1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "Spiller.h"
20 #include "SplitKit.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/CodeGen/CalcSpillWeights.h"
35 #include "llvm/CodeGen/EdgeBundles.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalUnion.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveRangeEdit.h"
40 #include "llvm/CodeGen/LiveRegMatrix.h"
41 #include "llvm/CodeGen/LiveStacks.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RegAllocRegistry.h"
54 #include "llvm/CodeGen/RegisterClassInfo.h"
55 #include "llvm/CodeGen/SlotIndexes.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <queue>
77 #include <tuple>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "regalloc"
83 
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
86 STATISTIC(NumEvicted,      "Number of interferences evicted");
87 
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89     "split-spill-mode", cl::Hidden,
90     cl::desc("Spill mode for splitting live ranges"),
91     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94     cl::init(SplitEditor::SM_Speed));
95 
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98                              cl::desc("Last chance recoloring max depth"),
99                              cl::init(5));
100 
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102     "lcr-max-interf", cl::Hidden,
103     cl::desc("Last chance recoloring maximum number of considered"
104              " interference at a time"),
105     cl::init(8));
106 
107 static cl::opt<bool> ExhaustiveSearch(
108     "exhaustive-register-search", cl::NotHidden,
109     cl::desc("Exhaustive Search for registers bypassing the depth "
110              "and interference cutoffs of last chance recoloring"),
111     cl::Hidden);
112 
113 static cl::opt<bool> EnableLocalReassignment(
114     "enable-local-reassign", cl::Hidden,
115     cl::desc("Local reassignment can yield better allocation decisions, but "
116              "may be compile time intensive"),
117     cl::init(false));
118 
119 static cl::opt<bool> EnableDeferredSpilling(
120     "enable-deferred-spilling", cl::Hidden,
121     cl::desc("Instead of spilling a variable right away, defer the actual "
122              "code insertion to the end of the allocation. That way the "
123              "allocator might still find a suitable coloring for this "
124              "variable because of other evicted variables."),
125     cl::init(false));
126 
127 static cl::opt<unsigned>
128     HugeSizeForSplit("huge-size-for-split", cl::Hidden,
129                      cl::desc("A threshold of live range size which may cause "
130                               "high compile time cost in global splitting."),
131                      cl::init(5000));
132 
133 // FIXME: Find a good default for this flag and remove the flag.
134 static cl::opt<unsigned>
135 CSRFirstTimeCost("regalloc-csr-first-time-cost",
136               cl::desc("Cost for first time use of callee-saved register."),
137               cl::init(0), cl::Hidden);
138 
139 static cl::opt<bool> ConsiderLocalIntervalCost(
140     "condsider-local-interval-cost", cl::Hidden,
141     cl::desc("Consider the cost of local intervals created by a split "
142              "candidate when choosing the best split candidate."),
143     cl::init(false));
144 
145 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
146                                        createGreedyRegisterAllocator);
147 
148 namespace {
149 
150 class RAGreedy : public MachineFunctionPass,
151                  public RegAllocBase,
152                  private LiveRangeEdit::Delegate {
153   // Convenient shortcuts.
154   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
155   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
156   using SmallVirtRegSet = SmallSet<unsigned, 16>;
157 
158   // context
159   MachineFunction *MF;
160 
161   // Shortcuts to some useful interface.
162   const TargetInstrInfo *TII;
163   const TargetRegisterInfo *TRI;
164   RegisterClassInfo RCI;
165 
166   // analyses
167   SlotIndexes *Indexes;
168   MachineBlockFrequencyInfo *MBFI;
169   MachineDominatorTree *DomTree;
170   MachineLoopInfo *Loops;
171   MachineOptimizationRemarkEmitter *ORE;
172   EdgeBundles *Bundles;
173   SpillPlacement *SpillPlacer;
174   LiveDebugVariables *DebugVars;
175   AliasAnalysis *AA;
176 
177   // state
178   std::unique_ptr<Spiller> SpillerInstance;
179   PQueue Queue;
180   unsigned NextCascade;
181 
182   // Live ranges pass through a number of stages as we try to allocate them.
183   // Some of the stages may also create new live ranges:
184   //
185   // - Region splitting.
186   // - Per-block splitting.
187   // - Local splitting.
188   // - Spilling.
189   //
190   // Ranges produced by one of the stages skip the previous stages when they are
191   // dequeued. This improves performance because we can skip interference checks
192   // that are unlikely to give any results. It also guarantees that the live
193   // range splitting algorithm terminates, something that is otherwise hard to
194   // ensure.
195   enum LiveRangeStage {
196     /// Newly created live range that has never been queued.
197     RS_New,
198 
199     /// Only attempt assignment and eviction. Then requeue as RS_Split.
200     RS_Assign,
201 
202     /// Attempt live range splitting if assignment is impossible.
203     RS_Split,
204 
205     /// Attempt more aggressive live range splitting that is guaranteed to make
206     /// progress.  This is used for split products that may not be making
207     /// progress.
208     RS_Split2,
209 
210     /// Live range will be spilled.  No more splitting will be attempted.
211     RS_Spill,
212 
213 
214     /// Live range is in memory. Because of other evictions, it might get moved
215     /// in a register in the end.
216     RS_Memory,
217 
218     /// There is nothing more we can do to this live range.  Abort compilation
219     /// if it can't be assigned.
220     RS_Done
221   };
222 
223   // Enum CutOffStage to keep a track whether the register allocation failed
224   // because of the cutoffs encountered in last chance recoloring.
225   // Note: This is used as bitmask. New value should be next power of 2.
226   enum CutOffStage {
227     // No cutoffs encountered
228     CO_None = 0,
229 
230     // lcr-max-depth cutoff encountered
231     CO_Depth = 1,
232 
233     // lcr-max-interf cutoff encountered
234     CO_Interf = 2
235   };
236 
237   uint8_t CutOffInfo;
238 
239 #ifndef NDEBUG
240   static const char *const StageName[];
241 #endif
242 
243   // RegInfo - Keep additional information about each live range.
244   struct RegInfo {
245     LiveRangeStage Stage = RS_New;
246 
247     // Cascade - Eviction loop prevention. See canEvictInterference().
248     unsigned Cascade = 0;
249 
250     RegInfo() = default;
251   };
252 
253   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
254 
255   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
256     return ExtraRegInfo[VirtReg.reg].Stage;
257   }
258 
259   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
260     ExtraRegInfo.resize(MRI->getNumVirtRegs());
261     ExtraRegInfo[VirtReg.reg].Stage = Stage;
262   }
263 
264   template<typename Iterator>
265   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
266     ExtraRegInfo.resize(MRI->getNumVirtRegs());
267     for (;Begin != End; ++Begin) {
268       unsigned Reg = *Begin;
269       if (ExtraRegInfo[Reg].Stage == RS_New)
270         ExtraRegInfo[Reg].Stage = NewStage;
271     }
272   }
273 
274   /// Cost of evicting interference.
275   struct EvictionCost {
276     unsigned BrokenHints = 0; ///< Total number of broken hints.
277     float MaxWeight = 0;      ///< Maximum spill weight evicted.
278 
279     EvictionCost() = default;
280 
281     bool isMax() const { return BrokenHints == ~0u; }
282 
283     void setMax() { BrokenHints = ~0u; }
284 
285     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
286 
287     bool operator<(const EvictionCost &O) const {
288       return std::tie(BrokenHints, MaxWeight) <
289              std::tie(O.BrokenHints, O.MaxWeight);
290     }
291   };
292 
293   /// EvictionTrack - Keeps track of past evictions in order to optimize region
294   /// split decision.
295   class EvictionTrack {
296 
297   public:
298     using EvictorInfo =
299         std::pair<unsigned /* evictor */, unsigned /* physreg */>;
300     using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>;
301 
302   private:
303     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
304     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
305     EvicteeInfo Evictees;
306 
307   public:
308     /// Clear all eviction information.
309     void clear() { Evictees.clear(); }
310 
311     ///  Clear eviction information for the given evictee Vreg.
312     /// E.g. when Vreg get's a new allocation, the old eviction info is no
313     /// longer relevant.
314     /// \param Evictee The evictee Vreg for whom we want to clear collected
315     /// eviction info.
316     void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); }
317 
318     /// Track new eviction.
319     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
320     /// \param PhysReg The physical register Evictee was evicted from.
321     /// \param Evictor The evictor Vreg that evicted Evictee.
322     /// \param Evictee The evictee Vreg.
323     void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) {
324       Evictees[Evictee].first = Evictor;
325       Evictees[Evictee].second = PhysReg;
326     }
327 
328     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
329     /// \param Evictee The evictee vreg.
330     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
331     /// nobody has evicted Evictee from PhysReg.
332     EvictorInfo getEvictor(unsigned Evictee) {
333       if (Evictees.count(Evictee)) {
334         return Evictees[Evictee];
335       }
336 
337       return EvictorInfo(0, 0);
338     }
339   };
340 
341   // Keeps track of past evictions in order to optimize region split decision.
342   EvictionTrack LastEvicted;
343 
344   // splitting state.
345   std::unique_ptr<SplitAnalysis> SA;
346   std::unique_ptr<SplitEditor> SE;
347 
348   /// Cached per-block interference maps
349   InterferenceCache IntfCache;
350 
351   /// All basic blocks where the current register has uses.
352   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
353 
354   /// Global live range splitting candidate info.
355   struct GlobalSplitCandidate {
356     // Register intended for assignment, or 0.
357     unsigned PhysReg;
358 
359     // SplitKit interval index for this candidate.
360     unsigned IntvIdx;
361 
362     // Interference for PhysReg.
363     InterferenceCache::Cursor Intf;
364 
365     // Bundles where this candidate should be live.
366     BitVector LiveBundles;
367     SmallVector<unsigned, 8> ActiveBlocks;
368 
369     void reset(InterferenceCache &Cache, unsigned Reg) {
370       PhysReg = Reg;
371       IntvIdx = 0;
372       Intf.setPhysReg(Cache, Reg);
373       LiveBundles.clear();
374       ActiveBlocks.clear();
375     }
376 
377     // Set B[i] = C for every live bundle where B[i] was NoCand.
378     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
379       unsigned Count = 0;
380       for (unsigned i : LiveBundles.set_bits())
381         if (B[i] == NoCand) {
382           B[i] = C;
383           Count++;
384         }
385       return Count;
386     }
387   };
388 
389   /// Candidate info for each PhysReg in AllocationOrder.
390   /// This vector never shrinks, but grows to the size of the largest register
391   /// class.
392   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
393 
394   enum : unsigned { NoCand = ~0u };
395 
396   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
397   /// NoCand which indicates the stack interval.
398   SmallVector<unsigned, 32> BundleCand;
399 
400   /// Callee-save register cost, calculated once per machine function.
401   BlockFrequency CSRCost;
402 
403   /// Run or not the local reassignment heuristic. This information is
404   /// obtained from the TargetSubtargetInfo.
405   bool EnableLocalReassign;
406 
407   /// Enable or not the consideration of the cost of local intervals created
408   /// by a split candidate when choosing the best split candidate.
409   bool EnableAdvancedRASplitCost;
410 
411   /// Set of broken hints that may be reconciled later because of eviction.
412   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
413 
414 public:
415   RAGreedy();
416 
417   /// Return the pass name.
418   StringRef getPassName() const override { return "Greedy Register Allocator"; }
419 
420   /// RAGreedy analysis usage.
421   void getAnalysisUsage(AnalysisUsage &AU) const override;
422   void releaseMemory() override;
423   Spiller &spiller() override { return *SpillerInstance; }
424   void enqueue(LiveInterval *LI) override;
425   LiveInterval *dequeue() override;
426   unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
427   void aboutToRemoveInterval(LiveInterval &) override;
428 
429   /// Perform register allocation.
430   bool runOnMachineFunction(MachineFunction &mf) override;
431 
432   MachineFunctionProperties getRequiredProperties() const override {
433     return MachineFunctionProperties().set(
434         MachineFunctionProperties::Property::NoPHIs);
435   }
436 
437   static char ID;
438 
439 private:
440   unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
441                              SmallVirtRegSet &, unsigned = 0);
442 
443   bool LRE_CanEraseVirtReg(unsigned) override;
444   void LRE_WillShrinkVirtReg(unsigned) override;
445   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
446   void enqueue(PQueue &CurQueue, LiveInterval *LI);
447   LiveInterval *dequeue(PQueue &CurQueue);
448 
449   BlockFrequency calcSpillCost();
450   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
451   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
452   bool growRegion(GlobalSplitCandidate &Cand);
453   bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand,
454                                   unsigned BBNumber,
455                                   const AllocationOrder &Order);
456   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
457                                GlobalSplitCandidate &Cand, unsigned BBNumber,
458                                const AllocationOrder &Order);
459   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
460                                      const AllocationOrder &Order,
461                                      bool *CanCauseEvictionChain);
462   bool calcCompactRegion(GlobalSplitCandidate&);
463   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
464   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
465   unsigned canReassign(LiveInterval &VirtReg, unsigned PrevReg);
466   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
467   bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&,
468                             const SmallVirtRegSet& = SmallVirtRegSet());
469   bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg,
470                                    SlotIndex Start, SlotIndex End,
471                                    EvictionCost &MaxCost);
472   unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
473                                     LiveInterval &VirtReg, SlotIndex Start,
474                                     SlotIndex End, float *BestEvictWeight);
475   void evictInterference(LiveInterval&, unsigned,
476                          SmallVectorImpl<unsigned>&);
477   bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
478                                   SmallLISet &RecoloringCandidates,
479                                   const SmallVirtRegSet &FixedRegisters);
480 
481   unsigned tryAssign(LiveInterval&, AllocationOrder&,
482                      SmallVectorImpl<unsigned>&);
483   unsigned tryEvict(LiveInterval&, AllocationOrder&,
484                     SmallVectorImpl<unsigned>&, unsigned = ~0u,
485                     const SmallVirtRegSet& = SmallVirtRegSet());
486   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
487                           SmallVectorImpl<unsigned>&);
488   unsigned isSplitBenefitWorthCost(LiveInterval &VirtReg);
489   /// Calculate cost of region splitting.
490   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
491                                     AllocationOrder &Order,
492                                     BlockFrequency &BestCost,
493                                     unsigned &NumCands, bool IgnoreCSR,
494                                     bool *CanCauseEvictionChain = nullptr);
495   /// Perform region splitting.
496   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
497                          bool HasCompact,
498                          SmallVectorImpl<unsigned> &NewVRegs);
499   /// Check other options before using a callee-saved register for the first
500   /// time.
501   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
502                                  unsigned PhysReg, unsigned &CostPerUseLimit,
503                                  SmallVectorImpl<unsigned> &NewVRegs);
504   void initializeCSRCost();
505   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
506                          SmallVectorImpl<unsigned>&);
507   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
508                                SmallVectorImpl<unsigned>&);
509   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
510     SmallVectorImpl<unsigned>&);
511   unsigned trySplit(LiveInterval&, AllocationOrder&,
512                     SmallVectorImpl<unsigned>&);
513   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
514                                    SmallVectorImpl<unsigned> &,
515                                    SmallVirtRegSet &, unsigned);
516   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
517                                SmallVirtRegSet &, unsigned);
518   void tryHintRecoloring(LiveInterval &);
519   void tryHintsRecoloring();
520 
521   /// Model the information carried by one end of a copy.
522   struct HintInfo {
523     /// The frequency of the copy.
524     BlockFrequency Freq;
525     /// The virtual register or physical register.
526     unsigned Reg;
527     /// Its currently assigned register.
528     /// In case of a physical register Reg == PhysReg.
529     unsigned PhysReg;
530 
531     HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
532         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
533   };
534   using HintsInfo = SmallVector<HintInfo, 4>;
535 
536   BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
537   void collectHintInfo(unsigned, HintsInfo &);
538 
539   bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
540 
541   /// Compute and report the number of spills and reloads for a loop.
542   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
543                                     unsigned &FoldedReloads, unsigned &Spills,
544                                     unsigned &FoldedSpills);
545 
546   /// Report the number of spills and reloads for each loop.
547   void reportNumberOfSplillsReloads() {
548     for (MachineLoop *L : *Loops) {
549       unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
550       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
551                                    FoldedSpills);
552     }
553   }
554 };
555 
556 } // end anonymous namespace
557 
558 char RAGreedy::ID = 0;
559 char &llvm::RAGreedyID = RAGreedy::ID;
560 
561 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
562                 "Greedy Register Allocator", false, false)
563 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
564 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
565 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
566 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
567 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
568 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
569 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
570 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
571 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
572 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
573 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
574 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
575 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
576 INITIALIZE_PASS_END(RAGreedy, "greedy",
577                 "Greedy Register Allocator", false, false)
578 
579 #ifndef NDEBUG
580 const char *const RAGreedy::StageName[] = {
581     "RS_New",
582     "RS_Assign",
583     "RS_Split",
584     "RS_Split2",
585     "RS_Spill",
586     "RS_Memory",
587     "RS_Done"
588 };
589 #endif
590 
591 // Hysteresis to use when comparing floats.
592 // This helps stabilize decisions based on float comparisons.
593 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
594 
595 FunctionPass* llvm::createGreedyRegisterAllocator() {
596   return new RAGreedy();
597 }
598 
599 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
600 }
601 
602 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
603   AU.setPreservesCFG();
604   AU.addRequired<MachineBlockFrequencyInfo>();
605   AU.addPreserved<MachineBlockFrequencyInfo>();
606   AU.addRequired<AAResultsWrapperPass>();
607   AU.addPreserved<AAResultsWrapperPass>();
608   AU.addRequired<LiveIntervals>();
609   AU.addPreserved<LiveIntervals>();
610   AU.addRequired<SlotIndexes>();
611   AU.addPreserved<SlotIndexes>();
612   AU.addRequired<LiveDebugVariables>();
613   AU.addPreserved<LiveDebugVariables>();
614   AU.addRequired<LiveStacks>();
615   AU.addPreserved<LiveStacks>();
616   AU.addRequired<MachineDominatorTree>();
617   AU.addPreserved<MachineDominatorTree>();
618   AU.addRequired<MachineLoopInfo>();
619   AU.addPreserved<MachineLoopInfo>();
620   AU.addRequired<VirtRegMap>();
621   AU.addPreserved<VirtRegMap>();
622   AU.addRequired<LiveRegMatrix>();
623   AU.addPreserved<LiveRegMatrix>();
624   AU.addRequired<EdgeBundles>();
625   AU.addRequired<SpillPlacement>();
626   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
627   MachineFunctionPass::getAnalysisUsage(AU);
628 }
629 
630 //===----------------------------------------------------------------------===//
631 //                     LiveRangeEdit delegate methods
632 //===----------------------------------------------------------------------===//
633 
634 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
635   LiveInterval &LI = LIS->getInterval(VirtReg);
636   if (VRM->hasPhys(VirtReg)) {
637     Matrix->unassign(LI);
638     aboutToRemoveInterval(LI);
639     return true;
640   }
641   // Unassigned virtreg is probably in the priority queue.
642   // RegAllocBase will erase it after dequeueing.
643   // Nonetheless, clear the live-range so that the debug
644   // dump will show the right state for that VirtReg.
645   LI.clear();
646   return false;
647 }
648 
649 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
650   if (!VRM->hasPhys(VirtReg))
651     return;
652 
653   // Register is assigned, put it back on the queue for reassignment.
654   LiveInterval &LI = LIS->getInterval(VirtReg);
655   Matrix->unassign(LI);
656   enqueue(&LI);
657 }
658 
659 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
660   // Cloning a register we haven't even heard about yet?  Just ignore it.
661   if (!ExtraRegInfo.inBounds(Old))
662     return;
663 
664   // LRE may clone a virtual register because dead code elimination causes it to
665   // be split into connected components. The new components are much smaller
666   // than the original, so they should get a new chance at being assigned.
667   // same stage as the parent.
668   ExtraRegInfo[Old].Stage = RS_Assign;
669   ExtraRegInfo.grow(New);
670   ExtraRegInfo[New] = ExtraRegInfo[Old];
671 }
672 
673 void RAGreedy::releaseMemory() {
674   SpillerInstance.reset();
675   ExtraRegInfo.clear();
676   GlobalCand.clear();
677 }
678 
679 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
680 
681 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
682   // Prioritize live ranges by size, assigning larger ranges first.
683   // The queue holds (size, reg) pairs.
684   const unsigned Size = LI->getSize();
685   const unsigned Reg = LI->reg;
686   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
687          "Can only enqueue virtual registers");
688   unsigned Prio;
689 
690   ExtraRegInfo.grow(Reg);
691   if (ExtraRegInfo[Reg].Stage == RS_New)
692     ExtraRegInfo[Reg].Stage = RS_Assign;
693 
694   if (ExtraRegInfo[Reg].Stage == RS_Split) {
695     // Unsplit ranges that couldn't be allocated immediately are deferred until
696     // everything else has been allocated.
697     Prio = Size;
698   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
699     // Memory operand should be considered last.
700     // Change the priority such that Memory operand are assigned in
701     // the reverse order that they came in.
702     // TODO: Make this a member variable and probably do something about hints.
703     static unsigned MemOp = 0;
704     Prio = MemOp++;
705   } else {
706     // Giant live ranges fall back to the global assignment heuristic, which
707     // prevents excessive spilling in pathological cases.
708     bool ReverseLocal = TRI->reverseLocalAssignment();
709     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
710     bool ForceGlobal = !ReverseLocal &&
711       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
712 
713     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
714         LIS->intervalIsInOneMBB(*LI)) {
715       // Allocate original local ranges in linear instruction order. Since they
716       // are singly defined, this produces optimal coloring in the absence of
717       // global interference and other constraints.
718       if (!ReverseLocal)
719         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
720       else {
721         // Allocating bottom up may allow many short LRGs to be assigned first
722         // to one of the cheap registers. This could be much faster for very
723         // large blocks on targets with many physical registers.
724         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
725       }
726       Prio |= RC.AllocationPriority << 24;
727     } else {
728       // Allocate global and split ranges in long->short order. Long ranges that
729       // don't fit should be spilled (or split) ASAP so they don't create
730       // interference.  Mark a bit to prioritize global above local ranges.
731       Prio = (1u << 29) + Size;
732     }
733     // Mark a higher bit to prioritize global and local above RS_Split.
734     Prio |= (1u << 31);
735 
736     // Boost ranges that have a physical register hint.
737     if (VRM->hasKnownPreference(Reg))
738       Prio |= (1u << 30);
739   }
740   // The virtual register number is a tie breaker for same-sized ranges.
741   // Give lower vreg numbers higher priority to assign them first.
742   CurQueue.push(std::make_pair(Prio, ~Reg));
743 }
744 
745 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
746 
747 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
748   if (CurQueue.empty())
749     return nullptr;
750   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
751   CurQueue.pop();
752   return LI;
753 }
754 
755 //===----------------------------------------------------------------------===//
756 //                            Direct Assignment
757 //===----------------------------------------------------------------------===//
758 
759 /// tryAssign - Try to assign VirtReg to an available register.
760 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
761                              AllocationOrder &Order,
762                              SmallVectorImpl<unsigned> &NewVRegs) {
763   Order.rewind();
764   unsigned PhysReg;
765   while ((PhysReg = Order.next()))
766     if (!Matrix->checkInterference(VirtReg, PhysReg))
767       break;
768   if (!PhysReg || Order.isHint())
769     return PhysReg;
770 
771   // PhysReg is available, but there may be a better choice.
772 
773   // If we missed a simple hint, try to cheaply evict interference from the
774   // preferred register.
775   if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
776     if (Order.isHint(Hint)) {
777       LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n');
778       EvictionCost MaxCost;
779       MaxCost.setBrokenHints(1);
780       if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
781         evictInterference(VirtReg, Hint, NewVRegs);
782         return Hint;
783       }
784       // Record the missed hint, we may be able to recover
785       // at the end if the surrounding allocation changed.
786       SetOfBrokenHints.insert(&VirtReg);
787     }
788 
789   // Try to evict interference from a cheaper alternative.
790   unsigned Cost = TRI->getCostPerUse(PhysReg);
791 
792   // Most registers have 0 additional cost.
793   if (!Cost)
794     return PhysReg;
795 
796   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
797                     << Cost << '\n');
798   unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
799   return CheapReg ? CheapReg : PhysReg;
800 }
801 
802 //===----------------------------------------------------------------------===//
803 //                         Interference eviction
804 //===----------------------------------------------------------------------===//
805 
806 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
807   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
808   unsigned PhysReg;
809   while ((PhysReg = Order.next())) {
810     if (PhysReg == PrevReg)
811       continue;
812 
813     MCRegUnitIterator Units(PhysReg, TRI);
814     for (; Units.isValid(); ++Units) {
815       // Instantiate a "subquery", not to be confused with the Queries array.
816       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
817       if (subQ.checkInterference())
818         break;
819     }
820     // If no units have interference, break out with the current PhysReg.
821     if (!Units.isValid())
822       break;
823   }
824   if (PhysReg)
825     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
826                       << printReg(PrevReg, TRI) << " to "
827                       << printReg(PhysReg, TRI) << '\n');
828   return PhysReg;
829 }
830 
831 /// shouldEvict - determine if A should evict the assigned live range B. The
832 /// eviction policy defined by this function together with the allocation order
833 /// defined by enqueue() decides which registers ultimately end up being split
834 /// and spilled.
835 ///
836 /// Cascade numbers are used to prevent infinite loops if this function is a
837 /// cyclic relation.
838 ///
839 /// @param A          The live range to be assigned.
840 /// @param IsHint     True when A is about to be assigned to its preferred
841 ///                   register.
842 /// @param B          The live range to be evicted.
843 /// @param BreaksHint True when B is already assigned to its preferred register.
844 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
845                            LiveInterval &B, bool BreaksHint) {
846   bool CanSplit = getStage(B) < RS_Spill;
847 
848   // Be fairly aggressive about following hints as long as the evictee can be
849   // split.
850   if (CanSplit && IsHint && !BreaksHint)
851     return true;
852 
853   if (A.weight > B.weight) {
854     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
855     return true;
856   }
857   return false;
858 }
859 
860 /// canEvictInterference - Return true if all interferences between VirtReg and
861 /// PhysReg can be evicted.
862 ///
863 /// @param VirtReg Live range that is about to be assigned.
864 /// @param PhysReg Desired register for assignment.
865 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
866 /// @param MaxCost Only look for cheaper candidates and update with new cost
867 ///                when returning true.
868 /// @returns True when interference can be evicted cheaper than MaxCost.
869 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
870                                     bool IsHint, EvictionCost &MaxCost,
871                                     const SmallVirtRegSet &FixedRegisters) {
872   // It is only possible to evict virtual register interference.
873   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
874     return false;
875 
876   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
877 
878   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
879   // involved in an eviction before. If a cascade number was assigned, deny
880   // evicting anything with the same or a newer cascade number. This prevents
881   // infinite eviction loops.
882   //
883   // This works out so a register without a cascade number is allowed to evict
884   // anything, and it can be evicted by anything.
885   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
886   if (!Cascade)
887     Cascade = NextCascade;
888 
889   EvictionCost Cost;
890   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
891     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
892     // If there is 10 or more interferences, chances are one is heavier.
893     if (Q.collectInterferingVRegs(10) >= 10)
894       return false;
895 
896     // Check if any interfering live range is heavier than MaxWeight.
897     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
898       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
899       assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
900              "Only expecting virtual register interference from query");
901 
902       // Do not allow eviction of a virtual register if we are in the middle
903       // of last-chance recoloring and this virtual register is one that we
904       // have scavenged a physical register for.
905       if (FixedRegisters.count(Intf->reg))
906         return false;
907 
908       // Never evict spill products. They cannot split or spill.
909       if (getStage(*Intf) == RS_Done)
910         return false;
911       // Once a live range becomes small enough, it is urgent that we find a
912       // register for it. This is indicated by an infinite spill weight. These
913       // urgent live ranges get to evict almost anything.
914       //
915       // Also allow urgent evictions of unspillable ranges from a strictly
916       // larger allocation order.
917       bool Urgent = !VirtReg.isSpillable() &&
918         (Intf->isSpillable() ||
919          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
920          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
921       // Only evict older cascades or live ranges without a cascade.
922       unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
923       if (Cascade <= IntfCascade) {
924         if (!Urgent)
925           return false;
926         // We permit breaking cascades for urgent evictions. It should be the
927         // last resort, though, so make it really expensive.
928         Cost.BrokenHints += 10;
929       }
930       // Would this break a satisfied hint?
931       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
932       // Update eviction cost.
933       Cost.BrokenHints += BreaksHint;
934       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
935       // Abort if this would be too expensive.
936       if (!(Cost < MaxCost))
937         return false;
938       if (Urgent)
939         continue;
940       // Apply the eviction policy for non-urgent evictions.
941       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
942         return false;
943       // If !MaxCost.isMax(), then we're just looking for a cheap register.
944       // Evicting another local live range in this case could lead to suboptimal
945       // coloring.
946       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
947           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
948         return false;
949       }
950     }
951   }
952   MaxCost = Cost;
953   return true;
954 }
955 
956 /// Return true if all interferences between VirtReg and PhysReg between
957 /// Start and End can be evicted.
958 ///
959 /// \param VirtReg Live range that is about to be assigned.
960 /// \param PhysReg Desired register for assignment.
961 /// \param Start   Start of range to look for interferences.
962 /// \param End     End of range to look for interferences.
963 /// \param MaxCost Only look for cheaper candidates and update with new cost
964 ///                when returning true.
965 /// \return True when interference can be evicted cheaper than MaxCost.
966 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
967                                            unsigned PhysReg, SlotIndex Start,
968                                            SlotIndex End,
969                                            EvictionCost &MaxCost) {
970   EvictionCost Cost;
971 
972   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
973     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
974 
975     // Check if any interfering live range is heavier than MaxWeight.
976     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
977       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
978 
979       // Check if interference overlast the segment in interest.
980       if (!Intf->overlaps(Start, End))
981         continue;
982 
983       // Cannot evict non virtual reg interference.
984       if (!TargetRegisterInfo::isVirtualRegister(Intf->reg))
985         return false;
986       // Never evict spill products. They cannot split or spill.
987       if (getStage(*Intf) == RS_Done)
988         return false;
989 
990       // Would this break a satisfied hint?
991       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
992       // Update eviction cost.
993       Cost.BrokenHints += BreaksHint;
994       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
995       // Abort if this would be too expensive.
996       if (!(Cost < MaxCost))
997         return false;
998     }
999   }
1000 
1001   if (Cost.MaxWeight == 0)
1002     return false;
1003 
1004   MaxCost = Cost;
1005   return true;
1006 }
1007 
1008 /// Return the physical register that will be best
1009 /// candidate for eviction by a local split interval that will be created
1010 /// between Start and End.
1011 ///
1012 /// \param Order            The allocation order
1013 /// \param VirtReg          Live range that is about to be assigned.
1014 /// \param Start            Start of range to look for interferences
1015 /// \param End              End of range to look for interferences
1016 /// \param BestEvictweight  The eviction cost of that eviction
1017 /// \return The PhysReg which is the best candidate for eviction and the
1018 /// eviction cost in BestEvictweight
1019 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1020                                             LiveInterval &VirtReg,
1021                                             SlotIndex Start, SlotIndex End,
1022                                             float *BestEvictweight) {
1023   EvictionCost BestEvictCost;
1024   BestEvictCost.setMax();
1025   BestEvictCost.MaxWeight = VirtReg.weight;
1026   unsigned BestEvicteePhys = 0;
1027 
1028   // Go over all physical registers and find the best candidate for eviction
1029   for (auto PhysReg : Order.getOrder()) {
1030 
1031     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1032                                      BestEvictCost))
1033       continue;
1034 
1035     // Best so far.
1036     BestEvicteePhys = PhysReg;
1037   }
1038   *BestEvictweight = BestEvictCost.MaxWeight;
1039   return BestEvicteePhys;
1040 }
1041 
1042 /// evictInterference - Evict any interferring registers that prevent VirtReg
1043 /// from being assigned to Physreg. This assumes that canEvictInterference
1044 /// returned true.
1045 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
1046                                  SmallVectorImpl<unsigned> &NewVRegs) {
1047   // Make sure that VirtReg has a cascade number, and assign that cascade
1048   // number to every evicted register. These live ranges than then only be
1049   // evicted by a newer cascade, preventing infinite loops.
1050   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
1051   if (!Cascade)
1052     Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
1053 
1054   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1055                     << " interference: Cascade " << Cascade << '\n');
1056 
1057   // Collect all interfering virtregs first.
1058   SmallVector<LiveInterval*, 8> Intfs;
1059   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1060     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1061     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1062     // should be fast, we may need to recalculate if when different physregs
1063     // overlap the same register unit so we had different SubRanges queried
1064     // against it.
1065     Q.collectInterferingVRegs();
1066     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1067     Intfs.append(IVR.begin(), IVR.end());
1068   }
1069 
1070   // Evict them second. This will invalidate the queries.
1071   for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
1072     LiveInterval *Intf = Intfs[i];
1073     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1074     if (!VRM->hasPhys(Intf->reg))
1075       continue;
1076 
1077     LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg);
1078 
1079     Matrix->unassign(*Intf);
1080     assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
1081             VirtReg.isSpillable() < Intf->isSpillable()) &&
1082            "Cannot decrease cascade number, illegal eviction");
1083     ExtraRegInfo[Intf->reg].Cascade = Cascade;
1084     ++NumEvicted;
1085     NewVRegs.push_back(Intf->reg);
1086   }
1087 }
1088 
1089 /// Returns true if the given \p PhysReg is a callee saved register and has not
1090 /// been used for allocation yet.
1091 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
1092   unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1093   if (CSR == 0)
1094     return false;
1095 
1096   return !Matrix->isPhysRegUsed(PhysReg);
1097 }
1098 
1099 /// tryEvict - Try to evict all interferences for a physreg.
1100 /// @param  VirtReg Currently unassigned virtual register.
1101 /// @param  Order   Physregs to try.
1102 /// @return         Physreg to assign VirtReg, or 0.
1103 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
1104                             AllocationOrder &Order,
1105                             SmallVectorImpl<unsigned> &NewVRegs,
1106                             unsigned CostPerUseLimit,
1107                             const SmallVirtRegSet &FixedRegisters) {
1108   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1109                      TimePassesIsEnabled);
1110 
1111   // Keep track of the cheapest interference seen so far.
1112   EvictionCost BestCost;
1113   BestCost.setMax();
1114   unsigned BestPhys = 0;
1115   unsigned OrderLimit = Order.getOrder().size();
1116 
1117   // When we are just looking for a reduced cost per use, don't break any
1118   // hints, and only evict smaller spill weights.
1119   if (CostPerUseLimit < ~0u) {
1120     BestCost.BrokenHints = 0;
1121     BestCost.MaxWeight = VirtReg.weight;
1122 
1123     // Check of any registers in RC are below CostPerUseLimit.
1124     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
1125     unsigned MinCost = RegClassInfo.getMinCost(RC);
1126     if (MinCost >= CostPerUseLimit) {
1127       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1128                         << MinCost << ", no cheaper registers to be found.\n");
1129       return 0;
1130     }
1131 
1132     // It is normal for register classes to have a long tail of registers with
1133     // the same cost. We don't need to look at them if they're too expensive.
1134     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
1135       OrderLimit = RegClassInfo.getLastCostChange(RC);
1136       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1137                         << " regs.\n");
1138     }
1139   }
1140 
1141   Order.rewind();
1142   while (unsigned PhysReg = Order.next(OrderLimit)) {
1143     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
1144       continue;
1145     // The first use of a callee-saved register in a function has cost 1.
1146     // Don't start using a CSR when the CostPerUseLimit is low.
1147     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1148       LLVM_DEBUG(
1149           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1150                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1151                  << '\n');
1152       continue;
1153     }
1154 
1155     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1156                               FixedRegisters))
1157       continue;
1158 
1159     // Best so far.
1160     BestPhys = PhysReg;
1161 
1162     // Stop if the hint can be used.
1163     if (Order.isHint())
1164       break;
1165   }
1166 
1167   if (!BestPhys)
1168     return 0;
1169 
1170   evictInterference(VirtReg, BestPhys, NewVRegs);
1171   return BestPhys;
1172 }
1173 
1174 //===----------------------------------------------------------------------===//
1175 //                              Region Splitting
1176 //===----------------------------------------------------------------------===//
1177 
1178 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1179 /// interference pattern in Physreg and its aliases. Add the constraints to
1180 /// SpillPlacement and return the static cost of this split in Cost, assuming
1181 /// that all preferences in SplitConstraints are met.
1182 /// Return false if there are no bundles with positive bias.
1183 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1184                                    BlockFrequency &Cost) {
1185   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1186 
1187   // Reset interference dependent info.
1188   SplitConstraints.resize(UseBlocks.size());
1189   BlockFrequency StaticCost = 0;
1190   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1191     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1192     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1193 
1194     BC.Number = BI.MBB->getNumber();
1195     Intf.moveToBlock(BC.Number);
1196     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1197     BC.Exit = (BI.LiveOut &&
1198                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1199                   ? SpillPlacement::PrefReg
1200                   : SpillPlacement::DontCare;
1201     BC.ChangesValue = BI.FirstDef.isValid();
1202 
1203     if (!Intf.hasInterference())
1204       continue;
1205 
1206     // Number of spill code instructions to insert.
1207     unsigned Ins = 0;
1208 
1209     // Interference for the live-in value.
1210     if (BI.LiveIn) {
1211       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1212         BC.Entry = SpillPlacement::MustSpill;
1213         ++Ins;
1214       } else if (Intf.first() < BI.FirstInstr) {
1215         BC.Entry = SpillPlacement::PrefSpill;
1216         ++Ins;
1217       } else if (Intf.first() < BI.LastInstr) {
1218         ++Ins;
1219       }
1220 
1221       // Abort if the spill cannot be inserted at the MBB' start
1222       if (((BC.Entry == SpillPlacement::MustSpill) ||
1223            (BC.Entry == SpillPlacement::PrefSpill)) &&
1224           SlotIndex::isEarlierInstr(BI.FirstInstr,
1225                                     SA->getFirstSplitPoint(BC.Number)))
1226         return false;
1227     }
1228 
1229     // Interference for the live-out value.
1230     if (BI.LiveOut) {
1231       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1232         BC.Exit = SpillPlacement::MustSpill;
1233         ++Ins;
1234       } else if (Intf.last() > BI.LastInstr) {
1235         BC.Exit = SpillPlacement::PrefSpill;
1236         ++Ins;
1237       } else if (Intf.last() > BI.FirstInstr) {
1238         ++Ins;
1239       }
1240     }
1241 
1242     // Accumulate the total frequency of inserted spill code.
1243     while (Ins--)
1244       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1245   }
1246   Cost = StaticCost;
1247 
1248   // Add constraints for use-blocks. Note that these are the only constraints
1249   // that may add a positive bias, it is downhill from here.
1250   SpillPlacer->addConstraints(SplitConstraints);
1251   return SpillPlacer->scanActiveBundles();
1252 }
1253 
1254 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1255 /// live-through blocks in Blocks.
1256 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1257                                      ArrayRef<unsigned> Blocks) {
1258   const unsigned GroupSize = 8;
1259   SpillPlacement::BlockConstraint BCS[GroupSize];
1260   unsigned TBS[GroupSize];
1261   unsigned B = 0, T = 0;
1262 
1263   for (unsigned i = 0; i != Blocks.size(); ++i) {
1264     unsigned Number = Blocks[i];
1265     Intf.moveToBlock(Number);
1266 
1267     if (!Intf.hasInterference()) {
1268       assert(T < GroupSize && "Array overflow");
1269       TBS[T] = Number;
1270       if (++T == GroupSize) {
1271         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1272         T = 0;
1273       }
1274       continue;
1275     }
1276 
1277     assert(B < GroupSize && "Array overflow");
1278     BCS[B].Number = Number;
1279 
1280     // Abort if the spill cannot be inserted at the MBB' start
1281     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1282     if (!MBB->empty() &&
1283         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
1284                                   SA->getFirstSplitPoint(Number)))
1285       return false;
1286     // Interference for the live-in value.
1287     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1288       BCS[B].Entry = SpillPlacement::MustSpill;
1289     else
1290       BCS[B].Entry = SpillPlacement::PrefSpill;
1291 
1292     // Interference for the live-out value.
1293     if (Intf.last() >= SA->getLastSplitPoint(Number))
1294       BCS[B].Exit = SpillPlacement::MustSpill;
1295     else
1296       BCS[B].Exit = SpillPlacement::PrefSpill;
1297 
1298     if (++B == GroupSize) {
1299       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1300       B = 0;
1301     }
1302   }
1303 
1304   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1305   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1306   return true;
1307 }
1308 
1309 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1310   // Keep track of through blocks that have not been added to SpillPlacer.
1311   BitVector Todo = SA->getThroughBlocks();
1312   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1313   unsigned AddedTo = 0;
1314 #ifndef NDEBUG
1315   unsigned Visited = 0;
1316 #endif
1317 
1318   while (true) {
1319     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1320     // Find new through blocks in the periphery of PrefRegBundles.
1321     for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1322       unsigned Bundle = NewBundles[i];
1323       // Look at all blocks connected to Bundle in the full graph.
1324       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1325       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1326            I != E; ++I) {
1327         unsigned Block = *I;
1328         if (!Todo.test(Block))
1329           continue;
1330         Todo.reset(Block);
1331         // This is a new through block. Add it to SpillPlacer later.
1332         ActiveBlocks.push_back(Block);
1333 #ifndef NDEBUG
1334         ++Visited;
1335 #endif
1336       }
1337     }
1338     // Any new blocks to add?
1339     if (ActiveBlocks.size() == AddedTo)
1340       break;
1341 
1342     // Compute through constraints from the interference, or assume that all
1343     // through blocks prefer spilling when forming compact regions.
1344     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1345     if (Cand.PhysReg) {
1346       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1347         return false;
1348     } else
1349       // Provide a strong negative bias on through blocks to prevent unwanted
1350       // liveness on loop backedges.
1351       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1352     AddedTo = ActiveBlocks.size();
1353 
1354     // Perhaps iterating can enable more bundles?
1355     SpillPlacer->iterate();
1356   }
1357   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1358   return true;
1359 }
1360 
1361 /// calcCompactRegion - Compute the set of edge bundles that should be live
1362 /// when splitting the current live range into compact regions.  Compact
1363 /// regions can be computed without looking at interference.  They are the
1364 /// regions formed by removing all the live-through blocks from the live range.
1365 ///
1366 /// Returns false if the current live range is already compact, or if the
1367 /// compact regions would form single block regions anyway.
1368 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1369   // Without any through blocks, the live range is already compact.
1370   if (!SA->getNumThroughBlocks())
1371     return false;
1372 
1373   // Compact regions don't correspond to any physreg.
1374   Cand.reset(IntfCache, 0);
1375 
1376   LLVM_DEBUG(dbgs() << "Compact region bundles");
1377 
1378   // Use the spill placer to determine the live bundles. GrowRegion pretends
1379   // that all the through blocks have interference when PhysReg is unset.
1380   SpillPlacer->prepare(Cand.LiveBundles);
1381 
1382   // The static split cost will be zero since Cand.Intf reports no interference.
1383   BlockFrequency Cost;
1384   if (!addSplitConstraints(Cand.Intf, Cost)) {
1385     LLVM_DEBUG(dbgs() << ", none.\n");
1386     return false;
1387   }
1388 
1389   if (!growRegion(Cand)) {
1390     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1391     return false;
1392   }
1393 
1394   SpillPlacer->finish();
1395 
1396   if (!Cand.LiveBundles.any()) {
1397     LLVM_DEBUG(dbgs() << ", none.\n");
1398     return false;
1399   }
1400 
1401   LLVM_DEBUG({
1402     for (int i : Cand.LiveBundles.set_bits())
1403       dbgs() << " EB#" << i;
1404     dbgs() << ".\n";
1405   });
1406   return true;
1407 }
1408 
1409 /// calcSpillCost - Compute how expensive it would be to split the live range in
1410 /// SA around all use blocks instead of forming bundle regions.
1411 BlockFrequency RAGreedy::calcSpillCost() {
1412   BlockFrequency Cost = 0;
1413   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1414   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1415     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1416     unsigned Number = BI.MBB->getNumber();
1417     // We normally only need one spill instruction - a load or a store.
1418     Cost += SpillPlacer->getBlockFrequency(Number);
1419 
1420     // Unless the value is redefined in the block.
1421     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1422       Cost += SpillPlacer->getBlockFrequency(Number);
1423   }
1424   return Cost;
1425 }
1426 
1427 /// Check if splitting Evictee will create a local split interval in
1428 /// basic block number BBNumber that may cause a bad eviction chain. This is
1429 /// intended to prevent bad eviction sequences like:
1430 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1431 /// movl	%ecx, %ebp
1432 /// movl	%ebx, %ecx
1433 /// movl	%edi, %ebx
1434 /// movl	%edx, %edi
1435 /// cltd
1436 /// idivl	%esi
1437 /// movl	%edi, %edx
1438 /// movl	%ebx, %edi
1439 /// movl	%ecx, %ebx
1440 /// movl	%ebp, %ecx
1441 /// movl	16(%esp), %ebp          # 4 - byte Reload
1442 ///
1443 /// Such sequences are created in 2 scenarios:
1444 ///
1445 /// Scenario #1:
1446 /// %0 is evicted from physreg0 by %1.
1447 /// Evictee %0 is intended for region splitting with split candidate
1448 /// physreg0 (the reg %0 was evicted from).
1449 /// Region splitting creates a local interval because of interference with the
1450 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1451 /// and "by stack" intervals and local interval created when interference
1452 /// occurs).
1453 /// One of the split intervals ends up evicting %2 from physreg1.
1454 /// Evictee %2 is intended for region splitting with split candidate
1455 /// physreg1.
1456 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1457 ///
1458 /// Scenario #2
1459 /// %0 is evicted from physreg0 by %1.
1460 /// %2 is evicted from physreg2 by %3 etc.
1461 /// Evictee %0 is intended for region splitting with split candidate
1462 /// physreg1.
1463 /// Region splitting creates a local interval because of interference with the
1464 /// evictor %1.
1465 /// One of the split intervals ends up evicting back original evictor %1
1466 /// from physreg0 (the reg %0 was evicted from).
1467 /// Another evictee %2 is intended for region splitting with split candidate
1468 /// physreg1.
1469 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1470 ///
1471 /// \param Evictee  The register considered to be split.
1472 /// \param Cand     The split candidate that determines the physical register
1473 ///                 we are splitting for and the interferences.
1474 /// \param BBNumber The number of a BB for which the region split process will
1475 ///                 create a local split interval.
1476 /// \param Order    The physical registers that may get evicted by a split
1477 ///                 artifact of Evictee.
1478 /// \return True if splitting Evictee may cause a bad eviction chain, false
1479 /// otherwise.
1480 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee,
1481                                           GlobalSplitCandidate &Cand,
1482                                           unsigned BBNumber,
1483                                           const AllocationOrder &Order) {
1484   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1485   unsigned Evictor = VregEvictorInfo.first;
1486   unsigned PhysReg = VregEvictorInfo.second;
1487 
1488   // No actual evictor.
1489   if (!Evictor || !PhysReg)
1490     return false;
1491 
1492   float MaxWeight = 0;
1493   unsigned FutureEvictedPhysReg =
1494       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1495                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1496 
1497   // The bad eviction chain occurs when either the split candidate is the
1498   // evicting reg or one of the split artifact will evict the evicting reg.
1499   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1500     return false;
1501 
1502   Cand.Intf.moveToBlock(BBNumber);
1503 
1504   // Check to see if the Evictor contains interference (with Evictee) in the
1505   // given BB. If so, this interference caused the eviction of Evictee from
1506   // PhysReg. This suggest that we will create a local interval during the
1507   // region split to avoid this interference This local interval may cause a bad
1508   // eviction chain.
1509   if (!LIS->hasInterval(Evictor))
1510     return false;
1511   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1512   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1513     return false;
1514 
1515   // Now, check to see if the local interval we will create is going to be
1516   // expensive enough to evict somebody If so, this may cause a bad eviction
1517   // chain.
1518   VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1519   float splitArtifactWeight =
1520       VRAI.futureWeight(LIS->getInterval(Evictee),
1521                         Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1522   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1523     return false;
1524 
1525   return true;
1526 }
1527 
1528 /// Check if splitting VirtRegToSplit will create a local split interval
1529 /// in basic block number BBNumber that may cause a spill.
1530 ///
1531 /// \param VirtRegToSplit The register considered to be split.
1532 /// \param Cand           The split candidate that determines the physical
1533 ///                       register we are splitting for and the interferences.
1534 /// \param BBNumber       The number of a BB for which the region split process
1535 ///                       will create a local split interval.
1536 /// \param Order          The physical registers that may get evicted by a
1537 ///                       split artifact of VirtRegToSplit.
1538 /// \return True if splitting VirtRegToSplit may cause a spill, false
1539 /// otherwise.
1540 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1541                                        GlobalSplitCandidate &Cand,
1542                                        unsigned BBNumber,
1543                                        const AllocationOrder &Order) {
1544   Cand.Intf.moveToBlock(BBNumber);
1545 
1546   // Check if the local interval will find a non interfereing assignment.
1547   for (auto PhysReg : Order.getOrder()) {
1548     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1549                                    Cand.Intf.last(), PhysReg))
1550       return false;
1551   }
1552 
1553   // Check if the local interval will evict a cheaper interval.
1554   float CheapestEvictWeight = 0;
1555   unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
1556       Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1557       Cand.Intf.last(), &CheapestEvictWeight);
1558 
1559   // Have we found an interval that can be evicted?
1560   if (FutureEvictedPhysReg) {
1561     VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1562     float splitArtifactWeight =
1563         VRAI.futureWeight(LIS->getInterval(VirtRegToSplit),
1564                           Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1565     // Will the weight of the local interval be higher than the cheapest evictee
1566     // weight? If so it will evict it and will not cause a spill.
1567     if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1568       return false;
1569   }
1570 
1571   // The local interval is not able to find non interferencing assignment and
1572   // not able to evict a less worthy interval, therfore, it can cause a spill.
1573   return true;
1574 }
1575 
1576 /// calcGlobalSplitCost - Return the global split cost of following the split
1577 /// pattern in LiveBundles. This cost should be added to the local cost of the
1578 /// interference pattern in SplitConstraints.
1579 ///
1580 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1581                                              const AllocationOrder &Order,
1582                                              bool *CanCauseEvictionChain) {
1583   BlockFrequency GlobalCost = 0;
1584   const BitVector &LiveBundles = Cand.LiveBundles;
1585   unsigned VirtRegToSplit = SA->getParent().reg;
1586   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1587   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1588     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1589     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1590     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1591     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1592     unsigned Ins = 0;
1593 
1594     Cand.Intf.moveToBlock(BC.Number);
1595     // Check wheather a local interval is going to be created during the region
1596     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1597     // is enabled.
1598     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1599         BI.LiveOut && RegIn && RegOut) {
1600 
1601       if (CanCauseEvictionChain &&
1602           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1603         // This interference causes our eviction from this assignment, we might
1604         // evict somebody else and eventually someone will spill, add that cost.
1605         // See splitCanCauseEvictionChain for detailed description of scenarios.
1606         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1607         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1608 
1609         *CanCauseEvictionChain = true;
1610 
1611       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1612                                          Order)) {
1613         // This interference causes local interval to spill, add that cost.
1614         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1615         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1616       }
1617     }
1618 
1619     if (BI.LiveIn)
1620       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1621     if (BI.LiveOut)
1622       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1623     while (Ins--)
1624       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1625   }
1626 
1627   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1628     unsigned Number = Cand.ActiveBlocks[i];
1629     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1630     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1631     if (!RegIn && !RegOut)
1632       continue;
1633     if (RegIn && RegOut) {
1634       // We need double spill code if this block has interference.
1635       Cand.Intf.moveToBlock(Number);
1636       if (Cand.Intf.hasInterference()) {
1637         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1638         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1639 
1640         // Check wheather a local interval is going to be created during the
1641         // region split.
1642         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1643             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1644           // This interference cause our eviction from this assignment, we might
1645           // evict somebody else, add that cost.
1646           // See splitCanCauseEvictionChain for detailed description of
1647           // scenarios.
1648           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1649           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1650 
1651           *CanCauseEvictionChain = true;
1652         }
1653       }
1654       continue;
1655     }
1656     // live-in / stack-out or stack-in live-out.
1657     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1658   }
1659   return GlobalCost;
1660 }
1661 
1662 /// splitAroundRegion - Split the current live range around the regions
1663 /// determined by BundleCand and GlobalCand.
1664 ///
1665 /// Before calling this function, GlobalCand and BundleCand must be initialized
1666 /// so each bundle is assigned to a valid candidate, or NoCand for the
1667 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1668 /// objects must be initialized for the current live range, and intervals
1669 /// created for the used candidates.
1670 ///
1671 /// @param LREdit    The LiveRangeEdit object handling the current split.
1672 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1673 ///                  must appear in this list.
1674 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1675                                  ArrayRef<unsigned> UsedCands) {
1676   // These are the intervals created for new global ranges. We may create more
1677   // intervals for local ranges.
1678   const unsigned NumGlobalIntvs = LREdit.size();
1679   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1680                     << " globals.\n");
1681   assert(NumGlobalIntvs && "No global intervals configured");
1682 
1683   // Isolate even single instructions when dealing with a proper sub-class.
1684   // That guarantees register class inflation for the stack interval because it
1685   // is all copies.
1686   unsigned Reg = SA->getParent().reg;
1687   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1688 
1689   // First handle all the blocks with uses.
1690   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1691   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1692     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1693     unsigned Number = BI.MBB->getNumber();
1694     unsigned IntvIn = 0, IntvOut = 0;
1695     SlotIndex IntfIn, IntfOut;
1696     if (BI.LiveIn) {
1697       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1698       if (CandIn != NoCand) {
1699         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1700         IntvIn = Cand.IntvIdx;
1701         Cand.Intf.moveToBlock(Number);
1702         IntfIn = Cand.Intf.first();
1703       }
1704     }
1705     if (BI.LiveOut) {
1706       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1707       if (CandOut != NoCand) {
1708         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1709         IntvOut = Cand.IntvIdx;
1710         Cand.Intf.moveToBlock(Number);
1711         IntfOut = Cand.Intf.last();
1712       }
1713     }
1714 
1715     // Create separate intervals for isolated blocks with multiple uses.
1716     if (!IntvIn && !IntvOut) {
1717       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1718       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1719         SE->splitSingleBlock(BI);
1720       continue;
1721     }
1722 
1723     if (IntvIn && IntvOut)
1724       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1725     else if (IntvIn)
1726       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1727     else
1728       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1729   }
1730 
1731   // Handle live-through blocks. The relevant live-through blocks are stored in
1732   // the ActiveBlocks list with each candidate. We need to filter out
1733   // duplicates.
1734   BitVector Todo = SA->getThroughBlocks();
1735   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1736     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1737     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1738       unsigned Number = Blocks[i];
1739       if (!Todo.test(Number))
1740         continue;
1741       Todo.reset(Number);
1742 
1743       unsigned IntvIn = 0, IntvOut = 0;
1744       SlotIndex IntfIn, IntfOut;
1745 
1746       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1747       if (CandIn != NoCand) {
1748         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1749         IntvIn = Cand.IntvIdx;
1750         Cand.Intf.moveToBlock(Number);
1751         IntfIn = Cand.Intf.first();
1752       }
1753 
1754       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1755       if (CandOut != NoCand) {
1756         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1757         IntvOut = Cand.IntvIdx;
1758         Cand.Intf.moveToBlock(Number);
1759         IntfOut = Cand.Intf.last();
1760       }
1761       if (!IntvIn && !IntvOut)
1762         continue;
1763       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1764     }
1765   }
1766 
1767   ++NumGlobalSplits;
1768 
1769   SmallVector<unsigned, 8> IntvMap;
1770   SE->finish(&IntvMap);
1771   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1772 
1773   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1774   unsigned OrigBlocks = SA->getNumLiveBlocks();
1775 
1776   // Sort out the new intervals created by splitting. We get four kinds:
1777   // - Remainder intervals should not be split again.
1778   // - Candidate intervals can be assigned to Cand.PhysReg.
1779   // - Block-local splits are candidates for local splitting.
1780   // - DCE leftovers should go back on the queue.
1781   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1782     LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1783 
1784     // Ignore old intervals from DCE.
1785     if (getStage(Reg) != RS_New)
1786       continue;
1787 
1788     // Remainder interval. Don't try splitting again, spill if it doesn't
1789     // allocate.
1790     if (IntvMap[i] == 0) {
1791       setStage(Reg, RS_Spill);
1792       continue;
1793     }
1794 
1795     // Global intervals. Allow repeated splitting as long as the number of live
1796     // blocks is strictly decreasing.
1797     if (IntvMap[i] < NumGlobalIntvs) {
1798       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1799         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1800                           << " blocks as original.\n");
1801         // Don't allow repeated splitting as a safe guard against looping.
1802         setStage(Reg, RS_Split2);
1803       }
1804       continue;
1805     }
1806 
1807     // Other intervals are treated as new. This includes local intervals created
1808     // for blocks with multiple uses, and anything created by DCE.
1809   }
1810 
1811   if (VerifyEnabled)
1812     MF->verify(this, "After splitting live range around region");
1813 }
1814 
1815 // Global split has high compile time cost especially for large live range.
1816 // Return false for the case here where the potential benefit will never
1817 // worth the cost.
1818 unsigned RAGreedy::isSplitBenefitWorthCost(LiveInterval &VirtReg) {
1819   MachineInstr *MI = MRI->getUniqueVRegDef(VirtReg.reg);
1820   if (MI && TII->isTriviallyReMaterializable(*MI, AA) &&
1821       VirtReg.size() > HugeSizeForSplit)
1822     return false;
1823   return true;
1824 }
1825 
1826 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1827                                   SmallVectorImpl<unsigned> &NewVRegs) {
1828   if (!isSplitBenefitWorthCost(VirtReg))
1829     return 0;
1830   unsigned NumCands = 0;
1831   BlockFrequency SpillCost = calcSpillCost();
1832   BlockFrequency BestCost;
1833 
1834   // Check if we can split this live range around a compact region.
1835   bool HasCompact = calcCompactRegion(GlobalCand.front());
1836   if (HasCompact) {
1837     // Yes, keep GlobalCand[0] as the compact region candidate.
1838     NumCands = 1;
1839     BestCost = BlockFrequency::getMaxFrequency();
1840   } else {
1841     // No benefit from the compact region, our fallback will be per-block
1842     // splitting. Make sure we find a solution that is cheaper than spilling.
1843     BestCost = SpillCost;
1844     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1845                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1846   }
1847 
1848   bool CanCauseEvictionChain = false;
1849   unsigned BestCand =
1850       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1851                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1852 
1853   // Split candidates with compact regions can cause a bad eviction sequence.
1854   // See splitCanCauseEvictionChain for detailed description of scenarios.
1855   // To avoid it, we need to comapre the cost with the spill cost and not the
1856   // current max frequency.
1857   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1858     CanCauseEvictionChain) {
1859     return 0;
1860   }
1861 
1862   // No solutions found, fall back to single block splitting.
1863   if (!HasCompact && BestCand == NoCand)
1864     return 0;
1865 
1866   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1867 }
1868 
1869 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1870                                             AllocationOrder &Order,
1871                                             BlockFrequency &BestCost,
1872                                             unsigned &NumCands, bool IgnoreCSR,
1873                                             bool *CanCauseEvictionChain) {
1874   unsigned BestCand = NoCand;
1875   Order.rewind();
1876   while (unsigned PhysReg = Order.next()) {
1877     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1878       continue;
1879 
1880     // Discard bad candidates before we run out of interference cache cursors.
1881     // This will only affect register classes with a lot of registers (>32).
1882     if (NumCands == IntfCache.getMaxCursors()) {
1883       unsigned WorstCount = ~0u;
1884       unsigned Worst = 0;
1885       for (unsigned i = 0; i != NumCands; ++i) {
1886         if (i == BestCand || !GlobalCand[i].PhysReg)
1887           continue;
1888         unsigned Count = GlobalCand[i].LiveBundles.count();
1889         if (Count < WorstCount) {
1890           Worst = i;
1891           WorstCount = Count;
1892         }
1893       }
1894       --NumCands;
1895       GlobalCand[Worst] = GlobalCand[NumCands];
1896       if (BestCand == NumCands)
1897         BestCand = Worst;
1898     }
1899 
1900     if (GlobalCand.size() <= NumCands)
1901       GlobalCand.resize(NumCands+1);
1902     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1903     Cand.reset(IntfCache, PhysReg);
1904 
1905     SpillPlacer->prepare(Cand.LiveBundles);
1906     BlockFrequency Cost;
1907     if (!addSplitConstraints(Cand.Intf, Cost)) {
1908       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1909       continue;
1910     }
1911     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1912                MBFI->printBlockFreq(dbgs(), Cost));
1913     if (Cost >= BestCost) {
1914       LLVM_DEBUG({
1915         if (BestCand == NoCand)
1916           dbgs() << " worse than no bundles\n";
1917         else
1918           dbgs() << " worse than "
1919                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1920       });
1921       continue;
1922     }
1923     if (!growRegion(Cand)) {
1924       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1925       continue;
1926     }
1927 
1928     SpillPlacer->finish();
1929 
1930     // No live bundles, defer to splitSingleBlocks().
1931     if (!Cand.LiveBundles.any()) {
1932       LLVM_DEBUG(dbgs() << " no bundles.\n");
1933       continue;
1934     }
1935 
1936     bool HasEvictionChain = false;
1937     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1938     LLVM_DEBUG({
1939       dbgs() << ", total = ";
1940       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1941       for (int i : Cand.LiveBundles.set_bits())
1942         dbgs() << " EB#" << i;
1943       dbgs() << ".\n";
1944     });
1945     if (Cost < BestCost) {
1946       BestCand = NumCands;
1947       BestCost = Cost;
1948       // See splitCanCauseEvictionChain for detailed description of bad
1949       // eviction chain scenarios.
1950       if (CanCauseEvictionChain)
1951         *CanCauseEvictionChain = HasEvictionChain;
1952     }
1953     ++NumCands;
1954   }
1955 
1956   if (CanCauseEvictionChain && BestCand != NoCand) {
1957     // See splitCanCauseEvictionChain for detailed description of bad
1958     // eviction chain scenarios.
1959     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1960                       << printReg(VirtReg.reg, TRI) << "  may ");
1961     if (!(*CanCauseEvictionChain))
1962       LLVM_DEBUG(dbgs() << "not ");
1963     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1964   }
1965 
1966   return BestCand;
1967 }
1968 
1969 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1970                                  bool HasCompact,
1971                                  SmallVectorImpl<unsigned> &NewVRegs) {
1972   SmallVector<unsigned, 8> UsedCands;
1973   // Prepare split editor.
1974   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1975   SE->reset(LREdit, SplitSpillMode);
1976 
1977   // Assign all edge bundles to the preferred candidate, or NoCand.
1978   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1979 
1980   // Assign bundles for the best candidate region.
1981   if (BestCand != NoCand) {
1982     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1983     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1984       UsedCands.push_back(BestCand);
1985       Cand.IntvIdx = SE->openIntv();
1986       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1987                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1988       (void)B;
1989     }
1990   }
1991 
1992   // Assign bundles for the compact region.
1993   if (HasCompact) {
1994     GlobalSplitCandidate &Cand = GlobalCand.front();
1995     assert(!Cand.PhysReg && "Compact region has no physreg");
1996     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1997       UsedCands.push_back(0);
1998       Cand.IntvIdx = SE->openIntv();
1999       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
2000                         << " bundles, intv " << Cand.IntvIdx << ".\n");
2001       (void)B;
2002     }
2003   }
2004 
2005   splitAroundRegion(LREdit, UsedCands);
2006   return 0;
2007 }
2008 
2009 //===----------------------------------------------------------------------===//
2010 //                            Per-Block Splitting
2011 //===----------------------------------------------------------------------===//
2012 
2013 /// tryBlockSplit - Split a global live range around every block with uses. This
2014 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2015 /// they don't allocate.
2016 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2017                                  SmallVectorImpl<unsigned> &NewVRegs) {
2018   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2019   unsigned Reg = VirtReg.reg;
2020   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2021   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2022   SE->reset(LREdit, SplitSpillMode);
2023   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2024   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
2025     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
2026     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2027       SE->splitSingleBlock(BI);
2028   }
2029   // No blocks were split.
2030   if (LREdit.empty())
2031     return 0;
2032 
2033   // We did split for some blocks.
2034   SmallVector<unsigned, 8> IntvMap;
2035   SE->finish(&IntvMap);
2036 
2037   // Tell LiveDebugVariables about the new ranges.
2038   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2039 
2040   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2041 
2042   // Sort out the new intervals created by splitting. The remainder interval
2043   // goes straight to spilling, the new local ranges get to stay RS_New.
2044   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
2045     LiveInterval &LI = LIS->getInterval(LREdit.get(i));
2046     if (getStage(LI) == RS_New && IntvMap[i] == 0)
2047       setStage(LI, RS_Spill);
2048   }
2049 
2050   if (VerifyEnabled)
2051     MF->verify(this, "After splitting live range around basic blocks");
2052   return 0;
2053 }
2054 
2055 //===----------------------------------------------------------------------===//
2056 //                         Per-Instruction Splitting
2057 //===----------------------------------------------------------------------===//
2058 
2059 /// Get the number of allocatable registers that match the constraints of \p Reg
2060 /// on \p MI and that are also in \p SuperRC.
2061 static unsigned getNumAllocatableRegsForConstraints(
2062     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
2063     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2064     const RegisterClassInfo &RCI) {
2065   assert(SuperRC && "Invalid register class");
2066 
2067   const TargetRegisterClass *ConstrainedRC =
2068       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2069                                              /* ExploreBundle */ true);
2070   if (!ConstrainedRC)
2071     return 0;
2072   return RCI.getNumAllocatableRegs(ConstrainedRC);
2073 }
2074 
2075 /// tryInstructionSplit - Split a live range around individual instructions.
2076 /// This is normally not worthwhile since the spiller is doing essentially the
2077 /// same thing. However, when the live range is in a constrained register
2078 /// class, it may help to insert copies such that parts of the live range can
2079 /// be moved to a larger register class.
2080 ///
2081 /// This is similar to spilling to a larger register class.
2082 unsigned
2083 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2084                               SmallVectorImpl<unsigned> &NewVRegs) {
2085   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2086   // There is no point to this if there are no larger sub-classes.
2087   if (!RegClassInfo.isProperSubClass(CurRC))
2088     return 0;
2089 
2090   // Always enable split spill mode, since we're effectively spilling to a
2091   // register.
2092   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2093   SE->reset(LREdit, SplitEditor::SM_Size);
2094 
2095   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2096   if (Uses.size() <= 1)
2097     return 0;
2098 
2099   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2100                     << " individual instrs.\n");
2101 
2102   const TargetRegisterClass *SuperRC =
2103       TRI->getLargestLegalSuperClass(CurRC, *MF);
2104   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2105   // Split around every non-copy instruction if this split will relax
2106   // the constraints on the virtual register.
2107   // Otherwise, splitting just inserts uncoalescable copies that do not help
2108   // the allocation.
2109   for (unsigned i = 0; i != Uses.size(); ++i) {
2110     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
2111       if (MI->isFullCopy() ||
2112           SuperRCNumAllocatableRegs ==
2113               getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
2114                                                   TRI, RCI)) {
2115         LLVM_DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
2116         continue;
2117       }
2118     SE->openIntv();
2119     SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
2120     SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
2121     SE->useIntv(SegStart, SegStop);
2122   }
2123 
2124   if (LREdit.empty()) {
2125     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2126     return 0;
2127   }
2128 
2129   SmallVector<unsigned, 8> IntvMap;
2130   SE->finish(&IntvMap);
2131   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2132   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2133 
2134   // Assign all new registers to RS_Spill. This was the last chance.
2135   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2136   return 0;
2137 }
2138 
2139 //===----------------------------------------------------------------------===//
2140 //                             Local Splitting
2141 //===----------------------------------------------------------------------===//
2142 
2143 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2144 /// in order to use PhysReg between two entries in SA->UseSlots.
2145 ///
2146 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
2147 ///
2148 void RAGreedy::calcGapWeights(unsigned PhysReg,
2149                               SmallVectorImpl<float> &GapWeight) {
2150   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2151   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2152   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2153   const unsigned NumGaps = Uses.size()-1;
2154 
2155   // Start and end points for the interference check.
2156   SlotIndex StartIdx =
2157     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2158   SlotIndex StopIdx =
2159     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2160 
2161   GapWeight.assign(NumGaps, 0.0f);
2162 
2163   // Add interference from each overlapping register.
2164   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2165     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2166           .checkInterference())
2167       continue;
2168 
2169     // We know that VirtReg is a continuous interval from FirstInstr to
2170     // LastInstr, so we don't need InterferenceQuery.
2171     //
2172     // Interference that overlaps an instruction is counted in both gaps
2173     // surrounding the instruction. The exception is interference before
2174     // StartIdx and after StopIdx.
2175     //
2176     LiveIntervalUnion::SegmentIter IntI =
2177       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2178     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2179       // Skip the gaps before IntI.
2180       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2181         if (++Gap == NumGaps)
2182           break;
2183       if (Gap == NumGaps)
2184         break;
2185 
2186       // Update the gaps covered by IntI.
2187       const float weight = IntI.value()->weight;
2188       for (; Gap != NumGaps; ++Gap) {
2189         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2190         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2191           break;
2192       }
2193       if (Gap == NumGaps)
2194         break;
2195     }
2196   }
2197 
2198   // Add fixed interference.
2199   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2200     const LiveRange &LR = LIS->getRegUnit(*Units);
2201     LiveRange::const_iterator I = LR.find(StartIdx);
2202     LiveRange::const_iterator E = LR.end();
2203 
2204     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2205     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2206       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2207         if (++Gap == NumGaps)
2208           break;
2209       if (Gap == NumGaps)
2210         break;
2211 
2212       for (; Gap != NumGaps; ++Gap) {
2213         GapWeight[Gap] = huge_valf;
2214         if (Uses[Gap+1].getBaseIndex() >= I->end)
2215           break;
2216       }
2217       if (Gap == NumGaps)
2218         break;
2219     }
2220   }
2221 }
2222 
2223 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2224 /// basic block.
2225 ///
2226 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2227                                  SmallVectorImpl<unsigned> &NewVRegs) {
2228   // TODO: the function currently only handles a single UseBlock; it should be
2229   // possible to generalize.
2230   if (SA->getUseBlocks().size() != 1)
2231     return 0;
2232 
2233   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2234 
2235   // Note that it is possible to have an interval that is live-in or live-out
2236   // while only covering a single block - A phi-def can use undef values from
2237   // predecessors, and the block could be a single-block loop.
2238   // We don't bother doing anything clever about such a case, we simply assume
2239   // that the interval is continuous from FirstInstr to LastInstr. We should
2240   // make sure that we don't do anything illegal to such an interval, though.
2241 
2242   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2243   if (Uses.size() <= 2)
2244     return 0;
2245   const unsigned NumGaps = Uses.size()-1;
2246 
2247   LLVM_DEBUG({
2248     dbgs() << "tryLocalSplit: ";
2249     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
2250       dbgs() << ' ' << Uses[i];
2251     dbgs() << '\n';
2252   });
2253 
2254   // If VirtReg is live across any register mask operands, compute a list of
2255   // gaps with register masks.
2256   SmallVector<unsigned, 8> RegMaskGaps;
2257   if (Matrix->checkRegMaskInterference(VirtReg)) {
2258     // Get regmask slots for the whole block.
2259     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2260     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2261     // Constrain to VirtReg's live range.
2262     unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
2263                                    Uses.front().getRegSlot()) - RMS.begin();
2264     unsigned re = RMS.size();
2265     for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
2266       // Look for Uses[i] <= RMS <= Uses[i+1].
2267       assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
2268       if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
2269         continue;
2270       // Skip a regmask on the same instruction as the last use. It doesn't
2271       // overlap the live range.
2272       if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
2273         break;
2274       LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-'
2275                         << Uses[i + 1]);
2276       RegMaskGaps.push_back(i);
2277       // Advance ri to the next gap. A regmask on one of the uses counts in
2278       // both gaps.
2279       while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
2280         ++ri;
2281     }
2282     LLVM_DEBUG(dbgs() << '\n');
2283   }
2284 
2285   // Since we allow local split results to be split again, there is a risk of
2286   // creating infinite loops. It is tempting to require that the new live
2287   // ranges have less instructions than the original. That would guarantee
2288   // convergence, but it is too strict. A live range with 3 instructions can be
2289   // split 2+3 (including the COPY), and we want to allow that.
2290   //
2291   // Instead we use these rules:
2292   //
2293   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2294   //    noop split, of course).
2295   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2296   //    the new ranges must have fewer instructions than before the split.
2297   // 3. New ranges with the same number of instructions are marked RS_Split2,
2298   //    smaller ranges are marked RS_New.
2299   //
2300   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2301   // excessive splitting and infinite loops.
2302   //
2303   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2304 
2305   // Best split candidate.
2306   unsigned BestBefore = NumGaps;
2307   unsigned BestAfter = 0;
2308   float BestDiff = 0;
2309 
2310   const float blockFreq =
2311     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2312     (1.0f / MBFI->getEntryFreq());
2313   SmallVector<float, 8> GapWeight;
2314 
2315   Order.rewind();
2316   while (unsigned PhysReg = Order.next()) {
2317     // Keep track of the largest spill weight that would need to be evicted in
2318     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
2319     calcGapWeights(PhysReg, GapWeight);
2320 
2321     // Remove any gaps with regmask clobbers.
2322     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2323       for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
2324         GapWeight[RegMaskGaps[i]] = huge_valf;
2325 
2326     // Try to find the best sequence of gaps to close.
2327     // The new spill weight must be larger than any gap interference.
2328 
2329     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2330     unsigned SplitBefore = 0, SplitAfter = 1;
2331 
2332     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2333     // It is the spill weight that needs to be evicted.
2334     float MaxGap = GapWeight[0];
2335 
2336     while (true) {
2337       // Live before/after split?
2338       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2339       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2340 
2341       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2342                         << '-' << Uses[SplitAfter] << " i=" << MaxGap);
2343 
2344       // Stop before the interval gets so big we wouldn't be making progress.
2345       if (!LiveBefore && !LiveAfter) {
2346         LLVM_DEBUG(dbgs() << " all\n");
2347         break;
2348       }
2349       // Should the interval be extended or shrunk?
2350       bool Shrink = true;
2351 
2352       // How many gaps would the new range have?
2353       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2354 
2355       // Legally, without causing looping?
2356       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2357 
2358       if (Legal && MaxGap < huge_valf) {
2359         // Estimate the new spill weight. Each instruction reads or writes the
2360         // register. Conservatively assume there are no read-modify-write
2361         // instructions.
2362         //
2363         // Try to guess the size of the new interval.
2364         const float EstWeight = normalizeSpillWeight(
2365             blockFreq * (NewGaps + 1),
2366             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2367                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2368             1);
2369         // Would this split be possible to allocate?
2370         // Never allocate all gaps, we wouldn't be making progress.
2371         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2372         if (EstWeight * Hysteresis >= MaxGap) {
2373           Shrink = false;
2374           float Diff = EstWeight - MaxGap;
2375           if (Diff > BestDiff) {
2376             LLVM_DEBUG(dbgs() << " (best)");
2377             BestDiff = Hysteresis * Diff;
2378             BestBefore = SplitBefore;
2379             BestAfter = SplitAfter;
2380           }
2381         }
2382       }
2383 
2384       // Try to shrink.
2385       if (Shrink) {
2386         if (++SplitBefore < SplitAfter) {
2387           LLVM_DEBUG(dbgs() << " shrink\n");
2388           // Recompute the max when necessary.
2389           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2390             MaxGap = GapWeight[SplitBefore];
2391             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
2392               MaxGap = std::max(MaxGap, GapWeight[i]);
2393           }
2394           continue;
2395         }
2396         MaxGap = 0;
2397       }
2398 
2399       // Try to extend the interval.
2400       if (SplitAfter >= NumGaps) {
2401         LLVM_DEBUG(dbgs() << " end\n");
2402         break;
2403       }
2404 
2405       LLVM_DEBUG(dbgs() << " extend\n");
2406       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2407     }
2408   }
2409 
2410   // Didn't find any candidates?
2411   if (BestBefore == NumGaps)
2412     return 0;
2413 
2414   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2415                     << Uses[BestAfter] << ", " << BestDiff << ", "
2416                     << (BestAfter - BestBefore + 1) << " instrs\n");
2417 
2418   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2419   SE->reset(LREdit);
2420 
2421   SE->openIntv();
2422   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2423   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2424   SE->useIntv(SegStart, SegStop);
2425   SmallVector<unsigned, 8> IntvMap;
2426   SE->finish(&IntvMap);
2427   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2428 
2429   // If the new range has the same number of instructions as before, mark it as
2430   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2431   // leave the new intervals as RS_New so they can compete.
2432   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2433   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2434   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2435   if (NewGaps >= NumGaps) {
2436     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2437     assert(!ProgressRequired && "Didn't make progress when it was required.");
2438     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
2439       if (IntvMap[i] == 1) {
2440         setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
2441         LLVM_DEBUG(dbgs() << printReg(LREdit.get(i)));
2442       }
2443     LLVM_DEBUG(dbgs() << '\n');
2444   }
2445   ++NumLocalSplits;
2446 
2447   return 0;
2448 }
2449 
2450 //===----------------------------------------------------------------------===//
2451 //                          Live Range Splitting
2452 //===----------------------------------------------------------------------===//
2453 
2454 /// trySplit - Try to split VirtReg or one of its interferences, making it
2455 /// assignable.
2456 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2457 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2458                             SmallVectorImpl<unsigned>&NewVRegs) {
2459   // Ranges must be Split2 or less.
2460   if (getStage(VirtReg) >= RS_Spill)
2461     return 0;
2462 
2463   // Local intervals are handled separately.
2464   if (LIS->intervalIsInOneMBB(VirtReg)) {
2465     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2466                        TimerGroupDescription, TimePassesIsEnabled);
2467     SA->analyze(&VirtReg);
2468     unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2469     if (PhysReg || !NewVRegs.empty())
2470       return PhysReg;
2471     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2472   }
2473 
2474   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2475                      TimerGroupDescription, TimePassesIsEnabled);
2476 
2477   SA->analyze(&VirtReg);
2478 
2479   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2480   // coalescer. That may cause the range to become allocatable which means that
2481   // tryRegionSplit won't be making progress. This check should be replaced with
2482   // an assertion when the coalescer is fixed.
2483   if (SA->didRepairRange()) {
2484     // VirtReg has changed, so all cached queries are invalid.
2485     Matrix->invalidateVirtRegs();
2486     if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
2487       return PhysReg;
2488   }
2489 
2490   // First try to split around a region spanning multiple blocks. RS_Split2
2491   // ranges already made dubious progress with region splitting, so they go
2492   // straight to single block splitting.
2493   if (getStage(VirtReg) < RS_Split2) {
2494     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2495     if (PhysReg || !NewVRegs.empty())
2496       return PhysReg;
2497   }
2498 
2499   // Then isolate blocks.
2500   return tryBlockSplit(VirtReg, Order, NewVRegs);
2501 }
2502 
2503 //===----------------------------------------------------------------------===//
2504 //                          Last Chance Recoloring
2505 //===----------------------------------------------------------------------===//
2506 
2507 /// Return true if \p reg has any tied def operand.
2508 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2509   for (const MachineOperand &MO : MRI->def_operands(reg))
2510     if (MO.isTied())
2511       return true;
2512 
2513   return false;
2514 }
2515 
2516 /// mayRecolorAllInterferences - Check if the virtual registers that
2517 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2518 /// recolored to free \p PhysReg.
2519 /// When true is returned, \p RecoloringCandidates has been augmented with all
2520 /// the live intervals that need to be recolored in order to free \p PhysReg
2521 /// for \p VirtReg.
2522 /// \p FixedRegisters contains all the virtual registers that cannot be
2523 /// recolored.
2524 bool
2525 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2526                                      SmallLISet &RecoloringCandidates,
2527                                      const SmallVirtRegSet &FixedRegisters) {
2528   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2529 
2530   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2531     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2532     // If there is LastChanceRecoloringMaxInterference or more interferences,
2533     // chances are one would not be recolorable.
2534     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2535         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2536       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2537       CutOffInfo |= CO_Interf;
2538       return false;
2539     }
2540     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2541       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2542       // If Intf is done and sit on the same register class as VirtReg,
2543       // it would not be recolorable as it is in the same state as VirtReg.
2544       // However, if VirtReg has tied defs and Intf doesn't, then
2545       // there is still a point in examining if it can be recolorable.
2546       if (((getStage(*Intf) == RS_Done &&
2547             MRI->getRegClass(Intf->reg) == CurRC) &&
2548            !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) ||
2549           FixedRegisters.count(Intf->reg)) {
2550         LLVM_DEBUG(
2551             dbgs() << "Early abort: the interference is not recolorable.\n");
2552         return false;
2553       }
2554       RecoloringCandidates.insert(Intf);
2555     }
2556   }
2557   return true;
2558 }
2559 
2560 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2561 /// its interferences.
2562 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2563 /// virtual register that was using it. The recoloring process may recursively
2564 /// use the last chance recoloring. Therefore, when a virtual register has been
2565 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2566 /// be last-chance-recolored again during this recoloring "session".
2567 /// E.g.,
2568 /// Let
2569 /// vA can use {R1, R2    }
2570 /// vB can use {    R2, R3}
2571 /// vC can use {R1        }
2572 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2573 /// instance) and they all interfere.
2574 ///
2575 /// vA is assigned R1
2576 /// vB is assigned R2
2577 /// vC tries to evict vA but vA is already done.
2578 /// Regular register allocation fails.
2579 ///
2580 /// Last chance recoloring kicks in:
2581 /// vC does as if vA was evicted => vC uses R1.
2582 /// vC is marked as fixed.
2583 /// vA needs to find a color.
2584 /// None are available.
2585 /// vA cannot evict vC: vC is a fixed virtual register now.
2586 /// vA does as if vB was evicted => vA uses R2.
2587 /// vB needs to find a color.
2588 /// R3 is available.
2589 /// Recoloring => vC = R1, vA = R2, vB = R3
2590 ///
2591 /// \p Order defines the preferred allocation order for \p VirtReg.
2592 /// \p NewRegs will contain any new virtual register that have been created
2593 /// (split, spill) during the process and that must be assigned.
2594 /// \p FixedRegisters contains all the virtual registers that cannot be
2595 /// recolored.
2596 /// \p Depth gives the current depth of the last chance recoloring.
2597 /// \return a physical register that can be used for VirtReg or ~0u if none
2598 /// exists.
2599 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2600                                            AllocationOrder &Order,
2601                                            SmallVectorImpl<unsigned> &NewVRegs,
2602                                            SmallVirtRegSet &FixedRegisters,
2603                                            unsigned Depth) {
2604   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2605   // Ranges must be Done.
2606   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2607          "Last chance recoloring should really be last chance");
2608   // Set the max depth to LastChanceRecoloringMaxDepth.
2609   // We may want to reconsider that if we end up with a too large search space
2610   // for target with hundreds of registers.
2611   // Indeed, in that case we may want to cut the search space earlier.
2612   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2613     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2614     CutOffInfo |= CO_Depth;
2615     return ~0u;
2616   }
2617 
2618   // Set of Live intervals that will need to be recolored.
2619   SmallLISet RecoloringCandidates;
2620   // Record the original mapping virtual register to physical register in case
2621   // the recoloring fails.
2622   DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2623   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2624   // this recoloring "session".
2625   assert(!FixedRegisters.count(VirtReg.reg));
2626   FixedRegisters.insert(VirtReg.reg);
2627   SmallVector<unsigned, 4> CurrentNewVRegs;
2628 
2629   Order.rewind();
2630   while (unsigned PhysReg = Order.next()) {
2631     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2632                       << printReg(PhysReg, TRI) << '\n');
2633     RecoloringCandidates.clear();
2634     VirtRegToPhysReg.clear();
2635     CurrentNewVRegs.clear();
2636 
2637     // It is only possible to recolor virtual register interference.
2638     if (Matrix->checkInterference(VirtReg, PhysReg) >
2639         LiveRegMatrix::IK_VirtReg) {
2640       LLVM_DEBUG(
2641           dbgs() << "Some interferences are not with virtual registers.\n");
2642 
2643       continue;
2644     }
2645 
2646     // Early give up on this PhysReg if it is obvious we cannot recolor all
2647     // the interferences.
2648     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2649                                     FixedRegisters)) {
2650       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2651       continue;
2652     }
2653 
2654     // RecoloringCandidates contains all the virtual registers that interfer
2655     // with VirtReg on PhysReg (or one of its aliases).
2656     // Enqueue them for recoloring and perform the actual recoloring.
2657     PQueue RecoloringQueue;
2658     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2659                               EndIt = RecoloringCandidates.end();
2660          It != EndIt; ++It) {
2661       unsigned ItVirtReg = (*It)->reg;
2662       enqueue(RecoloringQueue, *It);
2663       assert(VRM->hasPhys(ItVirtReg) &&
2664              "Interferences are supposed to be with allocated variables");
2665 
2666       // Record the current allocation.
2667       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2668       // unset the related struct.
2669       Matrix->unassign(**It);
2670     }
2671 
2672     // Do as if VirtReg was assigned to PhysReg so that the underlying
2673     // recoloring has the right information about the interferes and
2674     // available colors.
2675     Matrix->assign(VirtReg, PhysReg);
2676 
2677     // Save the current recoloring state.
2678     // If we cannot recolor all the interferences, we will have to start again
2679     // at this point for the next physical register.
2680     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2681     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2682                                 FixedRegisters, Depth)) {
2683       // Push the queued vregs into the main queue.
2684       for (unsigned NewVReg : CurrentNewVRegs)
2685         NewVRegs.push_back(NewVReg);
2686       // Do not mess up with the global assignment process.
2687       // I.e., VirtReg must be unassigned.
2688       Matrix->unassign(VirtReg);
2689       return PhysReg;
2690     }
2691 
2692     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2693                       << printReg(PhysReg, TRI) << '\n');
2694 
2695     // The recoloring attempt failed, undo the changes.
2696     FixedRegisters = SaveFixedRegisters;
2697     Matrix->unassign(VirtReg);
2698 
2699     // For a newly created vreg which is also in RecoloringCandidates,
2700     // don't add it to NewVRegs because its physical register will be restored
2701     // below. Other vregs in CurrentNewVRegs are created by calling
2702     // selectOrSplit and should be added into NewVRegs.
2703     for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(),
2704                                              End = CurrentNewVRegs.end();
2705          Next != End; ++Next) {
2706       if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2707         continue;
2708       NewVRegs.push_back(*Next);
2709     }
2710 
2711     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2712                               EndIt = RecoloringCandidates.end();
2713          It != EndIt; ++It) {
2714       unsigned ItVirtReg = (*It)->reg;
2715       if (VRM->hasPhys(ItVirtReg))
2716         Matrix->unassign(**It);
2717       unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2718       Matrix->assign(**It, ItPhysReg);
2719     }
2720   }
2721 
2722   // Last chance recoloring did not worked either, give up.
2723   return ~0u;
2724 }
2725 
2726 /// tryRecoloringCandidates - Try to assign a new color to every register
2727 /// in \RecoloringQueue.
2728 /// \p NewRegs will contain any new virtual register created during the
2729 /// recoloring process.
2730 /// \p FixedRegisters[in/out] contains all the registers that have been
2731 /// recolored.
2732 /// \return true if all virtual registers in RecoloringQueue were successfully
2733 /// recolored, false otherwise.
2734 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2735                                        SmallVectorImpl<unsigned> &NewVRegs,
2736                                        SmallVirtRegSet &FixedRegisters,
2737                                        unsigned Depth) {
2738   while (!RecoloringQueue.empty()) {
2739     LiveInterval *LI = dequeue(RecoloringQueue);
2740     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2741     unsigned PhysReg;
2742     PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2743     // When splitting happens, the live-range may actually be empty.
2744     // In that case, this is okay to continue the recoloring even
2745     // if we did not find an alternative color for it. Indeed,
2746     // there will not be anything to color for LI in the end.
2747     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2748       return false;
2749 
2750     if (!PhysReg) {
2751       assert(LI->empty() && "Only empty live-range do not require a register");
2752       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2753                         << " succeeded. Empty LI.\n");
2754       continue;
2755     }
2756     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2757                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2758 
2759     Matrix->assign(*LI, PhysReg);
2760     FixedRegisters.insert(LI->reg);
2761   }
2762   return true;
2763 }
2764 
2765 //===----------------------------------------------------------------------===//
2766 //                            Main Entry Point
2767 //===----------------------------------------------------------------------===//
2768 
2769 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2770                                  SmallVectorImpl<unsigned> &NewVRegs) {
2771   CutOffInfo = CO_None;
2772   LLVMContext &Ctx = MF->getFunction().getContext();
2773   SmallVirtRegSet FixedRegisters;
2774   unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2775   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2776     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2777     if (CutOffEncountered == CO_Depth)
2778       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2779                     "reached. Use -fexhaustive-register-search to skip "
2780                     "cutoffs");
2781     else if (CutOffEncountered == CO_Interf)
2782       Ctx.emitError("register allocation failed: maximum interference for "
2783                     "recoloring reached. Use -fexhaustive-register-search "
2784                     "to skip cutoffs");
2785     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2786       Ctx.emitError("register allocation failed: maximum interference and "
2787                     "depth for recoloring reached. Use "
2788                     "-fexhaustive-register-search to skip cutoffs");
2789   }
2790   return Reg;
2791 }
2792 
2793 /// Using a CSR for the first time has a cost because it causes push|pop
2794 /// to be added to prologue|epilogue. Splitting a cold section of the live
2795 /// range can have lower cost than using the CSR for the first time;
2796 /// Spilling a live range in the cold path can have lower cost than using
2797 /// the CSR for the first time. Returns the physical register if we decide
2798 /// to use the CSR; otherwise return 0.
2799 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2800                                          AllocationOrder &Order,
2801                                          unsigned PhysReg,
2802                                          unsigned &CostPerUseLimit,
2803                                          SmallVectorImpl<unsigned> &NewVRegs) {
2804   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2805     // We choose spill over using the CSR for the first time if the spill cost
2806     // is lower than CSRCost.
2807     SA->analyze(&VirtReg);
2808     if (calcSpillCost() >= CSRCost)
2809       return PhysReg;
2810 
2811     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2812     // we will not use a callee-saved register in tryEvict.
2813     CostPerUseLimit = 1;
2814     return 0;
2815   }
2816   if (getStage(VirtReg) < RS_Split) {
2817     // We choose pre-splitting over using the CSR for the first time if
2818     // the cost of splitting is lower than CSRCost.
2819     SA->analyze(&VirtReg);
2820     unsigned NumCands = 0;
2821     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2822     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2823                                                  NumCands, true /*IgnoreCSR*/);
2824     if (BestCand == NoCand)
2825       // Use the CSR if we can't find a region split below CSRCost.
2826       return PhysReg;
2827 
2828     // Perform the actual pre-splitting.
2829     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2830     return 0;
2831   }
2832   return PhysReg;
2833 }
2834 
2835 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2836   // Do not keep invalid information around.
2837   SetOfBrokenHints.remove(&LI);
2838 }
2839 
2840 void RAGreedy::initializeCSRCost() {
2841   // We use the larger one out of the command-line option and the value report
2842   // by TRI.
2843   CSRCost = BlockFrequency(
2844       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2845   if (!CSRCost.getFrequency())
2846     return;
2847 
2848   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2849   uint64_t ActualEntry = MBFI->getEntryFreq();
2850   if (!ActualEntry) {
2851     CSRCost = 0;
2852     return;
2853   }
2854   uint64_t FixedEntry = 1 << 14;
2855   if (ActualEntry < FixedEntry)
2856     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2857   else if (ActualEntry <= UINT32_MAX)
2858     // Invert the fraction and divide.
2859     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2860   else
2861     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2862     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2863 }
2864 
2865 /// Collect the hint info for \p Reg.
2866 /// The results are stored into \p Out.
2867 /// \p Out is not cleared before being populated.
2868 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2869   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2870     if (!Instr.isFullCopy())
2871       continue;
2872     // Look for the other end of the copy.
2873     unsigned OtherReg = Instr.getOperand(0).getReg();
2874     if (OtherReg == Reg) {
2875       OtherReg = Instr.getOperand(1).getReg();
2876       if (OtherReg == Reg)
2877         continue;
2878     }
2879     // Get the current assignment.
2880     unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
2881                                 ? OtherReg
2882                                 : VRM->getPhys(OtherReg);
2883     // Push the collected information.
2884     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2885                            OtherPhysReg));
2886   }
2887 }
2888 
2889 /// Using the given \p List, compute the cost of the broken hints if
2890 /// \p PhysReg was used.
2891 /// \return The cost of \p List for \p PhysReg.
2892 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2893                                            unsigned PhysReg) {
2894   BlockFrequency Cost = 0;
2895   for (const HintInfo &Info : List) {
2896     if (Info.PhysReg != PhysReg)
2897       Cost += Info.Freq;
2898   }
2899   return Cost;
2900 }
2901 
2902 /// Using the register assigned to \p VirtReg, try to recolor
2903 /// all the live ranges that are copy-related with \p VirtReg.
2904 /// The recoloring is then propagated to all the live-ranges that have
2905 /// been recolored and so on, until no more copies can be coalesced or
2906 /// it is not profitable.
2907 /// For a given live range, profitability is determined by the sum of the
2908 /// frequencies of the non-identity copies it would introduce with the old
2909 /// and new register.
2910 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2911   // We have a broken hint, check if it is possible to fix it by
2912   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2913   // some register and PhysReg may be available for the other live-ranges.
2914   SmallSet<unsigned, 4> Visited;
2915   SmallVector<unsigned, 2> RecoloringCandidates;
2916   HintsInfo Info;
2917   unsigned Reg = VirtReg.reg;
2918   unsigned PhysReg = VRM->getPhys(Reg);
2919   // Start the recoloring algorithm from the input live-interval, then
2920   // it will propagate to the ones that are copy-related with it.
2921   Visited.insert(Reg);
2922   RecoloringCandidates.push_back(Reg);
2923 
2924   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2925                     << '(' << printReg(PhysReg, TRI) << ")\n");
2926 
2927   do {
2928     Reg = RecoloringCandidates.pop_back_val();
2929 
2930     // We cannot recolor physical register.
2931     if (TargetRegisterInfo::isPhysicalRegister(Reg))
2932       continue;
2933 
2934     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2935 
2936     // Get the live interval mapped with this virtual register to be able
2937     // to check for the interference with the new color.
2938     LiveInterval &LI = LIS->getInterval(Reg);
2939     unsigned CurrPhys = VRM->getPhys(Reg);
2940     // Check that the new color matches the register class constraints and
2941     // that it is free for this live range.
2942     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2943                                 Matrix->checkInterference(LI, PhysReg)))
2944       continue;
2945 
2946     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2947                       << ") is recolorable.\n");
2948 
2949     // Gather the hint info.
2950     Info.clear();
2951     collectHintInfo(Reg, Info);
2952     // Check if recoloring the live-range will increase the cost of the
2953     // non-identity copies.
2954     if (CurrPhys != PhysReg) {
2955       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2956       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2957       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2958       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2959                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2960                         << '\n');
2961       if (OldCopiesCost < NewCopiesCost) {
2962         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2963         continue;
2964       }
2965       // At this point, the cost is either cheaper or equal. If it is
2966       // equal, we consider this is profitable because it may expose
2967       // more recoloring opportunities.
2968       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2969       // Recolor the live-range.
2970       Matrix->unassign(LI);
2971       Matrix->assign(LI, PhysReg);
2972     }
2973     // Push all copy-related live-ranges to keep reconciling the broken
2974     // hints.
2975     for (const HintInfo &HI : Info) {
2976       if (Visited.insert(HI.Reg).second)
2977         RecoloringCandidates.push_back(HI.Reg);
2978     }
2979   } while (!RecoloringCandidates.empty());
2980 }
2981 
2982 /// Try to recolor broken hints.
2983 /// Broken hints may be repaired by recoloring when an evicted variable
2984 /// freed up a register for a larger live-range.
2985 /// Consider the following example:
2986 /// BB1:
2987 ///   a =
2988 ///   b =
2989 /// BB2:
2990 ///   ...
2991 ///   = b
2992 ///   = a
2993 /// Let us assume b gets split:
2994 /// BB1:
2995 ///   a =
2996 ///   b =
2997 /// BB2:
2998 ///   c = b
2999 ///   ...
3000 ///   d = c
3001 ///   = d
3002 ///   = a
3003 /// Because of how the allocation work, b, c, and d may be assigned different
3004 /// colors. Now, if a gets evicted later:
3005 /// BB1:
3006 ///   a =
3007 ///   st a, SpillSlot
3008 ///   b =
3009 /// BB2:
3010 ///   c = b
3011 ///   ...
3012 ///   d = c
3013 ///   = d
3014 ///   e = ld SpillSlot
3015 ///   = e
3016 /// This is likely that we can assign the same register for b, c, and d,
3017 /// getting rid of 2 copies.
3018 void RAGreedy::tryHintsRecoloring() {
3019   for (LiveInterval *LI : SetOfBrokenHints) {
3020     assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
3021            "Recoloring is possible only for virtual registers");
3022     // Some dead defs may be around (e.g., because of debug uses).
3023     // Ignore those.
3024     if (!VRM->hasPhys(LI->reg))
3025       continue;
3026     tryHintRecoloring(*LI);
3027   }
3028 }
3029 
3030 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3031                                      SmallVectorImpl<unsigned> &NewVRegs,
3032                                      SmallVirtRegSet &FixedRegisters,
3033                                      unsigned Depth) {
3034   unsigned CostPerUseLimit = ~0u;
3035   // First try assigning a free register.
3036   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
3037   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
3038     // If VirtReg got an assignment, the eviction info is no longre relevant.
3039     LastEvicted.clearEvicteeInfo(VirtReg.reg);
3040     // When NewVRegs is not empty, we may have made decisions such as evicting
3041     // a virtual register, go with the earlier decisions and use the physical
3042     // register.
3043     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3044         NewVRegs.empty()) {
3045       unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3046                                               CostPerUseLimit, NewVRegs);
3047       if (CSRReg || !NewVRegs.empty())
3048         // Return now if we decide to use a CSR or create new vregs due to
3049         // pre-splitting.
3050         return CSRReg;
3051     } else
3052       return PhysReg;
3053   }
3054 
3055   LiveRangeStage Stage = getStage(VirtReg);
3056   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3057                     << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
3058 
3059   // Try to evict a less worthy live range, but only for ranges from the primary
3060   // queue. The RS_Split ranges already failed to do this, and they should not
3061   // get a second chance until they have been split.
3062   if (Stage != RS_Split)
3063     if (unsigned PhysReg =
3064             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3065                      FixedRegisters)) {
3066       unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
3067       // If VirtReg has a hint and that hint is broken record this
3068       // virtual register as a recoloring candidate for broken hint.
3069       // Indeed, since we evicted a variable in its neighborhood it is
3070       // likely we can at least partially recolor some of the
3071       // copy-related live-ranges.
3072       if (Hint && Hint != PhysReg)
3073         SetOfBrokenHints.insert(&VirtReg);
3074       // If VirtReg eviction someone, the eviction info for it as an evictee is
3075       // no longre relevant.
3076       LastEvicted.clearEvicteeInfo(VirtReg.reg);
3077       return PhysReg;
3078     }
3079 
3080   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3081 
3082   // The first time we see a live range, don't try to split or spill.
3083   // Wait until the second time, when all smaller ranges have been allocated.
3084   // This gives a better picture of the interference to split around.
3085   if (Stage < RS_Split) {
3086     setStage(VirtReg, RS_Split);
3087     LLVM_DEBUG(dbgs() << "wait for second round\n");
3088     NewVRegs.push_back(VirtReg.reg);
3089     return 0;
3090   }
3091 
3092   if (Stage < RS_Spill) {
3093     // Try splitting VirtReg or interferences.
3094     unsigned NewVRegSizeBefore = NewVRegs.size();
3095     unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
3096     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3097       // If VirtReg got split, the eviction info is no longre relevant.
3098       LastEvicted.clearEvicteeInfo(VirtReg.reg);
3099       return PhysReg;
3100     }
3101   }
3102 
3103   // If we couldn't allocate a register from spilling, there is probably some
3104   // invalid inline assembly. The base class will report it.
3105   if (Stage >= RS_Done || !VirtReg.isSpillable())
3106     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3107                                    Depth);
3108 
3109   // Finally spill VirtReg itself.
3110   if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
3111     // TODO: This is experimental and in particular, we do not model
3112     // the live range splitting done by spilling correctly.
3113     // We would need a deep integration with the spiller to do the
3114     // right thing here. Anyway, that is still good for early testing.
3115     setStage(VirtReg, RS_Memory);
3116     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3117     NewVRegs.push_back(VirtReg.reg);
3118   } else {
3119     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3120                        TimerGroupDescription, TimePassesIsEnabled);
3121     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3122     spiller().spill(LRE);
3123     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3124 
3125     if (VerifyEnabled)
3126       MF->verify(this, "After spilling");
3127   }
3128 
3129   // The live virtual register requesting allocation was spilled, so tell
3130   // the caller not to allocate anything during this round.
3131   return 0;
3132 }
3133 
3134 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3135                                             unsigned &FoldedReloads,
3136                                             unsigned &Spills,
3137                                             unsigned &FoldedSpills) {
3138   Reloads = 0;
3139   FoldedReloads = 0;
3140   Spills = 0;
3141   FoldedSpills = 0;
3142 
3143   // Sum up the spill and reloads in subloops.
3144   for (MachineLoop *SubLoop : *L) {
3145     unsigned SubReloads;
3146     unsigned SubFoldedReloads;
3147     unsigned SubSpills;
3148     unsigned SubFoldedSpills;
3149 
3150     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3151                                  SubSpills, SubFoldedSpills);
3152     Reloads += SubReloads;
3153     FoldedReloads += SubFoldedReloads;
3154     Spills += SubSpills;
3155     FoldedSpills += SubFoldedSpills;
3156   }
3157 
3158   const MachineFrameInfo &MFI = MF->getFrameInfo();
3159   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
3160   int FI;
3161 
3162   for (MachineBasicBlock *MBB : L->getBlocks())
3163     // Handle blocks that were not included in subloops.
3164     if (Loops->getLoopFor(MBB) == L)
3165       for (MachineInstr &MI : *MBB) {
3166         SmallVector<const MachineMemOperand *, 2> Accesses;
3167         auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3168           return MFI.isSpillSlotObjectIndex(
3169               cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3170                   ->getFrameIndex());
3171         };
3172 
3173         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3174           ++Reloads;
3175         else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3176                  llvm::any_of(Accesses, isSpillSlotAccess))
3177           ++FoldedReloads;
3178         else if (TII->isStoreToStackSlot(MI, FI) &&
3179                  MFI.isSpillSlotObjectIndex(FI))
3180           ++Spills;
3181         else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3182                  llvm::any_of(Accesses, isSpillSlotAccess))
3183           ++FoldedSpills;
3184       }
3185 
3186   if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3187     using namespace ore;
3188 
3189     ORE->emit([&]() {
3190       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3191                                         L->getStartLoc(), L->getHeader());
3192       if (Spills)
3193         R << NV("NumSpills", Spills) << " spills ";
3194       if (FoldedSpills)
3195         R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3196       if (Reloads)
3197         R << NV("NumReloads", Reloads) << " reloads ";
3198       if (FoldedReloads)
3199         R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3200       R << "generated in loop";
3201       return R;
3202     });
3203   }
3204 }
3205 
3206 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3207   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3208                     << "********** Function: " << mf.getName() << '\n');
3209 
3210   MF = &mf;
3211   TRI = MF->getSubtarget().getRegisterInfo();
3212   TII = MF->getSubtarget().getInstrInfo();
3213   RCI.runOnMachineFunction(mf);
3214 
3215   EnableLocalReassign = EnableLocalReassignment ||
3216                         MF->getSubtarget().enableRALocalReassignment(
3217                             MF->getTarget().getOptLevel());
3218 
3219   EnableAdvancedRASplitCost = ConsiderLocalIntervalCost ||
3220                               MF->getSubtarget().enableAdvancedRASplitCost();
3221 
3222   if (VerifyEnabled)
3223     MF->verify(this, "Before greedy register allocator");
3224 
3225   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3226                      getAnalysis<LiveIntervals>(),
3227                      getAnalysis<LiveRegMatrix>());
3228   Indexes = &getAnalysis<SlotIndexes>();
3229   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3230   DomTree = &getAnalysis<MachineDominatorTree>();
3231   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3232   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3233   Loops = &getAnalysis<MachineLoopInfo>();
3234   Bundles = &getAnalysis<EdgeBundles>();
3235   SpillPlacer = &getAnalysis<SpillPlacement>();
3236   DebugVars = &getAnalysis<LiveDebugVariables>();
3237   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3238 
3239   initializeCSRCost();
3240 
3241   calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
3242 
3243   LLVM_DEBUG(LIS->dump());
3244 
3245   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3246   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3247   ExtraRegInfo.clear();
3248   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3249   NextCascade = 1;
3250   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3251   GlobalCand.resize(32);  // This will grow as needed.
3252   SetOfBrokenHints.clear();
3253   LastEvicted.clear();
3254 
3255   allocatePhysRegs();
3256   tryHintsRecoloring();
3257   postOptimization();
3258   reportNumberOfSplillsReloads();
3259 
3260   releaseMemory();
3261   return true;
3262 }
3263