 
2929     // Gather the hint info.
2930     Info.clear();
2931     collectHintInfo(Reg, Info);
2932     // Check if recoloring the live-range will increase the cost of the
2933     // non-identity copies.
2934     if (CurrPhys != PhysReg) {
2935       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2936       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2937       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2938       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2939                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2940                         << '\n');
2941       if (OldCopiesCost < NewCopiesCost) {
2942         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2943         continue;
2944       }
2945       // At this point, the cost is either cheaper or equal. If it is
2946       // equal, we consider this is profitable because it may expose
2947       // more recoloring opportunities.
2948       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2949       // Recolor the live-range.
2950       Matrix->unassign(LI);
2951       Matrix->assign(LI, PhysReg);
2952     }
2953     // Push all copy-related live-ranges to keep reconciling the broken
2954     // hints.
2955     for (const HintInfo &HI : Info) {
2956       if (Visited.insert(HI.Reg).second)
2957         RecoloringCandidates.push_back(HI.Reg);
2958     }
2959   } while (!RecoloringCandidates.empty());
2960 }
2961 
2962 /// Try to recolor broken hints.
2963 /// Broken hints may be repaired by recoloring when an evicted variable
2964 /// freed up a register for a larger live-range.
2965 /// Consider the following example:
2966 /// BB1:
2967 ///   a =
2968 ///   b =
2969 /// BB2:
2970 ///   ...
2971 ///   = b
2972 ///   = a
2973 /// Let us assume b gets split:
2974 /// BB1:
2975 ///   a =
2976 ///   b =
2977 /// BB2:
2978 ///   c = b
2979 ///   ...
2980 ///   d = c
2981 ///   = d
2982 ///   = a
2983 /// Because of how the allocation work, b, c, and d may be assigned different
2984 /// colors. Now, if a gets evicted later:
2985 /// BB1:
2986 ///   a =
2987 ///   st a, SpillSlot
2988 ///   b =
2989 /// BB2:
2990 ///   c = b
2991 ///   ...
2992 ///   d = c
2993 ///   = d
2994 ///   e = ld SpillSlot
2995 ///   = e
2996 /// This is likely that we can assign the same register for b, c, and d,
2997 /// getting rid of 2 copies.
2998 void RAGreedy::tryHintsRecoloring() {
2999   for (LiveInterval *LI : SetOfBrokenHints) {
3000     assert(Register::isVirtualRegister(LI->reg()) &&
3001            "Recoloring is possible only for virtual registers");
3002     // Some dead defs may be around (e.g., because of debug uses).
3003     // Ignore those.
3004     if (!VRM->hasPhys(LI->reg()))
3005       continue;
3006     tryHintRecoloring(*LI);
3007   }
3008 }
3009 
3010 Register RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3011                                      SmallVectorImpl<Register> &NewVRegs,
3012                                      SmallVirtRegSet &FixedRegisters,
3013                                      unsigned Depth) {
3014   unsigned CostPerUseLimit = ~0u;
3015   // First try assigning a free register.
3016   auto Order =
3017       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
3018   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3019     // If VirtReg got an assignment, the eviction info is no longre relevant.
3020     LastEvicted.clearEvicteeInfo(VirtReg.reg());
3021     // When NewVRegs is not empty, we may have made decisions such as evicting
3022     // a virtual register, go with the earlier decisions and use the physical
3023     // register.
3024     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3025         NewVRegs.empty()) {
3026       Register CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3027                                               CostPerUseLimit, NewVRegs);
3028       if (CSRReg || !NewVRegs.empty())
3029         // Return now if we decide to use a CSR or create new vregs due to
3030         // pre-splitting.
3031         return CSRReg;
3032     } else
3033       return PhysReg;
3034   }
3035 
3036   LiveRangeStage Stage = getStage(VirtReg);
3037   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3038                     << ExtraRegInfo[VirtReg.reg()].Cascade << '\n');
3039 
3040   // Try to evict a less worthy live range, but only for ranges from the primary
3041   // queue. The RS_Split ranges already failed to do this, and they should not
3042   // get a second chance until they have been split.
3043   if (Stage != RS_Split)
3044     if (Register PhysReg =
3045             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3046                      FixedRegisters)) {
3047       Register Hint = MRI->getSimpleHint(VirtReg.reg());
3048       // If VirtReg has a hint and that hint is broken record this
3049       // virtual register as a recoloring candidate for broken hint.
3050       // Indeed, since we evicted a variable in its neighborhood it is
3051       // likely we can at least partially recolor some of the
3052       // copy-related live-ranges.
3053       if (Hint && Hint != PhysReg)
3054         SetOfBrokenHints.insert(&VirtReg);
3055       // If VirtReg eviction someone, the eviction info for it as an evictee is
3056       // no longre relevant.
3057       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3058       return PhysReg;
3059     }
3060 
3061   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3062 
3063   // The first time we see a live range, don't try to split or spill.
3064   // Wait until the second time, when all smaller ranges have been allocated.
3065   // This gives a better picture of the interference to split around.
3066   if (Stage < RS_Split) {
3067     setStage(VirtReg, RS_Split);
3068     LLVM_DEBUG(dbgs() << "wait for second round\n");
3069     NewVRegs.push_back(VirtReg.reg());
3070     return 0;
3071   }
3072 
3073   if (Stage < RS_Spill) {
3074     // Try splitting VirtReg or interferences.
3075     unsigned NewVRegSizeBefore = NewVRegs.size();
3076     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3077     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3078       // If VirtReg got split, the eviction info is no longer relevant.
3079       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3080       return PhysReg;
3081     }
3082   }
3083 
3084   // If we couldn't allocate a register from spilling, there is probably some
3085   // invalid inline assembly. The base class will report it.
3086   if (Stage >= RS_Done || !VirtReg.isSpillable())
3087     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3088                                    Depth);
3089 
3090   // Finally spill VirtReg itself.
3091   if ((EnableDeferredSpilling ||
3092        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
3093       getStage(VirtReg) < RS_Memory) {
3094     // TODO: This is experimental and in particular, we do not model
3095     // the live range splitting done by spilling correctly.
3096     // We would need a deep integration with the spiller to do the
3097     // right thing here. Anyway, that is still good for early testing.
3098     setStage(VirtReg, RS_Memory);
3099     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3100     NewVRegs.push_back(VirtReg.reg());
3101   } else {
3102     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3103                        TimerGroupDescription, TimePassesIsEnabled);
3104     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3105     spiller().spill(LRE);
3106     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3107 
3108     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3109     // the new regs are kept in LDV (still mapping to the old register), until
3110     // we rewrite spilled locations in LDV at a later stage.
3111     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
3112 
3113     if (VerifyEnabled)
3114       MF->verify(this, "After spilling");
3115   }
3116 
3117   // The live virtual register requesting allocation was spilled, so tell
3118   // the caller not to allocate anything during this round.
3119   return 0;
3120 }
3121 
3122 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3123                                             unsigned &FoldedReloads,
3124                                             unsigned &Spills,
3125                                             unsigned &FoldedSpills) {
3126   Reloads = 0;
3127   FoldedReloads = 0;
3128   Spills = 0;
3129   FoldedSpills = 0;
3130 
3131   // Sum up the spill and reloads in subloops.
3132   for (MachineLoop *SubLoop : *L) {
3133     unsigned SubReloads;
3134     unsigned SubFoldedReloads;
3135     unsigned SubSpills;
3136     unsigned SubFoldedSpills;
3137 
3138     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3139                                  SubSpills, SubFoldedSpills);
3140     Reloads += SubReloads;
3141     FoldedReloads += SubFoldedReloads;
3142     Spills += SubSpills;
3143     FoldedSpills += SubFoldedSpills;
3144   }
3145 
3146   const MachineFrameInfo &MFI = MF->getFrameInfo();
3147   int FI;
3148 
3149   for (MachineBasicBlock *MBB : L->getBlocks())
3150     // Handle blocks that were not included in subloops.
3151     if (Loops->getLoopFor(MBB) == L)
3152       for (MachineInstr &MI : *MBB) {
3153         SmallVector<const MachineMemOperand *, 2> Accesses;
3154         auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3155           return MFI.isSpillSlotObjectIndex(
3156               cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3157                   ->getFrameIndex());
3158         };
3159 
3160         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3161           ++Reloads;
3162         else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3163                  llvm::any_of(Accesses, isSpillSlotAccess))
3164           ++FoldedReloads;
3165         else if (TII->isStoreToStackSlot(MI, FI) &&
3166                  MFI.isSpillSlotObjectIndex(FI))
3167           ++Spills;
3168         else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3169                  llvm::any_of(Accesses, isSpillSlotAccess))
3170           ++FoldedSpills;
3171       }
3172 
3173   if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3174     using namespace ore;
3175 
3176     ORE->emit([&]() {
3177       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3178                                         L->getStartLoc(), L->getHeader());
3179       if (Spills)
3180         R << NV("NumSpills", Spills) << " spills ";
3181       if (FoldedSpills)
3182         R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3183       if (Reloads)
3184         R << NV("NumReloads", Reloads) << " reloads ";
3185       if (FoldedReloads)
3186         R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3187       R << "generated in loop";
3188       return R;
3189     });
3190   }
3191 }
3192 
3193 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3194   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3195                     << "********** Function: " << mf.getName() << '\n');
3196 
3197   MF = &mf;
3198   TRI = MF->getSubtarget().getRegisterInfo();
3199   TII = MF->getSubtarget().getInstrInfo();
3200   RCI.runOnMachineFunction(mf);
3201 
3202   EnableLocalReassign = EnableLocalReassignment ||
3203                         MF->getSubtarget().enableRALocalReassignment(
3204                             MF->getTarget().getOptLevel());
3205 
3206   EnableAdvancedRASplitCost =
3207       ConsiderLocalIntervalCost.getNumOccurrences()
3208           ? ConsiderLocalIntervalCost
3209           : MF->getSubtarget().enableAdvancedRASplitCost();
3210 
3211   if (VerifyEnabled)
3212     MF->verify(this, "Before greedy register allocator");
3213 
3214   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3215                      getAnalysis<LiveIntervals>(),
3216                      getAnalysis<LiveRegMatrix>());
3217   Indexes = &getAnalysis<SlotIndexes>();
3218   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3219   DomTree = &getAnalysis<MachineDominatorTree>();
3220   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3221   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3222   Loops = &getAnalysis<MachineLoopInfo>();
3223   Bundles = &getAnalysis<EdgeBundles>();
3224   SpillPlacer = &getAnalysis<SpillPlacement>();
3225   DebugVars = &getAnalysis<LiveDebugVariables>();
3226   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3227 
3228   initializeCSRCost();
3229 
3230   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, VRM, *Loops, *MBFI);
3231 
3232   VRAI->calculateSpillWeightsAndHints();
3233 
3234   LLVM_DEBUG(LIS->dump());
3235 
3236   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3237   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3238   ExtraRegInfo.clear();
3239   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3240   NextCascade = 1;
3241   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3242   GlobalCand.resize(32);  // This will grow as needed.
3243   SetOfBrokenHints.clear();
3244   LastEvicted.clear();
3245 
3246   allocatePhysRegs();
3247   tryHintsRecoloring();
3248   postOptimization();
3249   reportNumberOfSplillsReloads();
3250 
3251   releaseMemory();
3252   return true;
3253 }
3254