1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RAGreedy function pass for register allocation in 11 // optimized builds. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "SpillPlacement.h" 20 #include "Spiller.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IndexedMap.h" 26 #include "llvm/ADT/MapVector.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/CodeGen/CalcSpillWeights.h" 36 #include "llvm/CodeGen/EdgeBundles.h" 37 #include "llvm/CodeGen/LiveInterval.h" 38 #include "llvm/CodeGen/LiveIntervalUnion.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveRangeEdit.h" 41 #include "llvm/CodeGen/LiveRegMatrix.h" 42 #include "llvm/CodeGen/LiveStacks.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 45 #include "llvm/CodeGen/MachineDominators.h" 46 #include "llvm/CodeGen/MachineFrameInfo.h" 47 #include "llvm/CodeGen/MachineFunction.h" 48 #include "llvm/CodeGen/MachineFunctionPass.h" 49 #include "llvm/CodeGen/MachineInstr.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RegAllocRegistry.h" 55 #include "llvm/CodeGen/RegisterClassInfo.h" 56 #include "llvm/CodeGen/SlotIndexes.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/VirtRegMap.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/MC/MCRegisterInfo.h" 64 #include "llvm/Pass.h" 65 #include "llvm/Support/BlockFrequency.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetMachine.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <memory> 77 #include <queue> 78 #include <tuple> 79 #include <utility> 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "regalloc" 84 85 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 86 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 87 STATISTIC(NumEvicted, "Number of interferences evicted"); 88 89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 90 "split-spill-mode", cl::Hidden, 91 cl::desc("Spill mode for splitting live ranges"), 92 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 93 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 94 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 95 cl::init(SplitEditor::SM_Speed)); 96 97 static cl::opt<unsigned> 98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 99 cl::desc("Last chance recoloring max depth"), 100 cl::init(5)); 101 102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 103 "lcr-max-interf", cl::Hidden, 104 cl::desc("Last chance recoloring maximum number of considered" 105 " interference at a time"), 106 cl::init(8)); 107 108 static cl::opt<bool> ExhaustiveSearch( 109 "exhaustive-register-search", cl::NotHidden, 110 cl::desc("Exhaustive Search for registers bypassing the depth " 111 "and interference cutoffs of last chance recoloring"), 112 cl::Hidden); 113 114 static cl::opt<bool> EnableLocalReassignment( 115 "enable-local-reassign", cl::Hidden, 116 cl::desc("Local reassignment can yield better allocation decisions, but " 117 "may be compile time intensive"), 118 cl::init(false)); 119 120 static cl::opt<bool> EnableDeferredSpilling( 121 "enable-deferred-spilling", cl::Hidden, 122 cl::desc("Instead of spilling a variable right away, defer the actual " 123 "code insertion to the end of the allocation. That way the " 124 "allocator might still find a suitable coloring for this " 125 "variable because of other evicted variables."), 126 cl::init(false)); 127 128 // FIXME: Find a good default for this flag and remove the flag. 129 static cl::opt<unsigned> 130 CSRFirstTimeCost("regalloc-csr-first-time-cost", 131 cl::desc("Cost for first time use of callee-saved register."), 132 cl::init(0), cl::Hidden); 133 134 static cl::opt<bool> ConsiderLocalIntervalCost( 135 "condsider-local-interval-cost", cl::Hidden, 136 cl::desc("Consider the cost of local intervals created by a split " 137 "candidate when choosing the best split candidate."), 138 cl::init(false)); 139 140 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 141 createGreedyRegisterAllocator); 142 143 namespace { 144 145 class RAGreedy : public MachineFunctionPass, 146 public RegAllocBase, 147 private LiveRangeEdit::Delegate { 148 // Convenient shortcuts. 149 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 150 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 151 using SmallVirtRegSet = SmallSet<unsigned, 16>; 152 153 // context 154 MachineFunction *MF; 155 156 // Shortcuts to some useful interface. 157 const TargetInstrInfo *TII; 158 const TargetRegisterInfo *TRI; 159 RegisterClassInfo RCI; 160 161 // analyses 162 SlotIndexes *Indexes; 163 MachineBlockFrequencyInfo *MBFI; 164 MachineDominatorTree *DomTree; 165 MachineLoopInfo *Loops; 166 MachineOptimizationRemarkEmitter *ORE; 167 EdgeBundles *Bundles; 168 SpillPlacement *SpillPlacer; 169 LiveDebugVariables *DebugVars; 170 AliasAnalysis *AA; 171 172 // state 173 std::unique_ptr<Spiller> SpillerInstance; 174 PQueue Queue; 175 unsigned NextCascade; 176 177 // Live ranges pass through a number of stages as we try to allocate them. 178 // Some of the stages may also create new live ranges: 179 // 180 // - Region splitting. 181 // - Per-block splitting. 182 // - Local splitting. 183 // - Spilling. 184 // 185 // Ranges produced by one of the stages skip the previous stages when they are 186 // dequeued. This improves performance because we can skip interference checks 187 // that are unlikely to give any results. It also guarantees that the live 188 // range splitting algorithm terminates, something that is otherwise hard to 189 // ensure. 190 enum LiveRangeStage { 191 /// Newly created live range that has never been queued. 192 RS_New, 193 194 /// Only attempt assignment and eviction. Then requeue as RS_Split. 195 RS_Assign, 196 197 /// Attempt live range splitting if assignment is impossible. 198 RS_Split, 199 200 /// Attempt more aggressive live range splitting that is guaranteed to make 201 /// progress. This is used for split products that may not be making 202 /// progress. 203 RS_Split2, 204 205 /// Live range will be spilled. No more splitting will be attempted. 206 RS_Spill, 207 208 209 /// Live range is in memory. Because of other evictions, it might get moved 210 /// in a register in the end. 211 RS_Memory, 212 213 /// There is nothing more we can do to this live range. Abort compilation 214 /// if it can't be assigned. 215 RS_Done 216 }; 217 218 // Enum CutOffStage to keep a track whether the register allocation failed 219 // because of the cutoffs encountered in last chance recoloring. 220 // Note: This is used as bitmask. New value should be next power of 2. 221 enum CutOffStage { 222 // No cutoffs encountered 223 CO_None = 0, 224 225 // lcr-max-depth cutoff encountered 226 CO_Depth = 1, 227 228 // lcr-max-interf cutoff encountered 229 CO_Interf = 2 230 }; 231 232 uint8_t CutOffInfo; 233 234 #ifndef NDEBUG 235 static const char *const StageName[]; 236 #endif 237 238 // RegInfo - Keep additional information about each live range. 239 struct RegInfo { 240 LiveRangeStage Stage = RS_New; 241 242 // Cascade - Eviction loop prevention. See canEvictInterference(). 243 unsigned Cascade = 0; 244 245 RegInfo() = default; 246 }; 247 248 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 249 250 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 251 return ExtraRegInfo[VirtReg.reg].Stage; 252 } 253 254 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 255 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 256 ExtraRegInfo[VirtReg.reg].Stage = Stage; 257 } 258 259 template<typename Iterator> 260 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 261 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 262 for (;Begin != End; ++Begin) { 263 unsigned Reg = *Begin; 264 if (ExtraRegInfo[Reg].Stage == RS_New) 265 ExtraRegInfo[Reg].Stage = NewStage; 266 } 267 } 268 269 /// Cost of evicting interference. 270 struct EvictionCost { 271 unsigned BrokenHints = 0; ///< Total number of broken hints. 272 float MaxWeight = 0; ///< Maximum spill weight evicted. 273 274 EvictionCost() = default; 275 276 bool isMax() const { return BrokenHints == ~0u; } 277 278 void setMax() { BrokenHints = ~0u; } 279 280 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 281 282 bool operator<(const EvictionCost &O) const { 283 return std::tie(BrokenHints, MaxWeight) < 284 std::tie(O.BrokenHints, O.MaxWeight); 285 } 286 }; 287 288 /// EvictionTrack - Keeps track of past evictions in order to optimize region 289 /// split decision. 290 class EvictionTrack { 291 292 public: 293 using EvictorInfo = 294 std::pair<unsigned /* evictor */, unsigned /* physreg */>; 295 using EvicteeInfo = llvm::MapVector<unsigned /* evictee */, EvictorInfo>; 296 297 private: 298 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 299 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 300 EvicteeInfo Evictees; 301 302 public: 303 /// \brief Clear all eviction information. 304 void clear() { Evictees.clear(); } 305 306 /// \brief Clear eviction information for the given evictee Vreg. 307 /// E.g. when Vreg get's a new allocation, the old eviction info is no 308 /// longer relevant. 309 /// \param Evictee The evictee Vreg for whom we want to clear collected 310 /// eviction info. 311 void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); } 312 313 /// \brief Track new eviction. 314 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 315 /// \praram PhysReg The phisical register Evictee was evicted from. 316 /// \praram Evictor The evictor Vreg that evicted Evictee. 317 /// \praram Evictee The evictee Vreg. 318 void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) { 319 Evictees[Evictee].first = Evictor; 320 Evictees[Evictee].second = PhysReg; 321 } 322 323 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 324 /// \praram Evictee The evictee vreg. 325 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 326 /// nobody has evicted Evictee from PhysReg. 327 EvictorInfo getEvictor(unsigned Evictee) { 328 if (Evictees.count(Evictee)) { 329 return Evictees[Evictee]; 330 } 331 332 return EvictorInfo(0, 0); 333 } 334 }; 335 336 // Keeps track of past evictions in order to optimize region split decision. 337 EvictionTrack LastEvicted; 338 339 // splitting state. 340 std::unique_ptr<SplitAnalysis> SA; 341 std::unique_ptr<SplitEditor> SE; 342 343 /// Cached per-block interference maps 344 InterferenceCache IntfCache; 345 346 /// All basic blocks where the current register has uses. 347 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 348 349 /// Global live range splitting candidate info. 350 struct GlobalSplitCandidate { 351 // Register intended for assignment, or 0. 352 unsigned PhysReg; 353 354 // SplitKit interval index for this candidate. 355 unsigned IntvIdx; 356 357 // Interference for PhysReg. 358 InterferenceCache::Cursor Intf; 359 360 // Bundles where this candidate should be live. 361 BitVector LiveBundles; 362 SmallVector<unsigned, 8> ActiveBlocks; 363 364 void reset(InterferenceCache &Cache, unsigned Reg) { 365 PhysReg = Reg; 366 IntvIdx = 0; 367 Intf.setPhysReg(Cache, Reg); 368 LiveBundles.clear(); 369 ActiveBlocks.clear(); 370 } 371 372 // Set B[i] = C for every live bundle where B[i] was NoCand. 373 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 374 unsigned Count = 0; 375 for (unsigned i : LiveBundles.set_bits()) 376 if (B[i] == NoCand) { 377 B[i] = C; 378 Count++; 379 } 380 return Count; 381 } 382 }; 383 384 /// Candidate info for each PhysReg in AllocationOrder. 385 /// This vector never shrinks, but grows to the size of the largest register 386 /// class. 387 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 388 389 enum : unsigned { NoCand = ~0u }; 390 391 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 392 /// NoCand which indicates the stack interval. 393 SmallVector<unsigned, 32> BundleCand; 394 395 /// Callee-save register cost, calculated once per machine function. 396 BlockFrequency CSRCost; 397 398 /// Run or not the local reassignment heuristic. This information is 399 /// obtained from the TargetSubtargetInfo. 400 bool EnableLocalReassign; 401 402 /// Enable or not the consideration of the cost of local intervals created 403 /// by a split candidate when choosing the best split candidate. 404 bool EnableAdvancedRASplitCost; 405 406 /// Set of broken hints that may be reconciled later because of eviction. 407 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 408 409 public: 410 RAGreedy(); 411 412 /// Return the pass name. 413 StringRef getPassName() const override { return "Greedy Register Allocator"; } 414 415 /// RAGreedy analysis usage. 416 void getAnalysisUsage(AnalysisUsage &AU) const override; 417 void releaseMemory() override; 418 Spiller &spiller() override { return *SpillerInstance; } 419 void enqueue(LiveInterval *LI) override; 420 LiveInterval *dequeue() override; 421 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; 422 void aboutToRemoveInterval(LiveInterval &) override; 423 424 /// Perform register allocation. 425 bool runOnMachineFunction(MachineFunction &mf) override; 426 427 MachineFunctionProperties getRequiredProperties() const override { 428 return MachineFunctionProperties().set( 429 MachineFunctionProperties::Property::NoPHIs); 430 } 431 432 static char ID; 433 434 private: 435 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, 436 SmallVirtRegSet &, unsigned = 0); 437 438 bool LRE_CanEraseVirtReg(unsigned) override; 439 void LRE_WillShrinkVirtReg(unsigned) override; 440 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 441 void enqueue(PQueue &CurQueue, LiveInterval *LI); 442 LiveInterval *dequeue(PQueue &CurQueue); 443 444 BlockFrequency calcSpillCost(); 445 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 446 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 447 void growRegion(GlobalSplitCandidate &Cand); 448 bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand, 449 unsigned BBNumber, 450 const AllocationOrder &Order); 451 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 452 GlobalSplitCandidate &Cand, unsigned BBNumber, 453 const AllocationOrder &Order); 454 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 455 const AllocationOrder &Order, 456 bool *CanCauseEvictionChain); 457 bool calcCompactRegion(GlobalSplitCandidate&); 458 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 459 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 460 unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg); 461 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 462 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&); 463 bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg, 464 SlotIndex Start, SlotIndex End, 465 EvictionCost &MaxCost); 466 unsigned getCheapestEvicteeWeight(const AllocationOrder &Order, 467 LiveInterval &VirtReg, SlotIndex Start, 468 SlotIndex End, float *BestEvictWeight); 469 void evictInterference(LiveInterval&, unsigned, 470 SmallVectorImpl<unsigned>&); 471 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 472 SmallLISet &RecoloringCandidates, 473 const SmallVirtRegSet &FixedRegisters); 474 475 unsigned tryAssign(LiveInterval&, AllocationOrder&, 476 SmallVectorImpl<unsigned>&); 477 unsigned tryEvict(LiveInterval&, AllocationOrder&, 478 SmallVectorImpl<unsigned>&, unsigned = ~0u); 479 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 480 SmallVectorImpl<unsigned>&); 481 /// Calculate cost of region splitting. 482 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 483 AllocationOrder &Order, 484 BlockFrequency &BestCost, 485 unsigned &NumCands, bool IgnoreCSR, 486 bool *CanCauseEvictionChain = nullptr); 487 /// Perform region splitting. 488 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 489 bool HasCompact, 490 SmallVectorImpl<unsigned> &NewVRegs); 491 /// Check other options before using a callee-saved register for the first 492 /// time. 493 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 494 unsigned PhysReg, unsigned &CostPerUseLimit, 495 SmallVectorImpl<unsigned> &NewVRegs); 496 void initializeCSRCost(); 497 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 498 SmallVectorImpl<unsigned>&); 499 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 500 SmallVectorImpl<unsigned>&); 501 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 502 SmallVectorImpl<unsigned>&); 503 unsigned trySplit(LiveInterval&, AllocationOrder&, 504 SmallVectorImpl<unsigned>&); 505 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 506 SmallVectorImpl<unsigned> &, 507 SmallVirtRegSet &, unsigned); 508 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, 509 SmallVirtRegSet &, unsigned); 510 void tryHintRecoloring(LiveInterval &); 511 void tryHintsRecoloring(); 512 513 /// Model the information carried by one end of a copy. 514 struct HintInfo { 515 /// The frequency of the copy. 516 BlockFrequency Freq; 517 /// The virtual register or physical register. 518 unsigned Reg; 519 /// Its currently assigned register. 520 /// In case of a physical register Reg == PhysReg. 521 unsigned PhysReg; 522 523 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) 524 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 525 }; 526 using HintsInfo = SmallVector<HintInfo, 4>; 527 528 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 529 void collectHintInfo(unsigned, HintsInfo &); 530 531 bool isUnusedCalleeSavedReg(unsigned PhysReg) const; 532 533 /// Compute and report the number of spills and reloads for a loop. 534 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 535 unsigned &FoldedReloads, unsigned &Spills, 536 unsigned &FoldedSpills); 537 538 /// Report the number of spills and reloads for each loop. 539 void reportNumberOfSplillsReloads() { 540 for (MachineLoop *L : *Loops) { 541 unsigned Reloads, FoldedReloads, Spills, FoldedSpills; 542 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills, 543 FoldedSpills); 544 } 545 } 546 }; 547 548 } // end anonymous namespace 549 550 char RAGreedy::ID = 0; 551 char &llvm::RAGreedyID = RAGreedy::ID; 552 553 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 554 "Greedy Register Allocator", false, false) 555 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 556 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 557 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 558 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 559 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 560 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 561 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 562 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 563 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 564 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 565 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 566 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 567 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 568 INITIALIZE_PASS_END(RAGreedy, "greedy", 569 "Greedy Register Allocator", false, false) 570 571 #ifndef NDEBUG 572 const char *const RAGreedy::StageName[] = { 573 "RS_New", 574 "RS_Assign", 575 "RS_Split", 576 "RS_Split2", 577 "RS_Spill", 578 "RS_Memory", 579 "RS_Done" 580 }; 581 #endif 582 583 // Hysteresis to use when comparing floats. 584 // This helps stabilize decisions based on float comparisons. 585 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 586 587 FunctionPass* llvm::createGreedyRegisterAllocator() { 588 return new RAGreedy(); 589 } 590 591 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 592 } 593 594 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 595 AU.setPreservesCFG(); 596 AU.addRequired<MachineBlockFrequencyInfo>(); 597 AU.addPreserved<MachineBlockFrequencyInfo>(); 598 AU.addRequired<AAResultsWrapperPass>(); 599 AU.addPreserved<AAResultsWrapperPass>(); 600 AU.addRequired<LiveIntervals>(); 601 AU.addPreserved<LiveIntervals>(); 602 AU.addRequired<SlotIndexes>(); 603 AU.addPreserved<SlotIndexes>(); 604 AU.addRequired<LiveDebugVariables>(); 605 AU.addPreserved<LiveDebugVariables>(); 606 AU.addRequired<LiveStacks>(); 607 AU.addPreserved<LiveStacks>(); 608 AU.addRequired<MachineDominatorTree>(); 609 AU.addPreserved<MachineDominatorTree>(); 610 AU.addRequired<MachineLoopInfo>(); 611 AU.addPreserved<MachineLoopInfo>(); 612 AU.addRequired<VirtRegMap>(); 613 AU.addPreserved<VirtRegMap>(); 614 AU.addRequired<LiveRegMatrix>(); 615 AU.addPreserved<LiveRegMatrix>(); 616 AU.addRequired<EdgeBundles>(); 617 AU.addRequired<SpillPlacement>(); 618 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 619 MachineFunctionPass::getAnalysisUsage(AU); 620 } 621 622 //===----------------------------------------------------------------------===// 623 // LiveRangeEdit delegate methods 624 //===----------------------------------------------------------------------===// 625 626 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 627 LiveInterval &LI = LIS->getInterval(VirtReg); 628 if (VRM->hasPhys(VirtReg)) { 629 Matrix->unassign(LI); 630 aboutToRemoveInterval(LI); 631 return true; 632 } 633 // Unassigned virtreg is probably in the priority queue. 634 // RegAllocBase will erase it after dequeueing. 635 // Nonetheless, clear the live-range so that the debug 636 // dump will show the right state for that VirtReg. 637 LI.clear(); 638 return false; 639 } 640 641 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 642 if (!VRM->hasPhys(VirtReg)) 643 return; 644 645 // Register is assigned, put it back on the queue for reassignment. 646 LiveInterval &LI = LIS->getInterval(VirtReg); 647 Matrix->unassign(LI); 648 enqueue(&LI); 649 } 650 651 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 652 // Cloning a register we haven't even heard about yet? Just ignore it. 653 if (!ExtraRegInfo.inBounds(Old)) 654 return; 655 656 // LRE may clone a virtual register because dead code elimination causes it to 657 // be split into connected components. The new components are much smaller 658 // than the original, so they should get a new chance at being assigned. 659 // same stage as the parent. 660 ExtraRegInfo[Old].Stage = RS_Assign; 661 ExtraRegInfo.grow(New); 662 ExtraRegInfo[New] = ExtraRegInfo[Old]; 663 } 664 665 void RAGreedy::releaseMemory() { 666 SpillerInstance.reset(); 667 ExtraRegInfo.clear(); 668 GlobalCand.clear(); 669 } 670 671 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 672 673 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 674 // Prioritize live ranges by size, assigning larger ranges first. 675 // The queue holds (size, reg) pairs. 676 const unsigned Size = LI->getSize(); 677 const unsigned Reg = LI->reg; 678 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 679 "Can only enqueue virtual registers"); 680 unsigned Prio; 681 682 ExtraRegInfo.grow(Reg); 683 if (ExtraRegInfo[Reg].Stage == RS_New) 684 ExtraRegInfo[Reg].Stage = RS_Assign; 685 686 if (ExtraRegInfo[Reg].Stage == RS_Split) { 687 // Unsplit ranges that couldn't be allocated immediately are deferred until 688 // everything else has been allocated. 689 Prio = Size; 690 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 691 // Memory operand should be considered last. 692 // Change the priority such that Memory operand are assigned in 693 // the reverse order that they came in. 694 // TODO: Make this a member variable and probably do something about hints. 695 static unsigned MemOp = 0; 696 Prio = MemOp++; 697 } else { 698 // Giant live ranges fall back to the global assignment heuristic, which 699 // prevents excessive spilling in pathological cases. 700 bool ReverseLocal = TRI->reverseLocalAssignment(); 701 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 702 bool ForceGlobal = !ReverseLocal && 703 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 704 705 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 706 LIS->intervalIsInOneMBB(*LI)) { 707 // Allocate original local ranges in linear instruction order. Since they 708 // are singly defined, this produces optimal coloring in the absence of 709 // global interference and other constraints. 710 if (!ReverseLocal) 711 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 712 else { 713 // Allocating bottom up may allow many short LRGs to be assigned first 714 // to one of the cheap registers. This could be much faster for very 715 // large blocks on targets with many physical registers. 716 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 717 } 718 Prio |= RC.AllocationPriority << 24; 719 } else { 720 // Allocate global and split ranges in long->short order. Long ranges that 721 // don't fit should be spilled (or split) ASAP so they don't create 722 // interference. Mark a bit to prioritize global above local ranges. 723 Prio = (1u << 29) + Size; 724 } 725 // Mark a higher bit to prioritize global and local above RS_Split. 726 Prio |= (1u << 31); 727 728 // Boost ranges that have a physical register hint. 729 if (VRM->hasKnownPreference(Reg)) 730 Prio |= (1u << 30); 731 } 732 // The virtual register number is a tie breaker for same-sized ranges. 733 // Give lower vreg numbers higher priority to assign them first. 734 CurQueue.push(std::make_pair(Prio, ~Reg)); 735 } 736 737 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 738 739 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 740 if (CurQueue.empty()) 741 return nullptr; 742 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 743 CurQueue.pop(); 744 return LI; 745 } 746 747 //===----------------------------------------------------------------------===// 748 // Direct Assignment 749 //===----------------------------------------------------------------------===// 750 751 /// tryAssign - Try to assign VirtReg to an available register. 752 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 753 AllocationOrder &Order, 754 SmallVectorImpl<unsigned> &NewVRegs) { 755 Order.rewind(); 756 unsigned PhysReg; 757 while ((PhysReg = Order.next())) 758 if (!Matrix->checkInterference(VirtReg, PhysReg)) 759 break; 760 if (!PhysReg || Order.isHint()) 761 return PhysReg; 762 763 // PhysReg is available, but there may be a better choice. 764 765 // If we missed a simple hint, try to cheaply evict interference from the 766 // preferred register. 767 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 768 if (Order.isHint(Hint)) { 769 DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n'); 770 EvictionCost MaxCost; 771 MaxCost.setBrokenHints(1); 772 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) { 773 evictInterference(VirtReg, Hint, NewVRegs); 774 return Hint; 775 } 776 // Record the missed hint, we may be able to recover 777 // at the end if the surrounding allocation changed. 778 SetOfBrokenHints.insert(&VirtReg); 779 } 780 781 // Try to evict interference from a cheaper alternative. 782 unsigned Cost = TRI->getCostPerUse(PhysReg); 783 784 // Most registers have 0 additional cost. 785 if (!Cost) 786 return PhysReg; 787 788 DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " << Cost 789 << '\n'); 790 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost); 791 return CheapReg ? CheapReg : PhysReg; 792 } 793 794 //===----------------------------------------------------------------------===// 795 // Interference eviction 796 //===----------------------------------------------------------------------===// 797 798 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { 799 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 800 unsigned PhysReg; 801 while ((PhysReg = Order.next())) { 802 if (PhysReg == PrevReg) 803 continue; 804 805 MCRegUnitIterator Units(PhysReg, TRI); 806 for (; Units.isValid(); ++Units) { 807 // Instantiate a "subquery", not to be confused with the Queries array. 808 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 809 if (subQ.checkInterference()) 810 break; 811 } 812 // If no units have interference, break out with the current PhysReg. 813 if (!Units.isValid()) 814 break; 815 } 816 if (PhysReg) 817 DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 818 << printReg(PrevReg, TRI) << " to " << printReg(PhysReg, TRI) 819 << '\n'); 820 return PhysReg; 821 } 822 823 /// shouldEvict - determine if A should evict the assigned live range B. The 824 /// eviction policy defined by this function together with the allocation order 825 /// defined by enqueue() decides which registers ultimately end up being split 826 /// and spilled. 827 /// 828 /// Cascade numbers are used to prevent infinite loops if this function is a 829 /// cyclic relation. 830 /// 831 /// @param A The live range to be assigned. 832 /// @param IsHint True when A is about to be assigned to its preferred 833 /// register. 834 /// @param B The live range to be evicted. 835 /// @param BreaksHint True when B is already assigned to its preferred register. 836 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 837 LiveInterval &B, bool BreaksHint) { 838 bool CanSplit = getStage(B) < RS_Spill; 839 840 // Be fairly aggressive about following hints as long as the evictee can be 841 // split. 842 if (CanSplit && IsHint && !BreaksHint) 843 return true; 844 845 if (A.weight > B.weight) { 846 DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); 847 return true; 848 } 849 return false; 850 } 851 852 /// canEvictInterference - Return true if all interferences between VirtReg and 853 /// PhysReg can be evicted. 854 /// 855 /// @param VirtReg Live range that is about to be assigned. 856 /// @param PhysReg Desired register for assignment. 857 /// @param IsHint True when PhysReg is VirtReg's preferred register. 858 /// @param MaxCost Only look for cheaper candidates and update with new cost 859 /// when returning true. 860 /// @returns True when interference can be evicted cheaper than MaxCost. 861 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 862 bool IsHint, EvictionCost &MaxCost) { 863 // It is only possible to evict virtual register interference. 864 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 865 return false; 866 867 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 868 869 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 870 // involved in an eviction before. If a cascade number was assigned, deny 871 // evicting anything with the same or a newer cascade number. This prevents 872 // infinite eviction loops. 873 // 874 // This works out so a register without a cascade number is allowed to evict 875 // anything, and it can be evicted by anything. 876 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 877 if (!Cascade) 878 Cascade = NextCascade; 879 880 EvictionCost Cost; 881 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 882 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 883 // If there is 10 or more interferences, chances are one is heavier. 884 if (Q.collectInterferingVRegs(10) >= 10) 885 return false; 886 887 // Check if any interfering live range is heavier than MaxWeight. 888 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 889 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 890 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) && 891 "Only expecting virtual register interference from query"); 892 // Never evict spill products. They cannot split or spill. 893 if (getStage(*Intf) == RS_Done) 894 return false; 895 // Once a live range becomes small enough, it is urgent that we find a 896 // register for it. This is indicated by an infinite spill weight. These 897 // urgent live ranges get to evict almost anything. 898 // 899 // Also allow urgent evictions of unspillable ranges from a strictly 900 // larger allocation order. 901 bool Urgent = !VirtReg.isSpillable() && 902 (Intf->isSpillable() || 903 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 904 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 905 // Only evict older cascades or live ranges without a cascade. 906 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 907 if (Cascade <= IntfCascade) { 908 if (!Urgent) 909 return false; 910 // We permit breaking cascades for urgent evictions. It should be the 911 // last resort, though, so make it really expensive. 912 Cost.BrokenHints += 10; 913 } 914 // Would this break a satisfied hint? 915 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 916 // Update eviction cost. 917 Cost.BrokenHints += BreaksHint; 918 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 919 // Abort if this would be too expensive. 920 if (!(Cost < MaxCost)) 921 return false; 922 if (Urgent) 923 continue; 924 // Apply the eviction policy for non-urgent evictions. 925 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 926 return false; 927 // If !MaxCost.isMax(), then we're just looking for a cheap register. 928 // Evicting another local live range in this case could lead to suboptimal 929 // coloring. 930 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 931 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 932 return false; 933 } 934 } 935 } 936 MaxCost = Cost; 937 return true; 938 } 939 940 /// \brief Return true if all interferences between VirtReg and PhysReg between 941 /// Start and End can be evicted. 942 /// 943 /// \param VirtReg Live range that is about to be assigned. 944 /// \param PhysReg Desired register for assignment. 945 /// \param Start Start of range to look for interferences. 946 /// \param End End of range to look for interferences. 947 /// \param MaxCost Only look for cheaper candidates and update with new cost 948 /// when returning true. 949 /// \return True when interference can be evicted cheaper than MaxCost. 950 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg, 951 unsigned PhysReg, SlotIndex Start, 952 SlotIndex End, 953 EvictionCost &MaxCost) { 954 EvictionCost Cost; 955 956 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 957 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 958 959 // Check if any interfering live range is heavier than MaxWeight. 960 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 961 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 962 963 // Check if interference overlast the segment in interest. 964 if (!Intf->overlaps(Start, End)) 965 continue; 966 967 // Cannot evict non virtual reg interference. 968 if (!TargetRegisterInfo::isVirtualRegister(Intf->reg)) 969 return false; 970 // Never evict spill products. They cannot split or spill. 971 if (getStage(*Intf) == RS_Done) 972 return false; 973 974 // Would this break a satisfied hint? 975 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 976 // Update eviction cost. 977 Cost.BrokenHints += BreaksHint; 978 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 979 // Abort if this would be too expensive. 980 if (!(Cost < MaxCost)) 981 return false; 982 } 983 } 984 985 if (Cost.MaxWeight == 0) 986 return false; 987 988 MaxCost = Cost; 989 return true; 990 } 991 992 /// \brief Return tthe physical register that will be best 993 /// candidate for eviction by a local split interval that will be created 994 /// between Start and End. 995 /// 996 /// \param Order The allocation order 997 /// \param VirtReg Live range that is about to be assigned. 998 /// \param Start Start of range to look for interferences 999 /// \param End End of range to look for interferences 1000 /// \param BestEvictweight The eviction cost of that eviction 1001 /// \return The PhysReg which is the best candidate for eviction and the 1002 /// eviction cost in BestEvictweight 1003 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1004 LiveInterval &VirtReg, 1005 SlotIndex Start, SlotIndex End, 1006 float *BestEvictweight) { 1007 EvictionCost BestEvictCost; 1008 BestEvictCost.setMax(); 1009 BestEvictCost.MaxWeight = VirtReg.weight; 1010 unsigned BestEvicteePhys = 0; 1011 1012 // Go over all physical registers and find the best candidate for eviction 1013 for (auto PhysReg : Order.getOrder()) { 1014 1015 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1016 BestEvictCost)) 1017 continue; 1018 1019 // Best so far. 1020 BestEvicteePhys = PhysReg; 1021 } 1022 *BestEvictweight = BestEvictCost.MaxWeight; 1023 return BestEvicteePhys; 1024 } 1025 1026 /// evictInterference - Evict any interferring registers that prevent VirtReg 1027 /// from being assigned to Physreg. This assumes that canEvictInterference 1028 /// returned true. 1029 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 1030 SmallVectorImpl<unsigned> &NewVRegs) { 1031 // Make sure that VirtReg has a cascade number, and assign that cascade 1032 // number to every evicted register. These live ranges than then only be 1033 // evicted by a newer cascade, preventing infinite loops. 1034 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 1035 if (!Cascade) 1036 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 1037 1038 DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1039 << " interference: Cascade " << Cascade << '\n'); 1040 1041 // Collect all interfering virtregs first. 1042 SmallVector<LiveInterval*, 8> Intfs; 1043 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1044 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1045 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1046 // should be fast, we may need to recalculate if when different physregs 1047 // overlap the same register unit so we had different SubRanges queried 1048 // against it. 1049 Q.collectInterferingVRegs(); 1050 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1051 Intfs.append(IVR.begin(), IVR.end()); 1052 } 1053 1054 // Evict them second. This will invalidate the queries. 1055 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 1056 LiveInterval *Intf = Intfs[i]; 1057 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1058 if (!VRM->hasPhys(Intf->reg)) 1059 continue; 1060 1061 LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg); 1062 1063 Matrix->unassign(*Intf); 1064 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 1065 VirtReg.isSpillable() < Intf->isSpillable()) && 1066 "Cannot decrease cascade number, illegal eviction"); 1067 ExtraRegInfo[Intf->reg].Cascade = Cascade; 1068 ++NumEvicted; 1069 NewVRegs.push_back(Intf->reg); 1070 } 1071 } 1072 1073 /// Returns true if the given \p PhysReg is a callee saved register and has not 1074 /// been used for allocation yet. 1075 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { 1076 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1077 if (CSR == 0) 1078 return false; 1079 1080 return !Matrix->isPhysRegUsed(PhysReg); 1081 } 1082 1083 /// tryEvict - Try to evict all interferences for a physreg. 1084 /// @param VirtReg Currently unassigned virtual register. 1085 /// @param Order Physregs to try. 1086 /// @return Physreg to assign VirtReg, or 0. 1087 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 1088 AllocationOrder &Order, 1089 SmallVectorImpl<unsigned> &NewVRegs, 1090 unsigned CostPerUseLimit) { 1091 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1092 TimePassesIsEnabled); 1093 1094 // Keep track of the cheapest interference seen so far. 1095 EvictionCost BestCost; 1096 BestCost.setMax(); 1097 unsigned BestPhys = 0; 1098 unsigned OrderLimit = Order.getOrder().size(); 1099 1100 // When we are just looking for a reduced cost per use, don't break any 1101 // hints, and only evict smaller spill weights. 1102 if (CostPerUseLimit < ~0u) { 1103 BestCost.BrokenHints = 0; 1104 BestCost.MaxWeight = VirtReg.weight; 1105 1106 // Check of any registers in RC are below CostPerUseLimit. 1107 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 1108 unsigned MinCost = RegClassInfo.getMinCost(RC); 1109 if (MinCost >= CostPerUseLimit) { 1110 DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost 1111 << ", no cheaper registers to be found.\n"); 1112 return 0; 1113 } 1114 1115 // It is normal for register classes to have a long tail of registers with 1116 // the same cost. We don't need to look at them if they're too expensive. 1117 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 1118 OrderLimit = RegClassInfo.getLastCostChange(RC); 1119 DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n"); 1120 } 1121 } 1122 1123 Order.rewind(); 1124 while (unsigned PhysReg = Order.next(OrderLimit)) { 1125 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 1126 continue; 1127 // The first use of a callee-saved register in a function has cost 1. 1128 // Don't start using a CSR when the CostPerUseLimit is low. 1129 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1130 DEBUG(dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1131 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1132 << '\n'); 1133 continue; 1134 } 1135 1136 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost)) 1137 continue; 1138 1139 // Best so far. 1140 BestPhys = PhysReg; 1141 1142 // Stop if the hint can be used. 1143 if (Order.isHint()) 1144 break; 1145 } 1146 1147 if (!BestPhys) 1148 return 0; 1149 1150 evictInterference(VirtReg, BestPhys, NewVRegs); 1151 return BestPhys; 1152 } 1153 1154 //===----------------------------------------------------------------------===// 1155 // Region Splitting 1156 //===----------------------------------------------------------------------===// 1157 1158 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1159 /// interference pattern in Physreg and its aliases. Add the constraints to 1160 /// SpillPlacement and return the static cost of this split in Cost, assuming 1161 /// that all preferences in SplitConstraints are met. 1162 /// Return false if there are no bundles with positive bias. 1163 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1164 BlockFrequency &Cost) { 1165 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1166 1167 // Reset interference dependent info. 1168 SplitConstraints.resize(UseBlocks.size()); 1169 BlockFrequency StaticCost = 0; 1170 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1171 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1172 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1173 1174 BC.Number = BI.MBB->getNumber(); 1175 Intf.moveToBlock(BC.Number); 1176 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1177 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1178 BC.ChangesValue = BI.FirstDef.isValid(); 1179 1180 if (!Intf.hasInterference()) 1181 continue; 1182 1183 // Number of spill code instructions to insert. 1184 unsigned Ins = 0; 1185 1186 // Interference for the live-in value. 1187 if (BI.LiveIn) { 1188 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1189 BC.Entry = SpillPlacement::MustSpill; 1190 ++Ins; 1191 } else if (Intf.first() < BI.FirstInstr) { 1192 BC.Entry = SpillPlacement::PrefSpill; 1193 ++Ins; 1194 } else if (Intf.first() < BI.LastInstr) { 1195 ++Ins; 1196 } 1197 } 1198 1199 // Interference for the live-out value. 1200 if (BI.LiveOut) { 1201 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1202 BC.Exit = SpillPlacement::MustSpill; 1203 ++Ins; 1204 } else if (Intf.last() > BI.LastInstr) { 1205 BC.Exit = SpillPlacement::PrefSpill; 1206 ++Ins; 1207 } else if (Intf.last() > BI.FirstInstr) { 1208 ++Ins; 1209 } 1210 } 1211 1212 // Accumulate the total frequency of inserted spill code. 1213 while (Ins--) 1214 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1215 } 1216 Cost = StaticCost; 1217 1218 // Add constraints for use-blocks. Note that these are the only constraints 1219 // that may add a positive bias, it is downhill from here. 1220 SpillPlacer->addConstraints(SplitConstraints); 1221 return SpillPlacer->scanActiveBundles(); 1222 } 1223 1224 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1225 /// live-through blocks in Blocks. 1226 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1227 ArrayRef<unsigned> Blocks) { 1228 const unsigned GroupSize = 8; 1229 SpillPlacement::BlockConstraint BCS[GroupSize]; 1230 unsigned TBS[GroupSize]; 1231 unsigned B = 0, T = 0; 1232 1233 for (unsigned i = 0; i != Blocks.size(); ++i) { 1234 unsigned Number = Blocks[i]; 1235 Intf.moveToBlock(Number); 1236 1237 if (!Intf.hasInterference()) { 1238 assert(T < GroupSize && "Array overflow"); 1239 TBS[T] = Number; 1240 if (++T == GroupSize) { 1241 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1242 T = 0; 1243 } 1244 continue; 1245 } 1246 1247 assert(B < GroupSize && "Array overflow"); 1248 BCS[B].Number = Number; 1249 1250 // Interference for the live-in value. 1251 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1252 BCS[B].Entry = SpillPlacement::MustSpill; 1253 else 1254 BCS[B].Entry = SpillPlacement::PrefSpill; 1255 1256 // Interference for the live-out value. 1257 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1258 BCS[B].Exit = SpillPlacement::MustSpill; 1259 else 1260 BCS[B].Exit = SpillPlacement::PrefSpill; 1261 1262 if (++B == GroupSize) { 1263 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1264 B = 0; 1265 } 1266 } 1267 1268 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1269 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1270 } 1271 1272 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1273 // Keep track of through blocks that have not been added to SpillPlacer. 1274 BitVector Todo = SA->getThroughBlocks(); 1275 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1276 unsigned AddedTo = 0; 1277 #ifndef NDEBUG 1278 unsigned Visited = 0; 1279 #endif 1280 1281 while (true) { 1282 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1283 // Find new through blocks in the periphery of PrefRegBundles. 1284 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1285 unsigned Bundle = NewBundles[i]; 1286 // Look at all blocks connected to Bundle in the full graph. 1287 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1288 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1289 I != E; ++I) { 1290 unsigned Block = *I; 1291 if (!Todo.test(Block)) 1292 continue; 1293 Todo.reset(Block); 1294 // This is a new through block. Add it to SpillPlacer later. 1295 ActiveBlocks.push_back(Block); 1296 #ifndef NDEBUG 1297 ++Visited; 1298 #endif 1299 } 1300 } 1301 // Any new blocks to add? 1302 if (ActiveBlocks.size() == AddedTo) 1303 break; 1304 1305 // Compute through constraints from the interference, or assume that all 1306 // through blocks prefer spilling when forming compact regions. 1307 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1308 if (Cand.PhysReg) 1309 addThroughConstraints(Cand.Intf, NewBlocks); 1310 else 1311 // Provide a strong negative bias on through blocks to prevent unwanted 1312 // liveness on loop backedges. 1313 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1314 AddedTo = ActiveBlocks.size(); 1315 1316 // Perhaps iterating can enable more bundles? 1317 SpillPlacer->iterate(); 1318 } 1319 DEBUG(dbgs() << ", v=" << Visited); 1320 } 1321 1322 /// calcCompactRegion - Compute the set of edge bundles that should be live 1323 /// when splitting the current live range into compact regions. Compact 1324 /// regions can be computed without looking at interference. They are the 1325 /// regions formed by removing all the live-through blocks from the live range. 1326 /// 1327 /// Returns false if the current live range is already compact, or if the 1328 /// compact regions would form single block regions anyway. 1329 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1330 // Without any through blocks, the live range is already compact. 1331 if (!SA->getNumThroughBlocks()) 1332 return false; 1333 1334 // Compact regions don't correspond to any physreg. 1335 Cand.reset(IntfCache, 0); 1336 1337 DEBUG(dbgs() << "Compact region bundles"); 1338 1339 // Use the spill placer to determine the live bundles. GrowRegion pretends 1340 // that all the through blocks have interference when PhysReg is unset. 1341 SpillPlacer->prepare(Cand.LiveBundles); 1342 1343 // The static split cost will be zero since Cand.Intf reports no interference. 1344 BlockFrequency Cost; 1345 if (!addSplitConstraints(Cand.Intf, Cost)) { 1346 DEBUG(dbgs() << ", none.\n"); 1347 return false; 1348 } 1349 1350 growRegion(Cand); 1351 SpillPlacer->finish(); 1352 1353 if (!Cand.LiveBundles.any()) { 1354 DEBUG(dbgs() << ", none.\n"); 1355 return false; 1356 } 1357 1358 DEBUG({ 1359 for (int i : Cand.LiveBundles.set_bits()) 1360 dbgs() << " EB#" << i; 1361 dbgs() << ".\n"; 1362 }); 1363 return true; 1364 } 1365 1366 /// calcSpillCost - Compute how expensive it would be to split the live range in 1367 /// SA around all use blocks instead of forming bundle regions. 1368 BlockFrequency RAGreedy::calcSpillCost() { 1369 BlockFrequency Cost = 0; 1370 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1371 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1372 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1373 unsigned Number = BI.MBB->getNumber(); 1374 // We normally only need one spill instruction - a load or a store. 1375 Cost += SpillPlacer->getBlockFrequency(Number); 1376 1377 // Unless the value is redefined in the block. 1378 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1379 Cost += SpillPlacer->getBlockFrequency(Number); 1380 } 1381 return Cost; 1382 } 1383 1384 /// \brief Check if splitting Evictee will create a local split interval in 1385 /// basic block number BBNumber that may cause a bad eviction chain. This is 1386 /// intended to prevent bad eviction sequences like: 1387 /// movl %ebp, 8(%esp) # 4-byte Spill 1388 /// movl %ecx, %ebp 1389 /// movl %ebx, %ecx 1390 /// movl %edi, %ebx 1391 /// movl %edx, %edi 1392 /// cltd 1393 /// idivl %esi 1394 /// movl %edi, %edx 1395 /// movl %ebx, %edi 1396 /// movl %ecx, %ebx 1397 /// movl %ebp, %ecx 1398 /// movl 16(%esp), %ebp # 4 - byte Reload 1399 /// 1400 /// Such sequences are created in 2 scenarios: 1401 /// 1402 /// Scenario #1: 1403 /// %0 is evicted from physreg0 by %1. 1404 /// Evictee %0 is intended for region splitting with split candidate 1405 /// physreg0 (the reg %0 was evicted from). 1406 /// Region splitting creates a local interval because of interference with the 1407 /// evictor %1 (normally region spliitting creates 2 interval, the "by reg" 1408 /// and "by stack" intervals and local interval created when interference 1409 /// occurs). 1410 /// One of the split intervals ends up evicting %2 from physreg1. 1411 /// Evictee %2 is intended for region splitting with split candidate 1412 /// physreg1. 1413 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1414 /// 1415 /// Scenario #2 1416 /// %0 is evicted from physreg0 by %1. 1417 /// %2 is evicted from physreg2 by %3 etc. 1418 /// Evictee %0 is intended for region splitting with split candidate 1419 /// physreg1. 1420 /// Region splitting creates a local interval because of interference with the 1421 /// evictor %1. 1422 /// One of the split intervals ends up evicting back original evictor %1 1423 /// from physreg0 (the reg %0 was evicted from). 1424 /// Another evictee %2 is intended for region splitting with split candidate 1425 /// physreg1. 1426 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1427 /// 1428 /// \param Evictee The register considered to be split. 1429 /// \param Cand The split candidate that determines the physical register 1430 /// we are splitting for and the interferences. 1431 /// \param BBNumber The number of a BB for which the region split process will 1432 /// create a local split interval. 1433 /// \param Order The physical registers that may get evicted by a split 1434 /// artifact of Evictee. 1435 /// \return True if splitting Evictee may cause a bad eviction chain, false 1436 /// otherwise. 1437 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee, 1438 GlobalSplitCandidate &Cand, 1439 unsigned BBNumber, 1440 const AllocationOrder &Order) { 1441 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1442 unsigned Evictor = VregEvictorInfo.first; 1443 unsigned PhysReg = VregEvictorInfo.second; 1444 1445 // No actual evictor. 1446 if (!Evictor || !PhysReg) 1447 return false; 1448 1449 float MaxWeight = 0; 1450 unsigned FutureEvictedPhysReg = 1451 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1452 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1453 1454 // The bad eviction chain occurs when either the split candidate is the 1455 // evicting reg or one of the split artifact will evict the evicting reg. 1456 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1457 return false; 1458 1459 Cand.Intf.moveToBlock(BBNumber); 1460 1461 // Check to see if the Evictor contains interference (with Evictee) in the 1462 // given BB. If so, this interference caused the eviction of Evictee from 1463 // PhysReg. This suggest that we will create a local interval during the 1464 // region split to avoid this interference This local interval may cause a bad 1465 // eviction chain. 1466 if (!LIS->hasInterval(Evictor)) 1467 return false; 1468 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1469 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1470 return false; 1471 1472 // Now, check to see if the local interval we will create is going to be 1473 // expensive enough to evict somebody If so, this may cause a bad eviction 1474 // chain. 1475 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); 1476 float splitArtifactWeight = 1477 VRAI.futureWeight(LIS->getInterval(Evictee), 1478 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1479 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1480 return false; 1481 1482 return true; 1483 } 1484 1485 /// \brief Check if splitting VirtRegToSplit will create a local split interval 1486 /// in basic block number BBNumber that may cause a spill. 1487 /// 1488 /// \param VirtRegToSplit The register considered to be split. 1489 /// \param Cand The split candidate that determines the physical 1490 /// register we are splitting for and the interferences. 1491 /// \param BBNumber The number of a BB for which the region split process 1492 /// will create a local split interval. 1493 /// \param Order The physical registers that may get evicted by a 1494 /// split artifact of VirtRegToSplit. 1495 /// \return True if splitting VirtRegToSplit may cause a spill, false 1496 /// otherwise. 1497 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1498 GlobalSplitCandidate &Cand, 1499 unsigned BBNumber, 1500 const AllocationOrder &Order) { 1501 Cand.Intf.moveToBlock(BBNumber); 1502 1503 // Check if the local interval will find a non interfereing assignment. 1504 for (auto PhysReg : Order.getOrder()) { 1505 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1506 Cand.Intf.last(), PhysReg)) 1507 return false; 1508 } 1509 1510 // Check if the local interval will evict a cheaper interval. 1511 float CheapestEvictWeight = 0; 1512 unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight( 1513 Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(), 1514 Cand.Intf.last(), &CheapestEvictWeight); 1515 1516 // Have we found an interval that can be evicted? 1517 if (FutureEvictedPhysReg) { 1518 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); 1519 float splitArtifactWeight = 1520 VRAI.futureWeight(LIS->getInterval(VirtRegToSplit), 1521 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1522 // Will the weight of the local interval be higher than the cheapest evictee 1523 // weight? If so it will evict it and will not cause a spill. 1524 if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight) 1525 return false; 1526 } 1527 1528 // The local interval is not able to find non interferening assignment and not 1529 // able to evict a less worthy interval, therfore, it can cause a spill. 1530 return true; 1531 } 1532 1533 /// calcGlobalSplitCost - Return the global split cost of following the split 1534 /// pattern in LiveBundles. This cost should be added to the local cost of the 1535 /// interference pattern in SplitConstraints. 1536 /// 1537 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1538 const AllocationOrder &Order, 1539 bool *CanCauseEvictionChain) { 1540 BlockFrequency GlobalCost = 0; 1541 const BitVector &LiveBundles = Cand.LiveBundles; 1542 unsigned VirtRegToSplit = SA->getParent().reg; 1543 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1544 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1545 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1546 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1547 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1548 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1549 unsigned Ins = 0; 1550 1551 Cand.Intf.moveToBlock(BC.Number); 1552 // Check wheather a local interval is going to be created during the region 1553 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1554 // is enabled. 1555 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1556 BI.LiveOut && RegIn && RegOut) { 1557 1558 if (CanCauseEvictionChain && 1559 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1560 // This interference causes our eviction from this assignment, we might 1561 // evict somebody else and eventually someone will spill, add that cost. 1562 // See splitCanCauseEvictionChain for detailed description of scenarios. 1563 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1564 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1565 1566 *CanCauseEvictionChain = true; 1567 1568 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1569 Order)) { 1570 // This interference causes local interval to spill, add that cost. 1571 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1572 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1573 } 1574 } 1575 1576 if (BI.LiveIn) 1577 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1578 if (BI.LiveOut) 1579 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1580 while (Ins--) 1581 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1582 } 1583 1584 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1585 unsigned Number = Cand.ActiveBlocks[i]; 1586 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1587 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1588 if (!RegIn && !RegOut) 1589 continue; 1590 if (RegIn && RegOut) { 1591 // We need double spill code if this block has interference. 1592 Cand.Intf.moveToBlock(Number); 1593 if (Cand.Intf.hasInterference()) { 1594 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1595 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1596 1597 // Check wheather a local interval is going to be created during the 1598 // region split. 1599 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1600 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1601 // This interference cause our eviction from this assignment, we might 1602 // evict somebody else, add that cost. 1603 // See splitCanCauseEvictionChain for detailed description of 1604 // scenarios. 1605 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1606 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1607 1608 *CanCauseEvictionChain = true; 1609 } 1610 } 1611 continue; 1612 } 1613 // live-in / stack-out or stack-in live-out. 1614 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1615 } 1616 return GlobalCost; 1617 } 1618 1619 /// splitAroundRegion - Split the current live range around the regions 1620 /// determined by BundleCand and GlobalCand. 1621 /// 1622 /// Before calling this function, GlobalCand and BundleCand must be initialized 1623 /// so each bundle is assigned to a valid candidate, or NoCand for the 1624 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1625 /// objects must be initialized for the current live range, and intervals 1626 /// created for the used candidates. 1627 /// 1628 /// @param LREdit The LiveRangeEdit object handling the current split. 1629 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1630 /// must appear in this list. 1631 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1632 ArrayRef<unsigned> UsedCands) { 1633 // These are the intervals created for new global ranges. We may create more 1634 // intervals for local ranges. 1635 const unsigned NumGlobalIntvs = LREdit.size(); 1636 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n"); 1637 assert(NumGlobalIntvs && "No global intervals configured"); 1638 1639 // Isolate even single instructions when dealing with a proper sub-class. 1640 // That guarantees register class inflation for the stack interval because it 1641 // is all copies. 1642 unsigned Reg = SA->getParent().reg; 1643 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1644 1645 // First handle all the blocks with uses. 1646 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1647 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1648 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1649 unsigned Number = BI.MBB->getNumber(); 1650 unsigned IntvIn = 0, IntvOut = 0; 1651 SlotIndex IntfIn, IntfOut; 1652 if (BI.LiveIn) { 1653 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1654 if (CandIn != NoCand) { 1655 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1656 IntvIn = Cand.IntvIdx; 1657 Cand.Intf.moveToBlock(Number); 1658 IntfIn = Cand.Intf.first(); 1659 } 1660 } 1661 if (BI.LiveOut) { 1662 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1663 if (CandOut != NoCand) { 1664 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1665 IntvOut = Cand.IntvIdx; 1666 Cand.Intf.moveToBlock(Number); 1667 IntfOut = Cand.Intf.last(); 1668 } 1669 } 1670 1671 // Create separate intervals for isolated blocks with multiple uses. 1672 if (!IntvIn && !IntvOut) { 1673 DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1674 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1675 SE->splitSingleBlock(BI); 1676 continue; 1677 } 1678 1679 if (IntvIn && IntvOut) 1680 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1681 else if (IntvIn) 1682 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1683 else 1684 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1685 } 1686 1687 // Handle live-through blocks. The relevant live-through blocks are stored in 1688 // the ActiveBlocks list with each candidate. We need to filter out 1689 // duplicates. 1690 BitVector Todo = SA->getThroughBlocks(); 1691 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1692 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1693 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1694 unsigned Number = Blocks[i]; 1695 if (!Todo.test(Number)) 1696 continue; 1697 Todo.reset(Number); 1698 1699 unsigned IntvIn = 0, IntvOut = 0; 1700 SlotIndex IntfIn, IntfOut; 1701 1702 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1703 if (CandIn != NoCand) { 1704 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1705 IntvIn = Cand.IntvIdx; 1706 Cand.Intf.moveToBlock(Number); 1707 IntfIn = Cand.Intf.first(); 1708 } 1709 1710 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1711 if (CandOut != NoCand) { 1712 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1713 IntvOut = Cand.IntvIdx; 1714 Cand.Intf.moveToBlock(Number); 1715 IntfOut = Cand.Intf.last(); 1716 } 1717 if (!IntvIn && !IntvOut) 1718 continue; 1719 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1720 } 1721 } 1722 1723 ++NumGlobalSplits; 1724 1725 SmallVector<unsigned, 8> IntvMap; 1726 SE->finish(&IntvMap); 1727 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1728 1729 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1730 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1731 1732 // Sort out the new intervals created by splitting. We get four kinds: 1733 // - Remainder intervals should not be split again. 1734 // - Candidate intervals can be assigned to Cand.PhysReg. 1735 // - Block-local splits are candidates for local splitting. 1736 // - DCE leftovers should go back on the queue. 1737 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1738 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1739 1740 // Ignore old intervals from DCE. 1741 if (getStage(Reg) != RS_New) 1742 continue; 1743 1744 // Remainder interval. Don't try splitting again, spill if it doesn't 1745 // allocate. 1746 if (IntvMap[i] == 0) { 1747 setStage(Reg, RS_Spill); 1748 continue; 1749 } 1750 1751 // Global intervals. Allow repeated splitting as long as the number of live 1752 // blocks is strictly decreasing. 1753 if (IntvMap[i] < NumGlobalIntvs) { 1754 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1755 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1756 << " blocks as original.\n"); 1757 // Don't allow repeated splitting as a safe guard against looping. 1758 setStage(Reg, RS_Split2); 1759 } 1760 continue; 1761 } 1762 1763 // Other intervals are treated as new. This includes local intervals created 1764 // for blocks with multiple uses, and anything created by DCE. 1765 } 1766 1767 if (VerifyEnabled) 1768 MF->verify(this, "After splitting live range around region"); 1769 } 1770 1771 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1772 SmallVectorImpl<unsigned> &NewVRegs) { 1773 unsigned NumCands = 0; 1774 BlockFrequency SpillCost = calcSpillCost(); 1775 BlockFrequency BestCost; 1776 1777 // Check if we can split this live range around a compact region. 1778 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1779 if (HasCompact) { 1780 // Yes, keep GlobalCand[0] as the compact region candidate. 1781 NumCands = 1; 1782 BestCost = BlockFrequency::getMaxFrequency(); 1783 } else { 1784 // No benefit from the compact region, our fallback will be per-block 1785 // splitting. Make sure we find a solution that is cheaper than spilling. 1786 BestCost = SpillCost; 1787 DEBUG(dbgs() << "Cost of isolating all blocks = "; 1788 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1789 } 1790 1791 bool CanCauseEvictionChain = false; 1792 unsigned BestCand = 1793 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1794 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1795 1796 // Split candidates with compact regions can cause a bad eviction sequence. 1797 // See splitCanCauseEvictionChain for detailed description of scenarios. 1798 // To avoid it, we need to comapre the cost with the spill cost and not the 1799 // current max frequency. 1800 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1801 CanCauseEvictionChain) { 1802 return 0; 1803 } 1804 1805 // No solutions found, fall back to single block splitting. 1806 if (!HasCompact && BestCand == NoCand) 1807 return 0; 1808 1809 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1810 } 1811 1812 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1813 AllocationOrder &Order, 1814 BlockFrequency &BestCost, 1815 unsigned &NumCands, bool IgnoreCSR, 1816 bool *CanCauseEvictionChain) { 1817 unsigned BestCand = NoCand; 1818 Order.rewind(); 1819 while (unsigned PhysReg = Order.next()) { 1820 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1821 continue; 1822 1823 // Discard bad candidates before we run out of interference cache cursors. 1824 // This will only affect register classes with a lot of registers (>32). 1825 if (NumCands == IntfCache.getMaxCursors()) { 1826 unsigned WorstCount = ~0u; 1827 unsigned Worst = 0; 1828 for (unsigned i = 0; i != NumCands; ++i) { 1829 if (i == BestCand || !GlobalCand[i].PhysReg) 1830 continue; 1831 unsigned Count = GlobalCand[i].LiveBundles.count(); 1832 if (Count < WorstCount) { 1833 Worst = i; 1834 WorstCount = Count; 1835 } 1836 } 1837 --NumCands; 1838 GlobalCand[Worst] = GlobalCand[NumCands]; 1839 if (BestCand == NumCands) 1840 BestCand = Worst; 1841 } 1842 1843 if (GlobalCand.size() <= NumCands) 1844 GlobalCand.resize(NumCands+1); 1845 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1846 Cand.reset(IntfCache, PhysReg); 1847 1848 SpillPlacer->prepare(Cand.LiveBundles); 1849 BlockFrequency Cost; 1850 if (!addSplitConstraints(Cand.Intf, Cost)) { 1851 DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1852 continue; 1853 } 1854 DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1855 MBFI->printBlockFreq(dbgs(), Cost)); 1856 if (Cost >= BestCost) { 1857 DEBUG({ 1858 if (BestCand == NoCand) 1859 dbgs() << " worse than no bundles\n"; 1860 else 1861 dbgs() << " worse than " 1862 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1863 }); 1864 continue; 1865 } 1866 growRegion(Cand); 1867 1868 SpillPlacer->finish(); 1869 1870 // No live bundles, defer to splitSingleBlocks(). 1871 if (!Cand.LiveBundles.any()) { 1872 DEBUG(dbgs() << " no bundles.\n"); 1873 continue; 1874 } 1875 1876 bool HasEvictionChain = false; 1877 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1878 DEBUG({ 1879 dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost) 1880 << " with bundles"; 1881 for (int i : Cand.LiveBundles.set_bits()) 1882 dbgs() << " EB#" << i; 1883 dbgs() << ".\n"; 1884 }); 1885 if (Cost < BestCost) { 1886 BestCand = NumCands; 1887 BestCost = Cost; 1888 // See splitCanCauseEvictionChain for detailed description of bad 1889 // eviction chain scenarios. 1890 if (CanCauseEvictionChain) 1891 *CanCauseEvictionChain = HasEvictionChain; 1892 } 1893 ++NumCands; 1894 } 1895 1896 if (CanCauseEvictionChain && BestCand != NoCand) { 1897 // See splitCanCauseEvictionChain for detailed description of bad 1898 // eviction chain scenarios. 1899 DEBUG(dbgs() << "Best split candidate of vreg " 1900 << printReg(VirtReg.reg, TRI) << " may "); 1901 if (!(*CanCauseEvictionChain)) 1902 DEBUG(dbgs() << "not "); 1903 DEBUG(dbgs() << "cause bad eviction chain\n"); 1904 } 1905 1906 return BestCand; 1907 } 1908 1909 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1910 bool HasCompact, 1911 SmallVectorImpl<unsigned> &NewVRegs) { 1912 SmallVector<unsigned, 8> UsedCands; 1913 // Prepare split editor. 1914 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1915 SE->reset(LREdit, SplitSpillMode); 1916 1917 // Assign all edge bundles to the preferred candidate, or NoCand. 1918 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1919 1920 // Assign bundles for the best candidate region. 1921 if (BestCand != NoCand) { 1922 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1923 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1924 UsedCands.push_back(BestCand); 1925 Cand.IntvIdx = SE->openIntv(); 1926 DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1927 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1928 (void)B; 1929 } 1930 } 1931 1932 // Assign bundles for the compact region. 1933 if (HasCompact) { 1934 GlobalSplitCandidate &Cand = GlobalCand.front(); 1935 assert(!Cand.PhysReg && "Compact region has no physreg"); 1936 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1937 UsedCands.push_back(0); 1938 Cand.IntvIdx = SE->openIntv(); 1939 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv " 1940 << Cand.IntvIdx << ".\n"); 1941 (void)B; 1942 } 1943 } 1944 1945 splitAroundRegion(LREdit, UsedCands); 1946 return 0; 1947 } 1948 1949 //===----------------------------------------------------------------------===// 1950 // Per-Block Splitting 1951 //===----------------------------------------------------------------------===// 1952 1953 /// tryBlockSplit - Split a global live range around every block with uses. This 1954 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1955 /// they don't allocate. 1956 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1957 SmallVectorImpl<unsigned> &NewVRegs) { 1958 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1959 unsigned Reg = VirtReg.reg; 1960 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1961 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1962 SE->reset(LREdit, SplitSpillMode); 1963 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1964 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1965 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1966 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1967 SE->splitSingleBlock(BI); 1968 } 1969 // No blocks were split. 1970 if (LREdit.empty()) 1971 return 0; 1972 1973 // We did split for some blocks. 1974 SmallVector<unsigned, 8> IntvMap; 1975 SE->finish(&IntvMap); 1976 1977 // Tell LiveDebugVariables about the new ranges. 1978 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1979 1980 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1981 1982 // Sort out the new intervals created by splitting. The remainder interval 1983 // goes straight to spilling, the new local ranges get to stay RS_New. 1984 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1985 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 1986 if (getStage(LI) == RS_New && IntvMap[i] == 0) 1987 setStage(LI, RS_Spill); 1988 } 1989 1990 if (VerifyEnabled) 1991 MF->verify(this, "After splitting live range around basic blocks"); 1992 return 0; 1993 } 1994 1995 //===----------------------------------------------------------------------===// 1996 // Per-Instruction Splitting 1997 //===----------------------------------------------------------------------===// 1998 1999 /// Get the number of allocatable registers that match the constraints of \p Reg 2000 /// on \p MI and that are also in \p SuperRC. 2001 static unsigned getNumAllocatableRegsForConstraints( 2002 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 2003 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2004 const RegisterClassInfo &RCI) { 2005 assert(SuperRC && "Invalid register class"); 2006 2007 const TargetRegisterClass *ConstrainedRC = 2008 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2009 /* ExploreBundle */ true); 2010 if (!ConstrainedRC) 2011 return 0; 2012 return RCI.getNumAllocatableRegs(ConstrainedRC); 2013 } 2014 2015 /// tryInstructionSplit - Split a live range around individual instructions. 2016 /// This is normally not worthwhile since the spiller is doing essentially the 2017 /// same thing. However, when the live range is in a constrained register 2018 /// class, it may help to insert copies such that parts of the live range can 2019 /// be moved to a larger register class. 2020 /// 2021 /// This is similar to spilling to a larger register class. 2022 unsigned 2023 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2024 SmallVectorImpl<unsigned> &NewVRegs) { 2025 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2026 // There is no point to this if there are no larger sub-classes. 2027 if (!RegClassInfo.isProperSubClass(CurRC)) 2028 return 0; 2029 2030 // Always enable split spill mode, since we're effectively spilling to a 2031 // register. 2032 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2033 SE->reset(LREdit, SplitEditor::SM_Size); 2034 2035 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2036 if (Uses.size() <= 1) 2037 return 0; 2038 2039 DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n"); 2040 2041 const TargetRegisterClass *SuperRC = 2042 TRI->getLargestLegalSuperClass(CurRC, *MF); 2043 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2044 // Split around every non-copy instruction if this split will relax 2045 // the constraints on the virtual register. 2046 // Otherwise, splitting just inserts uncoalescable copies that do not help 2047 // the allocation. 2048 for (unsigned i = 0; i != Uses.size(); ++i) { 2049 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 2050 if (MI->isFullCopy() || 2051 SuperRCNumAllocatableRegs == 2052 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, 2053 TRI, RCI)) { 2054 DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 2055 continue; 2056 } 2057 SE->openIntv(); 2058 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 2059 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 2060 SE->useIntv(SegStart, SegStop); 2061 } 2062 2063 if (LREdit.empty()) { 2064 DEBUG(dbgs() << "All uses were copies.\n"); 2065 return 0; 2066 } 2067 2068 SmallVector<unsigned, 8> IntvMap; 2069 SE->finish(&IntvMap); 2070 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 2071 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2072 2073 // Assign all new registers to RS_Spill. This was the last chance. 2074 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2075 return 0; 2076 } 2077 2078 //===----------------------------------------------------------------------===// 2079 // Local Splitting 2080 //===----------------------------------------------------------------------===// 2081 2082 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2083 /// in order to use PhysReg between two entries in SA->UseSlots. 2084 /// 2085 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 2086 /// 2087 void RAGreedy::calcGapWeights(unsigned PhysReg, 2088 SmallVectorImpl<float> &GapWeight) { 2089 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2090 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2091 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2092 const unsigned NumGaps = Uses.size()-1; 2093 2094 // Start and end points for the interference check. 2095 SlotIndex StartIdx = 2096 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2097 SlotIndex StopIdx = 2098 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2099 2100 GapWeight.assign(NumGaps, 0.0f); 2101 2102 // Add interference from each overlapping register. 2103 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2104 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2105 .checkInterference()) 2106 continue; 2107 2108 // We know that VirtReg is a continuous interval from FirstInstr to 2109 // LastInstr, so we don't need InterferenceQuery. 2110 // 2111 // Interference that overlaps an instruction is counted in both gaps 2112 // surrounding the instruction. The exception is interference before 2113 // StartIdx and after StopIdx. 2114 // 2115 LiveIntervalUnion::SegmentIter IntI = 2116 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2117 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2118 // Skip the gaps before IntI. 2119 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2120 if (++Gap == NumGaps) 2121 break; 2122 if (Gap == NumGaps) 2123 break; 2124 2125 // Update the gaps covered by IntI. 2126 const float weight = IntI.value()->weight; 2127 for (; Gap != NumGaps; ++Gap) { 2128 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2129 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2130 break; 2131 } 2132 if (Gap == NumGaps) 2133 break; 2134 } 2135 } 2136 2137 // Add fixed interference. 2138 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2139 const LiveRange &LR = LIS->getRegUnit(*Units); 2140 LiveRange::const_iterator I = LR.find(StartIdx); 2141 LiveRange::const_iterator E = LR.end(); 2142 2143 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2144 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2145 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2146 if (++Gap == NumGaps) 2147 break; 2148 if (Gap == NumGaps) 2149 break; 2150 2151 for (; Gap != NumGaps; ++Gap) { 2152 GapWeight[Gap] = huge_valf; 2153 if (Uses[Gap+1].getBaseIndex() >= I->end) 2154 break; 2155 } 2156 if (Gap == NumGaps) 2157 break; 2158 } 2159 } 2160 } 2161 2162 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2163 /// basic block. 2164 /// 2165 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2166 SmallVectorImpl<unsigned> &NewVRegs) { 2167 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2168 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2169 2170 // Note that it is possible to have an interval that is live-in or live-out 2171 // while only covering a single block - A phi-def can use undef values from 2172 // predecessors, and the block could be a single-block loop. 2173 // We don't bother doing anything clever about such a case, we simply assume 2174 // that the interval is continuous from FirstInstr to LastInstr. We should 2175 // make sure that we don't do anything illegal to such an interval, though. 2176 2177 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2178 if (Uses.size() <= 2) 2179 return 0; 2180 const unsigned NumGaps = Uses.size()-1; 2181 2182 DEBUG({ 2183 dbgs() << "tryLocalSplit: "; 2184 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 2185 dbgs() << ' ' << Uses[i]; 2186 dbgs() << '\n'; 2187 }); 2188 2189 // If VirtReg is live across any register mask operands, compute a list of 2190 // gaps with register masks. 2191 SmallVector<unsigned, 8> RegMaskGaps; 2192 if (Matrix->checkRegMaskInterference(VirtReg)) { 2193 // Get regmask slots for the whole block. 2194 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2195 DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2196 // Constrain to VirtReg's live range. 2197 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(), 2198 Uses.front().getRegSlot()) - RMS.begin(); 2199 unsigned re = RMS.size(); 2200 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 2201 // Look for Uses[i] <= RMS <= Uses[i+1]. 2202 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 2203 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 2204 continue; 2205 // Skip a regmask on the same instruction as the last use. It doesn't 2206 // overlap the live range. 2207 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 2208 break; 2209 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]); 2210 RegMaskGaps.push_back(i); 2211 // Advance ri to the next gap. A regmask on one of the uses counts in 2212 // both gaps. 2213 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 2214 ++ri; 2215 } 2216 DEBUG(dbgs() << '\n'); 2217 } 2218 2219 // Since we allow local split results to be split again, there is a risk of 2220 // creating infinite loops. It is tempting to require that the new live 2221 // ranges have less instructions than the original. That would guarantee 2222 // convergence, but it is too strict. A live range with 3 instructions can be 2223 // split 2+3 (including the COPY), and we want to allow that. 2224 // 2225 // Instead we use these rules: 2226 // 2227 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2228 // noop split, of course). 2229 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2230 // the new ranges must have fewer instructions than before the split. 2231 // 3. New ranges with the same number of instructions are marked RS_Split2, 2232 // smaller ranges are marked RS_New. 2233 // 2234 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2235 // excessive splitting and infinite loops. 2236 // 2237 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2238 2239 // Best split candidate. 2240 unsigned BestBefore = NumGaps; 2241 unsigned BestAfter = 0; 2242 float BestDiff = 0; 2243 2244 const float blockFreq = 2245 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2246 (1.0f / MBFI->getEntryFreq()); 2247 SmallVector<float, 8> GapWeight; 2248 2249 Order.rewind(); 2250 while (unsigned PhysReg = Order.next()) { 2251 // Keep track of the largest spill weight that would need to be evicted in 2252 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 2253 calcGapWeights(PhysReg, GapWeight); 2254 2255 // Remove any gaps with regmask clobbers. 2256 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2257 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 2258 GapWeight[RegMaskGaps[i]] = huge_valf; 2259 2260 // Try to find the best sequence of gaps to close. 2261 // The new spill weight must be larger than any gap interference. 2262 2263 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2264 unsigned SplitBefore = 0, SplitAfter = 1; 2265 2266 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2267 // It is the spill weight that needs to be evicted. 2268 float MaxGap = GapWeight[0]; 2269 2270 while (true) { 2271 // Live before/after split? 2272 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2273 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2274 2275 DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' 2276 << Uses[SplitBefore] << '-' << Uses[SplitAfter] 2277 << " i=" << MaxGap); 2278 2279 // Stop before the interval gets so big we wouldn't be making progress. 2280 if (!LiveBefore && !LiveAfter) { 2281 DEBUG(dbgs() << " all\n"); 2282 break; 2283 } 2284 // Should the interval be extended or shrunk? 2285 bool Shrink = true; 2286 2287 // How many gaps would the new range have? 2288 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2289 2290 // Legally, without causing looping? 2291 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2292 2293 if (Legal && MaxGap < huge_valf) { 2294 // Estimate the new spill weight. Each instruction reads or writes the 2295 // register. Conservatively assume there are no read-modify-write 2296 // instructions. 2297 // 2298 // Try to guess the size of the new interval. 2299 const float EstWeight = normalizeSpillWeight( 2300 blockFreq * (NewGaps + 1), 2301 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2302 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2303 1); 2304 // Would this split be possible to allocate? 2305 // Never allocate all gaps, we wouldn't be making progress. 2306 DEBUG(dbgs() << " w=" << EstWeight); 2307 if (EstWeight * Hysteresis >= MaxGap) { 2308 Shrink = false; 2309 float Diff = EstWeight - MaxGap; 2310 if (Diff > BestDiff) { 2311 DEBUG(dbgs() << " (best)"); 2312 BestDiff = Hysteresis * Diff; 2313 BestBefore = SplitBefore; 2314 BestAfter = SplitAfter; 2315 } 2316 } 2317 } 2318 2319 // Try to shrink. 2320 if (Shrink) { 2321 if (++SplitBefore < SplitAfter) { 2322 DEBUG(dbgs() << " shrink\n"); 2323 // Recompute the max when necessary. 2324 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2325 MaxGap = GapWeight[SplitBefore]; 2326 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 2327 MaxGap = std::max(MaxGap, GapWeight[i]); 2328 } 2329 continue; 2330 } 2331 MaxGap = 0; 2332 } 2333 2334 // Try to extend the interval. 2335 if (SplitAfter >= NumGaps) { 2336 DEBUG(dbgs() << " end\n"); 2337 break; 2338 } 2339 2340 DEBUG(dbgs() << " extend\n"); 2341 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2342 } 2343 } 2344 2345 // Didn't find any candidates? 2346 if (BestBefore == NumGaps) 2347 return 0; 2348 2349 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] 2350 << '-' << Uses[BestAfter] << ", " << BestDiff 2351 << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); 2352 2353 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2354 SE->reset(LREdit); 2355 2356 SE->openIntv(); 2357 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2358 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2359 SE->useIntv(SegStart, SegStop); 2360 SmallVector<unsigned, 8> IntvMap; 2361 SE->finish(&IntvMap); 2362 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 2363 2364 // If the new range has the same number of instructions as before, mark it as 2365 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2366 // leave the new intervals as RS_New so they can compete. 2367 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2368 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2369 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2370 if (NewGaps >= NumGaps) { 2371 DEBUG(dbgs() << "Tagging non-progress ranges: "); 2372 assert(!ProgressRequired && "Didn't make progress when it was required."); 2373 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 2374 if (IntvMap[i] == 1) { 2375 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 2376 DEBUG(dbgs() << printReg(LREdit.get(i))); 2377 } 2378 DEBUG(dbgs() << '\n'); 2379 } 2380 ++NumLocalSplits; 2381 2382 return 0; 2383 } 2384 2385 //===----------------------------------------------------------------------===// 2386 // Live Range Splitting 2387 //===----------------------------------------------------------------------===// 2388 2389 /// trySplit - Try to split VirtReg or one of its interferences, making it 2390 /// assignable. 2391 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2392 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2393 SmallVectorImpl<unsigned>&NewVRegs) { 2394 // Ranges must be Split2 or less. 2395 if (getStage(VirtReg) >= RS_Spill) 2396 return 0; 2397 2398 // Local intervals are handled separately. 2399 if (LIS->intervalIsInOneMBB(VirtReg)) { 2400 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2401 TimerGroupDescription, TimePassesIsEnabled); 2402 SA->analyze(&VirtReg); 2403 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2404 if (PhysReg || !NewVRegs.empty()) 2405 return PhysReg; 2406 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2407 } 2408 2409 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2410 TimerGroupDescription, TimePassesIsEnabled); 2411 2412 SA->analyze(&VirtReg); 2413 2414 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2415 // coalescer. That may cause the range to become allocatable which means that 2416 // tryRegionSplit won't be making progress. This check should be replaced with 2417 // an assertion when the coalescer is fixed. 2418 if (SA->didRepairRange()) { 2419 // VirtReg has changed, so all cached queries are invalid. 2420 Matrix->invalidateVirtRegs(); 2421 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) 2422 return PhysReg; 2423 } 2424 2425 // First try to split around a region spanning multiple blocks. RS_Split2 2426 // ranges already made dubious progress with region splitting, so they go 2427 // straight to single block splitting. 2428 if (getStage(VirtReg) < RS_Split2) { 2429 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2430 if (PhysReg || !NewVRegs.empty()) 2431 return PhysReg; 2432 } 2433 2434 // Then isolate blocks. 2435 return tryBlockSplit(VirtReg, Order, NewVRegs); 2436 } 2437 2438 //===----------------------------------------------------------------------===// 2439 // Last Chance Recoloring 2440 //===----------------------------------------------------------------------===// 2441 2442 /// Return true if \p reg has any tied def operand. 2443 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2444 for (const MachineOperand &MO : MRI->def_operands(reg)) 2445 if (MO.isTied()) 2446 return true; 2447 2448 return false; 2449 } 2450 2451 /// mayRecolorAllInterferences - Check if the virtual registers that 2452 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2453 /// recolored to free \p PhysReg. 2454 /// When true is returned, \p RecoloringCandidates has been augmented with all 2455 /// the live intervals that need to be recolored in order to free \p PhysReg 2456 /// for \p VirtReg. 2457 /// \p FixedRegisters contains all the virtual registers that cannot be 2458 /// recolored. 2459 bool 2460 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 2461 SmallLISet &RecoloringCandidates, 2462 const SmallVirtRegSet &FixedRegisters) { 2463 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2464 2465 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2466 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2467 // If there is LastChanceRecoloringMaxInterference or more interferences, 2468 // chances are one would not be recolorable. 2469 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2470 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2471 DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2472 CutOffInfo |= CO_Interf; 2473 return false; 2474 } 2475 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 2476 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 2477 // If Intf is done and sit on the same register class as VirtReg, 2478 // it would not be recolorable as it is in the same state as VirtReg. 2479 // However, if VirtReg has tied defs and Intf doesn't, then 2480 // there is still a point in examining if it can be recolorable. 2481 if (((getStage(*Intf) == RS_Done && 2482 MRI->getRegClass(Intf->reg) == CurRC) && 2483 !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) || 2484 FixedRegisters.count(Intf->reg)) { 2485 DEBUG(dbgs() << "Early abort: the interference is not recolorable.\n"); 2486 return false; 2487 } 2488 RecoloringCandidates.insert(Intf); 2489 } 2490 } 2491 return true; 2492 } 2493 2494 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2495 /// its interferences. 2496 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2497 /// virtual register that was using it. The recoloring process may recursively 2498 /// use the last chance recoloring. Therefore, when a virtual register has been 2499 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2500 /// be last-chance-recolored again during this recoloring "session". 2501 /// E.g., 2502 /// Let 2503 /// vA can use {R1, R2 } 2504 /// vB can use { R2, R3} 2505 /// vC can use {R1 } 2506 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2507 /// instance) and they all interfere. 2508 /// 2509 /// vA is assigned R1 2510 /// vB is assigned R2 2511 /// vC tries to evict vA but vA is already done. 2512 /// Regular register allocation fails. 2513 /// 2514 /// Last chance recoloring kicks in: 2515 /// vC does as if vA was evicted => vC uses R1. 2516 /// vC is marked as fixed. 2517 /// vA needs to find a color. 2518 /// None are available. 2519 /// vA cannot evict vC: vC is a fixed virtual register now. 2520 /// vA does as if vB was evicted => vA uses R2. 2521 /// vB needs to find a color. 2522 /// R3 is available. 2523 /// Recoloring => vC = R1, vA = R2, vB = R3 2524 /// 2525 /// \p Order defines the preferred allocation order for \p VirtReg. 2526 /// \p NewRegs will contain any new virtual register that have been created 2527 /// (split, spill) during the process and that must be assigned. 2528 /// \p FixedRegisters contains all the virtual registers that cannot be 2529 /// recolored. 2530 /// \p Depth gives the current depth of the last chance recoloring. 2531 /// \return a physical register that can be used for VirtReg or ~0u if none 2532 /// exists. 2533 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2534 AllocationOrder &Order, 2535 SmallVectorImpl<unsigned> &NewVRegs, 2536 SmallVirtRegSet &FixedRegisters, 2537 unsigned Depth) { 2538 DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2539 // Ranges must be Done. 2540 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2541 "Last chance recoloring should really be last chance"); 2542 // Set the max depth to LastChanceRecoloringMaxDepth. 2543 // We may want to reconsider that if we end up with a too large search space 2544 // for target with hundreds of registers. 2545 // Indeed, in that case we may want to cut the search space earlier. 2546 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2547 DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2548 CutOffInfo |= CO_Depth; 2549 return ~0u; 2550 } 2551 2552 // Set of Live intervals that will need to be recolored. 2553 SmallLISet RecoloringCandidates; 2554 // Record the original mapping virtual register to physical register in case 2555 // the recoloring fails. 2556 DenseMap<unsigned, unsigned> VirtRegToPhysReg; 2557 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2558 // this recoloring "session". 2559 FixedRegisters.insert(VirtReg.reg); 2560 SmallVector<unsigned, 4> CurrentNewVRegs; 2561 2562 Order.rewind(); 2563 while (unsigned PhysReg = Order.next()) { 2564 DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2565 << printReg(PhysReg, TRI) << '\n'); 2566 RecoloringCandidates.clear(); 2567 VirtRegToPhysReg.clear(); 2568 CurrentNewVRegs.clear(); 2569 2570 // It is only possible to recolor virtual register interference. 2571 if (Matrix->checkInterference(VirtReg, PhysReg) > 2572 LiveRegMatrix::IK_VirtReg) { 2573 DEBUG(dbgs() << "Some interferences are not with virtual registers.\n"); 2574 2575 continue; 2576 } 2577 2578 // Early give up on this PhysReg if it is obvious we cannot recolor all 2579 // the interferences. 2580 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2581 FixedRegisters)) { 2582 DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2583 continue; 2584 } 2585 2586 // RecoloringCandidates contains all the virtual registers that interfer 2587 // with VirtReg on PhysReg (or one of its aliases). 2588 // Enqueue them for recoloring and perform the actual recoloring. 2589 PQueue RecoloringQueue; 2590 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2591 EndIt = RecoloringCandidates.end(); 2592 It != EndIt; ++It) { 2593 unsigned ItVirtReg = (*It)->reg; 2594 enqueue(RecoloringQueue, *It); 2595 assert(VRM->hasPhys(ItVirtReg) && 2596 "Interferences are supposed to be with allocated vairables"); 2597 2598 // Record the current allocation. 2599 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2600 // unset the related struct. 2601 Matrix->unassign(**It); 2602 } 2603 2604 // Do as if VirtReg was assigned to PhysReg so that the underlying 2605 // recoloring has the right information about the interferes and 2606 // available colors. 2607 Matrix->assign(VirtReg, PhysReg); 2608 2609 // Save the current recoloring state. 2610 // If we cannot recolor all the interferences, we will have to start again 2611 // at this point for the next physical register. 2612 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2613 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2614 FixedRegisters, Depth)) { 2615 // Push the queued vregs into the main queue. 2616 for (unsigned NewVReg : CurrentNewVRegs) 2617 NewVRegs.push_back(NewVReg); 2618 // Do not mess up with the global assignment process. 2619 // I.e., VirtReg must be unassigned. 2620 Matrix->unassign(VirtReg); 2621 return PhysReg; 2622 } 2623 2624 DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2625 << printReg(PhysReg, TRI) << '\n'); 2626 2627 // The recoloring attempt failed, undo the changes. 2628 FixedRegisters = SaveFixedRegisters; 2629 Matrix->unassign(VirtReg); 2630 2631 // For a newly created vreg which is also in RecoloringCandidates, 2632 // don't add it to NewVRegs because its physical register will be restored 2633 // below. Other vregs in CurrentNewVRegs are created by calling 2634 // selectOrSplit and should be added into NewVRegs. 2635 for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(), 2636 End = CurrentNewVRegs.end(); 2637 Next != End; ++Next) { 2638 if (RecoloringCandidates.count(&LIS->getInterval(*Next))) 2639 continue; 2640 NewVRegs.push_back(*Next); 2641 } 2642 2643 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2644 EndIt = RecoloringCandidates.end(); 2645 It != EndIt; ++It) { 2646 unsigned ItVirtReg = (*It)->reg; 2647 if (VRM->hasPhys(ItVirtReg)) 2648 Matrix->unassign(**It); 2649 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2650 Matrix->assign(**It, ItPhysReg); 2651 } 2652 } 2653 2654 // Last chance recoloring did not worked either, give up. 2655 return ~0u; 2656 } 2657 2658 /// tryRecoloringCandidates - Try to assign a new color to every register 2659 /// in \RecoloringQueue. 2660 /// \p NewRegs will contain any new virtual register created during the 2661 /// recoloring process. 2662 /// \p FixedRegisters[in/out] contains all the registers that have been 2663 /// recolored. 2664 /// \return true if all virtual registers in RecoloringQueue were successfully 2665 /// recolored, false otherwise. 2666 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2667 SmallVectorImpl<unsigned> &NewVRegs, 2668 SmallVirtRegSet &FixedRegisters, 2669 unsigned Depth) { 2670 while (!RecoloringQueue.empty()) { 2671 LiveInterval *LI = dequeue(RecoloringQueue); 2672 DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2673 unsigned PhysReg; 2674 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2675 // When splitting happens, the live-range may actually be empty. 2676 // In that case, this is okay to continue the recoloring even 2677 // if we did not find an alternative color for it. Indeed, 2678 // there will not be anything to color for LI in the end. 2679 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2680 return false; 2681 2682 if (!PhysReg) { 2683 assert(LI->empty() && "Only empty live-range do not require a register"); 2684 DEBUG(dbgs() << "Recoloring of " << *LI << " succeeded. Empty LI.\n"); 2685 continue; 2686 } 2687 DEBUG(dbgs() << "Recoloring of " << *LI 2688 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2689 2690 Matrix->assign(*LI, PhysReg); 2691 FixedRegisters.insert(LI->reg); 2692 } 2693 return true; 2694 } 2695 2696 //===----------------------------------------------------------------------===// 2697 // Main Entry Point 2698 //===----------------------------------------------------------------------===// 2699 2700 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2701 SmallVectorImpl<unsigned> &NewVRegs) { 2702 CutOffInfo = CO_None; 2703 LLVMContext &Ctx = MF->getFunction().getContext(); 2704 SmallVirtRegSet FixedRegisters; 2705 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2706 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2707 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2708 if (CutOffEncountered == CO_Depth) 2709 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2710 "reached. Use -fexhaustive-register-search to skip " 2711 "cutoffs"); 2712 else if (CutOffEncountered == CO_Interf) 2713 Ctx.emitError("register allocation failed: maximum interference for " 2714 "recoloring reached. Use -fexhaustive-register-search " 2715 "to skip cutoffs"); 2716 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2717 Ctx.emitError("register allocation failed: maximum interference and " 2718 "depth for recoloring reached. Use " 2719 "-fexhaustive-register-search to skip cutoffs"); 2720 } 2721 return Reg; 2722 } 2723 2724 /// Using a CSR for the first time has a cost because it causes push|pop 2725 /// to be added to prologue|epilogue. Splitting a cold section of the live 2726 /// range can have lower cost than using the CSR for the first time; 2727 /// Spilling a live range in the cold path can have lower cost than using 2728 /// the CSR for the first time. Returns the physical register if we decide 2729 /// to use the CSR; otherwise return 0. 2730 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2731 AllocationOrder &Order, 2732 unsigned PhysReg, 2733 unsigned &CostPerUseLimit, 2734 SmallVectorImpl<unsigned> &NewVRegs) { 2735 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2736 // We choose spill over using the CSR for the first time if the spill cost 2737 // is lower than CSRCost. 2738 SA->analyze(&VirtReg); 2739 if (calcSpillCost() >= CSRCost) 2740 return PhysReg; 2741 2742 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2743 // we will not use a callee-saved register in tryEvict. 2744 CostPerUseLimit = 1; 2745 return 0; 2746 } 2747 if (getStage(VirtReg) < RS_Split) { 2748 // We choose pre-splitting over using the CSR for the first time if 2749 // the cost of splitting is lower than CSRCost. 2750 SA->analyze(&VirtReg); 2751 unsigned NumCands = 0; 2752 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2753 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2754 NumCands, true /*IgnoreCSR*/); 2755 if (BestCand == NoCand) 2756 // Use the CSR if we can't find a region split below CSRCost. 2757 return PhysReg; 2758 2759 // Perform the actual pre-splitting. 2760 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2761 return 0; 2762 } 2763 return PhysReg; 2764 } 2765 2766 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2767 // Do not keep invalid information around. 2768 SetOfBrokenHints.remove(&LI); 2769 } 2770 2771 void RAGreedy::initializeCSRCost() { 2772 // We use the larger one out of the command-line option and the value report 2773 // by TRI. 2774 CSRCost = BlockFrequency( 2775 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2776 if (!CSRCost.getFrequency()) 2777 return; 2778 2779 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2780 uint64_t ActualEntry = MBFI->getEntryFreq(); 2781 if (!ActualEntry) { 2782 CSRCost = 0; 2783 return; 2784 } 2785 uint64_t FixedEntry = 1 << 14; 2786 if (ActualEntry < FixedEntry) 2787 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2788 else if (ActualEntry <= UINT32_MAX) 2789 // Invert the fraction and divide. 2790 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2791 else 2792 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2793 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2794 } 2795 2796 /// \brief Collect the hint info for \p Reg. 2797 /// The results are stored into \p Out. 2798 /// \p Out is not cleared before being populated. 2799 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2800 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2801 if (!Instr.isFullCopy()) 2802 continue; 2803 // Look for the other end of the copy. 2804 unsigned OtherReg = Instr.getOperand(0).getReg(); 2805 if (OtherReg == Reg) { 2806 OtherReg = Instr.getOperand(1).getReg(); 2807 if (OtherReg == Reg) 2808 continue; 2809 } 2810 // Get the current assignment. 2811 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg) 2812 ? OtherReg 2813 : VRM->getPhys(OtherReg); 2814 // Push the collected information. 2815 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2816 OtherPhysReg)); 2817 } 2818 } 2819 2820 /// \brief Using the given \p List, compute the cost of the broken hints if 2821 /// \p PhysReg was used. 2822 /// \return The cost of \p List for \p PhysReg. 2823 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2824 unsigned PhysReg) { 2825 BlockFrequency Cost = 0; 2826 for (const HintInfo &Info : List) { 2827 if (Info.PhysReg != PhysReg) 2828 Cost += Info.Freq; 2829 } 2830 return Cost; 2831 } 2832 2833 /// \brief Using the register assigned to \p VirtReg, try to recolor 2834 /// all the live ranges that are copy-related with \p VirtReg. 2835 /// The recoloring is then propagated to all the live-ranges that have 2836 /// been recolored and so on, until no more copies can be coalesced or 2837 /// it is not profitable. 2838 /// For a given live range, profitability is determined by the sum of the 2839 /// frequencies of the non-identity copies it would introduce with the old 2840 /// and new register. 2841 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2842 // We have a broken hint, check if it is possible to fix it by 2843 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2844 // some register and PhysReg may be available for the other live-ranges. 2845 SmallSet<unsigned, 4> Visited; 2846 SmallVector<unsigned, 2> RecoloringCandidates; 2847 HintsInfo Info; 2848 unsigned Reg = VirtReg.reg; 2849 unsigned PhysReg = VRM->getPhys(Reg); 2850 // Start the recoloring algorithm from the input live-interval, then 2851 // it will propagate to the ones that are copy-related with it. 2852 Visited.insert(Reg); 2853 RecoloringCandidates.push_back(Reg); 2854 2855 DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) << '(' 2856 << printReg(PhysReg, TRI) << ")\n"); 2857 2858 do { 2859 Reg = RecoloringCandidates.pop_back_val(); 2860 2861 // We cannot recolor physical register. 2862 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 2863 continue; 2864 2865 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2866 2867 // Get the live interval mapped with this virtual register to be able 2868 // to check for the interference with the new color. 2869 LiveInterval &LI = LIS->getInterval(Reg); 2870 unsigned CurrPhys = VRM->getPhys(Reg); 2871 // Check that the new color matches the register class constraints and 2872 // that it is free for this live range. 2873 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2874 Matrix->checkInterference(LI, PhysReg))) 2875 continue; 2876 2877 DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2878 << ") is recolorable.\n"); 2879 2880 // Gather the hint info. 2881 Info.clear(); 2882 collectHintInfo(Reg, Info); 2883 // Check if recoloring the live-range will increase the cost of the 2884 // non-identity copies. 2885 if (CurrPhys != PhysReg) { 2886 DEBUG(dbgs() << "Checking profitability:\n"); 2887 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2888 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2889 DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2890 << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n'); 2891 if (OldCopiesCost < NewCopiesCost) { 2892 DEBUG(dbgs() << "=> Not profitable.\n"); 2893 continue; 2894 } 2895 // At this point, the cost is either cheaper or equal. If it is 2896 // equal, we consider this is profitable because it may expose 2897 // more recoloring opportunities. 2898 DEBUG(dbgs() << "=> Profitable.\n"); 2899 // Recolor the live-range. 2900 Matrix->unassign(LI); 2901 Matrix->assign(LI, PhysReg); 2902 } 2903 // Push all copy-related live-ranges to keep reconciling the broken 2904 // hints. 2905 for (const HintInfo &HI : Info) { 2906 if (Visited.insert(HI.Reg).second) 2907 RecoloringCandidates.push_back(HI.Reg); 2908 } 2909 } while (!RecoloringCandidates.empty()); 2910 } 2911 2912 /// \brief Try to recolor broken hints. 2913 /// Broken hints may be repaired by recoloring when an evicted variable 2914 /// freed up a register for a larger live-range. 2915 /// Consider the following example: 2916 /// BB1: 2917 /// a = 2918 /// b = 2919 /// BB2: 2920 /// ... 2921 /// = b 2922 /// = a 2923 /// Let us assume b gets split: 2924 /// BB1: 2925 /// a = 2926 /// b = 2927 /// BB2: 2928 /// c = b 2929 /// ... 2930 /// d = c 2931 /// = d 2932 /// = a 2933 /// Because of how the allocation work, b, c, and d may be assigned different 2934 /// colors. Now, if a gets evicted later: 2935 /// BB1: 2936 /// a = 2937 /// st a, SpillSlot 2938 /// b = 2939 /// BB2: 2940 /// c = b 2941 /// ... 2942 /// d = c 2943 /// = d 2944 /// e = ld SpillSlot 2945 /// = e 2946 /// This is likely that we can assign the same register for b, c, and d, 2947 /// getting rid of 2 copies. 2948 void RAGreedy::tryHintsRecoloring() { 2949 for (LiveInterval *LI : SetOfBrokenHints) { 2950 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) && 2951 "Recoloring is possible only for virtual registers"); 2952 // Some dead defs may be around (e.g., because of debug uses). 2953 // Ignore those. 2954 if (!VRM->hasPhys(LI->reg)) 2955 continue; 2956 tryHintRecoloring(*LI); 2957 } 2958 } 2959 2960 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 2961 SmallVectorImpl<unsigned> &NewVRegs, 2962 SmallVirtRegSet &FixedRegisters, 2963 unsigned Depth) { 2964 unsigned CostPerUseLimit = ~0u; 2965 // First try assigning a free register. 2966 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 2967 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) { 2968 // If VirtReg got an assignment, the eviction info is no longre relevant. 2969 LastEvicted.clearEvicteeInfo(VirtReg.reg); 2970 // When NewVRegs is not empty, we may have made decisions such as evicting 2971 // a virtual register, go with the earlier decisions and use the physical 2972 // register. 2973 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 2974 NewVRegs.empty()) { 2975 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2976 CostPerUseLimit, NewVRegs); 2977 if (CSRReg || !NewVRegs.empty()) 2978 // Return now if we decide to use a CSR or create new vregs due to 2979 // pre-splitting. 2980 return CSRReg; 2981 } else 2982 return PhysReg; 2983 } 2984 2985 LiveRangeStage Stage = getStage(VirtReg); 2986 DEBUG(dbgs() << StageName[Stage] 2987 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 2988 2989 // Try to evict a less worthy live range, but only for ranges from the primary 2990 // queue. The RS_Split ranges already failed to do this, and they should not 2991 // get a second chance until they have been split. 2992 if (Stage != RS_Split) 2993 if (unsigned PhysReg = 2994 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) { 2995 unsigned Hint = MRI->getSimpleHint(VirtReg.reg); 2996 // If VirtReg has a hint and that hint is broken record this 2997 // virtual register as a recoloring candidate for broken hint. 2998 // Indeed, since we evicted a variable in its neighborhood it is 2999 // likely we can at least partially recolor some of the 3000 // copy-related live-ranges. 3001 if (Hint && Hint != PhysReg) 3002 SetOfBrokenHints.insert(&VirtReg); 3003 // If VirtReg eviction someone, the eviction info for it as an evictee is 3004 // no longre relevant. 3005 LastEvicted.clearEvicteeInfo(VirtReg.reg); 3006 return PhysReg; 3007 } 3008 3009 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3010 3011 // The first time we see a live range, don't try to split or spill. 3012 // Wait until the second time, when all smaller ranges have been allocated. 3013 // This gives a better picture of the interference to split around. 3014 if (Stage < RS_Split) { 3015 setStage(VirtReg, RS_Split); 3016 DEBUG(dbgs() << "wait for second round\n"); 3017 NewVRegs.push_back(VirtReg.reg); 3018 return 0; 3019 } 3020 3021 if (Stage < RS_Spill) { 3022 // Try splitting VirtReg or interferences. 3023 unsigned NewVRegSizeBefore = NewVRegs.size(); 3024 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); 3025 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3026 // If VirtReg got split, the eviction info is no longre relevant. 3027 LastEvicted.clearEvicteeInfo(VirtReg.reg); 3028 return PhysReg; 3029 } 3030 } 3031 3032 // If we couldn't allocate a register from spilling, there is probably some 3033 // invalid inline assembly. The base class will report it. 3034 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3035 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3036 Depth); 3037 3038 // Finally spill VirtReg itself. 3039 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) { 3040 // TODO: This is experimental and in particular, we do not model 3041 // the live range splitting done by spilling correctly. 3042 // We would need a deep integration with the spiller to do the 3043 // right thing here. Anyway, that is still good for early testing. 3044 setStage(VirtReg, RS_Memory); 3045 DEBUG(dbgs() << "Do as if this register is in memory\n"); 3046 NewVRegs.push_back(VirtReg.reg); 3047 } else { 3048 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3049 TimerGroupDescription, TimePassesIsEnabled); 3050 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3051 spiller().spill(LRE); 3052 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3053 3054 if (VerifyEnabled) 3055 MF->verify(this, "After spilling"); 3056 } 3057 3058 // The live virtual register requesting allocation was spilled, so tell 3059 // the caller not to allocate anything during this round. 3060 return 0; 3061 } 3062 3063 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 3064 unsigned &FoldedReloads, 3065 unsigned &Spills, 3066 unsigned &FoldedSpills) { 3067 Reloads = 0; 3068 FoldedReloads = 0; 3069 Spills = 0; 3070 FoldedSpills = 0; 3071 3072 // Sum up the spill and reloads in subloops. 3073 for (MachineLoop *SubLoop : *L) { 3074 unsigned SubReloads; 3075 unsigned SubFoldedReloads; 3076 unsigned SubSpills; 3077 unsigned SubFoldedSpills; 3078 3079 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads, 3080 SubSpills, SubFoldedSpills); 3081 Reloads += SubReloads; 3082 FoldedReloads += SubFoldedReloads; 3083 Spills += SubSpills; 3084 FoldedSpills += SubFoldedSpills; 3085 } 3086 3087 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3088 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 3089 int FI; 3090 3091 for (MachineBasicBlock *MBB : L->getBlocks()) 3092 // Handle blocks that were not included in subloops. 3093 if (Loops->getLoopFor(MBB) == L) 3094 for (MachineInstr &MI : *MBB) { 3095 const MachineMemOperand *MMO; 3096 3097 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) 3098 ++Reloads; 3099 else if (TII->hasLoadFromStackSlot(MI, MMO, FI) && 3100 MFI.isSpillSlotObjectIndex(FI)) 3101 ++FoldedReloads; 3102 else if (TII->isStoreToStackSlot(MI, FI) && 3103 MFI.isSpillSlotObjectIndex(FI)) 3104 ++Spills; 3105 else if (TII->hasStoreToStackSlot(MI, MMO, FI) && 3106 MFI.isSpillSlotObjectIndex(FI)) 3107 ++FoldedSpills; 3108 } 3109 3110 if (Reloads || FoldedReloads || Spills || FoldedSpills) { 3111 using namespace ore; 3112 3113 ORE->emit([&]() { 3114 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", 3115 L->getStartLoc(), L->getHeader()); 3116 if (Spills) 3117 R << NV("NumSpills", Spills) << " spills "; 3118 if (FoldedSpills) 3119 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3120 if (Reloads) 3121 R << NV("NumReloads", Reloads) << " reloads "; 3122 if (FoldedReloads) 3123 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3124 R << "generated in loop"; 3125 return R; 3126 }); 3127 } 3128 } 3129 3130 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3131 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3132 << "********** Function: " << mf.getName() << '\n'); 3133 3134 MF = &mf; 3135 TRI = MF->getSubtarget().getRegisterInfo(); 3136 TII = MF->getSubtarget().getInstrInfo(); 3137 RCI.runOnMachineFunction(mf); 3138 3139 EnableLocalReassign = EnableLocalReassignment || 3140 MF->getSubtarget().enableRALocalReassignment( 3141 MF->getTarget().getOptLevel()); 3142 3143 EnableAdvancedRASplitCost = ConsiderLocalIntervalCost || 3144 MF->getSubtarget().enableAdvancedRASplitCost(); 3145 3146 if (VerifyEnabled) 3147 MF->verify(this, "Before greedy register allocator"); 3148 3149 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3150 getAnalysis<LiveIntervals>(), 3151 getAnalysis<LiveRegMatrix>()); 3152 Indexes = &getAnalysis<SlotIndexes>(); 3153 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3154 DomTree = &getAnalysis<MachineDominatorTree>(); 3155 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3156 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 3157 Loops = &getAnalysis<MachineLoopInfo>(); 3158 Bundles = &getAnalysis<EdgeBundles>(); 3159 SpillPlacer = &getAnalysis<SpillPlacement>(); 3160 DebugVars = &getAnalysis<LiveDebugVariables>(); 3161 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3162 3163 initializeCSRCost(); 3164 3165 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); 3166 3167 DEBUG(LIS->dump()); 3168 3169 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3170 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); 3171 ExtraRegInfo.clear(); 3172 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3173 NextCascade = 1; 3174 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3175 GlobalCand.resize(32); // This will grow as needed. 3176 SetOfBrokenHints.clear(); 3177 LastEvicted.clear(); 3178 3179 allocatePhysRegs(); 3180 tryHintsRecoloring(); 3181 postOptimization(); 3182 reportNumberOfSplillsReloads(); 3183 3184 releaseMemory(); 3185 return true; 3186 } 3187