1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "SplitKit.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <queue>
77 #include <tuple>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "regalloc"
83 
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
86 STATISTIC(NumEvicted,      "Number of interferences evicted");
87 
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89     "split-spill-mode", cl::Hidden,
90     cl::desc("Spill mode for splitting live ranges"),
91     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94     cl::init(SplitEditor::SM_Speed));
95 
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98                              cl::desc("Last chance recoloring max depth"),
99                              cl::init(5));
100 
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102     "lcr-max-interf", cl::Hidden,
103     cl::desc("Last chance recoloring maximum number of considered"
104              " interference at a time"),
105     cl::init(8));
106 
107 static cl::opt<bool> ExhaustiveSearch(
108     "exhaustive-register-search", cl::NotHidden,
109     cl::desc("Exhaustive Search for registers bypassing the depth "
110              "and interference cutoffs of last chance recoloring"),
111     cl::Hidden);
112 
113 static cl::opt<bool> EnableLocalReassignment(
114     "enable-local-reassign", cl::Hidden,
115     cl::desc("Local reassignment can yield better allocation decisions, but "
116              "may be compile time intensive"),
117     cl::init(false));
118 
119 static cl::opt<bool> EnableDeferredSpilling(
120     "enable-deferred-spilling", cl::Hidden,
121     cl::desc("Instead of spilling a variable right away, defer the actual "
122              "code insertion to the end of the allocation. That way the "
123              "allocator might still find a suitable coloring for this "
124              "variable because of other evicted variables."),
125     cl::init(false));
126 
127 // FIXME: Find a good default for this flag and remove the flag.
128 static cl::opt<unsigned>
129 CSRFirstTimeCost("regalloc-csr-first-time-cost",
130               cl::desc("Cost for first time use of callee-saved register."),
131               cl::init(0), cl::Hidden);
132 
133 static cl::opt<bool> ConsiderLocalIntervalCost(
134     "consider-local-interval-cost", cl::Hidden,
135     cl::desc("Consider the cost of local intervals created by a split "
136              "candidate when choosing the best split candidate."),
137     cl::init(false));
138 
139 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
140                                        createGreedyRegisterAllocator);
141 
142 namespace {
143 
144 class RAGreedy : public MachineFunctionPass,
145                  public RegAllocBase,
146                  private LiveRangeEdit::Delegate {
147   // Convenient shortcuts.
148   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
149   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
150   using SmallVirtRegSet = SmallSet<unsigned, 16>;
151 
152   // context
153   MachineFunction *MF;
154 
155   // Shortcuts to some useful interface.
156   const TargetInstrInfo *TII;
157   const TargetRegisterInfo *TRI;
158   RegisterClassInfo RCI;
159 
160   // analyses
161   SlotIndexes *Indexes;
162   MachineBlockFrequencyInfo *MBFI;
163   MachineDominatorTree *DomTree;
164   MachineLoopInfo *Loops;
165   MachineOptimizationRemarkEmitter *ORE;
166   EdgeBundles *Bundles;
167   SpillPlacement *SpillPlacer;
168   LiveDebugVariables *DebugVars;
169   AliasAnalysis *AA;
170 
171   // state
172   std::unique_ptr<Spiller> SpillerInstance;
173   PQueue Queue;
174   unsigned NextCascade;
175   std::unique_ptr<VirtRegAuxInfo> VRAI;
176 
177   // Live ranges pass through a number of stages as we try to allocate them.
178   // Some of the stages may also create new live ranges:
179   //
180   // - Region splitting.
181   // - Per-block splitting.
182   // - Local splitting.
183   // - Spilling.
184   //
185   // Ranges produced by one of the stages skip the previous stages when they are
186   // dequeued. This improves performance because we can skip interference checks
187   // that are unlikely to give any results. It also guarantees that the live
188   // range splitting algorithm terminates, something that is otherwise hard to
189   // ensure.
190   enum LiveRangeStage {
191     /// Newly created live range that has never been queued.
192     RS_New,
193 
194     /// Only attempt assignment and eviction. Then requeue as RS_Split.
195     RS_Assign,
196 
197     /// Attempt live range splitting if assignment is impossible.
198     RS_Split,
199 
200     /// Attempt more aggressive live range splitting that is guaranteed to make
201     /// progress.  This is used for split products that may not be making
202     /// progress.
203     RS_Split2,
204 
205     /// Live range will be spilled.  No more splitting will be attempted.
206     RS_Spill,
207 
208 
209     /// Live range is in memory. Because of other evictions, it might get moved
210     /// in a register in the end.
211     RS_Memory,
212 
213     /// There is nothing more we can do to this live range.  Abort compilation
214     /// if it can't be assigned.
215     RS_Done
216   };
217 
218   // Enum CutOffStage to keep a track whether the register allocation failed
219   // because of the cutoffs encountered in last chance recoloring.
220   // Note: This is used as bitmask. New value should be next power of 2.
221   enum CutOffStage {
222     // No cutoffs encountered
223     CO_None = 0,
224 
225     // lcr-max-depth cutoff encountered
226     CO_Depth = 1,
227 
228     // lcr-max-interf cutoff encountered
229     CO_Interf = 2
230   };
231 
232   uint8_t CutOffInfo;
233 
234 #ifndef NDEBUG
235   static const char *const StageName[];
236 #endif
237 
238   // RegInfo - Keep additional information about each live range.
239   struct RegInfo {
240     LiveRangeStage Stage = RS_New;
241 
242     // Cascade - Eviction loop prevention. See canEvictInterference().
243     unsigned Cascade = 0;
244 
245     RegInfo() = default;
246   };
247 
248   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
249 
250   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
251     return ExtraRegInfo[VirtReg.reg()].Stage;
252   }
253 
254   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
255     ExtraRegInfo.resize(MRI->getNumVirtRegs());
256     ExtraRegInfo[VirtReg.reg()].Stage = Stage;
257   }
258 
259   template<typename Iterator>
260   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
261     ExtraRegInfo.resize(MRI->getNumVirtRegs());
262     for (;Begin != End; ++Begin) {
263       unsigned Reg = *Begin;
264       if (ExtraRegInfo[Reg].Stage == RS_New)
265         ExtraRegInfo[Reg].Stage = NewStage;
266     }
267   }
268 
269   /// Cost of evicting interference.
270   struct EvictionCost {
271     unsigned BrokenHints = 0; ///< Total number of broken hints.
272     float MaxWeight = 0;      ///< Maximum spill weight evicted.
273 
274     EvictionCost() = default;
275 
276     bool isMax() const { return BrokenHints == ~0u; }
277 
278     void setMax() { BrokenHints = ~0u; }
279 
280     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
281 
282     bool operator<(const EvictionCost &O) const {
283       return std::tie(BrokenHints, MaxWeight) <
284              std::tie(O.BrokenHints, O.MaxWeight);
285     }
286   };
287 
288   /// EvictionTrack - Keeps track of past evictions in order to optimize region
289   /// split decision.
290   class EvictionTrack {
291 
292   public:
293     using EvictorInfo =
294         std::pair<unsigned /* evictor */, unsigned /* physreg */>;
295     using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>;
296 
297   private:
298     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
299     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
300     EvicteeInfo Evictees;
301 
302   public:
303     /// Clear all eviction information.
304     void clear() { Evictees.clear(); }
305 
306     ///  Clear eviction information for the given evictee Vreg.
307     /// E.g. when Vreg get's a new allocation, the old eviction info is no
308     /// longer relevant.
309     /// \param Evictee The evictee Vreg for whom we want to clear collected
310     /// eviction info.
311     void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); }
312 
313     /// Track new eviction.
314     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
315     /// \param PhysReg The physical register Evictee was evicted from.
316     /// \param Evictor The evictor Vreg that evicted Evictee.
317     /// \param Evictee The evictee Vreg.
318     void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) {
319       Evictees[Evictee].first = Evictor;
320       Evictees[Evictee].second = PhysReg;
321     }
322 
323     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
324     /// \param Evictee The evictee vreg.
325     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
326     /// nobody has evicted Evictee from PhysReg.
327     EvictorInfo getEvictor(unsigned Evictee) {
328       if (Evictees.count(Evictee)) {
329         return Evictees[Evictee];
330       }
331 
332       return EvictorInfo(0, 0);
333     }
334   };
335 
336   // Keeps track of past evictions in order to optimize region split decision.
337   EvictionTrack LastEvicted;
338 
339   // splitting state.
340   std::unique_ptr<SplitAnalysis> SA;
341   std::unique_ptr<SplitEditor> SE;
342 
343   /// Cached per-block interference maps
344   InterferenceCache IntfCache;
345 
346   /// All basic blocks where the current register has uses.
347   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
348 
349   /// Global live range splitting candidate info.
350   struct GlobalSplitCandidate {
351     // Register intended for assignment, or 0.
352     unsigned PhysReg;
353 
354     // SplitKit interval index for this candidate.
355     unsigned IntvIdx;
356 
357     // Interference for PhysReg.
358     InterferenceCache::Cursor Intf;
359 
360     // Bundles where this candidate should be live.
361     BitVector LiveBundles;
362     SmallVector<unsigned, 8> ActiveBlocks;
363 
364     void reset(InterferenceCache &Cache, MCRegister Reg) {
365       PhysReg = Reg;
366       IntvIdx = 0;
367       Intf.setPhysReg(Cache, Reg);
368       LiveBundles.clear();
369       ActiveBlocks.clear();
370     }
371 
372     // Set B[I] = C for every live bundle where B[I] was NoCand.
373     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
374       unsigned Count = 0;
375       for (unsigned I : LiveBundles.set_bits())
376         if (B[I] == NoCand) {
377           B[I] = C;
378           Count++;
379         }
380       return Count;
381     }
382   };
383 
384   /// Candidate info for each PhysReg in AllocationOrder.
385   /// This vector never shrinks, but grows to the size of the largest register
386   /// class.
387   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
388 
389   enum : unsigned { NoCand = ~0u };
390 
391   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
392   /// NoCand which indicates the stack interval.
393   SmallVector<unsigned, 32> BundleCand;
394 
395   /// Callee-save register cost, calculated once per machine function.
396   BlockFrequency CSRCost;
397 
398   /// Run or not the local reassignment heuristic. This information is
399   /// obtained from the TargetSubtargetInfo.
400   bool EnableLocalReassign;
401 
402   /// Enable or not the consideration of the cost of local intervals created
403   /// by a split candidate when choosing the best split candidate.
404   bool EnableAdvancedRASplitCost;
405 
406   /// Set of broken hints that may be reconciled later because of eviction.
407   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
408 
409 public:
410   RAGreedy();
411 
412   /// Return the pass name.
413   StringRef getPassName() const override { return "Greedy Register Allocator"; }
414 
415   /// RAGreedy analysis usage.
416   void getAnalysisUsage(AnalysisUsage &AU) const override;
417   void releaseMemory() override;
418   Spiller &spiller() override { return *SpillerInstance; }
419   void enqueue(LiveInterval *LI) override;
420   LiveInterval *dequeue() override;
421   MCRegister selectOrSplit(LiveInterval &,
422                            SmallVectorImpl<Register> &) override;
423   void aboutToRemoveInterval(LiveInterval &) override;
424 
425   /// Perform register allocation.
426   bool runOnMachineFunction(MachineFunction &mf) override;
427 
428   MachineFunctionProperties getRequiredProperties() const override {
429     return MachineFunctionProperties().set(
430         MachineFunctionProperties::Property::NoPHIs);
431   }
432 
433   static char ID;
434 
435 private:
436   MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &,
437                                SmallVirtRegSet &, unsigned = 0);
438 
439   bool LRE_CanEraseVirtReg(unsigned) override;
440   void LRE_WillShrinkVirtReg(unsigned) override;
441   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
442   void enqueue(PQueue &CurQueue, LiveInterval *LI);
443   LiveInterval *dequeue(PQueue &CurQueue);
444 
445   BlockFrequency calcSpillCost();
446   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
447   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
448   bool growRegion(GlobalSplitCandidate &Cand);
449   bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand,
450                                   unsigned BBNumber,
451                                   const AllocationOrder &Order);
452   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
453                                GlobalSplitCandidate &Cand, unsigned BBNumber,
454                                const AllocationOrder &Order);
455   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
456                                      const AllocationOrder &Order,
457                                      bool *CanCauseEvictionChain);
458   bool calcCompactRegion(GlobalSplitCandidate&);
459   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
460   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
461   Register canReassign(LiveInterval &VirtReg, Register PrevReg);
462   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
463   bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &,
464                             const SmallVirtRegSet &);
465   bool canEvictInterferenceInRange(LiveInterval &VirtReg, Register oPhysReg,
466                                    SlotIndex Start, SlotIndex End,
467                                    EvictionCost &MaxCost);
468   unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
469                                     LiveInterval &VirtReg, SlotIndex Start,
470                                     SlotIndex End, float *BestEvictWeight);
471   void evictInterference(LiveInterval&, Register,
472                          SmallVectorImpl<Register>&);
473   bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
474                                   SmallLISet &RecoloringCandidates,
475                                   const SmallVirtRegSet &FixedRegisters);
476 
477   Register tryAssign(LiveInterval&, AllocationOrder&,
478                      SmallVectorImpl<Register>&,
479                      const SmallVirtRegSet&);
480   unsigned tryEvict(LiveInterval&, AllocationOrder&,
481                     SmallVectorImpl<Register>&, unsigned,
482                     const SmallVirtRegSet&);
483   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
484                           SmallVectorImpl<Register>&);
485   /// Calculate cost of region splitting.
486   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
487                                     AllocationOrder &Order,
488                                     BlockFrequency &BestCost,
489                                     unsigned &NumCands, bool IgnoreCSR,
490                                     bool *CanCauseEvictionChain = nullptr);
491   /// Perform region splitting.
492   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
493                          bool HasCompact,
494                          SmallVectorImpl<Register> &NewVRegs);
495   /// Check other options before using a callee-saved register for the first
496   /// time.
497   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
498                                  Register PhysReg, unsigned &CostPerUseLimit,
499                                  SmallVectorImpl<Register> &NewVRegs);
500   void initializeCSRCost();
501   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
502                          SmallVectorImpl<Register>&);
503   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
504                                SmallVectorImpl<Register>&);
505   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
506     SmallVectorImpl<Register>&);
507   unsigned trySplit(LiveInterval&, AllocationOrder&,
508                     SmallVectorImpl<Register>&,
509                     const SmallVirtRegSet&);
510   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
511                                    SmallVectorImpl<Register> &,
512                                    SmallVirtRegSet &, unsigned);
513   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &,
514                                SmallVirtRegSet &, unsigned);
515   void tryHintRecoloring(LiveInterval &);
516   void tryHintsRecoloring();
517 
518   /// Model the information carried by one end of a copy.
519   struct HintInfo {
520     /// The frequency of the copy.
521     BlockFrequency Freq;
522     /// The virtual register or physical register.
523     Register Reg;
524     /// Its currently assigned register.
525     /// In case of a physical register Reg == PhysReg.
526     MCRegister PhysReg;
527 
528     HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg)
529         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
530   };
531   using HintsInfo = SmallVector<HintInfo, 4>;
532 
533   BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
534   void collectHintInfo(unsigned, HintsInfo &);
535 
536   bool isUnusedCalleeSavedReg(MCRegister PhysReg) const;
537 
538   /// Compute and report the number of spills and reloads for a loop.
539   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
540                                     unsigned &FoldedReloads, unsigned &Spills,
541                                     unsigned &FoldedSpills);
542 
543   /// Report the number of spills and reloads for each loop.
544   void reportNumberOfSplillsReloads() {
545     for (MachineLoop *L : *Loops) {
546       unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
547       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
548                                    FoldedSpills);
549     }
550   }
551 };
552 
553 } // end anonymous namespace
554 
555 char RAGreedy::ID = 0;
556 char &llvm::RAGreedyID = RAGreedy::ID;
557 
558 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
559                 "Greedy Register Allocator", false, false)
560 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
561 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
562 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
563 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
564 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
565 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
566 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
567 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
568 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
569 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
570 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
571 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
572 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
573 INITIALIZE_PASS_END(RAGreedy, "greedy",
574                 "Greedy Register Allocator", false, false)
575 
576 #ifndef NDEBUG
577 const char *const RAGreedy::StageName[] = {
578     "RS_New",
579     "RS_Assign",
580     "RS_Split",
581     "RS_Split2",
582     "RS_Spill",
583     "RS_Memory",
584     "RS_Done"
585 };
586 #endif
587 
588 // Hysteresis to use when comparing floats.
589 // This helps stabilize decisions based on float comparisons.
590 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
591 
592 FunctionPass* llvm::createGreedyRegisterAllocator() {
593   return new RAGreedy();
594 }
595 
596 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
597 }
598 
599 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
600   AU.setPreservesCFG();
601   AU.addRequired<MachineBlockFrequencyInfo>();
602   AU.addPreserved<MachineBlockFrequencyInfo>();
603   AU.addRequired<AAResultsWrapperPass>();
604   AU.addPreserved<AAResultsWrapperPass>();
605   AU.addRequired<LiveIntervals>();
606   AU.addPreserved<LiveIntervals>();
607   AU.addRequired<SlotIndexes>();
608   AU.addPreserved<SlotIndexes>();
609   AU.addRequired<LiveDebugVariables>();
610   AU.addPreserved<LiveDebugVariables>();
611   AU.addRequired<LiveStacks>();
612   AU.addPreserved<LiveStacks>();
613   AU.addRequired<MachineDominatorTree>();
614   AU.addPreserved<MachineDominatorTree>();
615   AU.addRequired<MachineLoopInfo>();
616   AU.addPreserved<MachineLoopInfo>();
617   AU.addRequired<VirtRegMap>();
618   AU.addPreserved<VirtRegMap>();
619   AU.addRequired<LiveRegMatrix>();
620   AU.addPreserved<LiveRegMatrix>();
621   AU.addRequired<EdgeBundles>();
622   AU.addRequired<SpillPlacement>();
623   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
624   MachineFunctionPass::getAnalysisUsage(AU);
625 }
626 
627 //===----------------------------------------------------------------------===//
628 //                     LiveRangeEdit delegate methods
629 //===----------------------------------------------------------------------===//
630 
631 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
632   LiveInterval &LI = LIS->getInterval(VirtReg);
633   if (VRM->hasPhys(VirtReg)) {
634     Matrix->unassign(LI);
635     aboutToRemoveInterval(LI);
636     return true;
637   }
638   // Unassigned virtreg is probably in the priority queue.
639   // RegAllocBase will erase it after dequeueing.
640   // Nonetheless, clear the live-range so that the debug
641   // dump will show the right state for that VirtReg.
642   LI.clear();
643   return false;
644 }
645 
646 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
647   if (!VRM->hasPhys(VirtReg))
648     return;
649 
650   // Register is assigned, put it back on the queue for reassignment.
651   LiveInterval &LI = LIS->getInterval(VirtReg);
652   Matrix->unassign(LI);
653   enqueue(&LI);
654 }
655 
656 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
657   // Cloning a register we haven't even heard about yet?  Just ignore it.
658   if (!ExtraRegInfo.inBounds(Old))
659     return;
660 
661   // LRE may clone a virtual register because dead code elimination causes it to
662   // be split into connected components. The new components are much smaller
663   // than the original, so they should get a new chance at being assigned.
664   // same stage as the parent.
665   ExtraRegInfo[Old].Stage = RS_Assign;
666   ExtraRegInfo.grow(New);
667   ExtraRegInfo[New] = ExtraRegInfo[Old];
668 }
669 
670 void RAGreedy::releaseMemory() {
671   SpillerInstance.reset();
672   ExtraRegInfo.clear();
673   GlobalCand.clear();
674 }
675 
676 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
677 
678 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
679   // Prioritize live ranges by size, assigning larger ranges first.
680   // The queue holds (size, reg) pairs.
681   const unsigned Size = LI->getSize();
682   const unsigned Reg = LI->reg();
683   assert(Register::isVirtualRegister(Reg) &&
684          "Can only enqueue virtual registers");
685   unsigned Prio;
686 
687   ExtraRegInfo.grow(Reg);
688   if (ExtraRegInfo[Reg].Stage == RS_New)
689     ExtraRegInfo[Reg].Stage = RS_Assign;
690 
691   if (ExtraRegInfo[Reg].Stage == RS_Split) {
692     // Unsplit ranges that couldn't be allocated immediately are deferred until
693     // everything else has been allocated.
694     Prio = Size;
695   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
696     // Memory operand should be considered last.
697     // Change the priority such that Memory operand are assigned in
698     // the reverse order that they came in.
699     // TODO: Make this a member variable and probably do something about hints.
700     static unsigned MemOp = 0;
701     Prio = MemOp++;
702   } else {
703     // Giant live ranges fall back to the global assignment heuristic, which
704     // prevents excessive spilling in pathological cases.
705     bool ReverseLocal = TRI->reverseLocalAssignment();
706     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
707     bool ForceGlobal = !ReverseLocal &&
708       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
709 
710     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
711         LIS->intervalIsInOneMBB(*LI)) {
712       // Allocate original local ranges in linear instruction order. Since they
713       // are singly defined, this produces optimal coloring in the absence of
714       // global interference and other constraints.
715       if (!ReverseLocal)
716         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
717       else {
718         // Allocating bottom up may allow many short LRGs to be assigned first
719         // to one of the cheap registers. This could be much faster for very
720         // large blocks on targets with many physical registers.
721         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
722       }
723       Prio |= RC.AllocationPriority << 24;
724     } else {
725       // Allocate global and split ranges in long->short order. Long ranges that
726       // don't fit should be spilled (or split) ASAP so they don't create
727       // interference.  Mark a bit to prioritize global above local ranges.
728       Prio = (1u << 29) + Size;
729     }
730     // Mark a higher bit to prioritize global and local above RS_Split.
731     Prio |= (1u << 31);
732 
733     // Boost ranges that have a physical register hint.
734     if (VRM->hasKnownPreference(Reg))
735       Prio |= (1u << 30);
736   }
737   // The virtual register number is a tie breaker for same-sized ranges.
738   // Give lower vreg numbers higher priority to assign them first.
739   CurQueue.push(std::make_pair(Prio, ~Reg));
740 }
741 
742 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
743 
744 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
745   if (CurQueue.empty())
746     return nullptr;
747   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
748   CurQueue.pop();
749   return LI;
750 }
751 
752 //===----------------------------------------------------------------------===//
753 //                            Direct Assignment
754 //===----------------------------------------------------------------------===//
755 
756 /// tryAssign - Try to assign VirtReg to an available register.
757 Register RAGreedy::tryAssign(LiveInterval &VirtReg,
758                              AllocationOrder &Order,
759                              SmallVectorImpl<Register> &NewVRegs,
760                              const SmallVirtRegSet &FixedRegisters) {
761   Register PhysReg;
762   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
763     assert(*I);
764     if (!Matrix->checkInterference(VirtReg, *I)) {
765       if (I.isHint())
766         return *I;
767       else
768         PhysReg = *I;
769     }
770   }
771   if (!PhysReg.isValid())
772     return PhysReg;
773 
774   // PhysReg is available, but there may be a better choice.
775 
776   // If we missed a simple hint, try to cheaply evict interference from the
777   // preferred register.
778   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
779     if (Order.isHint(Hint)) {
780       LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n');
781       EvictionCost MaxCost;
782       MaxCost.setBrokenHints(1);
783       if (canEvictInterference(VirtReg, Hint, true, MaxCost, FixedRegisters)) {
784         evictInterference(VirtReg, Hint, NewVRegs);
785         return Hint;
786       }
787       // Record the missed hint, we may be able to recover
788       // at the end if the surrounding allocation changed.
789       SetOfBrokenHints.insert(&VirtReg);
790     }
791 
792   // Try to evict interference from a cheaper alternative.
793   unsigned Cost = TRI->getCostPerUse(PhysReg);
794 
795   // Most registers have 0 additional cost.
796   if (!Cost)
797     return PhysReg;
798 
799   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
800                     << Cost << '\n');
801   Register CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
802   return CheapReg ? CheapReg : PhysReg;
803 }
804 
805 //===----------------------------------------------------------------------===//
806 //                         Interference eviction
807 //===----------------------------------------------------------------------===//
808 
809 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) {
810   auto Order =
811       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
812   MCRegister PhysReg;
813   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
814     if ((*I).id() == PrevReg.id())
815       continue;
816 
817     MCRegUnitIterator Units(*I, TRI);
818     for (; Units.isValid(); ++Units) {
819       // Instantiate a "subquery", not to be confused with the Queries array.
820       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
821       if (subQ.checkInterference())
822         break;
823     }
824     // If no units have interference, break out with the current PhysReg.
825     if (!Units.isValid())
826       PhysReg = *I;
827   }
828   if (PhysReg)
829     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
830                       << printReg(PrevReg, TRI) << " to "
831                       << printReg(PhysReg, TRI) << '\n');
832   return PhysReg;
833 }
834 
835 /// shouldEvict - determine if A should evict the assigned live range B. The
836 /// eviction policy defined by this function together with the allocation order
837 /// defined by enqueue() decides which registers ultimately end up being split
838 /// and spilled.
839 ///
840 /// Cascade numbers are used to prevent infinite loops if this function is a
841 /// cyclic relation.
842 ///
843 /// @param A          The live range to be assigned.
844 /// @param IsHint     True when A is about to be assigned to its preferred
845 ///                   register.
846 /// @param B          The live range to be evicted.
847 /// @param BreaksHint True when B is already assigned to its preferred register.
848 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
849                            LiveInterval &B, bool BreaksHint) {
850   bool CanSplit = getStage(B) < RS_Spill;
851 
852   // Be fairly aggressive about following hints as long as the evictee can be
853   // split.
854   if (CanSplit && IsHint && !BreaksHint)
855     return true;
856 
857   if (A.weight() > B.weight()) {
858     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n');
859     return true;
860   }
861   return false;
862 }
863 
864 /// canEvictInterference - Return true if all interferences between VirtReg and
865 /// PhysReg can be evicted.
866 ///
867 /// @param VirtReg Live range that is about to be assigned.
868 /// @param PhysReg Desired register for assignment.
869 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
870 /// @param MaxCost Only look for cheaper candidates and update with new cost
871 ///                when returning true.
872 /// @returns True when interference can be evicted cheaper than MaxCost.
873 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, MCRegister PhysReg,
874                                     bool IsHint, EvictionCost &MaxCost,
875                                     const SmallVirtRegSet &FixedRegisters) {
876   // It is only possible to evict virtual register interference.
877   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
878     return false;
879 
880   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
881 
882   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
883   // involved in an eviction before. If a cascade number was assigned, deny
884   // evicting anything with the same or a newer cascade number. This prevents
885   // infinite eviction loops.
886   //
887   // This works out so a register without a cascade number is allowed to evict
888   // anything, and it can be evicted by anything.
889   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
890   if (!Cascade)
891     Cascade = NextCascade;
892 
893   EvictionCost Cost;
894   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
895     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
896     // If there is 10 or more interferences, chances are one is heavier.
897     if (Q.collectInterferingVRegs(10) >= 10)
898       return false;
899 
900     // Check if any interfering live range is heavier than MaxWeight.
901     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
902       assert(Register::isVirtualRegister(Intf->reg()) &&
903              "Only expecting virtual register interference from query");
904 
905       // Do not allow eviction of a virtual register if we are in the middle
906       // of last-chance recoloring and this virtual register is one that we
907       // have scavenged a physical register for.
908       if (FixedRegisters.count(Intf->reg()))
909         return false;
910 
911       // Never evict spill products. They cannot split or spill.
912       if (getStage(*Intf) == RS_Done)
913         return false;
914       // Once a live range becomes small enough, it is urgent that we find a
915       // register for it. This is indicated by an infinite spill weight. These
916       // urgent live ranges get to evict almost anything.
917       //
918       // Also allow urgent evictions of unspillable ranges from a strictly
919       // larger allocation order.
920       bool Urgent =
921           !VirtReg.isSpillable() &&
922           (Intf->isSpillable() ||
923            RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
924                RegClassInfo.getNumAllocatableRegs(
925                    MRI->getRegClass(Intf->reg())));
926       // Only evict older cascades or live ranges without a cascade.
927       unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade;
928       if (Cascade <= IntfCascade) {
929         if (!Urgent)
930           return false;
931         // We permit breaking cascades for urgent evictions. It should be the
932         // last resort, though, so make it really expensive.
933         Cost.BrokenHints += 10;
934       }
935       // Would this break a satisfied hint?
936       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
937       // Update eviction cost.
938       Cost.BrokenHints += BreaksHint;
939       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
940       // Abort if this would be too expensive.
941       if (!(Cost < MaxCost))
942         return false;
943       if (Urgent)
944         continue;
945       // Apply the eviction policy for non-urgent evictions.
946       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
947         return false;
948       // If !MaxCost.isMax(), then we're just looking for a cheap register.
949       // Evicting another local live range in this case could lead to suboptimal
950       // coloring.
951       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
952           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
953         return false;
954       }
955     }
956   }
957   MaxCost = Cost;
958   return true;
959 }
960 
961 /// Return true if all interferences between VirtReg and PhysReg between
962 /// Start and End can be evicted.
963 ///
964 /// \param VirtReg Live range that is about to be assigned.
965 /// \param PhysReg Desired register for assignment.
966 /// \param Start   Start of range to look for interferences.
967 /// \param End     End of range to look for interferences.
968 /// \param MaxCost Only look for cheaper candidates and update with new cost
969 ///                when returning true.
970 /// \return True when interference can be evicted cheaper than MaxCost.
971 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
972                                            Register PhysReg, SlotIndex Start,
973                                            SlotIndex End,
974                                            EvictionCost &MaxCost) {
975   EvictionCost Cost;
976 
977   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
978     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
979 
980     // Check if any interfering live range is heavier than MaxWeight.
981     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
982       // Check if interference overlast the segment in interest.
983       if (!Intf->overlaps(Start, End))
984         continue;
985 
986       // Cannot evict non virtual reg interference.
987       if (!Register::isVirtualRegister(Intf->reg()))
988         return false;
989       // Never evict spill products. They cannot split or spill.
990       if (getStage(*Intf) == RS_Done)
991         return false;
992 
993       // Would this break a satisfied hint?
994       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
995       // Update eviction cost.
996       Cost.BrokenHints += BreaksHint;
997       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
998       // Abort if this would be too expensive.
999       if (!(Cost < MaxCost))
1000         return false;
1001     }
1002   }
1003 
1004   if (Cost.MaxWeight == 0)
1005     return false;
1006 
1007   MaxCost = Cost;
1008   return true;
1009 }
1010 
1011 /// Return the physical register that will be best
1012 /// candidate for eviction by a local split interval that will be created
1013 /// between Start and End.
1014 ///
1015 /// \param Order            The allocation order
1016 /// \param VirtReg          Live range that is about to be assigned.
1017 /// \param Start            Start of range to look for interferences
1018 /// \param End              End of range to look for interferences
1019 /// \param BestEvictweight  The eviction cost of that eviction
1020 /// \return The PhysReg which is the best candidate for eviction and the
1021 /// eviction cost in BestEvictweight
1022 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1023                                             LiveInterval &VirtReg,
1024                                             SlotIndex Start, SlotIndex End,
1025                                             float *BestEvictweight) {
1026   EvictionCost BestEvictCost;
1027   BestEvictCost.setMax();
1028   BestEvictCost.MaxWeight = VirtReg.weight();
1029   unsigned BestEvicteePhys = 0;
1030 
1031   // Go over all physical registers and find the best candidate for eviction
1032   for (auto PhysReg : Order.getOrder()) {
1033 
1034     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1035                                      BestEvictCost))
1036       continue;
1037 
1038     // Best so far.
1039     BestEvicteePhys = PhysReg;
1040   }
1041   *BestEvictweight = BestEvictCost.MaxWeight;
1042   return BestEvicteePhys;
1043 }
1044 
1045 /// evictInterference - Evict any interferring registers that prevent VirtReg
1046 /// from being assigned to Physreg. This assumes that canEvictInterference
1047 /// returned true.
1048 void RAGreedy::evictInterference(LiveInterval &VirtReg, Register PhysReg,
1049                                  SmallVectorImpl<Register> &NewVRegs) {
1050   // Make sure that VirtReg has a cascade number, and assign that cascade
1051   // number to every evicted register. These live ranges than then only be
1052   // evicted by a newer cascade, preventing infinite loops.
1053   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
1054   if (!Cascade)
1055     Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++;
1056 
1057   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1058                     << " interference: Cascade " << Cascade << '\n');
1059 
1060   // Collect all interfering virtregs first.
1061   SmallVector<LiveInterval*, 8> Intfs;
1062   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1063     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1064     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1065     // should be fast, we may need to recalculate if when different physregs
1066     // overlap the same register unit so we had different SubRanges queried
1067     // against it.
1068     Q.collectInterferingVRegs();
1069     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1070     Intfs.append(IVR.begin(), IVR.end());
1071   }
1072 
1073   // Evict them second. This will invalidate the queries.
1074   for (LiveInterval *Intf : Intfs) {
1075     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1076     if (!VRM->hasPhys(Intf->reg()))
1077       continue;
1078 
1079     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
1080 
1081     Matrix->unassign(*Intf);
1082     assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade ||
1083             VirtReg.isSpillable() < Intf->isSpillable()) &&
1084            "Cannot decrease cascade number, illegal eviction");
1085     ExtraRegInfo[Intf->reg()].Cascade = Cascade;
1086     ++NumEvicted;
1087     NewVRegs.push_back(Intf->reg());
1088   }
1089 }
1090 
1091 /// Returns true if the given \p PhysReg is a callee saved register and has not
1092 /// been used for allocation yet.
1093 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
1094   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1095   if (!CSR)
1096     return false;
1097 
1098   return !Matrix->isPhysRegUsed(PhysReg);
1099 }
1100 
1101 /// tryEvict - Try to evict all interferences for a physreg.
1102 /// @param  VirtReg Currently unassigned virtual register.
1103 /// @param  Order   Physregs to try.
1104 /// @return         Physreg to assign VirtReg, or 0.
1105 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
1106                             AllocationOrder &Order,
1107                             SmallVectorImpl<Register> &NewVRegs,
1108                             unsigned CostPerUseLimit,
1109                             const SmallVirtRegSet &FixedRegisters) {
1110   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1111                      TimePassesIsEnabled);
1112 
1113   // Keep track of the cheapest interference seen so far.
1114   EvictionCost BestCost;
1115   BestCost.setMax();
1116   unsigned BestPhys = 0;
1117   unsigned OrderLimit = Order.getOrder().size();
1118 
1119   // When we are just looking for a reduced cost per use, don't break any
1120   // hints, and only evict smaller spill weights.
1121   if (CostPerUseLimit < ~0u) {
1122     BestCost.BrokenHints = 0;
1123     BestCost.MaxWeight = VirtReg.weight();
1124 
1125     // Check of any registers in RC are below CostPerUseLimit.
1126     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
1127     unsigned MinCost = RegClassInfo.getMinCost(RC);
1128     if (MinCost >= CostPerUseLimit) {
1129       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1130                         << MinCost << ", no cheaper registers to be found.\n");
1131       return 0;
1132     }
1133 
1134     // It is normal for register classes to have a long tail of registers with
1135     // the same cost. We don't need to look at them if they're too expensive.
1136     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
1137       OrderLimit = RegClassInfo.getLastCostChange(RC);
1138       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1139                         << " regs.\n");
1140     }
1141   }
1142 
1143   for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
1144        ++I) {
1145     MCRegister PhysReg = *I;
1146     assert(PhysReg);
1147     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
1148       continue;
1149     // The first use of a callee-saved register in a function has cost 1.
1150     // Don't start using a CSR when the CostPerUseLimit is low.
1151     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1152       LLVM_DEBUG(
1153           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1154                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1155                  << '\n');
1156       continue;
1157     }
1158 
1159     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1160                               FixedRegisters))
1161       continue;
1162 
1163     // Best so far.
1164     BestPhys = PhysReg;
1165 
1166     // Stop if the hint can be used.
1167     if (I.isHint())
1168       break;
1169   }
1170 
1171   if (!BestPhys)
1172     return 0;
1173 
1174   evictInterference(VirtReg, BestPhys, NewVRegs);
1175   return BestPhys;
1176 }
1177 
1178 //===----------------------------------------------------------------------===//
1179 //                              Region Splitting
1180 //===----------------------------------------------------------------------===//
1181 
1182 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1183 /// interference pattern in Physreg and its aliases. Add the constraints to
1184 /// SpillPlacement and return the static cost of this split in Cost, assuming
1185 /// that all preferences in SplitConstraints are met.
1186 /// Return false if there are no bundles with positive bias.
1187 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1188                                    BlockFrequency &Cost) {
1189   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1190 
1191   // Reset interference dependent info.
1192   SplitConstraints.resize(UseBlocks.size());
1193   BlockFrequency StaticCost = 0;
1194   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1195     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1196     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1197 
1198     BC.Number = BI.MBB->getNumber();
1199     Intf.moveToBlock(BC.Number);
1200     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1201     BC.Exit = (BI.LiveOut &&
1202                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1203                   ? SpillPlacement::PrefReg
1204                   : SpillPlacement::DontCare;
1205     BC.ChangesValue = BI.FirstDef.isValid();
1206 
1207     if (!Intf.hasInterference())
1208       continue;
1209 
1210     // Number of spill code instructions to insert.
1211     unsigned Ins = 0;
1212 
1213     // Interference for the live-in value.
1214     if (BI.LiveIn) {
1215       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1216         BC.Entry = SpillPlacement::MustSpill;
1217         ++Ins;
1218       } else if (Intf.first() < BI.FirstInstr) {
1219         BC.Entry = SpillPlacement::PrefSpill;
1220         ++Ins;
1221       } else if (Intf.first() < BI.LastInstr) {
1222         ++Ins;
1223       }
1224 
1225       // Abort if the spill cannot be inserted at the MBB' start
1226       if (((BC.Entry == SpillPlacement::MustSpill) ||
1227            (BC.Entry == SpillPlacement::PrefSpill)) &&
1228           SlotIndex::isEarlierInstr(BI.FirstInstr,
1229                                     SA->getFirstSplitPoint(BC.Number)))
1230         return false;
1231     }
1232 
1233     // Interference for the live-out value.
1234     if (BI.LiveOut) {
1235       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1236         BC.Exit = SpillPlacement::MustSpill;
1237         ++Ins;
1238       } else if (Intf.last() > BI.LastInstr) {
1239         BC.Exit = SpillPlacement::PrefSpill;
1240         ++Ins;
1241       } else if (Intf.last() > BI.FirstInstr) {
1242         ++Ins;
1243       }
1244     }
1245 
1246     // Accumulate the total frequency of inserted spill code.
1247     while (Ins--)
1248       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1249   }
1250   Cost = StaticCost;
1251 
1252   // Add constraints for use-blocks. Note that these are the only constraints
1253   // that may add a positive bias, it is downhill from here.
1254   SpillPlacer->addConstraints(SplitConstraints);
1255   return SpillPlacer->scanActiveBundles();
1256 }
1257 
1258 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1259 /// live-through blocks in Blocks.
1260 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1261                                      ArrayRef<unsigned> Blocks) {
1262   const unsigned GroupSize = 8;
1263   SpillPlacement::BlockConstraint BCS[GroupSize];
1264   unsigned TBS[GroupSize];
1265   unsigned B = 0, T = 0;
1266 
1267   for (unsigned Number : Blocks) {
1268     Intf.moveToBlock(Number);
1269 
1270     if (!Intf.hasInterference()) {
1271       assert(T < GroupSize && "Array overflow");
1272       TBS[T] = Number;
1273       if (++T == GroupSize) {
1274         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1275         T = 0;
1276       }
1277       continue;
1278     }
1279 
1280     assert(B < GroupSize && "Array overflow");
1281     BCS[B].Number = Number;
1282 
1283     // Abort if the spill cannot be inserted at the MBB' start
1284     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1285     if (!MBB->empty() &&
1286         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
1287                                   SA->getFirstSplitPoint(Number)))
1288       return false;
1289     // Interference for the live-in value.
1290     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1291       BCS[B].Entry = SpillPlacement::MustSpill;
1292     else
1293       BCS[B].Entry = SpillPlacement::PrefSpill;
1294 
1295     // Interference for the live-out value.
1296     if (Intf.last() >= SA->getLastSplitPoint(Number))
1297       BCS[B].Exit = SpillPlacement::MustSpill;
1298     else
1299       BCS[B].Exit = SpillPlacement::PrefSpill;
1300 
1301     if (++B == GroupSize) {
1302       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1303       B = 0;
1304     }
1305   }
1306 
1307   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1308   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1309   return true;
1310 }
1311 
1312 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1313   // Keep track of through blocks that have not been added to SpillPlacer.
1314   BitVector Todo = SA->getThroughBlocks();
1315   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1316   unsigned AddedTo = 0;
1317 #ifndef NDEBUG
1318   unsigned Visited = 0;
1319 #endif
1320 
1321   while (true) {
1322     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1323     // Find new through blocks in the periphery of PrefRegBundles.
1324     for (unsigned Bundle : NewBundles) {
1325       // Look at all blocks connected to Bundle in the full graph.
1326       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1327       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1328            I != E; ++I) {
1329         unsigned Block = *I;
1330         if (!Todo.test(Block))
1331           continue;
1332         Todo.reset(Block);
1333         // This is a new through block. Add it to SpillPlacer later.
1334         ActiveBlocks.push_back(Block);
1335 #ifndef NDEBUG
1336         ++Visited;
1337 #endif
1338       }
1339     }
1340     // Any new blocks to add?
1341     if (ActiveBlocks.size() == AddedTo)
1342       break;
1343 
1344     // Compute through constraints from the interference, or assume that all
1345     // through blocks prefer spilling when forming compact regions.
1346     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1347     if (Cand.PhysReg) {
1348       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1349         return false;
1350     } else
1351       // Provide a strong negative bias on through blocks to prevent unwanted
1352       // liveness on loop backedges.
1353       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1354     AddedTo = ActiveBlocks.size();
1355 
1356     // Perhaps iterating can enable more bundles?
1357     SpillPlacer->iterate();
1358   }
1359   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1360   return true;
1361 }
1362 
1363 /// calcCompactRegion - Compute the set of edge bundles that should be live
1364 /// when splitting the current live range into compact regions.  Compact
1365 /// regions can be computed without looking at interference.  They are the
1366 /// regions formed by removing all the live-through blocks from the live range.
1367 ///
1368 /// Returns false if the current live range is already compact, or if the
1369 /// compact regions would form single block regions anyway.
1370 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1371   // Without any through blocks, the live range is already compact.
1372   if (!SA->getNumThroughBlocks())
1373     return false;
1374 
1375   // Compact regions don't correspond to any physreg.
1376   Cand.reset(IntfCache, MCRegister::NoRegister);
1377 
1378   LLVM_DEBUG(dbgs() << "Compact region bundles");
1379 
1380   // Use the spill placer to determine the live bundles. GrowRegion pretends
1381   // that all the through blocks have interference when PhysReg is unset.
1382   SpillPlacer->prepare(Cand.LiveBundles);
1383 
1384   // The static split cost will be zero since Cand.Intf reports no interference.
1385   BlockFrequency Cost;
1386   if (!addSplitConstraints(Cand.Intf, Cost)) {
1387     LLVM_DEBUG(dbgs() << ", none.\n");
1388     return false;
1389   }
1390 
1391   if (!growRegion(Cand)) {
1392     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1393     return false;
1394   }
1395 
1396   SpillPlacer->finish();
1397 
1398   if (!Cand.LiveBundles.any()) {
1399     LLVM_DEBUG(dbgs() << ", none.\n");
1400     return false;
1401   }
1402 
1403   LLVM_DEBUG({
1404     for (int I : Cand.LiveBundles.set_bits())
1405       dbgs() << " EB#" << I;
1406     dbgs() << ".\n";
1407   });
1408   return true;
1409 }
1410 
1411 /// calcSpillCost - Compute how expensive it would be to split the live range in
1412 /// SA around all use blocks instead of forming bundle regions.
1413 BlockFrequency RAGreedy::calcSpillCost() {
1414   BlockFrequency Cost = 0;
1415   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1416   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1417     unsigned Number = BI.MBB->getNumber();
1418     // We normally only need one spill instruction - a load or a store.
1419     Cost += SpillPlacer->getBlockFrequency(Number);
1420 
1421     // Unless the value is redefined in the block.
1422     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1423       Cost += SpillPlacer->getBlockFrequency(Number);
1424   }
1425   return Cost;
1426 }
1427 
1428 /// Check if splitting Evictee will create a local split interval in
1429 /// basic block number BBNumber that may cause a bad eviction chain. This is
1430 /// intended to prevent bad eviction sequences like:
1431 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1432 /// movl	%ecx, %ebp
1433 /// movl	%ebx, %ecx
1434 /// movl	%edi, %ebx
1435 /// movl	%edx, %edi
1436 /// cltd
1437 /// idivl	%esi
1438 /// movl	%edi, %edx
1439 /// movl	%ebx, %edi
1440 /// movl	%ecx, %ebx
1441 /// movl	%ebp, %ecx
1442 /// movl	16(%esp), %ebp          # 4 - byte Reload
1443 ///
1444 /// Such sequences are created in 2 scenarios:
1445 ///
1446 /// Scenario #1:
1447 /// %0 is evicted from physreg0 by %1.
1448 /// Evictee %0 is intended for region splitting with split candidate
1449 /// physreg0 (the reg %0 was evicted from).
1450 /// Region splitting creates a local interval because of interference with the
1451 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1452 /// and "by stack" intervals and local interval created when interference
1453 /// occurs).
1454 /// One of the split intervals ends up evicting %2 from physreg1.
1455 /// Evictee %2 is intended for region splitting with split candidate
1456 /// physreg1.
1457 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1458 ///
1459 /// Scenario #2
1460 /// %0 is evicted from physreg0 by %1.
1461 /// %2 is evicted from physreg2 by %3 etc.
1462 /// Evictee %0 is intended for region splitting with split candidate
1463 /// physreg1.
1464 /// Region splitting creates a local interval because of interference with the
1465 /// evictor %1.
1466 /// One of the split intervals ends up evicting back original evictor %1
1467 /// from physreg0 (the reg %0 was evicted from).
1468 /// Another evictee %2 is intended for region splitting with split candidate
1469 /// physreg1.
1470 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1471 ///
1472 /// \param Evictee  The register considered to be split.
1473 /// \param Cand     The split candidate that determines the physical register
1474 ///                 we are splitting for and the interferences.
1475 /// \param BBNumber The number of a BB for which the region split process will
1476 ///                 create a local split interval.
1477 /// \param Order    The physical registers that may get evicted by a split
1478 ///                 artifact of Evictee.
1479 /// \return True if splitting Evictee may cause a bad eviction chain, false
1480 /// otherwise.
1481 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee,
1482                                           GlobalSplitCandidate &Cand,
1483                                           unsigned BBNumber,
1484                                           const AllocationOrder &Order) {
1485   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1486   unsigned Evictor = VregEvictorInfo.first;
1487   unsigned PhysReg = VregEvictorInfo.second;
1488 
1489   // No actual evictor.
1490   if (!Evictor || !PhysReg)
1491     return false;
1492 
1493   float MaxWeight = 0;
1494   unsigned FutureEvictedPhysReg =
1495       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1496                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1497 
1498   // The bad eviction chain occurs when either the split candidate is the
1499   // evicting reg or one of the split artifact will evict the evicting reg.
1500   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1501     return false;
1502 
1503   Cand.Intf.moveToBlock(BBNumber);
1504 
1505   // Check to see if the Evictor contains interference (with Evictee) in the
1506   // given BB. If so, this interference caused the eviction of Evictee from
1507   // PhysReg. This suggest that we will create a local interval during the
1508   // region split to avoid this interference This local interval may cause a bad
1509   // eviction chain.
1510   if (!LIS->hasInterval(Evictor))
1511     return false;
1512   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1513   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1514     return false;
1515 
1516   // Now, check to see if the local interval we will create is going to be
1517   // expensive enough to evict somebody If so, this may cause a bad eviction
1518   // chain.
1519   float splitArtifactWeight =
1520       VRAI->futureWeight(LIS->getInterval(Evictee),
1521                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1522   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1523     return false;
1524 
1525   return true;
1526 }
1527 
1528 /// Check if splitting VirtRegToSplit will create a local split interval
1529 /// in basic block number BBNumber that may cause a spill.
1530 ///
1531 /// \param VirtRegToSplit The register considered to be split.
1532 /// \param Cand           The split candidate that determines the physical
1533 ///                       register we are splitting for and the interferences.
1534 /// \param BBNumber       The number of a BB for which the region split process
1535 ///                       will create a local split interval.
1536 /// \param Order          The physical registers that may get evicted by a
1537 ///                       split artifact of VirtRegToSplit.
1538 /// \return True if splitting VirtRegToSplit may cause a spill, false
1539 /// otherwise.
1540 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1541                                        GlobalSplitCandidate &Cand,
1542                                        unsigned BBNumber,
1543                                        const AllocationOrder &Order) {
1544   Cand.Intf.moveToBlock(BBNumber);
1545 
1546   // Check if the local interval will find a non interfereing assignment.
1547   for (auto PhysReg : Order.getOrder()) {
1548     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1549                                    Cand.Intf.last(), PhysReg))
1550       return false;
1551   }
1552 
1553   // Check if the local interval will evict a cheaper interval.
1554   float CheapestEvictWeight = 0;
1555   unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
1556       Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1557       Cand.Intf.last(), &CheapestEvictWeight);
1558 
1559   // Have we found an interval that can be evicted?
1560   if (FutureEvictedPhysReg) {
1561     float splitArtifactWeight =
1562         VRAI->futureWeight(LIS->getInterval(VirtRegToSplit),
1563                            Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1564     // Will the weight of the local interval be higher than the cheapest evictee
1565     // weight? If so it will evict it and will not cause a spill.
1566     if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1567       return false;
1568   }
1569 
1570   // The local interval is not able to find non interferencing assignment and
1571   // not able to evict a less worthy interval, therfore, it can cause a spill.
1572   return true;
1573 }
1574 
1575 /// calcGlobalSplitCost - Return the global split cost of following the split
1576 /// pattern in LiveBundles. This cost should be added to the local cost of the
1577 /// interference pattern in SplitConstraints.
1578 ///
1579 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1580                                              const AllocationOrder &Order,
1581                                              bool *CanCauseEvictionChain) {
1582   BlockFrequency GlobalCost = 0;
1583   const BitVector &LiveBundles = Cand.LiveBundles;
1584   unsigned VirtRegToSplit = SA->getParent().reg();
1585   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1586   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1587     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1588     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1589     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1590     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1591     unsigned Ins = 0;
1592 
1593     Cand.Intf.moveToBlock(BC.Number);
1594     // Check wheather a local interval is going to be created during the region
1595     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1596     // is enabled.
1597     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1598         BI.LiveOut && RegIn && RegOut) {
1599 
1600       if (CanCauseEvictionChain &&
1601           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1602         // This interference causes our eviction from this assignment, we might
1603         // evict somebody else and eventually someone will spill, add that cost.
1604         // See splitCanCauseEvictionChain for detailed description of scenarios.
1605         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1606         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1607 
1608         *CanCauseEvictionChain = true;
1609 
1610       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1611                                          Order)) {
1612         // This interference causes local interval to spill, add that cost.
1613         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1614         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1615       }
1616     }
1617 
1618     if (BI.LiveIn)
1619       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1620     if (BI.LiveOut)
1621       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1622     while (Ins--)
1623       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1624   }
1625 
1626   for (unsigned Number : Cand.ActiveBlocks) {
1627     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1628     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1629     if (!RegIn && !RegOut)
1630       continue;
1631     if (RegIn && RegOut) {
1632       // We need double spill code if this block has interference.
1633       Cand.Intf.moveToBlock(Number);
1634       if (Cand.Intf.hasInterference()) {
1635         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1636         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1637 
1638         // Check wheather a local interval is going to be created during the
1639         // region split.
1640         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1641             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1642           // This interference cause our eviction from this assignment, we might
1643           // evict somebody else, add that cost.
1644           // See splitCanCauseEvictionChain for detailed description of
1645           // scenarios.
1646           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1647           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1648 
1649           *CanCauseEvictionChain = true;
1650         }
1651       }
1652       continue;
1653     }
1654     // live-in / stack-out or stack-in live-out.
1655     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1656   }
1657   return GlobalCost;
1658 }
1659 
1660 /// splitAroundRegion - Split the current live range around the regions
1661 /// determined by BundleCand and GlobalCand.
1662 ///
1663 /// Before calling this function, GlobalCand and BundleCand must be initialized
1664 /// so each bundle is assigned to a valid candidate, or NoCand for the
1665 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1666 /// objects must be initialized for the current live range, and intervals
1667 /// created for the used candidates.
1668 ///
1669 /// @param LREdit    The LiveRangeEdit object handling the current split.
1670 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1671 ///                  must appear in this list.
1672 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1673                                  ArrayRef<unsigned> UsedCands) {
1674   // These are the intervals created for new global ranges. We may create more
1675   // intervals for local ranges.
1676   const unsigned NumGlobalIntvs = LREdit.size();
1677   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1678                     << " globals.\n");
1679   assert(NumGlobalIntvs && "No global intervals configured");
1680 
1681   // Isolate even single instructions when dealing with a proper sub-class.
1682   // That guarantees register class inflation for the stack interval because it
1683   // is all copies.
1684   unsigned Reg = SA->getParent().reg();
1685   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1686 
1687   // First handle all the blocks with uses.
1688   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1689   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1690     unsigned Number = BI.MBB->getNumber();
1691     unsigned IntvIn = 0, IntvOut = 0;
1692     SlotIndex IntfIn, IntfOut;
1693     if (BI.LiveIn) {
1694       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1695       if (CandIn != NoCand) {
1696         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1697         IntvIn = Cand.IntvIdx;
1698         Cand.Intf.moveToBlock(Number);
1699         IntfIn = Cand.Intf.first();
1700       }
1701     }
1702     if (BI.LiveOut) {
1703       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1704       if (CandOut != NoCand) {
1705         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1706         IntvOut = Cand.IntvIdx;
1707         Cand.Intf.moveToBlock(Number);
1708         IntfOut = Cand.Intf.last();
1709       }
1710     }
1711 
1712     // Create separate intervals for isolated blocks with multiple uses.
1713     if (!IntvIn && !IntvOut) {
1714       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1715       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1716         SE->splitSingleBlock(BI);
1717       continue;
1718     }
1719 
1720     if (IntvIn && IntvOut)
1721       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1722     else if (IntvIn)
1723       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1724     else
1725       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1726   }
1727 
1728   // Handle live-through blocks. The relevant live-through blocks are stored in
1729   // the ActiveBlocks list with each candidate. We need to filter out
1730   // duplicates.
1731   BitVector Todo = SA->getThroughBlocks();
1732   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1733     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1734     for (unsigned Number : Blocks) {
1735       if (!Todo.test(Number))
1736         continue;
1737       Todo.reset(Number);
1738 
1739       unsigned IntvIn = 0, IntvOut = 0;
1740       SlotIndex IntfIn, IntfOut;
1741 
1742       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1743       if (CandIn != NoCand) {
1744         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1745         IntvIn = Cand.IntvIdx;
1746         Cand.Intf.moveToBlock(Number);
1747         IntfIn = Cand.Intf.first();
1748       }
1749 
1750       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1751       if (CandOut != NoCand) {
1752         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1753         IntvOut = Cand.IntvIdx;
1754         Cand.Intf.moveToBlock(Number);
1755         IntfOut = Cand.Intf.last();
1756       }
1757       if (!IntvIn && !IntvOut)
1758         continue;
1759       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1760     }
1761   }
1762 
1763   ++NumGlobalSplits;
1764 
1765   SmallVector<unsigned, 8> IntvMap;
1766   SE->finish(&IntvMap);
1767   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1768 
1769   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1770   unsigned OrigBlocks = SA->getNumLiveBlocks();
1771 
1772   // Sort out the new intervals created by splitting. We get four kinds:
1773   // - Remainder intervals should not be split again.
1774   // - Candidate intervals can be assigned to Cand.PhysReg.
1775   // - Block-local splits are candidates for local splitting.
1776   // - DCE leftovers should go back on the queue.
1777   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1778     LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1779 
1780     // Ignore old intervals from DCE.
1781     if (getStage(Reg) != RS_New)
1782       continue;
1783 
1784     // Remainder interval. Don't try splitting again, spill if it doesn't
1785     // allocate.
1786     if (IntvMap[I] == 0) {
1787       setStage(Reg, RS_Spill);
1788       continue;
1789     }
1790 
1791     // Global intervals. Allow repeated splitting as long as the number of live
1792     // blocks is strictly decreasing.
1793     if (IntvMap[I] < NumGlobalIntvs) {
1794       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1795         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1796                           << " blocks as original.\n");
1797         // Don't allow repeated splitting as a safe guard against looping.
1798         setStage(Reg, RS_Split2);
1799       }
1800       continue;
1801     }
1802 
1803     // Other intervals are treated as new. This includes local intervals created
1804     // for blocks with multiple uses, and anything created by DCE.
1805   }
1806 
1807   if (VerifyEnabled)
1808     MF->verify(this, "After splitting live range around region");
1809 }
1810 
1811 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1812                                   SmallVectorImpl<Register> &NewVRegs) {
1813   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1814     return 0;
1815   unsigned NumCands = 0;
1816   BlockFrequency SpillCost = calcSpillCost();
1817   BlockFrequency BestCost;
1818 
1819   // Check if we can split this live range around a compact region.
1820   bool HasCompact = calcCompactRegion(GlobalCand.front());
1821   if (HasCompact) {
1822     // Yes, keep GlobalCand[0] as the compact region candidate.
1823     NumCands = 1;
1824     BestCost = BlockFrequency::getMaxFrequency();
1825   } else {
1826     // No benefit from the compact region, our fallback will be per-block
1827     // splitting. Make sure we find a solution that is cheaper than spilling.
1828     BestCost = SpillCost;
1829     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1830                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1831   }
1832 
1833   bool CanCauseEvictionChain = false;
1834   unsigned BestCand =
1835       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1836                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1837 
1838   // Split candidates with compact regions can cause a bad eviction sequence.
1839   // See splitCanCauseEvictionChain for detailed description of scenarios.
1840   // To avoid it, we need to comapre the cost with the spill cost and not the
1841   // current max frequency.
1842   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1843     CanCauseEvictionChain) {
1844     return 0;
1845   }
1846 
1847   // No solutions found, fall back to single block splitting.
1848   if (!HasCompact && BestCand == NoCand)
1849     return 0;
1850 
1851   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1852 }
1853 
1854 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1855                                             AllocationOrder &Order,
1856                                             BlockFrequency &BestCost,
1857                                             unsigned &NumCands, bool IgnoreCSR,
1858                                             bool *CanCauseEvictionChain) {
1859   unsigned BestCand = NoCand;
1860   for (MCPhysReg PhysReg : Order) {
1861     assert(PhysReg);
1862     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1863       continue;
1864 
1865     // Discard bad candidates before we run out of interference cache cursors.
1866     // This will only affect register classes with a lot of registers (>32).
1867     if (NumCands == IntfCache.getMaxCursors()) {
1868       unsigned WorstCount = ~0u;
1869       unsigned Worst = 0;
1870       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1871         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1872           continue;
1873         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1874         if (Count < WorstCount) {
1875           Worst = CandIndex;
1876           WorstCount = Count;
1877         }
1878       }
1879       --NumCands;
1880       GlobalCand[Worst] = GlobalCand[NumCands];
1881       if (BestCand == NumCands)
1882         BestCand = Worst;
1883     }
1884 
1885     if (GlobalCand.size() <= NumCands)
1886       GlobalCand.resize(NumCands+1);
1887     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1888     Cand.reset(IntfCache, PhysReg);
1889 
1890     SpillPlacer->prepare(Cand.LiveBundles);
1891     BlockFrequency Cost;
1892     if (!addSplitConstraints(Cand.Intf, Cost)) {
1893       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1894       continue;
1895     }
1896     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1897                MBFI->printBlockFreq(dbgs(), Cost));
1898     if (Cost >= BestCost) {
1899       LLVM_DEBUG({
1900         if (BestCand == NoCand)
1901           dbgs() << " worse than no bundles\n";
1902         else
1903           dbgs() << " worse than "
1904                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1905       });
1906       continue;
1907     }
1908     if (!growRegion(Cand)) {
1909       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1910       continue;
1911     }
1912 
1913     SpillPlacer->finish();
1914 
1915     // No live bundles, defer to splitSingleBlocks().
1916     if (!Cand.LiveBundles.any()) {
1917       LLVM_DEBUG(dbgs() << " no bundles.\n");
1918       continue;
1919     }
1920 
1921     bool HasEvictionChain = false;
1922     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1923     LLVM_DEBUG({
1924       dbgs() << ", total = ";
1925       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1926       for (int I : Cand.LiveBundles.set_bits())
1927         dbgs() << " EB#" << I;
1928       dbgs() << ".\n";
1929     });
1930     if (Cost < BestCost) {
1931       BestCand = NumCands;
1932       BestCost = Cost;
1933       // See splitCanCauseEvictionChain for detailed description of bad
1934       // eviction chain scenarios.
1935       if (CanCauseEvictionChain)
1936         *CanCauseEvictionChain = HasEvictionChain;
1937     }
1938     ++NumCands;
1939   }
1940 
1941   if (CanCauseEvictionChain && BestCand != NoCand) {
1942     // See splitCanCauseEvictionChain for detailed description of bad
1943     // eviction chain scenarios.
1944     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1945                       << printReg(VirtReg.reg(), TRI) << "  may ");
1946     if (!(*CanCauseEvictionChain))
1947       LLVM_DEBUG(dbgs() << "not ");
1948     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1949   }
1950 
1951   return BestCand;
1952 }
1953 
1954 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1955                                  bool HasCompact,
1956                                  SmallVectorImpl<Register> &NewVRegs) {
1957   SmallVector<unsigned, 8> UsedCands;
1958   // Prepare split editor.
1959   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1960   SE->reset(LREdit, SplitSpillMode);
1961 
1962   // Assign all edge bundles to the preferred candidate, or NoCand.
1963   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1964 
1965   // Assign bundles for the best candidate region.
1966   if (BestCand != NoCand) {
1967     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1968     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1969       UsedCands.push_back(BestCand);
1970       Cand.IntvIdx = SE->openIntv();
1971       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1972                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1973       (void)B;
1974     }
1975   }
1976 
1977   // Assign bundles for the compact region.
1978   if (HasCompact) {
1979     GlobalSplitCandidate &Cand = GlobalCand.front();
1980     assert(!Cand.PhysReg && "Compact region has no physreg");
1981     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1982       UsedCands.push_back(0);
1983       Cand.IntvIdx = SE->openIntv();
1984       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1985                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1986       (void)B;
1987     }
1988   }
1989 
1990   splitAroundRegion(LREdit, UsedCands);
1991   return 0;
1992 }
1993 
1994 //===----------------------------------------------------------------------===//
1995 //                            Per-Block Splitting
1996 //===----------------------------------------------------------------------===//
1997 
1998 /// tryBlockSplit - Split a global live range around every block with uses. This
1999 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2000 /// they don't allocate.
2001 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2002                                  SmallVectorImpl<Register> &NewVRegs) {
2003   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2004   Register Reg = VirtReg.reg();
2005   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2006   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2007   SE->reset(LREdit, SplitSpillMode);
2008   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2009   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
2010     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2011       SE->splitSingleBlock(BI);
2012   }
2013   // No blocks were split.
2014   if (LREdit.empty())
2015     return 0;
2016 
2017   // We did split for some blocks.
2018   SmallVector<unsigned, 8> IntvMap;
2019   SE->finish(&IntvMap);
2020 
2021   // Tell LiveDebugVariables about the new ranges.
2022   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2023 
2024   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2025 
2026   // Sort out the new intervals created by splitting. The remainder interval
2027   // goes straight to spilling, the new local ranges get to stay RS_New.
2028   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
2029     LiveInterval &LI = LIS->getInterval(LREdit.get(I));
2030     if (getStage(LI) == RS_New && IntvMap[I] == 0)
2031       setStage(LI, RS_Spill);
2032   }
2033 
2034   if (VerifyEnabled)
2035     MF->verify(this, "After splitting live range around basic blocks");
2036   return 0;
2037 }
2038 
2039 //===----------------------------------------------------------------------===//
2040 //                         Per-Instruction Splitting
2041 //===----------------------------------------------------------------------===//
2042 
2043 /// Get the number of allocatable registers that match the constraints of \p Reg
2044 /// on \p MI and that are also in \p SuperRC.
2045 static unsigned getNumAllocatableRegsForConstraints(
2046     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
2047     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2048     const RegisterClassInfo &RCI) {
2049   assert(SuperRC && "Invalid register class");
2050 
2051   const TargetRegisterClass *ConstrainedRC =
2052       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2053                                              /* ExploreBundle */ true);
2054   if (!ConstrainedRC)
2055     return 0;
2056   return RCI.getNumAllocatableRegs(ConstrainedRC);
2057 }
2058 
2059 /// tryInstructionSplit - Split a live range around individual instructions.
2060 /// This is normally not worthwhile since the spiller is doing essentially the
2061 /// same thing. However, when the live range is in a constrained register
2062 /// class, it may help to insert copies such that parts of the live range can
2063 /// be moved to a larger register class.
2064 ///
2065 /// This is similar to spilling to a larger register class.
2066 unsigned
2067 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2068                               SmallVectorImpl<Register> &NewVRegs) {
2069   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2070   // There is no point to this if there are no larger sub-classes.
2071   if (!RegClassInfo.isProperSubClass(CurRC))
2072     return 0;
2073 
2074   // Always enable split spill mode, since we're effectively spilling to a
2075   // register.
2076   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2077   SE->reset(LREdit, SplitEditor::SM_Size);
2078 
2079   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2080   if (Uses.size() <= 1)
2081     return 0;
2082 
2083   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2084                     << " individual instrs.\n");
2085 
2086   const TargetRegisterClass *SuperRC =
2087       TRI->getLargestLegalSuperClass(CurRC, *MF);
2088   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2089   // Split around every non-copy instruction if this split will relax
2090   // the constraints on the virtual register.
2091   // Otherwise, splitting just inserts uncoalescable copies that do not help
2092   // the allocation.
2093   for (const auto &Use : Uses) {
2094     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
2095       if (MI->isFullCopy() ||
2096           SuperRCNumAllocatableRegs ==
2097               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
2098                                                   TII, TRI, RCI)) {
2099         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
2100         continue;
2101       }
2102     SE->openIntv();
2103     SlotIndex SegStart = SE->enterIntvBefore(Use);
2104     SlotIndex SegStop = SE->leaveIntvAfter(Use);
2105     SE->useIntv(SegStart, SegStop);
2106   }
2107 
2108   if (LREdit.empty()) {
2109     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2110     return 0;
2111   }
2112 
2113   SmallVector<unsigned, 8> IntvMap;
2114   SE->finish(&IntvMap);
2115   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2116   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2117 
2118   // Assign all new registers to RS_Spill. This was the last chance.
2119   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2120   return 0;
2121 }
2122 
2123 //===----------------------------------------------------------------------===//
2124 //                             Local Splitting
2125 //===----------------------------------------------------------------------===//
2126 
2127 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2128 /// in order to use PhysReg between two entries in SA->UseSlots.
2129 ///
2130 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
2131 ///
2132 void RAGreedy::calcGapWeights(unsigned PhysReg,
2133                               SmallVectorImpl<float> &GapWeight) {
2134   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2135   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2136   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2137   const unsigned NumGaps = Uses.size()-1;
2138 
2139   // Start and end points for the interference check.
2140   SlotIndex StartIdx =
2141     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2142   SlotIndex StopIdx =
2143     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2144 
2145   GapWeight.assign(NumGaps, 0.0f);
2146 
2147   // Add interference from each overlapping register.
2148   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2149     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2150           .checkInterference())
2151       continue;
2152 
2153     // We know that VirtReg is a continuous interval from FirstInstr to
2154     // LastInstr, so we don't need InterferenceQuery.
2155     //
2156     // Interference that overlaps an instruction is counted in both gaps
2157     // surrounding the instruction. The exception is interference before
2158     // StartIdx and after StopIdx.
2159     //
2160     LiveIntervalUnion::SegmentIter IntI =
2161       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2162     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2163       // Skip the gaps before IntI.
2164       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2165         if (++Gap == NumGaps)
2166           break;
2167       if (Gap == NumGaps)
2168         break;
2169 
2170       // Update the gaps covered by IntI.
2171       const float weight = IntI.value()->weight();
2172       for (; Gap != NumGaps; ++Gap) {
2173         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2174         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2175           break;
2176       }
2177       if (Gap == NumGaps)
2178         break;
2179     }
2180   }
2181 
2182   // Add fixed interference.
2183   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2184     const LiveRange &LR = LIS->getRegUnit(*Units);
2185     LiveRange::const_iterator I = LR.find(StartIdx);
2186     LiveRange::const_iterator E = LR.end();
2187 
2188     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2189     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2190       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2191         if (++Gap == NumGaps)
2192           break;
2193       if (Gap == NumGaps)
2194         break;
2195 
2196       for (; Gap != NumGaps; ++Gap) {
2197         GapWeight[Gap] = huge_valf;
2198         if (Uses[Gap+1].getBaseIndex() >= I->end)
2199           break;
2200       }
2201       if (Gap == NumGaps)
2202         break;
2203     }
2204   }
2205 }
2206 
2207 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2208 /// basic block.
2209 ///
2210 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2211                                  SmallVectorImpl<Register> &NewVRegs) {
2212   // TODO: the function currently only handles a single UseBlock; it should be
2213   // possible to generalize.
2214   if (SA->getUseBlocks().size() != 1)
2215     return 0;
2216 
2217   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2218 
2219   // Note that it is possible to have an interval that is live-in or live-out
2220   // while only covering a single block - A phi-def can use undef values from
2221   // predecessors, and the block could be a single-block loop.
2222   // We don't bother doing anything clever about such a case, we simply assume
2223   // that the interval is continuous from FirstInstr to LastInstr. We should
2224   // make sure that we don't do anything illegal to such an interval, though.
2225 
2226   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2227   if (Uses.size() <= 2)
2228     return 0;
2229   const unsigned NumGaps = Uses.size()-1;
2230 
2231   LLVM_DEBUG({
2232     dbgs() << "tryLocalSplit: ";
2233     for (const auto &Use : Uses)
2234       dbgs() << ' ' << Use;
2235     dbgs() << '\n';
2236   });
2237 
2238   // If VirtReg is live across any register mask operands, compute a list of
2239   // gaps with register masks.
2240   SmallVector<unsigned, 8> RegMaskGaps;
2241   if (Matrix->checkRegMaskInterference(VirtReg)) {
2242     // Get regmask slots for the whole block.
2243     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2244     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2245     // Constrain to VirtReg's live range.
2246     unsigned RI =
2247         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2248     unsigned RE = RMS.size();
2249     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
2250       // Look for Uses[I] <= RMS <= Uses[I + 1].
2251       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
2252       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
2253         continue;
2254       // Skip a regmask on the same instruction as the last use. It doesn't
2255       // overlap the live range.
2256       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
2257         break;
2258       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
2259                         << Uses[I + 1]);
2260       RegMaskGaps.push_back(I);
2261       // Advance ri to the next gap. A regmask on one of the uses counts in
2262       // both gaps.
2263       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
2264         ++RI;
2265     }
2266     LLVM_DEBUG(dbgs() << '\n');
2267   }
2268 
2269   // Since we allow local split results to be split again, there is a risk of
2270   // creating infinite loops. It is tempting to require that the new live
2271   // ranges have less instructions than the original. That would guarantee
2272   // convergence, but it is too strict. A live range with 3 instructions can be
2273   // split 2+3 (including the COPY), and we want to allow that.
2274   //
2275   // Instead we use these rules:
2276   //
2277   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2278   //    noop split, of course).
2279   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2280   //    the new ranges must have fewer instructions than before the split.
2281   // 3. New ranges with the same number of instructions are marked RS_Split2,
2282   //    smaller ranges are marked RS_New.
2283   //
2284   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2285   // excessive splitting and infinite loops.
2286   //
2287   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2288 
2289   // Best split candidate.
2290   unsigned BestBefore = NumGaps;
2291   unsigned BestAfter = 0;
2292   float BestDiff = 0;
2293 
2294   const float blockFreq =
2295     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2296     (1.0f / MBFI->getEntryFreq());
2297   SmallVector<float, 8> GapWeight;
2298 
2299   for (MCPhysReg PhysReg : Order) {
2300     assert(PhysReg);
2301     // Keep track of the largest spill weight that would need to be evicted in
2302     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
2303     calcGapWeights(PhysReg, GapWeight);
2304 
2305     // Remove any gaps with regmask clobbers.
2306     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2307       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
2308         GapWeight[RegMaskGaps[I]] = huge_valf;
2309 
2310     // Try to find the best sequence of gaps to close.
2311     // The new spill weight must be larger than any gap interference.
2312 
2313     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2314     unsigned SplitBefore = 0, SplitAfter = 1;
2315 
2316     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2317     // It is the spill weight that needs to be evicted.
2318     float MaxGap = GapWeight[0];
2319 
2320     while (true) {
2321       // Live before/after split?
2322       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2323       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2324 
2325       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2326                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
2327 
2328       // Stop before the interval gets so big we wouldn't be making progress.
2329       if (!LiveBefore && !LiveAfter) {
2330         LLVM_DEBUG(dbgs() << " all\n");
2331         break;
2332       }
2333       // Should the interval be extended or shrunk?
2334       bool Shrink = true;
2335 
2336       // How many gaps would the new range have?
2337       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2338 
2339       // Legally, without causing looping?
2340       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2341 
2342       if (Legal && MaxGap < huge_valf) {
2343         // Estimate the new spill weight. Each instruction reads or writes the
2344         // register. Conservatively assume there are no read-modify-write
2345         // instructions.
2346         //
2347         // Try to guess the size of the new interval.
2348         const float EstWeight = normalizeSpillWeight(
2349             blockFreq * (NewGaps + 1),
2350             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2351                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2352             1);
2353         // Would this split be possible to allocate?
2354         // Never allocate all gaps, we wouldn't be making progress.
2355         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2356         if (EstWeight * Hysteresis >= MaxGap) {
2357           Shrink = false;
2358           float Diff = EstWeight - MaxGap;
2359           if (Diff > BestDiff) {
2360             LLVM_DEBUG(dbgs() << " (best)");
2361             BestDiff = Hysteresis * Diff;
2362             BestBefore = SplitBefore;
2363             BestAfter = SplitAfter;
2364           }
2365         }
2366       }
2367 
2368       // Try to shrink.
2369       if (Shrink) {
2370         if (++SplitBefore < SplitAfter) {
2371           LLVM_DEBUG(dbgs() << " shrink\n");
2372           // Recompute the max when necessary.
2373           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2374             MaxGap = GapWeight[SplitBefore];
2375             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
2376               MaxGap = std::max(MaxGap, GapWeight[I]);
2377           }
2378           continue;
2379         }
2380         MaxGap = 0;
2381       }
2382 
2383       // Try to extend the interval.
2384       if (SplitAfter >= NumGaps) {
2385         LLVM_DEBUG(dbgs() << " end\n");
2386         break;
2387       }
2388 
2389       LLVM_DEBUG(dbgs() << " extend\n");
2390       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2391     }
2392   }
2393 
2394   // Didn't find any candidates?
2395   if (BestBefore == NumGaps)
2396     return 0;
2397 
2398   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2399                     << Uses[BestAfter] << ", " << BestDiff << ", "
2400                     << (BestAfter - BestBefore + 1) << " instrs\n");
2401 
2402   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2403   SE->reset(LREdit);
2404 
2405   SE->openIntv();
2406   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2407   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2408   SE->useIntv(SegStart, SegStop);
2409   SmallVector<unsigned, 8> IntvMap;
2410   SE->finish(&IntvMap);
2411   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2412 
2413   // If the new range has the same number of instructions as before, mark it as
2414   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2415   // leave the new intervals as RS_New so they can compete.
2416   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2417   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2418   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2419   if (NewGaps >= NumGaps) {
2420     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2421     assert(!ProgressRequired && "Didn't make progress when it was required.");
2422     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
2423       if (IntvMap[I] == 1) {
2424         setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
2425         LLVM_DEBUG(dbgs() << printReg(LREdit.get(I)));
2426       }
2427     LLVM_DEBUG(dbgs() << '\n');
2428   }
2429   ++NumLocalSplits;
2430 
2431   return 0;
2432 }
2433 
2434 //===----------------------------------------------------------------------===//
2435 //                          Live Range Splitting
2436 //===----------------------------------------------------------------------===//
2437 
2438 /// trySplit - Try to split VirtReg or one of its interferences, making it
2439 /// assignable.
2440 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2441 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2442                             SmallVectorImpl<Register> &NewVRegs,
2443                             const SmallVirtRegSet &FixedRegisters) {
2444   // Ranges must be Split2 or less.
2445   if (getStage(VirtReg) >= RS_Spill)
2446     return 0;
2447 
2448   // Local intervals are handled separately.
2449   if (LIS->intervalIsInOneMBB(VirtReg)) {
2450     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2451                        TimerGroupDescription, TimePassesIsEnabled);
2452     SA->analyze(&VirtReg);
2453     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2454     if (PhysReg || !NewVRegs.empty())
2455       return PhysReg;
2456     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2457   }
2458 
2459   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2460                      TimerGroupDescription, TimePassesIsEnabled);
2461 
2462   SA->analyze(&VirtReg);
2463 
2464   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2465   // coalescer. That may cause the range to become allocatable which means that
2466   // tryRegionSplit won't be making progress. This check should be replaced with
2467   // an assertion when the coalescer is fixed.
2468   if (SA->didRepairRange()) {
2469     // VirtReg has changed, so all cached queries are invalid.
2470     Matrix->invalidateVirtRegs();
2471     if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
2472       return PhysReg;
2473   }
2474 
2475   // First try to split around a region spanning multiple blocks. RS_Split2
2476   // ranges already made dubious progress with region splitting, so they go
2477   // straight to single block splitting.
2478   if (getStage(VirtReg) < RS_Split2) {
2479     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2480     if (PhysReg || !NewVRegs.empty())
2481       return PhysReg;
2482   }
2483 
2484   // Then isolate blocks.
2485   return tryBlockSplit(VirtReg, Order, NewVRegs);
2486 }
2487 
2488 //===----------------------------------------------------------------------===//
2489 //                          Last Chance Recoloring
2490 //===----------------------------------------------------------------------===//
2491 
2492 /// Return true if \p reg has any tied def operand.
2493 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2494   for (const MachineOperand &MO : MRI->def_operands(reg))
2495     if (MO.isTied())
2496       return true;
2497 
2498   return false;
2499 }
2500 
2501 /// mayRecolorAllInterferences - Check if the virtual registers that
2502 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2503 /// recolored to free \p PhysReg.
2504 /// When true is returned, \p RecoloringCandidates has been augmented with all
2505 /// the live intervals that need to be recolored in order to free \p PhysReg
2506 /// for \p VirtReg.
2507 /// \p FixedRegisters contains all the virtual registers that cannot be
2508 /// recolored.
2509 bool
2510 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2511                                      SmallLISet &RecoloringCandidates,
2512                                      const SmallVirtRegSet &FixedRegisters) {
2513   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2514 
2515   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2516     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2517     // If there is LastChanceRecoloringMaxInterference or more interferences,
2518     // chances are one would not be recolorable.
2519     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2520         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2521       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2522       CutOffInfo |= CO_Interf;
2523       return false;
2524     }
2525     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
2526       // If Intf is done and sit on the same register class as VirtReg,
2527       // it would not be recolorable as it is in the same state as VirtReg.
2528       // However, if VirtReg has tied defs and Intf doesn't, then
2529       // there is still a point in examining if it can be recolorable.
2530       if (((getStage(*Intf) == RS_Done &&
2531             MRI->getRegClass(Intf->reg()) == CurRC) &&
2532            !(hasTiedDef(MRI, VirtReg.reg()) &&
2533              !hasTiedDef(MRI, Intf->reg()))) ||
2534           FixedRegisters.count(Intf->reg())) {
2535         LLVM_DEBUG(
2536             dbgs() << "Early abort: the interference is not recolorable.\n");
2537         return false;
2538       }
2539       RecoloringCandidates.insert(Intf);
2540     }
2541   }
2542   return true;
2543 }
2544 
2545 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2546 /// its interferences.
2547 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2548 /// virtual register that was using it. The recoloring process may recursively
2549 /// use the last chance recoloring. Therefore, when a virtual register has been
2550 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2551 /// be last-chance-recolored again during this recoloring "session".
2552 /// E.g.,
2553 /// Let
2554 /// vA can use {R1, R2    }
2555 /// vB can use {    R2, R3}
2556 /// vC can use {R1        }
2557 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2558 /// instance) and they all interfere.
2559 ///
2560 /// vA is assigned R1
2561 /// vB is assigned R2
2562 /// vC tries to evict vA but vA is already done.
2563 /// Regular register allocation fails.
2564 ///
2565 /// Last chance recoloring kicks in:
2566 /// vC does as if vA was evicted => vC uses R1.
2567 /// vC is marked as fixed.
2568 /// vA needs to find a color.
2569 /// None are available.
2570 /// vA cannot evict vC: vC is a fixed virtual register now.
2571 /// vA does as if vB was evicted => vA uses R2.
2572 /// vB needs to find a color.
2573 /// R3 is available.
2574 /// Recoloring => vC = R1, vA = R2, vB = R3
2575 ///
2576 /// \p Order defines the preferred allocation order for \p VirtReg.
2577 /// \p NewRegs will contain any new virtual register that have been created
2578 /// (split, spill) during the process and that must be assigned.
2579 /// \p FixedRegisters contains all the virtual registers that cannot be
2580 /// recolored.
2581 /// \p Depth gives the current depth of the last chance recoloring.
2582 /// \return a physical register that can be used for VirtReg or ~0u if none
2583 /// exists.
2584 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2585                                            AllocationOrder &Order,
2586                                            SmallVectorImpl<Register> &NewVRegs,
2587                                            SmallVirtRegSet &FixedRegisters,
2588                                            unsigned Depth) {
2589   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2590     return ~0u;
2591 
2592   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2593   // Ranges must be Done.
2594   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2595          "Last chance recoloring should really be last chance");
2596   // Set the max depth to LastChanceRecoloringMaxDepth.
2597   // We may want to reconsider that if we end up with a too large search space
2598   // for target with hundreds of registers.
2599   // Indeed, in that case we may want to cut the search space earlier.
2600   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2601     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2602     CutOffInfo |= CO_Depth;
2603     return ~0u;
2604   }
2605 
2606   // Set of Live intervals that will need to be recolored.
2607   SmallLISet RecoloringCandidates;
2608   // Record the original mapping virtual register to physical register in case
2609   // the recoloring fails.
2610   DenseMap<Register, MCRegister> VirtRegToPhysReg;
2611   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2612   // this recoloring "session".
2613   assert(!FixedRegisters.count(VirtReg.reg()));
2614   FixedRegisters.insert(VirtReg.reg());
2615   SmallVector<Register, 4> CurrentNewVRegs;
2616 
2617   for (MCRegister PhysReg : Order) {
2618     assert(PhysReg.isValid());
2619     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2620                       << printReg(PhysReg, TRI) << '\n');
2621     RecoloringCandidates.clear();
2622     VirtRegToPhysReg.clear();
2623     CurrentNewVRegs.clear();
2624 
2625     // It is only possible to recolor virtual register interference.
2626     if (Matrix->checkInterference(VirtReg, PhysReg) >
2627         LiveRegMatrix::IK_VirtReg) {
2628       LLVM_DEBUG(
2629           dbgs() << "Some interferences are not with virtual registers.\n");
2630 
2631       continue;
2632     }
2633 
2634     // Early give up on this PhysReg if it is obvious we cannot recolor all
2635     // the interferences.
2636     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2637                                     FixedRegisters)) {
2638       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2639       continue;
2640     }
2641 
2642     // RecoloringCandidates contains all the virtual registers that interfer
2643     // with VirtReg on PhysReg (or one of its aliases).
2644     // Enqueue them for recoloring and perform the actual recoloring.
2645     PQueue RecoloringQueue;
2646     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2647                               EndIt = RecoloringCandidates.end();
2648          It != EndIt; ++It) {
2649       Register ItVirtReg = (*It)->reg();
2650       enqueue(RecoloringQueue, *It);
2651       assert(VRM->hasPhys(ItVirtReg) &&
2652              "Interferences are supposed to be with allocated variables");
2653 
2654       // Record the current allocation.
2655       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2656       // unset the related struct.
2657       Matrix->unassign(**It);
2658     }
2659 
2660     // Do as if VirtReg was assigned to PhysReg so that the underlying
2661     // recoloring has the right information about the interferes and
2662     // available colors.
2663     Matrix->assign(VirtReg, PhysReg);
2664 
2665     // Save the current recoloring state.
2666     // If we cannot recolor all the interferences, we will have to start again
2667     // at this point for the next physical register.
2668     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2669     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2670                                 FixedRegisters, Depth)) {
2671       // Push the queued vregs into the main queue.
2672       for (Register NewVReg : CurrentNewVRegs)
2673         NewVRegs.push_back(NewVReg);
2674       // Do not mess up with the global assignment process.
2675       // I.e., VirtReg must be unassigned.
2676       Matrix->unassign(VirtReg);
2677       return PhysReg;
2678     }
2679 
2680     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2681                       << printReg(PhysReg, TRI) << '\n');
2682 
2683     // The recoloring attempt failed, undo the changes.
2684     FixedRegisters = SaveFixedRegisters;
2685     Matrix->unassign(VirtReg);
2686 
2687     // For a newly created vreg which is also in RecoloringCandidates,
2688     // don't add it to NewVRegs because its physical register will be restored
2689     // below. Other vregs in CurrentNewVRegs are created by calling
2690     // selectOrSplit and should be added into NewVRegs.
2691     for (SmallVectorImpl<Register>::iterator Next = CurrentNewVRegs.begin(),
2692                                              End = CurrentNewVRegs.end();
2693          Next != End; ++Next) {
2694       if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2695         continue;
2696       NewVRegs.push_back(*Next);
2697     }
2698 
2699     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2700                               EndIt = RecoloringCandidates.end();
2701          It != EndIt; ++It) {
2702       Register ItVirtReg = (*It)->reg();
2703       if (VRM->hasPhys(ItVirtReg))
2704         Matrix->unassign(**It);
2705       MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2706       Matrix->assign(**It, ItPhysReg);
2707     }
2708   }
2709 
2710   // Last chance recoloring did not worked either, give up.
2711   return ~0u;
2712 }
2713 
2714 /// tryRecoloringCandidates - Try to assign a new color to every register
2715 /// in \RecoloringQueue.
2716 /// \p NewRegs will contain any new virtual register created during the
2717 /// recoloring process.
2718 /// \p FixedRegisters[in/out] contains all the registers that have been
2719 /// recolored.
2720 /// \return true if all virtual registers in RecoloringQueue were successfully
2721 /// recolored, false otherwise.
2722 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2723                                        SmallVectorImpl<Register> &NewVRegs,
2724                                        SmallVirtRegSet &FixedRegisters,
2725                                        unsigned Depth) {
2726   while (!RecoloringQueue.empty()) {
2727     LiveInterval *LI = dequeue(RecoloringQueue);
2728     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2729     MCRegister PhysReg =
2730         selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2731     // When splitting happens, the live-range may actually be empty.
2732     // In that case, this is okay to continue the recoloring even
2733     // if we did not find an alternative color for it. Indeed,
2734     // there will not be anything to color for LI in the end.
2735     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2736       return false;
2737 
2738     if (!PhysReg) {
2739       assert(LI->empty() && "Only empty live-range do not require a register");
2740       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2741                         << " succeeded. Empty LI.\n");
2742       continue;
2743     }
2744     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2745                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2746 
2747     Matrix->assign(*LI, PhysReg);
2748     FixedRegisters.insert(LI->reg());
2749   }
2750   return true;
2751 }
2752 
2753 //===----------------------------------------------------------------------===//
2754 //                            Main Entry Point
2755 //===----------------------------------------------------------------------===//
2756 
2757 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2758                                    SmallVectorImpl<Register> &NewVRegs) {
2759   CutOffInfo = CO_None;
2760   LLVMContext &Ctx = MF->getFunction().getContext();
2761   SmallVirtRegSet FixedRegisters;
2762   MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2763   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2764     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2765     if (CutOffEncountered == CO_Depth)
2766       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2767                     "reached. Use -fexhaustive-register-search to skip "
2768                     "cutoffs");
2769     else if (CutOffEncountered == CO_Interf)
2770       Ctx.emitError("register allocation failed: maximum interference for "
2771                     "recoloring reached. Use -fexhaustive-register-search "
2772                     "to skip cutoffs");
2773     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2774       Ctx.emitError("register allocation failed: maximum interference and "
2775                     "depth for recoloring reached. Use "
2776                     "-fexhaustive-register-search to skip cutoffs");
2777   }
2778   return Reg;
2779 }
2780 
2781 /// Using a CSR for the first time has a cost because it causes push|pop
2782 /// to be added to prologue|epilogue. Splitting a cold section of the live
2783 /// range can have lower cost than using the CSR for the first time;
2784 /// Spilling a live range in the cold path can have lower cost than using
2785 /// the CSR for the first time. Returns the physical register if we decide
2786 /// to use the CSR; otherwise return 0.
2787 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2788                                          AllocationOrder &Order,
2789                                          Register PhysReg,
2790                                          unsigned &CostPerUseLimit,
2791                                          SmallVectorImpl<Register> &NewVRegs) {
2792   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2793     // We choose spill over using the CSR for the first time if the spill cost
2794     // is lower than CSRCost.
2795     SA->analyze(&VirtReg);
2796     if (calcSpillCost() >= CSRCost)
2797       return PhysReg;
2798 
2799     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2800     // we will not use a callee-saved register in tryEvict.
2801     CostPerUseLimit = 1;
2802     return 0;
2803   }
2804   if (getStage(VirtReg) < RS_Split) {
2805     // We choose pre-splitting over using the CSR for the first time if
2806     // the cost of splitting is lower than CSRCost.
2807     SA->analyze(&VirtReg);
2808     unsigned NumCands = 0;
2809     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2810     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2811                                                  NumCands, true /*IgnoreCSR*/);
2812     if (BestCand == NoCand)
2813       // Use the CSR if we can't find a region split below CSRCost.
2814       return PhysReg;
2815 
2816     // Perform the actual pre-splitting.
2817     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2818     return 0;
2819   }
2820   return PhysReg;
2821 }
2822 
2823 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2824   // Do not keep invalid information around.
2825   SetOfBrokenHints.remove(&LI);
2826 }
2827 
2828 void RAGreedy::initializeCSRCost() {
2829   // We use the larger one out of the command-line option and the value report
2830   // by TRI.
2831   CSRCost = BlockFrequency(
2832       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2833   if (!CSRCost.getFrequency())
2834     return;
2835 
2836   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2837   uint64_t ActualEntry = MBFI->getEntryFreq();
2838   if (!ActualEntry) {
2839     CSRCost = 0;
2840     return;
2841   }
2842   uint64_t FixedEntry = 1 << 14;
2843   if (ActualEntry < FixedEntry)
2844     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2845   else if (ActualEntry <= UINT32_MAX)
2846     // Invert the fraction and divide.
2847     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2848   else
2849     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2850     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2851 }
2852 
2853 /// Collect the hint info for \p Reg.
2854 /// The results are stored into \p Out.
2855 /// \p Out is not cleared before being populated.
2856 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2857   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2858     if (!Instr.isFullCopy())
2859       continue;
2860     // Look for the other end of the copy.
2861     Register OtherReg = Instr.getOperand(0).getReg();
2862     if (OtherReg == Reg) {
2863       OtherReg = Instr.getOperand(1).getReg();
2864       if (OtherReg == Reg)
2865         continue;
2866     }
2867     // Get the current assignment.
2868     Register OtherPhysReg = Register::isPhysicalRegister(OtherReg)
2869                                 ? OtherReg
2870                                 : Register(VRM->getPhys(OtherReg));
2871     // Push the collected information.
2872     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2873                            OtherPhysReg));
2874   }
2875 }
2876 
2877 /// Using the given \p List, compute the cost of the broken hints if
2878 /// \p PhysReg was used.
2879 /// \return The cost of \p List for \p PhysReg.
2880 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2881                                            unsigned PhysReg) {
2882   BlockFrequency Cost = 0;
2883   for (const HintInfo &Info : List) {
2884     if (Info.PhysReg != PhysReg)
2885       Cost += Info.Freq;
2886   }
2887   return Cost;
2888 }
2889 
2890 /// Using the register assigned to \p VirtReg, try to recolor
2891 /// all the live ranges that are copy-related with \p VirtReg.
2892 /// The recoloring is then propagated to all the live-ranges that have
2893 /// been recolored and so on, until no more copies can be coalesced or
2894 /// it is not profitable.
2895 /// For a given live range, profitability is determined by the sum of the
2896 /// frequencies of the non-identity copies it would introduce with the old
2897 /// and new register.
2898 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2899   // We have a broken hint, check if it is possible to fix it by
2900   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2901   // some register and PhysReg may be available for the other live-ranges.
2902   SmallSet<unsigned, 4> Visited;
2903   SmallVector<unsigned, 2> RecoloringCandidates;
2904   HintsInfo Info;
2905   unsigned Reg = VirtReg.reg();
2906   MCRegister PhysReg = VRM->getPhys(Reg);
2907   // Start the recoloring algorithm from the input live-interval, then
2908   // it will propagate to the ones that are copy-related with it.
2909   Visited.insert(Reg);
2910   RecoloringCandidates.push_back(Reg);
2911 
2912   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2913                     << '(' << printReg(PhysReg, TRI) << ")\n");
2914 
2915   do {
2916     Reg = RecoloringCandidates.pop_back_val();
2917 
2918     // We cannot recolor physical register.
2919     if (Register::isPhysicalRegister(Reg))
2920       continue;
2921 
2922     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2923 
2924     // Get the live interval mapped with this virtual register to be able
2925     // to check for the interference with the new color.
2926     LiveInterval &LI = LIS->getInterval(Reg);
2927     Register CurrPhys = VRM->getPhys(Reg);
2928     // Check that the new color matches the register class constraints and
2929     // that it is free for this live range.
2930     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2931                                 Matrix->checkInterference(LI, PhysReg)))
2932       continue;
2933 
2934     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2935                       << ") is recolorable.\n");
2936 
2937     // Gather the hint info.
2938     Info.clear();
2939     collectHintInfo(Reg, Info);
2940     // Check if recoloring the live-range will increase the cost of the
2941     // non-identity copies.
2942     if (CurrPhys != PhysReg) {
2943       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2944       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2945       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2946       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2947                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2948                         << '\n');
2949       if (OldCopiesCost < NewCopiesCost) {
2950         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2951         continue;
2952       }
2953       // At this point, the cost is either cheaper or equal. If it is
2954       // equal, we consider this is profitable because it may expose
2955       // more recoloring opportunities.
2956       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2957       // Recolor the live-range.
2958       Matrix->unassign(LI);
2959       Matrix->assign(LI, PhysReg);
2960     }
2961     // Push all copy-related live-ranges to keep reconciling the broken
2962     // hints.
2963     for (const HintInfo &HI : Info) {
2964       if (Visited.insert(HI.Reg).second)
2965         RecoloringCandidates.push_back(HI.Reg);
2966     }
2967   } while (!RecoloringCandidates.empty());
2968 }
2969 
2970 /// Try to recolor broken hints.
2971 /// Broken hints may be repaired by recoloring when an evicted variable
2972 /// freed up a register for a larger live-range.
2973 /// Consider the following example:
2974 /// BB1:
2975 ///   a =
2976 ///   b =
2977 /// BB2:
2978 ///   ...
2979 ///   = b
2980 ///   = a
2981 /// Let us assume b gets split:
2982 /// BB1:
2983 ///   a =
2984 ///   b =
2985 /// BB2:
2986 ///   c = b
2987 ///   ...
2988 ///   d = c
2989 ///   = d
2990 ///   = a
2991 /// Because of how the allocation work, b, c, and d may be assigned different
2992 /// colors. Now, if a gets evicted later:
2993 /// BB1:
2994 ///   a =
2995 ///   st a, SpillSlot
2996 ///   b =
2997 /// BB2:
2998 ///   c = b
2999 ///   ...
3000 ///   d = c
3001 ///   = d
3002 ///   e = ld SpillSlot
3003 ///   = e
3004 /// This is likely that we can assign the same register for b, c, and d,
3005 /// getting rid of 2 copies.
3006 void RAGreedy::tryHintsRecoloring() {
3007   for (LiveInterval *LI : SetOfBrokenHints) {
3008     assert(Register::isVirtualRegister(LI->reg()) &&
3009            "Recoloring is possible only for virtual registers");
3010     // Some dead defs may be around (e.g., because of debug uses).
3011     // Ignore those.
3012     if (!VRM->hasPhys(LI->reg()))
3013       continue;
3014     tryHintRecoloring(*LI);
3015   }
3016 }
3017 
3018 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3019                                        SmallVectorImpl<Register> &NewVRegs,
3020                                        SmallVirtRegSet &FixedRegisters,
3021                                        unsigned Depth) {
3022   unsigned CostPerUseLimit = ~0u;
3023   // First try assigning a free register.
3024   auto Order =
3025       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
3026   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3027     // If VirtReg got an assignment, the eviction info is no longre relevant.
3028     LastEvicted.clearEvicteeInfo(VirtReg.reg());
3029     // When NewVRegs is not empty, we may have made decisions such as evicting
3030     // a virtual register, go with the earlier decisions and use the physical
3031     // register.
3032     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3033         NewVRegs.empty()) {
3034       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3035                                                 CostPerUseLimit, NewVRegs);
3036       if (CSRReg || !NewVRegs.empty())
3037         // Return now if we decide to use a CSR or create new vregs due to
3038         // pre-splitting.
3039         return CSRReg;
3040     } else
3041       return PhysReg;
3042   }
3043 
3044   LiveRangeStage Stage = getStage(VirtReg);
3045   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3046                     << ExtraRegInfo[VirtReg.reg()].Cascade << '\n');
3047 
3048   // Try to evict a less worthy live range, but only for ranges from the primary
3049   // queue. The RS_Split ranges already failed to do this, and they should not
3050   // get a second chance until they have been split.
3051   if (Stage != RS_Split)
3052     if (Register PhysReg =
3053             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3054                      FixedRegisters)) {
3055       Register Hint = MRI->getSimpleHint(VirtReg.reg());
3056       // If VirtReg has a hint and that hint is broken record this
3057       // virtual register as a recoloring candidate for broken hint.
3058       // Indeed, since we evicted a variable in its neighborhood it is
3059       // likely we can at least partially recolor some of the
3060       // copy-related live-ranges.
3061       if (Hint && Hint != PhysReg)
3062         SetOfBrokenHints.insert(&VirtReg);
3063       // If VirtReg eviction someone, the eviction info for it as an evictee is
3064       // no longre relevant.
3065       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3066       return PhysReg;
3067     }
3068 
3069   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3070 
3071   // The first time we see a live range, don't try to split or spill.
3072   // Wait until the second time, when all smaller ranges have been allocated.
3073   // This gives a better picture of the interference to split around.
3074   if (Stage < RS_Split) {
3075     setStage(VirtReg, RS_Split);
3076     LLVM_DEBUG(dbgs() << "wait for second round\n");
3077     NewVRegs.push_back(VirtReg.reg());
3078     return 0;
3079   }
3080 
3081   if (Stage < RS_Spill) {
3082     // Try splitting VirtReg or interferences.
3083     unsigned NewVRegSizeBefore = NewVRegs.size();
3084     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3085     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3086       // If VirtReg got split, the eviction info is no longer relevant.
3087       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3088       return PhysReg;
3089     }
3090   }
3091 
3092   // If we couldn't allocate a register from spilling, there is probably some
3093   // invalid inline assembly. The base class will report it.
3094   if (Stage >= RS_Done || !VirtReg.isSpillable())
3095     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3096                                    Depth);
3097 
3098   // Finally spill VirtReg itself.
3099   if ((EnableDeferredSpilling ||
3100        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
3101       getStage(VirtReg) < RS_Memory) {
3102     // TODO: This is experimental and in particular, we do not model
3103     // the live range splitting done by spilling correctly.
3104     // We would need a deep integration with the spiller to do the
3105     // right thing here. Anyway, that is still good for early testing.
3106     setStage(VirtReg, RS_Memory);
3107     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3108     NewVRegs.push_back(VirtReg.reg());
3109   } else {
3110     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3111                        TimerGroupDescription, TimePassesIsEnabled);
3112     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3113     spiller().spill(LRE);
3114     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3115 
3116     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3117     // the new regs are kept in LDV (still mapping to the old register), until
3118     // we rewrite spilled locations in LDV at a later stage.
3119     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
3120 
3121     if (VerifyEnabled)
3122       MF->verify(this, "After spilling");
3123   }
3124 
3125   // The live virtual register requesting allocation was spilled, so tell
3126   // the caller not to allocate anything during this round.
3127   return 0;
3128 }
3129 
3130 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3131                                             unsigned &FoldedReloads,
3132                                             unsigned &Spills,
3133                                             unsigned &FoldedSpills) {
3134   Reloads = 0;
3135   FoldedReloads = 0;
3136   Spills = 0;
3137   FoldedSpills = 0;
3138 
3139   // Sum up the spill and reloads in subloops.
3140   for (MachineLoop *SubLoop : *L) {
3141     unsigned SubReloads;
3142     unsigned SubFoldedReloads;
3143     unsigned SubSpills;
3144     unsigned SubFoldedSpills;
3145 
3146     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3147                                  SubSpills, SubFoldedSpills);
3148     Reloads += SubReloads;
3149     FoldedReloads += SubFoldedReloads;
3150     Spills += SubSpills;
3151     FoldedSpills += SubFoldedSpills;
3152   }
3153 
3154   const MachineFrameInfo &MFI = MF->getFrameInfo();
3155   int FI;
3156 
3157   for (MachineBasicBlock *MBB : L->getBlocks())
3158     // Handle blocks that were not included in subloops.
3159     if (Loops->getLoopFor(MBB) == L)
3160       for (MachineInstr &MI : *MBB) {
3161         SmallVector<const MachineMemOperand *, 2> Accesses;
3162         auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3163           return MFI.isSpillSlotObjectIndex(
3164               cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3165                   ->getFrameIndex());
3166         };
3167 
3168         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3169           ++Reloads;
3170         else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3171                  llvm::any_of(Accesses, isSpillSlotAccess))
3172           ++FoldedReloads;
3173         else if (TII->isStoreToStackSlot(MI, FI) &&
3174                  MFI.isSpillSlotObjectIndex(FI))
3175           ++Spills;
3176         else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3177                  llvm::any_of(Accesses, isSpillSlotAccess))
3178           ++FoldedSpills;
3179       }
3180 
3181   if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3182     using namespace ore;
3183 
3184     ORE->emit([&]() {
3185       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3186                                         L->getStartLoc(), L->getHeader());
3187       if (Spills)
3188         R << NV("NumSpills", Spills) << " spills ";
3189       if (FoldedSpills)
3190         R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3191       if (Reloads)
3192         R << NV("NumReloads", Reloads) << " reloads ";
3193       if (FoldedReloads)
3194         R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3195       R << "generated in loop";
3196       return R;
3197     });
3198   }
3199 }
3200 
3201 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3202   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3203                     << "********** Function: " << mf.getName() << '\n');
3204 
3205   MF = &mf;
3206   TRI = MF->getSubtarget().getRegisterInfo();
3207   TII = MF->getSubtarget().getInstrInfo();
3208   RCI.runOnMachineFunction(mf);
3209 
3210   EnableLocalReassign = EnableLocalReassignment ||
3211                         MF->getSubtarget().enableRALocalReassignment(
3212                             MF->getTarget().getOptLevel());
3213 
3214   EnableAdvancedRASplitCost =
3215       ConsiderLocalIntervalCost.getNumOccurrences()
3216           ? ConsiderLocalIntervalCost
3217           : MF->getSubtarget().enableAdvancedRASplitCost();
3218 
3219   if (VerifyEnabled)
3220     MF->verify(this, "Before greedy register allocator");
3221 
3222   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3223                      getAnalysis<LiveIntervals>(),
3224                      getAnalysis<LiveRegMatrix>());
3225   Indexes = &getAnalysis<SlotIndexes>();
3226   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3227   DomTree = &getAnalysis<MachineDominatorTree>();
3228   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3229   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3230   Loops = &getAnalysis<MachineLoopInfo>();
3231   Bundles = &getAnalysis<EdgeBundles>();
3232   SpillPlacer = &getAnalysis<SpillPlacement>();
3233   DebugVars = &getAnalysis<LiveDebugVariables>();
3234   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3235 
3236   initializeCSRCost();
3237 
3238   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
3239 
3240   VRAI->calculateSpillWeightsAndHints();
3241 
3242   LLVM_DEBUG(LIS->dump());
3243 
3244   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3245   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3246   ExtraRegInfo.clear();
3247   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3248   NextCascade = 1;
3249   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3250   GlobalCand.resize(32);  // This will grow as needed.
3251   SetOfBrokenHints.clear();
3252   LastEvicted.clear();
3253 
3254   allocatePhysRegs();
3255   tryHintsRecoloring();
3256   postOptimization();
3257   reportNumberOfSplillsReloads();
3258 
3259   releaseMemory();
3260   return true;
3261 }
3262