1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "SplitKit.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <queue>
77 #include <tuple>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "regalloc"
83 
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
86 STATISTIC(NumEvicted,      "Number of interferences evicted");
87 
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89     "split-spill-mode", cl::Hidden,
90     cl::desc("Spill mode for splitting live ranges"),
91     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94     cl::init(SplitEditor::SM_Speed));
95 
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98                              cl::desc("Last chance recoloring max depth"),
99                              cl::init(5));
100 
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102     "lcr-max-interf", cl::Hidden,
103     cl::desc("Last chance recoloring maximum number of considered"
104              " interference at a time"),
105     cl::init(8));
106 
107 static cl::opt<bool> ExhaustiveSearch(
108     "exhaustive-register-search", cl::NotHidden,
109     cl::desc("Exhaustive Search for registers bypassing the depth "
110              "and interference cutoffs of last chance recoloring"),
111     cl::Hidden);
112 
113 static cl::opt<bool> EnableLocalReassignment(
114     "enable-local-reassign", cl::Hidden,
115     cl::desc("Local reassignment can yield better allocation decisions, but "
116              "may be compile time intensive"),
117     cl::init(false));
118 
119 static cl::opt<bool> EnableDeferredSpilling(
120     "enable-deferred-spilling", cl::Hidden,
121     cl::desc("Instead of spilling a variable right away, defer the actual "
122              "code insertion to the end of the allocation. That way the "
123              "allocator might still find a suitable coloring for this "
124              "variable because of other evicted variables."),
125     cl::init(false));
126 
127 // FIXME: Find a good default for this flag and remove the flag.
128 static cl::opt<unsigned>
129 CSRFirstTimeCost("regalloc-csr-first-time-cost",
130               cl::desc("Cost for first time use of callee-saved register."),
131               cl::init(0), cl::Hidden);
132 
133 static cl::opt<bool> ConsiderLocalIntervalCost(
134     "consider-local-interval-cost", cl::Hidden,
135     cl::desc("Consider the cost of local intervals created by a split "
136              "candidate when choosing the best split candidate."),
137     cl::init(false));
138 
139 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
140                                        createGreedyRegisterAllocator);
141 
142 namespace {
143 
144 class RAGreedy : public MachineFunctionPass,
145                  public RegAllocBase,
146                  private LiveRangeEdit::Delegate {
147   // Convenient shortcuts.
148   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
149   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
150   using SmallVirtRegSet = SmallSet<unsigned, 16>;
151 
152   // context
153   MachineFunction *MF;
154 
155   // Shortcuts to some useful interface.
156   const TargetInstrInfo *TII;
157   const TargetRegisterInfo *TRI;
158   RegisterClassInfo RCI;
159 
160   // analyses
161   SlotIndexes *Indexes;
162   MachineBlockFrequencyInfo *MBFI;
163   MachineDominatorTree *DomTree;
164   MachineLoopInfo *Loops;
165   MachineOptimizationRemarkEmitter *ORE;
166   EdgeBundles *Bundles;
167   SpillPlacement *SpillPlacer;
168   LiveDebugVariables *DebugVars;
169   AliasAnalysis *AA;
170 
171   // state
172   std::unique_ptr<Spiller> SpillerInstance;
173   PQueue Queue;
174   unsigned NextCascade;
175 
176   // Live ranges pass through a number of stages as we try to allocate them.
177   // Some of the stages may also create new live ranges:
178   //
179   // - Region splitting.
180   // - Per-block splitting.
181   // - Local splitting.
182   // - Spilling.
183   //
184   // Ranges produced by one of the stages skip the previous stages when they are
185   // dequeued. This improves performance because we can skip interference checks
186   // that are unlikely to give any results. It also guarantees that the live
187   // range splitting algorithm terminates, something that is otherwise hard to
188   // ensure.
189   enum LiveRangeStage {
190     /// Newly created live range that has never been queued.
191     RS_New,
192 
193     /// Only attempt assignment and eviction. Then requeue as RS_Split.
194     RS_Assign,
195 
196     /// Attempt live range splitting if assignment is impossible.
197     RS_Split,
198 
199     /// Attempt more aggressive live range splitting that is guaranteed to make
200     /// progress.  This is used for split products that may not be making
201     /// progress.
202     RS_Split2,
203 
204     /// Live range will be spilled.  No more splitting will be attempted.
205     RS_Spill,
206 
207 
208     /// Live range is in memory. Because of other evictions, it might get moved
209     /// in a register in the end.
210     RS_Memory,
211 
212     /// There is nothing more we can do to this live range.  Abort compilation
213     /// if it can't be assigned.
214     RS_Done
215   };
216 
217   // Enum CutOffStage to keep a track whether the register allocation failed
218   // because of the cutoffs encountered in last chance recoloring.
219   // Note: This is used as bitmask. New value should be next power of 2.
220   enum CutOffStage {
221     // No cutoffs encountered
222     CO_None = 0,
223 
224     // lcr-max-depth cutoff encountered
225     CO_Depth = 1,
226 
227     // lcr-max-interf cutoff encountered
228     CO_Interf = 2
229   };
230 
231   uint8_t CutOffInfo;
232 
233 #ifndef NDEBUG
234   static const char *const StageName[];
235 #endif
236 
237   // RegInfo - Keep additional information about each live range.
238   struct RegInfo {
239     LiveRangeStage Stage = RS_New;
240 
241     // Cascade - Eviction loop prevention. See canEvictInterference().
242     unsigned Cascade = 0;
243 
244     RegInfo() = default;
245   };
246 
247   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
248 
249   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
250     return ExtraRegInfo[VirtReg.reg()].Stage;
251   }
252 
253   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
254     ExtraRegInfo.resize(MRI->getNumVirtRegs());
255     ExtraRegInfo[VirtReg.reg()].Stage = Stage;
256   }
257 
258   template<typename Iterator>
259   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
260     ExtraRegInfo.resize(MRI->getNumVirtRegs());
261     for (;Begin != End; ++Begin) {
262       unsigned Reg = *Begin;
263       if (ExtraRegInfo[Reg].Stage == RS_New)
264         ExtraRegInfo[Reg].Stage = NewStage;
265     }
266   }
267 
268   /// Cost of evicting interference.
269   struct EvictionCost {
270     unsigned BrokenHints = 0; ///< Total number of broken hints.
271     float MaxWeight = 0;      ///< Maximum spill weight evicted.
272 
273     EvictionCost() = default;
274 
275     bool isMax() const { return BrokenHints == ~0u; }
276 
277     void setMax() { BrokenHints = ~0u; }
278 
279     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
280 
281     bool operator<(const EvictionCost &O) const {
282       return std::tie(BrokenHints, MaxWeight) <
283              std::tie(O.BrokenHints, O.MaxWeight);
284     }
285   };
286 
287   /// EvictionTrack - Keeps track of past evictions in order to optimize region
288   /// split decision.
289   class EvictionTrack {
290 
291   public:
292     using EvictorInfo =
293         std::pair<unsigned /* evictor */, unsigned /* physreg */>;
294     using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>;
295 
296   private:
297     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
298     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
299     EvicteeInfo Evictees;
300 
301   public:
302     /// Clear all eviction information.
303     void clear() { Evictees.clear(); }
304 
305     ///  Clear eviction information for the given evictee Vreg.
306     /// E.g. when Vreg get's a new allocation, the old eviction info is no
307     /// longer relevant.
308     /// \param Evictee The evictee Vreg for whom we want to clear collected
309     /// eviction info.
310     void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); }
311 
312     /// Track new eviction.
313     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
314     /// \param PhysReg The physical register Evictee was evicted from.
315     /// \param Evictor The evictor Vreg that evicted Evictee.
316     /// \param Evictee The evictee Vreg.
317     void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) {
318       Evictees[Evictee].first = Evictor;
319       Evictees[Evictee].second = PhysReg;
320     }
321 
322     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
323     /// \param Evictee The evictee vreg.
324     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
325     /// nobody has evicted Evictee from PhysReg.
326     EvictorInfo getEvictor(unsigned Evictee) {
327       if (Evictees.count(Evictee)) {
328         return Evictees[Evictee];
329       }
330 
331       return EvictorInfo(0, 0);
332     }
333   };
334 
335   // Keeps track of past evictions in order to optimize region split decision.
336   EvictionTrack LastEvicted;
337 
338   // splitting state.
339   std::unique_ptr<SplitAnalysis> SA;
340   std::unique_ptr<SplitEditor> SE;
341 
342   /// Cached per-block interference maps
343   InterferenceCache IntfCache;
344 
345   /// All basic blocks where the current register has uses.
346   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
347 
348   /// Global live range splitting candidate info.
349   struct GlobalSplitCandidate {
350     // Register intended for assignment, or 0.
351     unsigned PhysReg;
352 
353     // SplitKit interval index for this candidate.
354     unsigned IntvIdx;
355 
356     // Interference for PhysReg.
357     InterferenceCache::Cursor Intf;
358 
359     // Bundles where this candidate should be live.
360     BitVector LiveBundles;
361     SmallVector<unsigned, 8> ActiveBlocks;
362 
363     void reset(InterferenceCache &Cache, unsigned Reg) {
364       PhysReg = Reg;
365       IntvIdx = 0;
366       Intf.setPhysReg(Cache, Reg);
367       LiveBundles.clear();
368       ActiveBlocks.clear();
369     }
370 
371     // Set B[i] = C for every live bundle where B[i] was NoCand.
372     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
373       unsigned Count = 0;
374       for (unsigned i : LiveBundles.set_bits())
375         if (B[i] == NoCand) {
376           B[i] = C;
377           Count++;
378         }
379       return Count;
380     }
381   };
382 
383   /// Candidate info for each PhysReg in AllocationOrder.
384   /// This vector never shrinks, but grows to the size of the largest register
385   /// class.
386   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
387 
388   enum : unsigned { NoCand = ~0u };
389 
390   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
391   /// NoCand which indicates the stack interval.
392   SmallVector<unsigned, 32> BundleCand;
393 
394   /// Callee-save register cost, calculated once per machine function.
395   BlockFrequency CSRCost;
396 
397   /// Run or not the local reassignment heuristic. This information is
398   /// obtained from the TargetSubtargetInfo.
399   bool EnableLocalReassign;
400 
401   /// Enable or not the consideration of the cost of local intervals created
402   /// by a split candidate when choosing the best split candidate.
403   bool EnableAdvancedRASplitCost;
404 
405   /// Set of broken hints that may be reconciled later because of eviction.
406   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
407 
408 public:
409   RAGreedy();
410 
411   /// Return the pass name.
412   StringRef getPassName() const override { return "Greedy Register Allocator"; }
413 
414   /// RAGreedy analysis usage.
415   void getAnalysisUsage(AnalysisUsage &AU) const override;
416   void releaseMemory() override;
417   Spiller &spiller() override { return *SpillerInstance; }
418   void enqueue(LiveInterval *LI) override;
419   LiveInterval *dequeue() override;
420   Register selectOrSplit(LiveInterval&, SmallVectorImpl<Register>&) override;
421   void aboutToRemoveInterval(LiveInterval &) override;
422 
423   /// Perform register allocation.
424   bool runOnMachineFunction(MachineFunction &mf) override;
425 
426   MachineFunctionProperties getRequiredProperties() const override {
427     return MachineFunctionProperties().set(
428         MachineFunctionProperties::Property::NoPHIs);
429   }
430 
431   static char ID;
432 
433 private:
434   Register selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &,
435                              SmallVirtRegSet &, unsigned = 0);
436 
437   bool LRE_CanEraseVirtReg(unsigned) override;
438   void LRE_WillShrinkVirtReg(unsigned) override;
439   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
440   void enqueue(PQueue &CurQueue, LiveInterval *LI);
441   LiveInterval *dequeue(PQueue &CurQueue);
442 
443   BlockFrequency calcSpillCost();
444   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
445   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
446   bool growRegion(GlobalSplitCandidate &Cand);
447   bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand,
448                                   unsigned BBNumber,
449                                   const AllocationOrder &Order);
450   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
451                                GlobalSplitCandidate &Cand, unsigned BBNumber,
452                                const AllocationOrder &Order);
453   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
454                                      const AllocationOrder &Order,
455                                      bool *CanCauseEvictionChain);
456   bool calcCompactRegion(GlobalSplitCandidate&);
457   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
458   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
459   Register canReassign(LiveInterval &VirtReg, Register PrevReg);
460   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
461   bool canEvictInterference(LiveInterval&, Register, bool, EvictionCost&,
462                             const SmallVirtRegSet&);
463   bool canEvictInterferenceInRange(LiveInterval &VirtReg, Register oPhysReg,
464                                    SlotIndex Start, SlotIndex End,
465                                    EvictionCost &MaxCost);
466   unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
467                                     LiveInterval &VirtReg, SlotIndex Start,
468                                     SlotIndex End, float *BestEvictWeight);
469   void evictInterference(LiveInterval&, Register,
470                          SmallVectorImpl<Register>&);
471   bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
472                                   SmallLISet &RecoloringCandidates,
473                                   const SmallVirtRegSet &FixedRegisters);
474 
475   Register tryAssign(LiveInterval&, AllocationOrder&,
476                      SmallVectorImpl<Register>&,
477                      const SmallVirtRegSet&);
478   unsigned tryEvict(LiveInterval&, AllocationOrder&,
479                     SmallVectorImpl<Register>&, unsigned,
480                     const SmallVirtRegSet&);
481   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
482                           SmallVectorImpl<Register>&);
483   /// Calculate cost of region splitting.
484   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
485                                     AllocationOrder &Order,
486                                     BlockFrequency &BestCost,
487                                     unsigned &NumCands, bool IgnoreCSR,
488                                     bool *CanCauseEvictionChain = nullptr);
489   /// Perform region splitting.
490   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
491                          bool HasCompact,
492                          SmallVectorImpl<Register> &NewVRegs);
493   /// Check other options before using a callee-saved register for the first
494   /// time.
495   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
496                                  Register PhysReg, unsigned &CostPerUseLimit,
497                                  SmallVectorImpl<Register> &NewVRegs);
498   void initializeCSRCost();
499   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
500                          SmallVectorImpl<Register>&);
501   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
502                                SmallVectorImpl<Register>&);
503   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
504     SmallVectorImpl<Register>&);
505   unsigned trySplit(LiveInterval&, AllocationOrder&,
506                     SmallVectorImpl<Register>&,
507                     const SmallVirtRegSet&);
508   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
509                                    SmallVectorImpl<Register> &,
510                                    SmallVirtRegSet &, unsigned);
511   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &,
512                                SmallVirtRegSet &, unsigned);
513   void tryHintRecoloring(LiveInterval &);
514   void tryHintsRecoloring();
515 
516   /// Model the information carried by one end of a copy.
517   struct HintInfo {
518     /// The frequency of the copy.
519     BlockFrequency Freq;
520     /// The virtual register or physical register.
521     Register Reg;
522     /// Its currently assigned register.
523     /// In case of a physical register Reg == PhysReg.
524     MCRegister PhysReg;
525 
526     HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg)
527         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
528   };
529   using HintsInfo = SmallVector<HintInfo, 4>;
530 
531   BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
532   void collectHintInfo(unsigned, HintsInfo &);
533 
534   bool isUnusedCalleeSavedReg(MCRegister PhysReg) const;
535 
536   /// Compute and report the number of spills and reloads for a loop.
537   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
538                                     unsigned &FoldedReloads, unsigned &Spills,
539                                     unsigned &FoldedSpills);
540 
541   /// Report the number of spills and reloads for each loop.
542   void reportNumberOfSplillsReloads() {
543     for (MachineLoop *L : *Loops) {
544       unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
545       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
546                                    FoldedSpills);
547     }
548   }
549 };
550 
551 } // end anonymous namespace
552 
553 char RAGreedy::ID = 0;
554 char &llvm::RAGreedyID = RAGreedy::ID;
555 
556 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
557                 "Greedy Register Allocator", false, false)
558 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
559 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
560 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
561 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
562 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
563 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
564 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
565 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
566 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
567 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
568 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
569 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
570 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
571 INITIALIZE_PASS_END(RAGreedy, "greedy",
572                 "Greedy Register Allocator", false, false)
573 
574 #ifndef NDEBUG
575 const char *const RAGreedy::StageName[] = {
576     "RS_New",
577     "RS_Assign",
578     "RS_Split",
579     "RS_Split2",
580     "RS_Spill",
581     "RS_Memory",
582     "RS_Done"
583 };
584 #endif
585 
586 // Hysteresis to use when comparing floats.
587 // This helps stabilize decisions based on float comparisons.
588 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
589 
590 FunctionPass* llvm::createGreedyRegisterAllocator() {
591   return new RAGreedy();
592 }
593 
594 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
595 }
596 
597 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
598   AU.setPreservesCFG();
599   AU.addRequired<MachineBlockFrequencyInfo>();
600   AU.addPreserved<MachineBlockFrequencyInfo>();
601   AU.addRequired<AAResultsWrapperPass>();
602   AU.addPreserved<AAResultsWrapperPass>();
603   AU.addRequired<LiveIntervals>();
604   AU.addPreserved<LiveIntervals>();
605   AU.addRequired<SlotIndexes>();
606   AU.addPreserved<SlotIndexes>();
607   AU.addRequired<LiveDebugVariables>();
608   AU.addPreserved<LiveDebugVariables>();
609   AU.addRequired<LiveStacks>();
610   AU.addPreserved<LiveStacks>();
611   AU.addRequired<MachineDominatorTree>();
612   AU.addPreserved<MachineDominatorTree>();
613   AU.addRequired<MachineLoopInfo>();
614   AU.addPreserved<MachineLoopInfo>();
615   AU.addRequired<VirtRegMap>();
616   AU.addPreserved<VirtRegMap>();
617   AU.addRequired<LiveRegMatrix>();
618   AU.addPreserved<LiveRegMatrix>();
619   AU.addRequired<EdgeBundles>();
620   AU.addRequired<SpillPlacement>();
621   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
622   MachineFunctionPass::getAnalysisUsage(AU);
623 }
624 
625 //===----------------------------------------------------------------------===//
626 //                     LiveRangeEdit delegate methods
627 //===----------------------------------------------------------------------===//
628 
629 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
630   LiveInterval &LI = LIS->getInterval(VirtReg);
631   if (VRM->hasPhys(VirtReg)) {
632     Matrix->unassign(LI);
633     aboutToRemoveInterval(LI);
634     return true;
635   }
636   // Unassigned virtreg is probably in the priority queue.
637   // RegAllocBase will erase it after dequeueing.
638   // Nonetheless, clear the live-range so that the debug
639   // dump will show the right state for that VirtReg.
640   LI.clear();
641   return false;
642 }
643 
644 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
645   if (!VRM->hasPhys(VirtReg))
646     return;
647 
648   // Register is assigned, put it back on the queue for reassignment.
649   LiveInterval &LI = LIS->getInterval(VirtReg);
650   Matrix->unassign(LI);
651   enqueue(&LI);
652 }
653 
654 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
655   // Cloning a register we haven't even heard about yet?  Just ignore it.
656   if (!ExtraRegInfo.inBounds(Old))
657     return;
658 
659   // LRE may clone a virtual register because dead code elimination causes it to
660   // be split into connected components. The new components are much smaller
661   // than the original, so they should get a new chance at being assigned.
662   // same stage as the parent.
663   ExtraRegInfo[Old].Stage = RS_Assign;
664   ExtraRegInfo.grow(New);
665   ExtraRegInfo[New] = ExtraRegInfo[Old];
666 }
667 
668 void RAGreedy::releaseMemory() {
669   SpillerInstance.reset();
670   ExtraRegInfo.clear();
671   GlobalCand.clear();
672 }
673 
674 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
675 
676 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
677   // Prioritize live ranges by size, assigning larger ranges first.
678   // The queue holds (size, reg) pairs.
679   const unsigned Size = LI->getSize();
680   const unsigned Reg = LI->reg();
681   assert(Register::isVirtualRegister(Reg) &&
682          "Can only enqueue virtual registers");
683   unsigned Prio;
684 
685   ExtraRegInfo.grow(Reg);
686   if (ExtraRegInfo[Reg].Stage == RS_New)
687     ExtraRegInfo[Reg].Stage = RS_Assign;
688 
689   if (ExtraRegInfo[Reg].Stage == RS_Split) {
690     // Unsplit ranges that couldn't be allocated immediately are deferred until
691     // everything else has been allocated.
692     Prio = Size;
693   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
694     // Memory operand should be considered last.
695     // Change the priority such that Memory operand are assigned in
696     // the reverse order that they came in.
697     // TODO: Make this a member variable and probably do something about hints.
698     static unsigned MemOp = 0;
699     Prio = MemOp++;
700   } else {
701     // Giant live ranges fall back to the global assignment heuristic, which
702     // prevents excessive spilling in pathological cases.
703     bool ReverseLocal = TRI->reverseLocalAssignment();
704     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
705     bool ForceGlobal = !ReverseLocal &&
706       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
707 
708     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
709         LIS->intervalIsInOneMBB(*LI)) {
710       // Allocate original local ranges in linear instruction order. Since they
711       // are singly defined, this produces optimal coloring in the absence of
712       // global interference and other constraints.
713       if (!ReverseLocal)
714         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
715       else {
716         // Allocating bottom up may allow many short LRGs to be assigned first
717         // to one of the cheap registers. This could be much faster for very
718         // large blocks on targets with many physical registers.
719         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
720       }
721       Prio |= RC.AllocationPriority << 24;
722     } else {
723       // Allocate global and split ranges in long->short order. Long ranges that
724       // don't fit should be spilled (or split) ASAP so they don't create
725       // interference.  Mark a bit to prioritize global above local ranges.
726       Prio = (1u << 29) + Size;
727     }
728     // Mark a higher bit to prioritize global and local above RS_Split.
729     Prio |= (1u << 31);
730 
731     // Boost ranges that have a physical register hint.
732     if (VRM->hasKnownPreference(Reg))
733       Prio |= (1u << 30);
734   }
735   // The virtual register number is a tie breaker for same-sized ranges.
736   // Give lower vreg numbers higher priority to assign them first.
737   CurQueue.push(std::make_pair(Prio, ~Reg));
738 }
739 
740 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
741 
742 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
743   if (CurQueue.empty())
744     return nullptr;
745   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
746   CurQueue.pop();
747   return LI;
748 }
749 
750 //===----------------------------------------------------------------------===//
751 //                            Direct Assignment
752 //===----------------------------------------------------------------------===//
753 
754 /// tryAssign - Try to assign VirtReg to an available register.
755 Register RAGreedy::tryAssign(LiveInterval &VirtReg,
756                              AllocationOrder &Order,
757                              SmallVectorImpl<Register> &NewVRegs,
758                              const SmallVirtRegSet &FixedRegisters) {
759   Order.rewind();
760   Register PhysReg;
761   while ((PhysReg = Order.next()))
762     if (!Matrix->checkInterference(VirtReg, PhysReg))
763       break;
764   if (!PhysReg || Order.isHint())
765     return PhysReg;
766 
767   // PhysReg is available, but there may be a better choice.
768 
769   // If we missed a simple hint, try to cheaply evict interference from the
770   // preferred register.
771   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
772     if (Order.isHint(Hint)) {
773       LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n');
774       EvictionCost MaxCost;
775       MaxCost.setBrokenHints(1);
776       if (canEvictInterference(VirtReg, Hint, true, MaxCost, FixedRegisters)) {
777         evictInterference(VirtReg, Hint, NewVRegs);
778         return Hint;
779       }
780       // Record the missed hint, we may be able to recover
781       // at the end if the surrounding allocation changed.
782       SetOfBrokenHints.insert(&VirtReg);
783     }
784 
785   // Try to evict interference from a cheaper alternative.
786   unsigned Cost = TRI->getCostPerUse(PhysReg);
787 
788   // Most registers have 0 additional cost.
789   if (!Cost)
790     return PhysReg;
791 
792   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
793                     << Cost << '\n');
794   Register CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
795   return CheapReg ? CheapReg : PhysReg;
796 }
797 
798 //===----------------------------------------------------------------------===//
799 //                         Interference eviction
800 //===----------------------------------------------------------------------===//
801 
802 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) {
803   AllocationOrder Order(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
804   Register PhysReg;
805   while ((PhysReg = Order.next())) {
806     if (PhysReg == PrevReg)
807       continue;
808 
809     MCRegUnitIterator Units(PhysReg, TRI);
810     for (; Units.isValid(); ++Units) {
811       // Instantiate a "subquery", not to be confused with the Queries array.
812       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
813       if (subQ.checkInterference())
814         break;
815     }
816     // If no units have interference, break out with the current PhysReg.
817     if (!Units.isValid())
818       break;
819   }
820   if (PhysReg)
821     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
822                       << printReg(PrevReg, TRI) << " to "
823                       << printReg(PhysReg, TRI) << '\n');
824   return PhysReg;
825 }
826 
827 /// shouldEvict - determine if A should evict the assigned live range B. The
828 /// eviction policy defined by this function together with the allocation order
829 /// defined by enqueue() decides which registers ultimately end up being split
830 /// and spilled.
831 ///
832 /// Cascade numbers are used to prevent infinite loops if this function is a
833 /// cyclic relation.
834 ///
835 /// @param A          The live range to be assigned.
836 /// @param IsHint     True when A is about to be assigned to its preferred
837 ///                   register.
838 /// @param B          The live range to be evicted.
839 /// @param BreaksHint True when B is already assigned to its preferred register.
840 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
841                            LiveInterval &B, bool BreaksHint) {
842   bool CanSplit = getStage(B) < RS_Spill;
843 
844   // Be fairly aggressive about following hints as long as the evictee can be
845   // split.
846   if (CanSplit && IsHint && !BreaksHint)
847     return true;
848 
849   if (A.weight() > B.weight()) {
850     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n');
851     return true;
852   }
853   return false;
854 }
855 
856 /// canEvictInterference - Return true if all interferences between VirtReg and
857 /// PhysReg can be evicted.
858 ///
859 /// @param VirtReg Live range that is about to be assigned.
860 /// @param PhysReg Desired register for assignment.
861 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
862 /// @param MaxCost Only look for cheaper candidates and update with new cost
863 ///                when returning true.
864 /// @returns True when interference can be evicted cheaper than MaxCost.
865 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, Register PhysReg,
866                                     bool IsHint, EvictionCost &MaxCost,
867                                     const SmallVirtRegSet &FixedRegisters) {
868   // It is only possible to evict virtual register interference.
869   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
870     return false;
871 
872   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
873 
874   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
875   // involved in an eviction before. If a cascade number was assigned, deny
876   // evicting anything with the same or a newer cascade number. This prevents
877   // infinite eviction loops.
878   //
879   // This works out so a register without a cascade number is allowed to evict
880   // anything, and it can be evicted by anything.
881   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
882   if (!Cascade)
883     Cascade = NextCascade;
884 
885   EvictionCost Cost;
886   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
887     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
888     // If there is 10 or more interferences, chances are one is heavier.
889     if (Q.collectInterferingVRegs(10) >= 10)
890       return false;
891 
892     // Check if any interfering live range is heavier than MaxWeight.
893     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
894       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
895       assert(Register::isVirtualRegister(Intf->reg()) &&
896              "Only expecting virtual register interference from query");
897 
898       // Do not allow eviction of a virtual register if we are in the middle
899       // of last-chance recoloring and this virtual register is one that we
900       // have scavenged a physical register for.
901       if (FixedRegisters.count(Intf->reg()))
902         return false;
903 
904       // Never evict spill products. They cannot split or spill.
905       if (getStage(*Intf) == RS_Done)
906         return false;
907       // Once a live range becomes small enough, it is urgent that we find a
908       // register for it. This is indicated by an infinite spill weight. These
909       // urgent live ranges get to evict almost anything.
910       //
911       // Also allow urgent evictions of unspillable ranges from a strictly
912       // larger allocation order.
913       bool Urgent =
914           !VirtReg.isSpillable() &&
915           (Intf->isSpillable() ||
916            RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
917                RegClassInfo.getNumAllocatableRegs(
918                    MRI->getRegClass(Intf->reg())));
919       // Only evict older cascades or live ranges without a cascade.
920       unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade;
921       if (Cascade <= IntfCascade) {
922         if (!Urgent)
923           return false;
924         // We permit breaking cascades for urgent evictions. It should be the
925         // last resort, though, so make it really expensive.
926         Cost.BrokenHints += 10;
927       }
928       // Would this break a satisfied hint?
929       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
930       // Update eviction cost.
931       Cost.BrokenHints += BreaksHint;
932       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
933       // Abort if this would be too expensive.
934       if (!(Cost < MaxCost))
935         return false;
936       if (Urgent)
937         continue;
938       // Apply the eviction policy for non-urgent evictions.
939       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
940         return false;
941       // If !MaxCost.isMax(), then we're just looking for a cheap register.
942       // Evicting another local live range in this case could lead to suboptimal
943       // coloring.
944       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
945           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
946         return false;
947       }
948     }
949   }
950   MaxCost = Cost;
951   return true;
952 }
953 
954 /// Return true if all interferences between VirtReg and PhysReg between
955 /// Start and End can be evicted.
956 ///
957 /// \param VirtReg Live range that is about to be assigned.
958 /// \param PhysReg Desired register for assignment.
959 /// \param Start   Start of range to look for interferences.
960 /// \param End     End of range to look for interferences.
961 /// \param MaxCost Only look for cheaper candidates and update with new cost
962 ///                when returning true.
963 /// \return True when interference can be evicted cheaper than MaxCost.
964 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
965                                            Register PhysReg, SlotIndex Start,
966                                            SlotIndex End,
967                                            EvictionCost &MaxCost) {
968   EvictionCost Cost;
969 
970   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
971     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
972 
973     // Check if any interfering live range is heavier than MaxWeight.
974     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
975       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
976 
977       // Check if interference overlast the segment in interest.
978       if (!Intf->overlaps(Start, End))
979         continue;
980 
981       // Cannot evict non virtual reg interference.
982       if (!Register::isVirtualRegister(Intf->reg()))
983         return false;
984       // Never evict spill products. They cannot split or spill.
985       if (getStage(*Intf) == RS_Done)
986         return false;
987 
988       // Would this break a satisfied hint?
989       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
990       // Update eviction cost.
991       Cost.BrokenHints += BreaksHint;
992       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
993       // Abort if this would be too expensive.
994       if (!(Cost < MaxCost))
995         return false;
996     }
997   }
998 
999   if (Cost.MaxWeight == 0)
1000     return false;
1001 
1002   MaxCost = Cost;
1003   return true;
1004 }
1005 
1006 /// Return the physical register that will be best
1007 /// candidate for eviction by a local split interval that will be created
1008 /// between Start and End.
1009 ///
1010 /// \param Order            The allocation order
1011 /// \param VirtReg          Live range that is about to be assigned.
1012 /// \param Start            Start of range to look for interferences
1013 /// \param End              End of range to look for interferences
1014 /// \param BestEvictweight  The eviction cost of that eviction
1015 /// \return The PhysReg which is the best candidate for eviction and the
1016 /// eviction cost in BestEvictweight
1017 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1018                                             LiveInterval &VirtReg,
1019                                             SlotIndex Start, SlotIndex End,
1020                                             float *BestEvictweight) {
1021   EvictionCost BestEvictCost;
1022   BestEvictCost.setMax();
1023   BestEvictCost.MaxWeight = VirtReg.weight();
1024   unsigned BestEvicteePhys = 0;
1025 
1026   // Go over all physical registers and find the best candidate for eviction
1027   for (auto PhysReg : Order.getOrder()) {
1028 
1029     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1030                                      BestEvictCost))
1031       continue;
1032 
1033     // Best so far.
1034     BestEvicteePhys = PhysReg;
1035   }
1036   *BestEvictweight = BestEvictCost.MaxWeight;
1037   return BestEvicteePhys;
1038 }
1039 
1040 /// evictInterference - Evict any interferring registers that prevent VirtReg
1041 /// from being assigned to Physreg. This assumes that canEvictInterference
1042 /// returned true.
1043 void RAGreedy::evictInterference(LiveInterval &VirtReg, Register PhysReg,
1044                                  SmallVectorImpl<Register> &NewVRegs) {
1045   // Make sure that VirtReg has a cascade number, and assign that cascade
1046   // number to every evicted register. These live ranges than then only be
1047   // evicted by a newer cascade, preventing infinite loops.
1048   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
1049   if (!Cascade)
1050     Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++;
1051 
1052   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1053                     << " interference: Cascade " << Cascade << '\n');
1054 
1055   // Collect all interfering virtregs first.
1056   SmallVector<LiveInterval*, 8> Intfs;
1057   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1058     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1059     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1060     // should be fast, we may need to recalculate if when different physregs
1061     // overlap the same register unit so we had different SubRanges queried
1062     // against it.
1063     Q.collectInterferingVRegs();
1064     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1065     Intfs.append(IVR.begin(), IVR.end());
1066   }
1067 
1068   // Evict them second. This will invalidate the queries.
1069   for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
1070     LiveInterval *Intf = Intfs[i];
1071     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1072     if (!VRM->hasPhys(Intf->reg()))
1073       continue;
1074 
1075     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
1076 
1077     Matrix->unassign(*Intf);
1078     assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade ||
1079             VirtReg.isSpillable() < Intf->isSpillable()) &&
1080            "Cannot decrease cascade number, illegal eviction");
1081     ExtraRegInfo[Intf->reg()].Cascade = Cascade;
1082     ++NumEvicted;
1083     NewVRegs.push_back(Intf->reg());
1084   }
1085 }
1086 
1087 /// Returns true if the given \p PhysReg is a callee saved register and has not
1088 /// been used for allocation yet.
1089 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
1090   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1091   if (!CSR)
1092     return false;
1093 
1094   return !Matrix->isPhysRegUsed(PhysReg);
1095 }
1096 
1097 /// tryEvict - Try to evict all interferences for a physreg.
1098 /// @param  VirtReg Currently unassigned virtual register.
1099 /// @param  Order   Physregs to try.
1100 /// @return         Physreg to assign VirtReg, or 0.
1101 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
1102                             AllocationOrder &Order,
1103                             SmallVectorImpl<Register> &NewVRegs,
1104                             unsigned CostPerUseLimit,
1105                             const SmallVirtRegSet &FixedRegisters) {
1106   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1107                      TimePassesIsEnabled);
1108 
1109   // Keep track of the cheapest interference seen so far.
1110   EvictionCost BestCost;
1111   BestCost.setMax();
1112   unsigned BestPhys = 0;
1113   unsigned OrderLimit = Order.getOrder().size();
1114 
1115   // When we are just looking for a reduced cost per use, don't break any
1116   // hints, and only evict smaller spill weights.
1117   if (CostPerUseLimit < ~0u) {
1118     BestCost.BrokenHints = 0;
1119     BestCost.MaxWeight = VirtReg.weight();
1120 
1121     // Check of any registers in RC are below CostPerUseLimit.
1122     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
1123     unsigned MinCost = RegClassInfo.getMinCost(RC);
1124     if (MinCost >= CostPerUseLimit) {
1125       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1126                         << MinCost << ", no cheaper registers to be found.\n");
1127       return 0;
1128     }
1129 
1130     // It is normal for register classes to have a long tail of registers with
1131     // the same cost. We don't need to look at them if they're too expensive.
1132     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
1133       OrderLimit = RegClassInfo.getLastCostChange(RC);
1134       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1135                         << " regs.\n");
1136     }
1137   }
1138 
1139   Order.rewind();
1140   while (MCRegister PhysReg = Order.next(OrderLimit)) {
1141     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
1142       continue;
1143     // The first use of a callee-saved register in a function has cost 1.
1144     // Don't start using a CSR when the CostPerUseLimit is low.
1145     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1146       LLVM_DEBUG(
1147           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1148                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1149                  << '\n');
1150       continue;
1151     }
1152 
1153     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1154                               FixedRegisters))
1155       continue;
1156 
1157     // Best so far.
1158     BestPhys = PhysReg;
1159 
1160     // Stop if the hint can be used.
1161     if (Order.isHint())
1162       break;
1163   }
1164 
1165   if (!BestPhys)
1166     return 0;
1167 
1168   evictInterference(VirtReg, BestPhys, NewVRegs);
1169   return BestPhys;
1170 }
1171 
1172 //===----------------------------------------------------------------------===//
1173 //                              Region Splitting
1174 //===----------------------------------------------------------------------===//
1175 
1176 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1177 /// interference pattern in Physreg and its aliases. Add the constraints to
1178 /// SpillPlacement and return the static cost of this split in Cost, assuming
1179 /// that all preferences in SplitConstraints are met.
1180 /// Return false if there are no bundles with positive bias.
1181 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1182                                    BlockFrequency &Cost) {
1183   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1184 
1185   // Reset interference dependent info.
1186   SplitConstraints.resize(UseBlocks.size());
1187   BlockFrequency StaticCost = 0;
1188   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1189     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1190     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1191 
1192     BC.Number = BI.MBB->getNumber();
1193     Intf.moveToBlock(BC.Number);
1194     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1195     BC.Exit = (BI.LiveOut &&
1196                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1197                   ? SpillPlacement::PrefReg
1198                   : SpillPlacement::DontCare;
1199     BC.ChangesValue = BI.FirstDef.isValid();
1200 
1201     if (!Intf.hasInterference())
1202       continue;
1203 
1204     // Number of spill code instructions to insert.
1205     unsigned Ins = 0;
1206 
1207     // Interference for the live-in value.
1208     if (BI.LiveIn) {
1209       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1210         BC.Entry = SpillPlacement::MustSpill;
1211         ++Ins;
1212       } else if (Intf.first() < BI.FirstInstr) {
1213         BC.Entry = SpillPlacement::PrefSpill;
1214         ++Ins;
1215       } else if (Intf.first() < BI.LastInstr) {
1216         ++Ins;
1217       }
1218 
1219       // Abort if the spill cannot be inserted at the MBB' start
1220       if (((BC.Entry == SpillPlacement::MustSpill) ||
1221            (BC.Entry == SpillPlacement::PrefSpill)) &&
1222           SlotIndex::isEarlierInstr(BI.FirstInstr,
1223                                     SA->getFirstSplitPoint(BC.Number)))
1224         return false;
1225     }
1226 
1227     // Interference for the live-out value.
1228     if (BI.LiveOut) {
1229       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1230         BC.Exit = SpillPlacement::MustSpill;
1231         ++Ins;
1232       } else if (Intf.last() > BI.LastInstr) {
1233         BC.Exit = SpillPlacement::PrefSpill;
1234         ++Ins;
1235       } else if (Intf.last() > BI.FirstInstr) {
1236         ++Ins;
1237       }
1238     }
1239 
1240     // Accumulate the total frequency of inserted spill code.
1241     while (Ins--)
1242       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1243   }
1244   Cost = StaticCost;
1245 
1246   // Add constraints for use-blocks. Note that these are the only constraints
1247   // that may add a positive bias, it is downhill from here.
1248   SpillPlacer->addConstraints(SplitConstraints);
1249   return SpillPlacer->scanActiveBundles();
1250 }
1251 
1252 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1253 /// live-through blocks in Blocks.
1254 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1255                                      ArrayRef<unsigned> Blocks) {
1256   const unsigned GroupSize = 8;
1257   SpillPlacement::BlockConstraint BCS[GroupSize];
1258   unsigned TBS[GroupSize];
1259   unsigned B = 0, T = 0;
1260 
1261   for (unsigned i = 0; i != Blocks.size(); ++i) {
1262     unsigned Number = Blocks[i];
1263     Intf.moveToBlock(Number);
1264 
1265     if (!Intf.hasInterference()) {
1266       assert(T < GroupSize && "Array overflow");
1267       TBS[T] = Number;
1268       if (++T == GroupSize) {
1269         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1270         T = 0;
1271       }
1272       continue;
1273     }
1274 
1275     assert(B < GroupSize && "Array overflow");
1276     BCS[B].Number = Number;
1277 
1278     // Abort if the spill cannot be inserted at the MBB' start
1279     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1280     if (!MBB->empty() &&
1281         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
1282                                   SA->getFirstSplitPoint(Number)))
1283       return false;
1284     // Interference for the live-in value.
1285     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1286       BCS[B].Entry = SpillPlacement::MustSpill;
1287     else
1288       BCS[B].Entry = SpillPlacement::PrefSpill;
1289 
1290     // Interference for the live-out value.
1291     if (Intf.last() >= SA->getLastSplitPoint(Number))
1292       BCS[B].Exit = SpillPlacement::MustSpill;
1293     else
1294       BCS[B].Exit = SpillPlacement::PrefSpill;
1295 
1296     if (++B == GroupSize) {
1297       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1298       B = 0;
1299     }
1300   }
1301 
1302   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1303   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1304   return true;
1305 }
1306 
1307 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1308   // Keep track of through blocks that have not been added to SpillPlacer.
1309   BitVector Todo = SA->getThroughBlocks();
1310   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1311   unsigned AddedTo = 0;
1312 #ifndef NDEBUG
1313   unsigned Visited = 0;
1314 #endif
1315 
1316   while (true) {
1317     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1318     // Find new through blocks in the periphery of PrefRegBundles.
1319     for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1320       unsigned Bundle = NewBundles[i];
1321       // Look at all blocks connected to Bundle in the full graph.
1322       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1323       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1324            I != E; ++I) {
1325         unsigned Block = *I;
1326         if (!Todo.test(Block))
1327           continue;
1328         Todo.reset(Block);
1329         // This is a new through block. Add it to SpillPlacer later.
1330         ActiveBlocks.push_back(Block);
1331 #ifndef NDEBUG
1332         ++Visited;
1333 #endif
1334       }
1335     }
1336     // Any new blocks to add?
1337     if (ActiveBlocks.size() == AddedTo)
1338       break;
1339 
1340     // Compute through constraints from the interference, or assume that all
1341     // through blocks prefer spilling when forming compact regions.
1342     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1343     if (Cand.PhysReg) {
1344       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1345         return false;
1346     } else
1347       // Provide a strong negative bias on through blocks to prevent unwanted
1348       // liveness on loop backedges.
1349       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1350     AddedTo = ActiveBlocks.size();
1351 
1352     // Perhaps iterating can enable more bundles?
1353     SpillPlacer->iterate();
1354   }
1355   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1356   return true;
1357 }
1358 
1359 /// calcCompactRegion - Compute the set of edge bundles that should be live
1360 /// when splitting the current live range into compact regions.  Compact
1361 /// regions can be computed without looking at interference.  They are the
1362 /// regions formed by removing all the live-through blocks from the live range.
1363 ///
1364 /// Returns false if the current live range is already compact, or if the
1365 /// compact regions would form single block regions anyway.
1366 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1367   // Without any through blocks, the live range is already compact.
1368   if (!SA->getNumThroughBlocks())
1369     return false;
1370 
1371   // Compact regions don't correspond to any physreg.
1372   Cand.reset(IntfCache, 0);
1373 
1374   LLVM_DEBUG(dbgs() << "Compact region bundles");
1375 
1376   // Use the spill placer to determine the live bundles. GrowRegion pretends
1377   // that all the through blocks have interference when PhysReg is unset.
1378   SpillPlacer->prepare(Cand.LiveBundles);
1379 
1380   // The static split cost will be zero since Cand.Intf reports no interference.
1381   BlockFrequency Cost;
1382   if (!addSplitConstraints(Cand.Intf, Cost)) {
1383     LLVM_DEBUG(dbgs() << ", none.\n");
1384     return false;
1385   }
1386 
1387   if (!growRegion(Cand)) {
1388     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1389     return false;
1390   }
1391 
1392   SpillPlacer->finish();
1393 
1394   if (!Cand.LiveBundles.any()) {
1395     LLVM_DEBUG(dbgs() << ", none.\n");
1396     return false;
1397   }
1398 
1399   LLVM_DEBUG({
1400     for (int i : Cand.LiveBundles.set_bits())
1401       dbgs() << " EB#" << i;
1402     dbgs() << ".\n";
1403   });
1404   return true;
1405 }
1406 
1407 /// calcSpillCost - Compute how expensive it would be to split the live range in
1408 /// SA around all use blocks instead of forming bundle regions.
1409 BlockFrequency RAGreedy::calcSpillCost() {
1410   BlockFrequency Cost = 0;
1411   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1412   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1413     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1414     unsigned Number = BI.MBB->getNumber();
1415     // We normally only need one spill instruction - a load or a store.
1416     Cost += SpillPlacer->getBlockFrequency(Number);
1417 
1418     // Unless the value is redefined in the block.
1419     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1420       Cost += SpillPlacer->getBlockFrequency(Number);
1421   }
1422   return Cost;
1423 }
1424 
1425 /// Check if splitting Evictee will create a local split interval in
1426 /// basic block number BBNumber that may cause a bad eviction chain. This is
1427 /// intended to prevent bad eviction sequences like:
1428 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1429 /// movl	%ecx, %ebp
1430 /// movl	%ebx, %ecx
1431 /// movl	%edi, %ebx
1432 /// movl	%edx, %edi
1433 /// cltd
1434 /// idivl	%esi
1435 /// movl	%edi, %edx
1436 /// movl	%ebx, %edi
1437 /// movl	%ecx, %ebx
1438 /// movl	%ebp, %ecx
1439 /// movl	16(%esp), %ebp          # 4 - byte Reload
1440 ///
1441 /// Such sequences are created in 2 scenarios:
1442 ///
1443 /// Scenario #1:
1444 /// %0 is evicted from physreg0 by %1.
1445 /// Evictee %0 is intended for region splitting with split candidate
1446 /// physreg0 (the reg %0 was evicted from).
1447 /// Region splitting creates a local interval because of interference with the
1448 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1449 /// and "by stack" intervals and local interval created when interference
1450 /// occurs).
1451 /// One of the split intervals ends up evicting %2 from physreg1.
1452 /// Evictee %2 is intended for region splitting with split candidate
1453 /// physreg1.
1454 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1455 ///
1456 /// Scenario #2
1457 /// %0 is evicted from physreg0 by %1.
1458 /// %2 is evicted from physreg2 by %3 etc.
1459 /// Evictee %0 is intended for region splitting with split candidate
1460 /// physreg1.
1461 /// Region splitting creates a local interval because of interference with the
1462 /// evictor %1.
1463 /// One of the split intervals ends up evicting back original evictor %1
1464 /// from physreg0 (the reg %0 was evicted from).
1465 /// Another evictee %2 is intended for region splitting with split candidate
1466 /// physreg1.
1467 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1468 ///
1469 /// \param Evictee  The register considered to be split.
1470 /// \param Cand     The split candidate that determines the physical register
1471 ///                 we are splitting for and the interferences.
1472 /// \param BBNumber The number of a BB for which the region split process will
1473 ///                 create a local split interval.
1474 /// \param Order    The physical registers that may get evicted by a split
1475 ///                 artifact of Evictee.
1476 /// \return True if splitting Evictee may cause a bad eviction chain, false
1477 /// otherwise.
1478 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee,
1479                                           GlobalSplitCandidate &Cand,
1480                                           unsigned BBNumber,
1481                                           const AllocationOrder &Order) {
1482   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1483   unsigned Evictor = VregEvictorInfo.first;
1484   unsigned PhysReg = VregEvictorInfo.second;
1485 
1486   // No actual evictor.
1487   if (!Evictor || !PhysReg)
1488     return false;
1489 
1490   float MaxWeight = 0;
1491   unsigned FutureEvictedPhysReg =
1492       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1493                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1494 
1495   // The bad eviction chain occurs when either the split candidate is the
1496   // evicting reg or one of the split artifact will evict the evicting reg.
1497   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1498     return false;
1499 
1500   Cand.Intf.moveToBlock(BBNumber);
1501 
1502   // Check to see if the Evictor contains interference (with Evictee) in the
1503   // given BB. If so, this interference caused the eviction of Evictee from
1504   // PhysReg. This suggest that we will create a local interval during the
1505   // region split to avoid this interference This local interval may cause a bad
1506   // eviction chain.
1507   if (!LIS->hasInterval(Evictor))
1508     return false;
1509   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1510   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1511     return false;
1512 
1513   // Now, check to see if the local interval we will create is going to be
1514   // expensive enough to evict somebody If so, this may cause a bad eviction
1515   // chain.
1516   VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1517   float splitArtifactWeight =
1518       VRAI.futureWeight(LIS->getInterval(Evictee),
1519                         Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1520   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1521     return false;
1522 
1523   return true;
1524 }
1525 
1526 /// Check if splitting VirtRegToSplit will create a local split interval
1527 /// in basic block number BBNumber that may cause a spill.
1528 ///
1529 /// \param VirtRegToSplit The register considered to be split.
1530 /// \param Cand           The split candidate that determines the physical
1531 ///                       register we are splitting for and the interferences.
1532 /// \param BBNumber       The number of a BB for which the region split process
1533 ///                       will create a local split interval.
1534 /// \param Order          The physical registers that may get evicted by a
1535 ///                       split artifact of VirtRegToSplit.
1536 /// \return True if splitting VirtRegToSplit may cause a spill, false
1537 /// otherwise.
1538 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1539                                        GlobalSplitCandidate &Cand,
1540                                        unsigned BBNumber,
1541                                        const AllocationOrder &Order) {
1542   Cand.Intf.moveToBlock(BBNumber);
1543 
1544   // Check if the local interval will find a non interfereing assignment.
1545   for (auto PhysReg : Order.getOrder()) {
1546     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1547                                    Cand.Intf.last(), PhysReg))
1548       return false;
1549   }
1550 
1551   // Check if the local interval will evict a cheaper interval.
1552   float CheapestEvictWeight = 0;
1553   unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
1554       Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1555       Cand.Intf.last(), &CheapestEvictWeight);
1556 
1557   // Have we found an interval that can be evicted?
1558   if (FutureEvictedPhysReg) {
1559     VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1560     float splitArtifactWeight =
1561         VRAI.futureWeight(LIS->getInterval(VirtRegToSplit),
1562                           Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1563     // Will the weight of the local interval be higher than the cheapest evictee
1564     // weight? If so it will evict it and will not cause a spill.
1565     if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1566       return false;
1567   }
1568 
1569   // The local interval is not able to find non interferencing assignment and
1570   // not able to evict a less worthy interval, therfore, it can cause a spill.
1571   return true;
1572 }
1573 
1574 /// calcGlobalSplitCost - Return the global split cost of following the split
1575 /// pattern in LiveBundles. This cost should be added to the local cost of the
1576 /// interference pattern in SplitConstraints.
1577 ///
1578 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1579                                              const AllocationOrder &Order,
1580                                              bool *CanCauseEvictionChain) {
1581   BlockFrequency GlobalCost = 0;
1582   const BitVector &LiveBundles = Cand.LiveBundles;
1583   unsigned VirtRegToSplit = SA->getParent().reg();
1584   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1585   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1586     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1587     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1588     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1589     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1590     unsigned Ins = 0;
1591 
1592     Cand.Intf.moveToBlock(BC.Number);
1593     // Check wheather a local interval is going to be created during the region
1594     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1595     // is enabled.
1596     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1597         BI.LiveOut && RegIn && RegOut) {
1598 
1599       if (CanCauseEvictionChain &&
1600           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1601         // This interference causes our eviction from this assignment, we might
1602         // evict somebody else and eventually someone will spill, add that cost.
1603         // See splitCanCauseEvictionChain for detailed description of scenarios.
1604         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1605         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1606 
1607         *CanCauseEvictionChain = true;
1608 
1609       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1610                                          Order)) {
1611         // This interference causes local interval to spill, add that cost.
1612         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1613         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1614       }
1615     }
1616 
1617     if (BI.LiveIn)
1618       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1619     if (BI.LiveOut)
1620       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1621     while (Ins--)
1622       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1623   }
1624 
1625   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1626     unsigned Number = Cand.ActiveBlocks[i];
1627     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1628     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1629     if (!RegIn && !RegOut)
1630       continue;
1631     if (RegIn && RegOut) {
1632       // We need double spill code if this block has interference.
1633       Cand.Intf.moveToBlock(Number);
1634       if (Cand.Intf.hasInterference()) {
1635         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1636         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1637 
1638         // Check wheather a local interval is going to be created during the
1639         // region split.
1640         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1641             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1642           // This interference cause our eviction from this assignment, we might
1643           // evict somebody else, add that cost.
1644           // See splitCanCauseEvictionChain for detailed description of
1645           // scenarios.
1646           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1647           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1648 
1649           *CanCauseEvictionChain = true;
1650         }
1651       }
1652       continue;
1653     }
1654     // live-in / stack-out or stack-in live-out.
1655     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1656   }
1657   return GlobalCost;
1658 }
1659 
1660 /// splitAroundRegion - Split the current live range around the regions
1661 /// determined by BundleCand and GlobalCand.
1662 ///
1663 /// Before calling this function, GlobalCand and BundleCand must be initialized
1664 /// so each bundle is assigned to a valid candidate, or NoCand for the
1665 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1666 /// objects must be initialized for the current live range, and intervals
1667 /// created for the used candidates.
1668 ///
1669 /// @param LREdit    The LiveRangeEdit object handling the current split.
1670 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1671 ///                  must appear in this list.
1672 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1673                                  ArrayRef<unsigned> UsedCands) {
1674   // These are the intervals created for new global ranges. We may create more
1675   // intervals for local ranges.
1676   const unsigned NumGlobalIntvs = LREdit.size();
1677   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1678                     << " globals.\n");
1679   assert(NumGlobalIntvs && "No global intervals configured");
1680 
1681   // Isolate even single instructions when dealing with a proper sub-class.
1682   // That guarantees register class inflation for the stack interval because it
1683   // is all copies.
1684   unsigned Reg = SA->getParent().reg();
1685   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1686 
1687   // First handle all the blocks with uses.
1688   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1689   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1690     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1691     unsigned Number = BI.MBB->getNumber();
1692     unsigned IntvIn = 0, IntvOut = 0;
1693     SlotIndex IntfIn, IntfOut;
1694     if (BI.LiveIn) {
1695       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1696       if (CandIn != NoCand) {
1697         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1698         IntvIn = Cand.IntvIdx;
1699         Cand.Intf.moveToBlock(Number);
1700         IntfIn = Cand.Intf.first();
1701       }
1702     }
1703     if (BI.LiveOut) {
1704       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1705       if (CandOut != NoCand) {
1706         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1707         IntvOut = Cand.IntvIdx;
1708         Cand.Intf.moveToBlock(Number);
1709         IntfOut = Cand.Intf.last();
1710       }
1711     }
1712 
1713     // Create separate intervals for isolated blocks with multiple uses.
1714     if (!IntvIn && !IntvOut) {
1715       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1716       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1717         SE->splitSingleBlock(BI);
1718       continue;
1719     }
1720 
1721     if (IntvIn && IntvOut)
1722       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1723     else if (IntvIn)
1724       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1725     else
1726       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1727   }
1728 
1729   // Handle live-through blocks. The relevant live-through blocks are stored in
1730   // the ActiveBlocks list with each candidate. We need to filter out
1731   // duplicates.
1732   BitVector Todo = SA->getThroughBlocks();
1733   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1734     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1735     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1736       unsigned Number = Blocks[i];
1737       if (!Todo.test(Number))
1738         continue;
1739       Todo.reset(Number);
1740 
1741       unsigned IntvIn = 0, IntvOut = 0;
1742       SlotIndex IntfIn, IntfOut;
1743 
1744       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1745       if (CandIn != NoCand) {
1746         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1747         IntvIn = Cand.IntvIdx;
1748         Cand.Intf.moveToBlock(Number);
1749         IntfIn = Cand.Intf.first();
1750       }
1751 
1752       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1753       if (CandOut != NoCand) {
1754         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1755         IntvOut = Cand.IntvIdx;
1756         Cand.Intf.moveToBlock(Number);
1757         IntfOut = Cand.Intf.last();
1758       }
1759       if (!IntvIn && !IntvOut)
1760         continue;
1761       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1762     }
1763   }
1764 
1765   ++NumGlobalSplits;
1766 
1767   SmallVector<unsigned, 8> IntvMap;
1768   SE->finish(&IntvMap);
1769   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1770 
1771   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1772   unsigned OrigBlocks = SA->getNumLiveBlocks();
1773 
1774   // Sort out the new intervals created by splitting. We get four kinds:
1775   // - Remainder intervals should not be split again.
1776   // - Candidate intervals can be assigned to Cand.PhysReg.
1777   // - Block-local splits are candidates for local splitting.
1778   // - DCE leftovers should go back on the queue.
1779   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1780     LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1781 
1782     // Ignore old intervals from DCE.
1783     if (getStage(Reg) != RS_New)
1784       continue;
1785 
1786     // Remainder interval. Don't try splitting again, spill if it doesn't
1787     // allocate.
1788     if (IntvMap[i] == 0) {
1789       setStage(Reg, RS_Spill);
1790       continue;
1791     }
1792 
1793     // Global intervals. Allow repeated splitting as long as the number of live
1794     // blocks is strictly decreasing.
1795     if (IntvMap[i] < NumGlobalIntvs) {
1796       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1797         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1798                           << " blocks as original.\n");
1799         // Don't allow repeated splitting as a safe guard against looping.
1800         setStage(Reg, RS_Split2);
1801       }
1802       continue;
1803     }
1804 
1805     // Other intervals are treated as new. This includes local intervals created
1806     // for blocks with multiple uses, and anything created by DCE.
1807   }
1808 
1809   if (VerifyEnabled)
1810     MF->verify(this, "After splitting live range around region");
1811 }
1812 
1813 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1814                                   SmallVectorImpl<Register> &NewVRegs) {
1815   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1816     return 0;
1817   unsigned NumCands = 0;
1818   BlockFrequency SpillCost = calcSpillCost();
1819   BlockFrequency BestCost;
1820 
1821   // Check if we can split this live range around a compact region.
1822   bool HasCompact = calcCompactRegion(GlobalCand.front());
1823   if (HasCompact) {
1824     // Yes, keep GlobalCand[0] as the compact region candidate.
1825     NumCands = 1;
1826     BestCost = BlockFrequency::getMaxFrequency();
1827   } else {
1828     // No benefit from the compact region, our fallback will be per-block
1829     // splitting. Make sure we find a solution that is cheaper than spilling.
1830     BestCost = SpillCost;
1831     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1832                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1833   }
1834 
1835   bool CanCauseEvictionChain = false;
1836   unsigned BestCand =
1837       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1838                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1839 
1840   // Split candidates with compact regions can cause a bad eviction sequence.
1841   // See splitCanCauseEvictionChain for detailed description of scenarios.
1842   // To avoid it, we need to comapre the cost with the spill cost and not the
1843   // current max frequency.
1844   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1845     CanCauseEvictionChain) {
1846     return 0;
1847   }
1848 
1849   // No solutions found, fall back to single block splitting.
1850   if (!HasCompact && BestCand == NoCand)
1851     return 0;
1852 
1853   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1854 }
1855 
1856 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1857                                             AllocationOrder &Order,
1858                                             BlockFrequency &BestCost,
1859                                             unsigned &NumCands, bool IgnoreCSR,
1860                                             bool *CanCauseEvictionChain) {
1861   unsigned BestCand = NoCand;
1862   Order.rewind();
1863   while (unsigned PhysReg = Order.next()) {
1864     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1865       continue;
1866 
1867     // Discard bad candidates before we run out of interference cache cursors.
1868     // This will only affect register classes with a lot of registers (>32).
1869     if (NumCands == IntfCache.getMaxCursors()) {
1870       unsigned WorstCount = ~0u;
1871       unsigned Worst = 0;
1872       for (unsigned i = 0; i != NumCands; ++i) {
1873         if (i == BestCand || !GlobalCand[i].PhysReg)
1874           continue;
1875         unsigned Count = GlobalCand[i].LiveBundles.count();
1876         if (Count < WorstCount) {
1877           Worst = i;
1878           WorstCount = Count;
1879         }
1880       }
1881       --NumCands;
1882       GlobalCand[Worst] = GlobalCand[NumCands];
1883       if (BestCand == NumCands)
1884         BestCand = Worst;
1885     }
1886 
1887     if (GlobalCand.size() <= NumCands)
1888       GlobalCand.resize(NumCands+1);
1889     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1890     Cand.reset(IntfCache, PhysReg);
1891 
1892     SpillPlacer->prepare(Cand.LiveBundles);
1893     BlockFrequency Cost;
1894     if (!addSplitConstraints(Cand.Intf, Cost)) {
1895       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1896       continue;
1897     }
1898     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1899                MBFI->printBlockFreq(dbgs(), Cost));
1900     if (Cost >= BestCost) {
1901       LLVM_DEBUG({
1902         if (BestCand == NoCand)
1903           dbgs() << " worse than no bundles\n";
1904         else
1905           dbgs() << " worse than "
1906                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1907       });
1908       continue;
1909     }
1910     if (!growRegion(Cand)) {
1911       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1912       continue;
1913     }
1914 
1915     SpillPlacer->finish();
1916 
1917     // No live bundles, defer to splitSingleBlocks().
1918     if (!Cand.LiveBundles.any()) {
1919       LLVM_DEBUG(dbgs() << " no bundles.\n");
1920       continue;
1921     }
1922 
1923     bool HasEvictionChain = false;
1924     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1925     LLVM_DEBUG({
1926       dbgs() << ", total = ";
1927       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1928       for (int i : Cand.LiveBundles.set_bits())
1929         dbgs() << " EB#" << i;
1930       dbgs() << ".\n";
1931     });
1932     if (Cost < BestCost) {
1933       BestCand = NumCands;
1934       BestCost = Cost;
1935       // See splitCanCauseEvictionChain for detailed description of bad
1936       // eviction chain scenarios.
1937       if (CanCauseEvictionChain)
1938         *CanCauseEvictionChain = HasEvictionChain;
1939     }
1940     ++NumCands;
1941   }
1942 
1943   if (CanCauseEvictionChain && BestCand != NoCand) {
1944     // See splitCanCauseEvictionChain for detailed description of bad
1945     // eviction chain scenarios.
1946     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1947                       << printReg(VirtReg.reg(), TRI) << "  may ");
1948     if (!(*CanCauseEvictionChain))
1949       LLVM_DEBUG(dbgs() << "not ");
1950     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1951   }
1952 
1953   return BestCand;
1954 }
1955 
1956 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1957                                  bool HasCompact,
1958                                  SmallVectorImpl<Register> &NewVRegs) {
1959   SmallVector<unsigned, 8> UsedCands;
1960   // Prepare split editor.
1961   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1962   SE->reset(LREdit, SplitSpillMode);
1963 
1964   // Assign all edge bundles to the preferred candidate, or NoCand.
1965   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1966 
1967   // Assign bundles for the best candidate region.
1968   if (BestCand != NoCand) {
1969     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1970     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1971       UsedCands.push_back(BestCand);
1972       Cand.IntvIdx = SE->openIntv();
1973       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1974                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1975       (void)B;
1976     }
1977   }
1978 
1979   // Assign bundles for the compact region.
1980   if (HasCompact) {
1981     GlobalSplitCandidate &Cand = GlobalCand.front();
1982     assert(!Cand.PhysReg && "Compact region has no physreg");
1983     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1984       UsedCands.push_back(0);
1985       Cand.IntvIdx = SE->openIntv();
1986       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1987                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1988       (void)B;
1989     }
1990   }
1991 
1992   splitAroundRegion(LREdit, UsedCands);
1993   return 0;
1994 }
1995 
1996 //===----------------------------------------------------------------------===//
1997 //                            Per-Block Splitting
1998 //===----------------------------------------------------------------------===//
1999 
2000 /// tryBlockSplit - Split a global live range around every block with uses. This
2001 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2002 /// they don't allocate.
2003 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2004                                  SmallVectorImpl<Register> &NewVRegs) {
2005   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2006   Register Reg = VirtReg.reg();
2007   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2008   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2009   SE->reset(LREdit, SplitSpillMode);
2010   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2011   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
2012     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
2013     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2014       SE->splitSingleBlock(BI);
2015   }
2016   // No blocks were split.
2017   if (LREdit.empty())
2018     return 0;
2019 
2020   // We did split for some blocks.
2021   SmallVector<unsigned, 8> IntvMap;
2022   SE->finish(&IntvMap);
2023 
2024   // Tell LiveDebugVariables about the new ranges.
2025   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2026 
2027   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2028 
2029   // Sort out the new intervals created by splitting. The remainder interval
2030   // goes straight to spilling, the new local ranges get to stay RS_New.
2031   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
2032     LiveInterval &LI = LIS->getInterval(LREdit.get(i));
2033     if (getStage(LI) == RS_New && IntvMap[i] == 0)
2034       setStage(LI, RS_Spill);
2035   }
2036 
2037   if (VerifyEnabled)
2038     MF->verify(this, "After splitting live range around basic blocks");
2039   return 0;
2040 }
2041 
2042 //===----------------------------------------------------------------------===//
2043 //                         Per-Instruction Splitting
2044 //===----------------------------------------------------------------------===//
2045 
2046 /// Get the number of allocatable registers that match the constraints of \p Reg
2047 /// on \p MI and that are also in \p SuperRC.
2048 static unsigned getNumAllocatableRegsForConstraints(
2049     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
2050     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2051     const RegisterClassInfo &RCI) {
2052   assert(SuperRC && "Invalid register class");
2053 
2054   const TargetRegisterClass *ConstrainedRC =
2055       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2056                                              /* ExploreBundle */ true);
2057   if (!ConstrainedRC)
2058     return 0;
2059   return RCI.getNumAllocatableRegs(ConstrainedRC);
2060 }
2061 
2062 /// tryInstructionSplit - Split a live range around individual instructions.
2063 /// This is normally not worthwhile since the spiller is doing essentially the
2064 /// same thing. However, when the live range is in a constrained register
2065 /// class, it may help to insert copies such that parts of the live range can
2066 /// be moved to a larger register class.
2067 ///
2068 /// This is similar to spilling to a larger register class.
2069 unsigned
2070 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2071                               SmallVectorImpl<Register> &NewVRegs) {
2072   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2073   // There is no point to this if there are no larger sub-classes.
2074   if (!RegClassInfo.isProperSubClass(CurRC))
2075     return 0;
2076 
2077   // Always enable split spill mode, since we're effectively spilling to a
2078   // register.
2079   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2080   SE->reset(LREdit, SplitEditor::SM_Size);
2081 
2082   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2083   if (Uses.size() <= 1)
2084     return 0;
2085 
2086   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2087                     << " individual instrs.\n");
2088 
2089   const TargetRegisterClass *SuperRC =
2090       TRI->getLargestLegalSuperClass(CurRC, *MF);
2091   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2092   // Split around every non-copy instruction if this split will relax
2093   // the constraints on the virtual register.
2094   // Otherwise, splitting just inserts uncoalescable copies that do not help
2095   // the allocation.
2096   for (unsigned i = 0; i != Uses.size(); ++i) {
2097     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
2098       if (MI->isFullCopy() ||
2099           SuperRCNumAllocatableRegs ==
2100               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
2101                                                   TII, TRI, RCI)) {
2102         LLVM_DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
2103         continue;
2104       }
2105     SE->openIntv();
2106     SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
2107     SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
2108     SE->useIntv(SegStart, SegStop);
2109   }
2110 
2111   if (LREdit.empty()) {
2112     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2113     return 0;
2114   }
2115 
2116   SmallVector<unsigned, 8> IntvMap;
2117   SE->finish(&IntvMap);
2118   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2119   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2120 
2121   // Assign all new registers to RS_Spill. This was the last chance.
2122   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2123   return 0;
2124 }
2125 
2126 //===----------------------------------------------------------------------===//
2127 //                             Local Splitting
2128 //===----------------------------------------------------------------------===//
2129 
2130 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2131 /// in order to use PhysReg between two entries in SA->UseSlots.
2132 ///
2133 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
2134 ///
2135 void RAGreedy::calcGapWeights(unsigned PhysReg,
2136                               SmallVectorImpl<float> &GapWeight) {
2137   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2138   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2139   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2140   const unsigned NumGaps = Uses.size()-1;
2141 
2142   // Start and end points for the interference check.
2143   SlotIndex StartIdx =
2144     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2145   SlotIndex StopIdx =
2146     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2147 
2148   GapWeight.assign(NumGaps, 0.0f);
2149 
2150   // Add interference from each overlapping register.
2151   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2152     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2153           .checkInterference())
2154       continue;
2155 
2156     // We know that VirtReg is a continuous interval from FirstInstr to
2157     // LastInstr, so we don't need InterferenceQuery.
2158     //
2159     // Interference that overlaps an instruction is counted in both gaps
2160     // surrounding the instruction. The exception is interference before
2161     // StartIdx and after StopIdx.
2162     //
2163     LiveIntervalUnion::SegmentIter IntI =
2164       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2165     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2166       // Skip the gaps before IntI.
2167       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2168         if (++Gap == NumGaps)
2169           break;
2170       if (Gap == NumGaps)
2171         break;
2172 
2173       // Update the gaps covered by IntI.
2174       const float weight = IntI.value()->weight();
2175       for (; Gap != NumGaps; ++Gap) {
2176         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2177         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2178           break;
2179       }
2180       if (Gap == NumGaps)
2181         break;
2182     }
2183   }
2184 
2185   // Add fixed interference.
2186   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2187     const LiveRange &LR = LIS->getRegUnit(*Units);
2188     LiveRange::const_iterator I = LR.find(StartIdx);
2189     LiveRange::const_iterator E = LR.end();
2190 
2191     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2192     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2193       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2194         if (++Gap == NumGaps)
2195           break;
2196       if (Gap == NumGaps)
2197         break;
2198 
2199       for (; Gap != NumGaps; ++Gap) {
2200         GapWeight[Gap] = huge_valf;
2201         if (Uses[Gap+1].getBaseIndex() >= I->end)
2202           break;
2203       }
2204       if (Gap == NumGaps)
2205         break;
2206     }
2207   }
2208 }
2209 
2210 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2211 /// basic block.
2212 ///
2213 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2214                                  SmallVectorImpl<Register> &NewVRegs) {
2215   // TODO: the function currently only handles a single UseBlock; it should be
2216   // possible to generalize.
2217   if (SA->getUseBlocks().size() != 1)
2218     return 0;
2219 
2220   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2221 
2222   // Note that it is possible to have an interval that is live-in or live-out
2223   // while only covering a single block - A phi-def can use undef values from
2224   // predecessors, and the block could be a single-block loop.
2225   // We don't bother doing anything clever about such a case, we simply assume
2226   // that the interval is continuous from FirstInstr to LastInstr. We should
2227   // make sure that we don't do anything illegal to such an interval, though.
2228 
2229   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2230   if (Uses.size() <= 2)
2231     return 0;
2232   const unsigned NumGaps = Uses.size()-1;
2233 
2234   LLVM_DEBUG({
2235     dbgs() << "tryLocalSplit: ";
2236     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
2237       dbgs() << ' ' << Uses[i];
2238     dbgs() << '\n';
2239   });
2240 
2241   // If VirtReg is live across any register mask operands, compute a list of
2242   // gaps with register masks.
2243   SmallVector<unsigned, 8> RegMaskGaps;
2244   if (Matrix->checkRegMaskInterference(VirtReg)) {
2245     // Get regmask slots for the whole block.
2246     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2247     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2248     // Constrain to VirtReg's live range.
2249     unsigned ri =
2250         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2251     unsigned re = RMS.size();
2252     for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
2253       // Look for Uses[i] <= RMS <= Uses[i+1].
2254       assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
2255       if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
2256         continue;
2257       // Skip a regmask on the same instruction as the last use. It doesn't
2258       // overlap the live range.
2259       if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
2260         break;
2261       LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-'
2262                         << Uses[i + 1]);
2263       RegMaskGaps.push_back(i);
2264       // Advance ri to the next gap. A regmask on one of the uses counts in
2265       // both gaps.
2266       while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
2267         ++ri;
2268     }
2269     LLVM_DEBUG(dbgs() << '\n');
2270   }
2271 
2272   // Since we allow local split results to be split again, there is a risk of
2273   // creating infinite loops. It is tempting to require that the new live
2274   // ranges have less instructions than the original. That would guarantee
2275   // convergence, but it is too strict. A live range with 3 instructions can be
2276   // split 2+3 (including the COPY), and we want to allow that.
2277   //
2278   // Instead we use these rules:
2279   //
2280   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2281   //    noop split, of course).
2282   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2283   //    the new ranges must have fewer instructions than before the split.
2284   // 3. New ranges with the same number of instructions are marked RS_Split2,
2285   //    smaller ranges are marked RS_New.
2286   //
2287   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2288   // excessive splitting and infinite loops.
2289   //
2290   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2291 
2292   // Best split candidate.
2293   unsigned BestBefore = NumGaps;
2294   unsigned BestAfter = 0;
2295   float BestDiff = 0;
2296 
2297   const float blockFreq =
2298     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2299     (1.0f / MBFI->getEntryFreq());
2300   SmallVector<float, 8> GapWeight;
2301 
2302   Order.rewind();
2303   while (unsigned PhysReg = Order.next()) {
2304     // Keep track of the largest spill weight that would need to be evicted in
2305     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
2306     calcGapWeights(PhysReg, GapWeight);
2307 
2308     // Remove any gaps with regmask clobbers.
2309     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2310       for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
2311         GapWeight[RegMaskGaps[i]] = huge_valf;
2312 
2313     // Try to find the best sequence of gaps to close.
2314     // The new spill weight must be larger than any gap interference.
2315 
2316     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2317     unsigned SplitBefore = 0, SplitAfter = 1;
2318 
2319     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2320     // It is the spill weight that needs to be evicted.
2321     float MaxGap = GapWeight[0];
2322 
2323     while (true) {
2324       // Live before/after split?
2325       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2326       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2327 
2328       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2329                         << '-' << Uses[SplitAfter] << " i=" << MaxGap);
2330 
2331       // Stop before the interval gets so big we wouldn't be making progress.
2332       if (!LiveBefore && !LiveAfter) {
2333         LLVM_DEBUG(dbgs() << " all\n");
2334         break;
2335       }
2336       // Should the interval be extended or shrunk?
2337       bool Shrink = true;
2338 
2339       // How many gaps would the new range have?
2340       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2341 
2342       // Legally, without causing looping?
2343       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2344 
2345       if (Legal && MaxGap < huge_valf) {
2346         // Estimate the new spill weight. Each instruction reads or writes the
2347         // register. Conservatively assume there are no read-modify-write
2348         // instructions.
2349         //
2350         // Try to guess the size of the new interval.
2351         const float EstWeight = normalizeSpillWeight(
2352             blockFreq * (NewGaps + 1),
2353             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2354                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2355             1);
2356         // Would this split be possible to allocate?
2357         // Never allocate all gaps, we wouldn't be making progress.
2358         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2359         if (EstWeight * Hysteresis >= MaxGap) {
2360           Shrink = false;
2361           float Diff = EstWeight - MaxGap;
2362           if (Diff > BestDiff) {
2363             LLVM_DEBUG(dbgs() << " (best)");
2364             BestDiff = Hysteresis * Diff;
2365             BestBefore = SplitBefore;
2366             BestAfter = SplitAfter;
2367           }
2368         }
2369       }
2370 
2371       // Try to shrink.
2372       if (Shrink) {
2373         if (++SplitBefore < SplitAfter) {
2374           LLVM_DEBUG(dbgs() << " shrink\n");
2375           // Recompute the max when necessary.
2376           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2377             MaxGap = GapWeight[SplitBefore];
2378             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
2379               MaxGap = std::max(MaxGap, GapWeight[i]);
2380           }
2381           continue;
2382         }
2383         MaxGap = 0;
2384       }
2385 
2386       // Try to extend the interval.
2387       if (SplitAfter >= NumGaps) {
2388         LLVM_DEBUG(dbgs() << " end\n");
2389         break;
2390       }
2391 
2392       LLVM_DEBUG(dbgs() << " extend\n");
2393       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2394     }
2395   }
2396 
2397   // Didn't find any candidates?
2398   if (BestBefore == NumGaps)
2399     return 0;
2400 
2401   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2402                     << Uses[BestAfter] << ", " << BestDiff << ", "
2403                     << (BestAfter - BestBefore + 1) << " instrs\n");
2404 
2405   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2406   SE->reset(LREdit);
2407 
2408   SE->openIntv();
2409   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2410   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2411   SE->useIntv(SegStart, SegStop);
2412   SmallVector<unsigned, 8> IntvMap;
2413   SE->finish(&IntvMap);
2414   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2415 
2416   // If the new range has the same number of instructions as before, mark it as
2417   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2418   // leave the new intervals as RS_New so they can compete.
2419   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2420   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2421   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2422   if (NewGaps >= NumGaps) {
2423     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2424     assert(!ProgressRequired && "Didn't make progress when it was required.");
2425     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
2426       if (IntvMap[i] == 1) {
2427         setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
2428         LLVM_DEBUG(dbgs() << printReg(LREdit.get(i)));
2429       }
2430     LLVM_DEBUG(dbgs() << '\n');
2431   }
2432   ++NumLocalSplits;
2433 
2434   return 0;
2435 }
2436 
2437 //===----------------------------------------------------------------------===//
2438 //                          Live Range Splitting
2439 //===----------------------------------------------------------------------===//
2440 
2441 /// trySplit - Try to split VirtReg or one of its interferences, making it
2442 /// assignable.
2443 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2444 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2445                             SmallVectorImpl<Register> &NewVRegs,
2446                             const SmallVirtRegSet &FixedRegisters) {
2447   // Ranges must be Split2 or less.
2448   if (getStage(VirtReg) >= RS_Spill)
2449     return 0;
2450 
2451   // Local intervals are handled separately.
2452   if (LIS->intervalIsInOneMBB(VirtReg)) {
2453     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2454                        TimerGroupDescription, TimePassesIsEnabled);
2455     SA->analyze(&VirtReg);
2456     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2457     if (PhysReg || !NewVRegs.empty())
2458       return PhysReg;
2459     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2460   }
2461 
2462   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2463                      TimerGroupDescription, TimePassesIsEnabled);
2464 
2465   SA->analyze(&VirtReg);
2466 
2467   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2468   // coalescer. That may cause the range to become allocatable which means that
2469   // tryRegionSplit won't be making progress. This check should be replaced with
2470   // an assertion when the coalescer is fixed.
2471   if (SA->didRepairRange()) {
2472     // VirtReg has changed, so all cached queries are invalid.
2473     Matrix->invalidateVirtRegs();
2474     if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
2475       return PhysReg;
2476   }
2477 
2478   // First try to split around a region spanning multiple blocks. RS_Split2
2479   // ranges already made dubious progress with region splitting, so they go
2480   // straight to single block splitting.
2481   if (getStage(VirtReg) < RS_Split2) {
2482     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2483     if (PhysReg || !NewVRegs.empty())
2484       return PhysReg;
2485   }
2486 
2487   // Then isolate blocks.
2488   return tryBlockSplit(VirtReg, Order, NewVRegs);
2489 }
2490 
2491 //===----------------------------------------------------------------------===//
2492 //                          Last Chance Recoloring
2493 //===----------------------------------------------------------------------===//
2494 
2495 /// Return true if \p reg has any tied def operand.
2496 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2497   for (const MachineOperand &MO : MRI->def_operands(reg))
2498     if (MO.isTied())
2499       return true;
2500 
2501   return false;
2502 }
2503 
2504 /// mayRecolorAllInterferences - Check if the virtual registers that
2505 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2506 /// recolored to free \p PhysReg.
2507 /// When true is returned, \p RecoloringCandidates has been augmented with all
2508 /// the live intervals that need to be recolored in order to free \p PhysReg
2509 /// for \p VirtReg.
2510 /// \p FixedRegisters contains all the virtual registers that cannot be
2511 /// recolored.
2512 bool
2513 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2514                                      SmallLISet &RecoloringCandidates,
2515                                      const SmallVirtRegSet &FixedRegisters) {
2516   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2517 
2518   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2519     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2520     // If there is LastChanceRecoloringMaxInterference or more interferences,
2521     // chances are one would not be recolorable.
2522     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2523         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2524       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2525       CutOffInfo |= CO_Interf;
2526       return false;
2527     }
2528     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2529       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2530       // If Intf is done and sit on the same register class as VirtReg,
2531       // it would not be recolorable as it is in the same state as VirtReg.
2532       // However, if VirtReg has tied defs and Intf doesn't, then
2533       // there is still a point in examining if it can be recolorable.
2534       if (((getStage(*Intf) == RS_Done &&
2535             MRI->getRegClass(Intf->reg()) == CurRC) &&
2536            !(hasTiedDef(MRI, VirtReg.reg()) &&
2537              !hasTiedDef(MRI, Intf->reg()))) ||
2538           FixedRegisters.count(Intf->reg())) {
2539         LLVM_DEBUG(
2540             dbgs() << "Early abort: the interference is not recolorable.\n");
2541         return false;
2542       }
2543       RecoloringCandidates.insert(Intf);
2544     }
2545   }
2546   return true;
2547 }
2548 
2549 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2550 /// its interferences.
2551 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2552 /// virtual register that was using it. The recoloring process may recursively
2553 /// use the last chance recoloring. Therefore, when a virtual register has been
2554 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2555 /// be last-chance-recolored again during this recoloring "session".
2556 /// E.g.,
2557 /// Let
2558 /// vA can use {R1, R2    }
2559 /// vB can use {    R2, R3}
2560 /// vC can use {R1        }
2561 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2562 /// instance) and they all interfere.
2563 ///
2564 /// vA is assigned R1
2565 /// vB is assigned R2
2566 /// vC tries to evict vA but vA is already done.
2567 /// Regular register allocation fails.
2568 ///
2569 /// Last chance recoloring kicks in:
2570 /// vC does as if vA was evicted => vC uses R1.
2571 /// vC is marked as fixed.
2572 /// vA needs to find a color.
2573 /// None are available.
2574 /// vA cannot evict vC: vC is a fixed virtual register now.
2575 /// vA does as if vB was evicted => vA uses R2.
2576 /// vB needs to find a color.
2577 /// R3 is available.
2578 /// Recoloring => vC = R1, vA = R2, vB = R3
2579 ///
2580 /// \p Order defines the preferred allocation order for \p VirtReg.
2581 /// \p NewRegs will contain any new virtual register that have been created
2582 /// (split, spill) during the process and that must be assigned.
2583 /// \p FixedRegisters contains all the virtual registers that cannot be
2584 /// recolored.
2585 /// \p Depth gives the current depth of the last chance recoloring.
2586 /// \return a physical register that can be used for VirtReg or ~0u if none
2587 /// exists.
2588 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2589                                            AllocationOrder &Order,
2590                                            SmallVectorImpl<Register> &NewVRegs,
2591                                            SmallVirtRegSet &FixedRegisters,
2592                                            unsigned Depth) {
2593   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2594     return ~0u;
2595 
2596   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2597   // Ranges must be Done.
2598   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2599          "Last chance recoloring should really be last chance");
2600   // Set the max depth to LastChanceRecoloringMaxDepth.
2601   // We may want to reconsider that if we end up with a too large search space
2602   // for target with hundreds of registers.
2603   // Indeed, in that case we may want to cut the search space earlier.
2604   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2605     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2606     CutOffInfo |= CO_Depth;
2607     return ~0u;
2608   }
2609 
2610   // Set of Live intervals that will need to be recolored.
2611   SmallLISet RecoloringCandidates;
2612   // Record the original mapping virtual register to physical register in case
2613   // the recoloring fails.
2614   DenseMap<Register, Register> VirtRegToPhysReg;
2615   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2616   // this recoloring "session".
2617   assert(!FixedRegisters.count(VirtReg.reg()));
2618   FixedRegisters.insert(VirtReg.reg());
2619   SmallVector<Register, 4> CurrentNewVRegs;
2620 
2621   Order.rewind();
2622   while (Register PhysReg = Order.next()) {
2623     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2624                       << printReg(PhysReg, TRI) << '\n');
2625     RecoloringCandidates.clear();
2626     VirtRegToPhysReg.clear();
2627     CurrentNewVRegs.clear();
2628 
2629     // It is only possible to recolor virtual register interference.
2630     if (Matrix->checkInterference(VirtReg, PhysReg) >
2631         LiveRegMatrix::IK_VirtReg) {
2632       LLVM_DEBUG(
2633           dbgs() << "Some interferences are not with virtual registers.\n");
2634 
2635       continue;
2636     }
2637 
2638     // Early give up on this PhysReg if it is obvious we cannot recolor all
2639     // the interferences.
2640     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2641                                     FixedRegisters)) {
2642       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2643       continue;
2644     }
2645 
2646     // RecoloringCandidates contains all the virtual registers that interfer
2647     // with VirtReg on PhysReg (or one of its aliases).
2648     // Enqueue them for recoloring and perform the actual recoloring.
2649     PQueue RecoloringQueue;
2650     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2651                               EndIt = RecoloringCandidates.end();
2652          It != EndIt; ++It) {
2653       Register ItVirtReg = (*It)->reg();
2654       enqueue(RecoloringQueue, *It);
2655       assert(VRM->hasPhys(ItVirtReg) &&
2656              "Interferences are supposed to be with allocated variables");
2657 
2658       // Record the current allocation.
2659       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2660       // unset the related struct.
2661       Matrix->unassign(**It);
2662     }
2663 
2664     // Do as if VirtReg was assigned to PhysReg so that the underlying
2665     // recoloring has the right information about the interferes and
2666     // available colors.
2667     Matrix->assign(VirtReg, PhysReg);
2668 
2669     // Save the current recoloring state.
2670     // If we cannot recolor all the interferences, we will have to start again
2671     // at this point for the next physical register.
2672     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2673     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2674                                 FixedRegisters, Depth)) {
2675       // Push the queued vregs into the main queue.
2676       for (Register NewVReg : CurrentNewVRegs)
2677         NewVRegs.push_back(NewVReg);
2678       // Do not mess up with the global assignment process.
2679       // I.e., VirtReg must be unassigned.
2680       Matrix->unassign(VirtReg);
2681       return PhysReg;
2682     }
2683 
2684     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2685                       << printReg(PhysReg, TRI) << '\n');
2686 
2687     // The recoloring attempt failed, undo the changes.
2688     FixedRegisters = SaveFixedRegisters;
2689     Matrix->unassign(VirtReg);
2690 
2691     // For a newly created vreg which is also in RecoloringCandidates,
2692     // don't add it to NewVRegs because its physical register will be restored
2693     // below. Other vregs in CurrentNewVRegs are created by calling
2694     // selectOrSplit and should be added into NewVRegs.
2695     for (SmallVectorImpl<Register>::iterator Next = CurrentNewVRegs.begin(),
2696                                              End = CurrentNewVRegs.end();
2697          Next != End; ++Next) {
2698       if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2699         continue;
2700       NewVRegs.push_back(*Next);
2701     }
2702 
2703     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2704                               EndIt = RecoloringCandidates.end();
2705          It != EndIt; ++It) {
2706       Register ItVirtReg = (*It)->reg();
2707       if (VRM->hasPhys(ItVirtReg))
2708         Matrix->unassign(**It);
2709       Register ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2710       Matrix->assign(**It, ItPhysReg);
2711     }
2712   }
2713 
2714   // Last chance recoloring did not worked either, give up.
2715   return ~0u;
2716 }
2717 
2718 /// tryRecoloringCandidates - Try to assign a new color to every register
2719 /// in \RecoloringQueue.
2720 /// \p NewRegs will contain any new virtual register created during the
2721 /// recoloring process.
2722 /// \p FixedRegisters[in/out] contains all the registers that have been
2723 /// recolored.
2724 /// \return true if all virtual registers in RecoloringQueue were successfully
2725 /// recolored, false otherwise.
2726 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2727                                        SmallVectorImpl<Register> &NewVRegs,
2728                                        SmallVirtRegSet &FixedRegisters,
2729                                        unsigned Depth) {
2730   while (!RecoloringQueue.empty()) {
2731     LiveInterval *LI = dequeue(RecoloringQueue);
2732     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2733     Register PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters,
2734                                          Depth + 1);
2735     // When splitting happens, the live-range may actually be empty.
2736     // In that case, this is okay to continue the recoloring even
2737     // if we did not find an alternative color for it. Indeed,
2738     // there will not be anything to color for LI in the end.
2739     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2740       return false;
2741 
2742     if (!PhysReg) {
2743       assert(LI->empty() && "Only empty live-range do not require a register");
2744       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2745                         << " succeeded. Empty LI.\n");
2746       continue;
2747     }
2748     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2749                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2750 
2751     Matrix->assign(*LI, PhysReg);
2752     FixedRegisters.insert(LI->reg());
2753   }
2754   return true;
2755 }
2756 
2757 //===----------------------------------------------------------------------===//
2758 //                            Main Entry Point
2759 //===----------------------------------------------------------------------===//
2760 
2761 Register RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2762                                  SmallVectorImpl<Register> &NewVRegs) {
2763   CutOffInfo = CO_None;
2764   LLVMContext &Ctx = MF->getFunction().getContext();
2765   SmallVirtRegSet FixedRegisters;
2766   Register Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2767   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2768     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2769     if (CutOffEncountered == CO_Depth)
2770       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2771                     "reached. Use -fexhaustive-register-search to skip "
2772                     "cutoffs");
2773     else if (CutOffEncountered == CO_Interf)
2774       Ctx.emitError("register allocation failed: maximum interference for "
2775                     "recoloring reached. Use -fexhaustive-register-search "
2776                     "to skip cutoffs");
2777     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2778       Ctx.emitError("register allocation failed: maximum interference and "
2779                     "depth for recoloring reached. Use "
2780                     "-fexhaustive-register-search to skip cutoffs");
2781   }
2782   return Reg;
2783 }
2784 
2785 /// Using a CSR for the first time has a cost because it causes push|pop
2786 /// to be added to prologue|epilogue. Splitting a cold section of the live
2787 /// range can have lower cost than using the CSR for the first time;
2788 /// Spilling a live range in the cold path can have lower cost than using
2789 /// the CSR for the first time. Returns the physical register if we decide
2790 /// to use the CSR; otherwise return 0.
2791 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2792                                          AllocationOrder &Order,
2793                                          Register PhysReg,
2794                                          unsigned &CostPerUseLimit,
2795                                          SmallVectorImpl<Register> &NewVRegs) {
2796   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2797     // We choose spill over using the CSR for the first time if the spill cost
2798     // is lower than CSRCost.
2799     SA->analyze(&VirtReg);
2800     if (calcSpillCost() >= CSRCost)
2801       return PhysReg;
2802 
2803     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2804     // we will not use a callee-saved register in tryEvict.
2805     CostPerUseLimit = 1;
2806     return 0;
2807   }
2808   if (getStage(VirtReg) < RS_Split) {
2809     // We choose pre-splitting over using the CSR for the first time if
2810     // the cost of splitting is lower than CSRCost.
2811     SA->analyze(&VirtReg);
2812     unsigned NumCands = 0;
2813     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2814     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2815                                                  NumCands, true /*IgnoreCSR*/);
2816     if (BestCand == NoCand)
2817       // Use the CSR if we can't find a region split below CSRCost.
2818       return PhysReg;
2819 
2820     // Perform the actual pre-splitting.
2821     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2822     return 0;
2823   }
2824   return PhysReg;
2825 }
2826 
2827 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2828   // Do not keep invalid information around.
2829   SetOfBrokenHints.remove(&LI);
2830 }
2831 
2832 void RAGreedy::initializeCSRCost() {
2833   // We use the larger one out of the command-line option and the value report
2834   // by TRI.
2835   CSRCost = BlockFrequency(
2836       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2837   if (!CSRCost.getFrequency())
2838     return;
2839 
2840   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2841   uint64_t ActualEntry = MBFI->getEntryFreq();
2842   if (!ActualEntry) {
2843     CSRCost = 0;
2844     return;
2845   }
2846   uint64_t FixedEntry = 1 << 14;
2847   if (ActualEntry < FixedEntry)
2848     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2849   else if (ActualEntry <= UINT32_MAX)
2850     // Invert the fraction and divide.
2851     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2852   else
2853     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2854     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2855 }
2856 
2857 /// Collect the hint info for \p Reg.
2858 /// The results are stored into \p Out.
2859 /// \p Out is not cleared before being populated.
2860 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2861   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2862     if (!Instr.isFullCopy())
2863       continue;
2864     // Look for the other end of the copy.
2865     Register OtherReg = Instr.getOperand(0).getReg();
2866     if (OtherReg == Reg) {
2867       OtherReg = Instr.getOperand(1).getReg();
2868       if (OtherReg == Reg)
2869         continue;
2870     }
2871     // Get the current assignment.
2872     Register OtherPhysReg = Register::isPhysicalRegister(OtherReg)
2873                                 ? OtherReg
2874                                 : VRM->getPhys(OtherReg);
2875     // Push the collected information.
2876     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2877                            OtherPhysReg));
2878   }
2879 }
2880 
2881 /// Using the given \p List, compute the cost of the broken hints if
2882 /// \p PhysReg was used.
2883 /// \return The cost of \p List for \p PhysReg.
2884 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2885                                            unsigned PhysReg) {
2886   BlockFrequency Cost = 0;
2887   for (const HintInfo &Info : List) {
2888     if (Info.PhysReg != PhysReg)
2889       Cost += Info.Freq;
2890   }
2891   return Cost;
2892 }
2893 
2894 /// Using the register assigned to \p VirtReg, try to recolor
2895 /// all the live ranges that are copy-related with \p VirtReg.
2896 /// The recoloring is then propagated to all the live-ranges that have
2897 /// been recolored and so on, until no more copies can be coalesced or
2898 /// it is not profitable.
2899 /// For a given live range, profitability is determined by the sum of the
2900 /// frequencies of the non-identity copies it would introduce with the old
2901 /// and new register.
2902 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2903   // We have a broken hint, check if it is possible to fix it by
2904   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2905   // some register and PhysReg may be available for the other live-ranges.
2906   SmallSet<unsigned, 4> Visited;
2907   SmallVector<unsigned, 2> RecoloringCandidates;
2908   HintsInfo Info;
2909   unsigned Reg = VirtReg.reg();
2910   Register PhysReg = VRM->getPhys(Reg);
2911   // Start the recoloring algorithm from the input live-interval, then
2912   // it will propagate to the ones that are copy-related with it.
2913   Visited.insert(Reg);
2914   RecoloringCandidates.push_back(Reg);
2915 
2916   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2917                     << '(' << printReg(PhysReg, TRI) << ")\n");
2918 
2919   do {
2920     Reg = RecoloringCandidates.pop_back_val();
2921 
2922     // We cannot recolor physical register.
2923     if (Register::isPhysicalRegister(Reg))
2924       continue;
2925 
2926     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2927 
2928     // Get the live interval mapped with this virtual register to be able
2929     // to check for the interference with the new color.
2930     LiveInterval &LI = LIS->getInterval(Reg);
2931     Register CurrPhys = VRM->getPhys(Reg);
2932     // Check that the new color matches the register class constraints and
2933     // that it is free for this live range.
2934     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2935                                 Matrix->checkInterference(LI, PhysReg)))
2936       continue;
2937 
2938     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2939                       << ") is recolorable.\n");
2940 
2941     // Gather the hint info.
2942     Info.clear();
2943     collectHintInfo(Reg, Info);
2944     // Check if recoloring the live-range will increase the cost of the
2945     // non-identity copies.
2946     if (CurrPhys != PhysReg) {
2947       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2948       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2949       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2950       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2951                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2952                         << '\n');
2953       if (OldCopiesCost < NewCopiesCost) {
2954         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2955         continue;
2956       }
2957       // At this point, the cost is either cheaper or equal. If it is
2958       // equal, we consider this is profitable because it may expose
2959       // more recoloring opportunities.
2960       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2961       // Recolor the live-range.
2962       Matrix->unassign(LI);
2963       Matrix->assign(LI, PhysReg);
2964     }
2965     // Push all copy-related live-ranges to keep reconciling the broken
2966     // hints.
2967     for (const HintInfo &HI : Info) {
2968       if (Visited.insert(HI.Reg).second)
2969         RecoloringCandidates.push_back(HI.Reg);
2970     }
2971   } while (!RecoloringCandidates.empty());
2972 }
2973 
2974 /// Try to recolor broken hints.
2975 /// Broken hints may be repaired by recoloring when an evicted variable
2976 /// freed up a register for a larger live-range.
2977 /// Consider the following example:
2978 /// BB1:
2979 ///   a =
2980 ///   b =
2981 /// BB2:
2982 ///   ...
2983 ///   = b
2984 ///   = a
2985 /// Let us assume b gets split:
2986 /// BB1:
2987 ///   a =
2988 ///   b =
2989 /// BB2:
2990 ///   c = b
2991 ///   ...
2992 ///   d = c
2993 ///   = d
2994 ///   = a
2995 /// Because of how the allocation work, b, c, and d may be assigned different
2996 /// colors. Now, if a gets evicted later:
2997 /// BB1:
2998 ///   a =
2999 ///   st a, SpillSlot
3000 ///   b =
3001 /// BB2:
3002 ///   c = b
3003 ///   ...
3004 ///   d = c
3005 ///   = d
3006 ///   e = ld SpillSlot
3007 ///   = e
3008 /// This is likely that we can assign the same register for b, c, and d,
3009 /// getting rid of 2 copies.
3010 void RAGreedy::tryHintsRecoloring() {
3011   for (LiveInterval *LI : SetOfBrokenHints) {
3012     assert(Register::isVirtualRegister(LI->reg()) &&
3013            "Recoloring is possible only for virtual registers");
3014     // Some dead defs may be around (e.g., because of debug uses).
3015     // Ignore those.
3016     if (!VRM->hasPhys(LI->reg()))
3017       continue;
3018     tryHintRecoloring(*LI);
3019   }
3020 }
3021 
3022 Register RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3023                                      SmallVectorImpl<Register> &NewVRegs,
3024                                      SmallVirtRegSet &FixedRegisters,
3025                                      unsigned Depth) {
3026   unsigned CostPerUseLimit = ~0u;
3027   // First try assigning a free register.
3028   AllocationOrder Order(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
3029   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3030     // If VirtReg got an assignment, the eviction info is no longre relevant.
3031     LastEvicted.clearEvicteeInfo(VirtReg.reg());
3032     // When NewVRegs is not empty, we may have made decisions such as evicting
3033     // a virtual register, go with the earlier decisions and use the physical
3034     // register.
3035     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3036         NewVRegs.empty()) {
3037       Register CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3038                                               CostPerUseLimit, NewVRegs);
3039       if (CSRReg || !NewVRegs.empty())
3040         // Return now if we decide to use a CSR or create new vregs due to
3041         // pre-splitting.
3042         return CSRReg;
3043     } else
3044       return PhysReg;
3045   }
3046 
3047   LiveRangeStage Stage = getStage(VirtReg);
3048   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3049                     << ExtraRegInfo[VirtReg.reg()].Cascade << '\n');
3050 
3051   // Try to evict a less worthy live range, but only for ranges from the primary
3052   // queue. The RS_Split ranges already failed to do this, and they should not
3053   // get a second chance until they have been split.
3054   if (Stage != RS_Split)
3055     if (Register PhysReg =
3056             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3057                      FixedRegisters)) {
3058       Register Hint = MRI->getSimpleHint(VirtReg.reg());
3059       // If VirtReg has a hint and that hint is broken record this
3060       // virtual register as a recoloring candidate for broken hint.
3061       // Indeed, since we evicted a variable in its neighborhood it is
3062       // likely we can at least partially recolor some of the
3063       // copy-related live-ranges.
3064       if (Hint && Hint != PhysReg)
3065         SetOfBrokenHints.insert(&VirtReg);
3066       // If VirtReg eviction someone, the eviction info for it as an evictee is
3067       // no longre relevant.
3068       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3069       return PhysReg;
3070     }
3071 
3072   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3073 
3074   // The first time we see a live range, don't try to split or spill.
3075   // Wait until the second time, when all smaller ranges have been allocated.
3076   // This gives a better picture of the interference to split around.
3077   if (Stage < RS_Split) {
3078     setStage(VirtReg, RS_Split);
3079     LLVM_DEBUG(dbgs() << "wait for second round\n");
3080     NewVRegs.push_back(VirtReg.reg());
3081     return 0;
3082   }
3083 
3084   if (Stage < RS_Spill) {
3085     // Try splitting VirtReg or interferences.
3086     unsigned NewVRegSizeBefore = NewVRegs.size();
3087     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3088     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3089       // If VirtReg got split, the eviction info is no longer relevant.
3090       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3091       return PhysReg;
3092     }
3093   }
3094 
3095   // If we couldn't allocate a register from spilling, there is probably some
3096   // invalid inline assembly. The base class will report it.
3097   if (Stage >= RS_Done || !VirtReg.isSpillable())
3098     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3099                                    Depth);
3100 
3101   // Finally spill VirtReg itself.
3102   if ((EnableDeferredSpilling ||
3103        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
3104       getStage(VirtReg) < RS_Memory) {
3105     // TODO: This is experimental and in particular, we do not model
3106     // the live range splitting done by spilling correctly.
3107     // We would need a deep integration with the spiller to do the
3108     // right thing here. Anyway, that is still good for early testing.
3109     setStage(VirtReg, RS_Memory);
3110     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3111     NewVRegs.push_back(VirtReg.reg());
3112   } else {
3113     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3114                        TimerGroupDescription, TimePassesIsEnabled);
3115     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3116     spiller().spill(LRE);
3117     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3118 
3119     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3120     // the new regs are kept in LDV (still mapping to the old register), until
3121     // we rewrite spilled locations in LDV at a later stage.
3122     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
3123 
3124     if (VerifyEnabled)
3125       MF->verify(this, "After spilling");
3126   }
3127 
3128   // The live virtual register requesting allocation was spilled, so tell
3129   // the caller not to allocate anything during this round.
3130   return 0;
3131 }
3132 
3133 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3134                                             unsigned &FoldedReloads,
3135                                             unsigned &Spills,
3136                                             unsigned &FoldedSpills) {
3137   Reloads = 0;
3138   FoldedReloads = 0;
3139   Spills = 0;
3140   FoldedSpills = 0;
3141 
3142   // Sum up the spill and reloads in subloops.
3143   for (MachineLoop *SubLoop : *L) {
3144     unsigned SubReloads;
3145     unsigned SubFoldedReloads;
3146     unsigned SubSpills;
3147     unsigned SubFoldedSpills;
3148 
3149     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3150                                  SubSpills, SubFoldedSpills);
3151     Reloads += SubReloads;
3152     FoldedReloads += SubFoldedReloads;
3153     Spills += SubSpills;
3154     FoldedSpills += SubFoldedSpills;
3155   }
3156 
3157   const MachineFrameInfo &MFI = MF->getFrameInfo();
3158   int FI;
3159 
3160   for (MachineBasicBlock *MBB : L->getBlocks())
3161     // Handle blocks that were not included in subloops.
3162     if (Loops->getLoopFor(MBB) == L)
3163       for (MachineInstr &MI : *MBB) {
3164         SmallVector<const MachineMemOperand *, 2> Accesses;
3165         auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3166           return MFI.isSpillSlotObjectIndex(
3167               cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3168                   ->getFrameIndex());
3169         };
3170 
3171         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3172           ++Reloads;
3173         else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3174                  llvm::any_of(Accesses, isSpillSlotAccess))
3175           ++FoldedReloads;
3176         else if (TII->isStoreToStackSlot(MI, FI) &&
3177                  MFI.isSpillSlotObjectIndex(FI))
3178           ++Spills;
3179         else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3180                  llvm::any_of(Accesses, isSpillSlotAccess))
3181           ++FoldedSpills;
3182       }
3183 
3184   if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3185     using namespace ore;
3186 
3187     ORE->emit([&]() {
3188       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3189                                         L->getStartLoc(), L->getHeader());
3190       if (Spills)
3191         R << NV("NumSpills", Spills) << " spills ";
3192       if (FoldedSpills)
3193         R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3194       if (Reloads)
3195         R << NV("NumReloads", Reloads) << " reloads ";
3196       if (FoldedReloads)
3197         R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3198       R << "generated in loop";
3199       return R;
3200     });
3201   }
3202 }
3203 
3204 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3205   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3206                     << "********** Function: " << mf.getName() << '\n');
3207 
3208   MF = &mf;
3209   TRI = MF->getSubtarget().getRegisterInfo();
3210   TII = MF->getSubtarget().getInstrInfo();
3211   RCI.runOnMachineFunction(mf);
3212 
3213   EnableLocalReassign = EnableLocalReassignment ||
3214                         MF->getSubtarget().enableRALocalReassignment(
3215                             MF->getTarget().getOptLevel());
3216 
3217   EnableAdvancedRASplitCost =
3218       ConsiderLocalIntervalCost.getNumOccurrences()
3219           ? ConsiderLocalIntervalCost
3220           : MF->getSubtarget().enableAdvancedRASplitCost();
3221 
3222   if (VerifyEnabled)
3223     MF->verify(this, "Before greedy register allocator");
3224 
3225   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3226                      getAnalysis<LiveIntervals>(),
3227                      getAnalysis<LiveRegMatrix>());
3228   Indexes = &getAnalysis<SlotIndexes>();
3229   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3230   DomTree = &getAnalysis<MachineDominatorTree>();
3231   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3232   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3233   Loops = &getAnalysis<MachineLoopInfo>();
3234   Bundles = &getAnalysis<EdgeBundles>();
3235   SpillPlacer = &getAnalysis<SpillPlacement>();
3236   DebugVars = &getAnalysis<LiveDebugVariables>();
3237   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3238 
3239   initializeCSRCost();
3240 
3241   calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
3242 
3243   LLVM_DEBUG(LIS->dump());
3244 
3245   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3246   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3247   ExtraRegInfo.clear();
3248   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3249   NextCascade = 1;
3250   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3251   GlobalCand.resize(32);  // This will grow as needed.
3252   SetOfBrokenHints.clear();
3253   LastEvicted.clear();
3254 
3255   allocatePhysRegs();
3256   tryHintsRecoloring();
3257   postOptimization();
3258   reportNumberOfSplillsReloads();
3259 
3260   releaseMemory();
3261   return true;
3262 }
3263