1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "SplitKit.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <queue>
77 #include <tuple>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "regalloc"
83 
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
86 STATISTIC(NumEvicted,      "Number of interferences evicted");
87 
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89     "split-spill-mode", cl::Hidden,
90     cl::desc("Spill mode for splitting live ranges"),
91     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94     cl::init(SplitEditor::SM_Speed));
95 
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98                              cl::desc("Last chance recoloring max depth"),
99                              cl::init(5));
100 
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102     "lcr-max-interf", cl::Hidden,
103     cl::desc("Last chance recoloring maximum number of considered"
104              " interference at a time"),
105     cl::init(8));
106 
107 static cl::opt<bool> ExhaustiveSearch(
108     "exhaustive-register-search", cl::NotHidden,
109     cl::desc("Exhaustive Search for registers bypassing the depth "
110              "and interference cutoffs of last chance recoloring"),
111     cl::Hidden);
112 
113 static cl::opt<bool> EnableLocalReassignment(
114     "enable-local-reassign", cl::Hidden,
115     cl::desc("Local reassignment can yield better allocation decisions, but "
116              "may be compile time intensive"),
117     cl::init(false));
118 
119 static cl::opt<bool> EnableDeferredSpilling(
120     "enable-deferred-spilling", cl::Hidden,
121     cl::desc("Instead of spilling a variable right away, defer the actual "
122              "code insertion to the end of the allocation. That way the "
123              "allocator might still find a suitable coloring for this "
124              "variable because of other evicted variables."),
125     cl::init(false));
126 
127 // FIXME: Find a good default for this flag and remove the flag.
128 static cl::opt<unsigned>
129 CSRFirstTimeCost("regalloc-csr-first-time-cost",
130               cl::desc("Cost for first time use of callee-saved register."),
131               cl::init(0), cl::Hidden);
132 
133 static cl::opt<bool> ConsiderLocalIntervalCost(
134     "consider-local-interval-cost", cl::Hidden,
135     cl::desc("Consider the cost of local intervals created by a split "
136              "candidate when choosing the best split candidate."),
137     cl::init(false));
138 
139 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
140                                        createGreedyRegisterAllocator);
141 
142 namespace {
143 
144 class RAGreedy : public MachineFunctionPass,
145                  public RegAllocBase,
146                  private LiveRangeEdit::Delegate {
147   // Convenient shortcuts.
148   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
149   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
150   using SmallVirtRegSet = SmallSet<Register, 16>;
151 
152   // context
153   MachineFunction *MF;
154 
155   // Shortcuts to some useful interface.
156   const TargetInstrInfo *TII;
157   const TargetRegisterInfo *TRI;
158   RegisterClassInfo RCI;
159 
160   // analyses
161   SlotIndexes *Indexes;
162   MachineBlockFrequencyInfo *MBFI;
163   MachineDominatorTree *DomTree;
164   MachineLoopInfo *Loops;
165   MachineOptimizationRemarkEmitter *ORE;
166   EdgeBundles *Bundles;
167   SpillPlacement *SpillPlacer;
168   LiveDebugVariables *DebugVars;
169   AliasAnalysis *AA;
170 
171   // state
172   std::unique_ptr<Spiller> SpillerInstance;
173   PQueue Queue;
174   unsigned NextCascade;
175   std::unique_ptr<VirtRegAuxInfo> VRAI;
176 
177   // Live ranges pass through a number of stages as we try to allocate them.
178   // Some of the stages may also create new live ranges:
179   //
180   // - Region splitting.
181   // - Per-block splitting.
182   // - Local splitting.
183   // - Spilling.
184   //
185   // Ranges produced by one of the stages skip the previous stages when they are
186   // dequeued. This improves performance because we can skip interference checks
187   // that are unlikely to give any results. It also guarantees that the live
188   // range splitting algorithm terminates, something that is otherwise hard to
189   // ensure.
190   enum LiveRangeStage {
191     /// Newly created live range that has never been queued.
192     RS_New,
193 
194     /// Only attempt assignment and eviction. Then requeue as RS_Split.
195     RS_Assign,
196 
197     /// Attempt live range splitting if assignment is impossible.
198     RS_Split,
199 
200     /// Attempt more aggressive live range splitting that is guaranteed to make
201     /// progress.  This is used for split products that may not be making
202     /// progress.
203     RS_Split2,
204 
205     /// Live range will be spilled.  No more splitting will be attempted.
206     RS_Spill,
207 
208 
209     /// Live range is in memory. Because of other evictions, it might get moved
210     /// in a register in the end.
211     RS_Memory,
212 
213     /// There is nothing more we can do to this live range.  Abort compilation
214     /// if it can't be assigned.
215     RS_Done
216   };
217 
218   // Enum CutOffStage to keep a track whether the register allocation failed
219   // because of the cutoffs encountered in last chance recoloring.
220   // Note: This is used as bitmask. New value should be next power of 2.
221   enum CutOffStage {
222     // No cutoffs encountered
223     CO_None = 0,
224 
225     // lcr-max-depth cutoff encountered
226     CO_Depth = 1,
227 
228     // lcr-max-interf cutoff encountered
229     CO_Interf = 2
230   };
231 
232   uint8_t CutOffInfo;
233 
234 #ifndef NDEBUG
235   static const char *const StageName[];
236 #endif
237 
238   // RegInfo - Keep additional information about each live range.
239   struct RegInfo {
240     LiveRangeStage Stage = RS_New;
241 
242     // Cascade - Eviction loop prevention. See canEvictInterference().
243     unsigned Cascade = 0;
244 
245     RegInfo() = default;
246   };
247 
248   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
249 
250   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
251     return ExtraRegInfo[VirtReg.reg()].Stage;
252   }
253 
254   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
255     ExtraRegInfo.resize(MRI->getNumVirtRegs());
256     ExtraRegInfo[VirtReg.reg()].Stage = Stage;
257   }
258 
259   template<typename Iterator>
260   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
261     ExtraRegInfo.resize(MRI->getNumVirtRegs());
262     for (;Begin != End; ++Begin) {
263       Register Reg = *Begin;
264       if (ExtraRegInfo[Reg].Stage == RS_New)
265         ExtraRegInfo[Reg].Stage = NewStage;
266     }
267   }
268 
269   /// Cost of evicting interference.
270   struct EvictionCost {
271     unsigned BrokenHints = 0; ///< Total number of broken hints.
272     float MaxWeight = 0;      ///< Maximum spill weight evicted.
273 
274     EvictionCost() = default;
275 
276     bool isMax() const { return BrokenHints == ~0u; }
277 
278     void setMax() { BrokenHints = ~0u; }
279 
280     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
281 
282     bool operator<(const EvictionCost &O) const {
283       return std::tie(BrokenHints, MaxWeight) <
284              std::tie(O.BrokenHints, O.MaxWeight);
285     }
286   };
287 
288   /// EvictionTrack - Keeps track of past evictions in order to optimize region
289   /// split decision.
290   class EvictionTrack {
291 
292   public:
293     using EvictorInfo =
294         std::pair<Register /* evictor */, MCRegister /* physreg */>;
295     using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>;
296 
297   private:
298     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
299     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
300     EvicteeInfo Evictees;
301 
302   public:
303     /// Clear all eviction information.
304     void clear() { Evictees.clear(); }
305 
306     ///  Clear eviction information for the given evictee Vreg.
307     /// E.g. when Vreg get's a new allocation, the old eviction info is no
308     /// longer relevant.
309     /// \param Evictee The evictee Vreg for whom we want to clear collected
310     /// eviction info.
311     void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); }
312 
313     /// Track new eviction.
314     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
315     /// \param PhysReg The physical register Evictee was evicted from.
316     /// \param Evictor The evictor Vreg that evicted Evictee.
317     /// \param Evictee The evictee Vreg.
318     void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) {
319       Evictees[Evictee].first = Evictor;
320       Evictees[Evictee].second = PhysReg;
321     }
322 
323     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
324     /// \param Evictee The evictee vreg.
325     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
326     /// nobody has evicted Evictee from PhysReg.
327     EvictorInfo getEvictor(Register Evictee) {
328       if (Evictees.count(Evictee)) {
329         return Evictees[Evictee];
330       }
331 
332       return EvictorInfo(0, 0);
333     }
334   };
335 
336   // Keeps track of past evictions in order to optimize region split decision.
337   EvictionTrack LastEvicted;
338 
339   // splitting state.
340   std::unique_ptr<SplitAnalysis> SA;
341   std::unique_ptr<SplitEditor> SE;
342 
343   /// Cached per-block interference maps
344   InterferenceCache IntfCache;
345 
346   /// All basic blocks where the current register has uses.
347   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
348 
349   /// Global live range splitting candidate info.
350   struct GlobalSplitCandidate {
351     // Register intended for assignment, or 0.
352     MCRegister PhysReg;
353 
354     // SplitKit interval index for this candidate.
355     unsigned IntvIdx;
356 
357     // Interference for PhysReg.
358     InterferenceCache::Cursor Intf;
359 
360     // Bundles where this candidate should be live.
361     BitVector LiveBundles;
362     SmallVector<unsigned, 8> ActiveBlocks;
363 
364     void reset(InterferenceCache &Cache, MCRegister Reg) {
365       PhysReg = Reg;
366       IntvIdx = 0;
367       Intf.setPhysReg(Cache, Reg);
368       LiveBundles.clear();
369       ActiveBlocks.clear();
370     }
371 
372     // Set B[I] = C for every live bundle where B[I] was NoCand.
373     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
374       unsigned Count = 0;
375       for (unsigned I : LiveBundles.set_bits())
376         if (B[I] == NoCand) {
377           B[I] = C;
378           Count++;
379         }
380       return Count;
381     }
382   };
383 
384   /// Candidate info for each PhysReg in AllocationOrder.
385   /// This vector never shrinks, but grows to the size of the largest register
386   /// class.
387   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
388 
389   enum : unsigned { NoCand = ~0u };
390 
391   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
392   /// NoCand which indicates the stack interval.
393   SmallVector<unsigned, 32> BundleCand;
394 
395   /// Callee-save register cost, calculated once per machine function.
396   BlockFrequency CSRCost;
397 
398   /// Run or not the local reassignment heuristic. This information is
399   /// obtained from the TargetSubtargetInfo.
400   bool EnableLocalReassign;
401 
402   /// Enable or not the consideration of the cost of local intervals created
403   /// by a split candidate when choosing the best split candidate.
404   bool EnableAdvancedRASplitCost;
405 
406   /// Set of broken hints that may be reconciled later because of eviction.
407   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
408 
409 public:
410   RAGreedy();
411 
412   /// Return the pass name.
413   StringRef getPassName() const override { return "Greedy Register Allocator"; }
414 
415   /// RAGreedy analysis usage.
416   void getAnalysisUsage(AnalysisUsage &AU) const override;
417   void releaseMemory() override;
418   Spiller &spiller() override { return *SpillerInstance; }
419   void enqueue(LiveInterval *LI) override;
420   LiveInterval *dequeue() override;
421   MCRegister selectOrSplit(LiveInterval &,
422                            SmallVectorImpl<Register> &) override;
423   void aboutToRemoveInterval(LiveInterval &) override;
424 
425   /// Perform register allocation.
426   bool runOnMachineFunction(MachineFunction &mf) override;
427 
428   MachineFunctionProperties getRequiredProperties() const override {
429     return MachineFunctionProperties().set(
430         MachineFunctionProperties::Property::NoPHIs);
431   }
432 
433   static char ID;
434 
435 private:
436   MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &,
437                                SmallVirtRegSet &, unsigned = 0);
438 
439   bool LRE_CanEraseVirtReg(unsigned) override;
440   void LRE_WillShrinkVirtReg(unsigned) override;
441   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
442   void enqueue(PQueue &CurQueue, LiveInterval *LI);
443   LiveInterval *dequeue(PQueue &CurQueue);
444 
445   BlockFrequency calcSpillCost();
446   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
447   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
448   bool growRegion(GlobalSplitCandidate &Cand);
449   bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand,
450                                   unsigned BBNumber,
451                                   const AllocationOrder &Order);
452   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
453                                GlobalSplitCandidate &Cand, unsigned BBNumber,
454                                const AllocationOrder &Order);
455   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
456                                      const AllocationOrder &Order,
457                                      bool *CanCauseEvictionChain);
458   bool calcCompactRegion(GlobalSplitCandidate&);
459   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
460   void calcGapWeights(MCRegister, SmallVectorImpl<float> &);
461   Register canReassign(LiveInterval &VirtReg, Register PrevReg);
462   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
463   bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &,
464                             const SmallVirtRegSet &);
465   bool canEvictInterferenceInRange(LiveInterval &VirtReg, MCRegister PhysReg,
466                                    SlotIndex Start, SlotIndex End,
467                                    EvictionCost &MaxCost);
468   unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
469                                     LiveInterval &VirtReg, SlotIndex Start,
470                                     SlotIndex End, float *BestEvictWeight);
471   void evictInterference(LiveInterval &, MCRegister,
472                          SmallVectorImpl<Register> &);
473   bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg,
474                                   SmallLISet &RecoloringCandidates,
475                                   const SmallVirtRegSet &FixedRegisters);
476 
477   Register tryAssign(LiveInterval&, AllocationOrder&,
478                      SmallVectorImpl<Register>&,
479                      const SmallVirtRegSet&);
480   unsigned tryEvict(LiveInterval&, AllocationOrder&,
481                     SmallVectorImpl<Register>&, unsigned,
482                     const SmallVirtRegSet&);
483   MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &,
484                             SmallVectorImpl<Register> &);
485   /// Calculate cost of region splitting.
486   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
487                                     AllocationOrder &Order,
488                                     BlockFrequency &BestCost,
489                                     unsigned &NumCands, bool IgnoreCSR,
490                                     bool *CanCauseEvictionChain = nullptr);
491   /// Perform region splitting.
492   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
493                          bool HasCompact,
494                          SmallVectorImpl<Register> &NewVRegs);
495   /// Check other options before using a callee-saved register for the first
496   /// time.
497   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
498                                  Register PhysReg, unsigned &CostPerUseLimit,
499                                  SmallVectorImpl<Register> &NewVRegs);
500   void initializeCSRCost();
501   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
502                          SmallVectorImpl<Register>&);
503   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
504                                SmallVectorImpl<Register>&);
505   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
506     SmallVectorImpl<Register>&);
507   unsigned trySplit(LiveInterval&, AllocationOrder&,
508                     SmallVectorImpl<Register>&,
509                     const SmallVirtRegSet&);
510   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
511                                    SmallVectorImpl<Register> &,
512                                    SmallVirtRegSet &, unsigned);
513   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &,
514                                SmallVirtRegSet &, unsigned);
515   void tryHintRecoloring(LiveInterval &);
516   void tryHintsRecoloring();
517 
518   /// Model the information carried by one end of a copy.
519   struct HintInfo {
520     /// The frequency of the copy.
521     BlockFrequency Freq;
522     /// The virtual register or physical register.
523     Register Reg;
524     /// Its currently assigned register.
525     /// In case of a physical register Reg == PhysReg.
526     MCRegister PhysReg;
527 
528     HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg)
529         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
530   };
531   using HintsInfo = SmallVector<HintInfo, 4>;
532 
533   BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister);
534   void collectHintInfo(unsigned, HintsInfo &);
535 
536   bool isUnusedCalleeSavedReg(MCRegister PhysReg) const;
537 
538   /// Compute and report the number of spills and reloads for a loop.
539   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
540                                     unsigned &FoldedReloads, unsigned &Spills,
541                                     unsigned &FoldedSpills);
542 
543   /// Report the number of spills and reloads for each loop.
544   void reportNumberOfSplillsReloads() {
545     for (MachineLoop *L : *Loops) {
546       unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
547       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
548                                    FoldedSpills);
549     }
550   }
551 };
552 
553 } // end anonymous namespace
554 
555 char RAGreedy::ID = 0;
556 char &llvm::RAGreedyID = RAGreedy::ID;
557 
558 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
559                 "Greedy Register Allocator", false, false)
560 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
561 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
562 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
563 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
564 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
565 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
566 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
567 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
568 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
569 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
570 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
571 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
572 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
573 INITIALIZE_PASS_END(RAGreedy, "greedy",
574                 "Greedy Register Allocator", false, false)
575 
576 #ifndef NDEBUG
577 const char *const RAGreedy::StageName[] = {
578     "RS_New",
579     "RS_Assign",
580     "RS_Split",
581     "RS_Split2",
582     "RS_Spill",
583     "RS_Memory",
584     "RS_Done"
585 };
586 #endif
587 
588 // Hysteresis to use when comparing floats.
589 // This helps stabilize decisions based on float comparisons.
590 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
591 
592 FunctionPass* llvm::createGreedyRegisterAllocator() {
593   return new RAGreedy();
594 }
595 
596 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
597 }
598 
599 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
600   AU.setPreservesCFG();
601   AU.addRequired<MachineBlockFrequencyInfo>();
602   AU.addPreserved<MachineBlockFrequencyInfo>();
603   AU.addRequired<AAResultsWrapperPass>();
604   AU.addPreserved<AAResultsWrapperPass>();
605   AU.addRequired<LiveIntervals>();
606   AU.addPreserved<LiveIntervals>();
607   AU.addRequired<SlotIndexes>();
608   AU.addPreserved<SlotIndexes>();
609   AU.addRequired<LiveDebugVariables>();
610   AU.addPreserved<LiveDebugVariables>();
611   AU.addRequired<LiveStacks>();
612   AU.addPreserved<LiveStacks>();
613   AU.addRequired<MachineDominatorTree>();
614   AU.addPreserved<MachineDominatorTree>();
615   AU.addRequired<MachineLoopInfo>();
616   AU.addPreserved<MachineLoopInfo>();
617   AU.addRequired<VirtRegMap>();
618   AU.addPreserved<VirtRegMap>();
619   AU.addRequired<LiveRegMatrix>();
620   AU.addPreserved<LiveRegMatrix>();
621   AU.addRequired<EdgeBundles>();
622   AU.addRequired<SpillPlacement>();
623   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
624   MachineFunctionPass::getAnalysisUsage(AU);
625 }
626 
627 //===----------------------------------------------------------------------===//
628 //                     LiveRangeEdit delegate methods
629 //===----------------------------------------------------------------------===//
630 
631 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
632   LiveInterval &LI = LIS->getInterval(VirtReg);
633   if (VRM->hasPhys(VirtReg)) {
634     Matrix->unassign(LI);
635     aboutToRemoveInterval(LI);
636     return true;
637   }
638   // Unassigned virtreg is probably in the priority queue.
639   // RegAllocBase will erase it after dequeueing.
640   // Nonetheless, clear the live-range so that the debug
641   // dump will show the right state for that VirtReg.
642   LI.clear();
643   return false;
644 }
645 
646 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
647   if (!VRM->hasPhys(VirtReg))
648     return;
649 
650   // Register is assigned, put it back on the queue for reassignment.
651   LiveInterval &LI = LIS->getInterval(VirtReg);
652   Matrix->unassign(LI);
653   enqueue(&LI);
654 }
655 
656 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
657   // Cloning a register we haven't even heard about yet?  Just ignore it.
658   if (!ExtraRegInfo.inBounds(Old))
659     return;
660 
661   // LRE may clone a virtual register because dead code elimination causes it to
662   // be split into connected components. The new components are much smaller
663   // than the original, so they should get a new chance at being assigned.
664   // same stage as the parent.
665   ExtraRegInfo[Old].Stage = RS_Assign;
666   ExtraRegInfo.grow(New);
667   ExtraRegInfo[New] = ExtraRegInfo[Old];
668 }
669 
670 void RAGreedy::releaseMemory() {
671   SpillerInstance.reset();
672   ExtraRegInfo.clear();
673   GlobalCand.clear();
674 }
675 
676 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
677 
678 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
679   // Prioritize live ranges by size, assigning larger ranges first.
680   // The queue holds (size, reg) pairs.
681   const unsigned Size = LI->getSize();
682   const unsigned Reg = LI->reg();
683   assert(Register::isVirtualRegister(Reg) &&
684          "Can only enqueue virtual registers");
685   unsigned Prio;
686 
687   ExtraRegInfo.grow(Reg);
688   if (ExtraRegInfo[Reg].Stage == RS_New)
689     ExtraRegInfo[Reg].Stage = RS_Assign;
690 
691   if (ExtraRegInfo[Reg].Stage == RS_Split) {
692     // Unsplit ranges that couldn't be allocated immediately are deferred until
693     // everything else has been allocated.
694     Prio = Size;
695   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
696     // Memory operand should be considered last.
697     // Change the priority such that Memory operand are assigned in
698     // the reverse order that they came in.
699     // TODO: Make this a member variable and probably do something about hints.
700     static unsigned MemOp = 0;
701     Prio = MemOp++;
702   } else {
703     // Giant live ranges fall back to the global assignment heuristic, which
704     // prevents excessive spilling in pathological cases.
705     bool ReverseLocal = TRI->reverseLocalAssignment();
706     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
707     bool ForceGlobal = !ReverseLocal &&
708       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
709 
710     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
711         LIS->intervalIsInOneMBB(*LI)) {
712       // Allocate original local ranges in linear instruction order. Since they
713       // are singly defined, this produces optimal coloring in the absence of
714       // global interference and other constraints.
715       if (!ReverseLocal)
716         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
717       else {
718         // Allocating bottom up may allow many short LRGs to be assigned first
719         // to one of the cheap registers. This could be much faster for very
720         // large blocks on targets with many physical registers.
721         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
722       }
723       Prio |= RC.AllocationPriority << 24;
724     } else {
725       // Allocate global and split ranges in long->short order. Long ranges that
726       // don't fit should be spilled (or split) ASAP so they don't create
727       // interference.  Mark a bit to prioritize global above local ranges.
728       Prio = (1u << 29) + Size;
729     }
730     // Mark a higher bit to prioritize global and local above RS_Split.
731     Prio |= (1u << 31);
732 
733     // Boost ranges that have a physical register hint.
734     if (VRM->hasKnownPreference(Reg))
735       Prio |= (1u << 30);
736   }
737   // The virtual register number is a tie breaker for same-sized ranges.
738   // Give lower vreg numbers higher priority to assign them first.
739   CurQueue.push(std::make_pair(Prio, ~Reg));
740 }
741 
742 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
743 
744 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
745   if (CurQueue.empty())
746     return nullptr;
747   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
748   CurQueue.pop();
749   return LI;
750 }
751 
752 //===----------------------------------------------------------------------===//
753 //                            Direct Assignment
754 //===----------------------------------------------------------------------===//
755 
756 /// tryAssign - Try to assign VirtReg to an available register.
757 Register RAGreedy::tryAssign(LiveInterval &VirtReg,
758                              AllocationOrder &Order,
759                              SmallVectorImpl<Register> &NewVRegs,
760                              const SmallVirtRegSet &FixedRegisters) {
761   Register PhysReg;
762   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
763     assert(*I);
764     if (!Matrix->checkInterference(VirtReg, *I)) {
765       if (I.isHint())
766         return *I;
767       else
768         PhysReg = *I;
769     }
770   }
771   if (!PhysReg.isValid())
772     return PhysReg;
773 
774   // PhysReg is available, but there may be a better choice.
775 
776   // If we missed a simple hint, try to cheaply evict interference from the
777   // preferred register.
778   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
779     if (Order.isHint(Hint)) {
780       MCRegister PhysHint = Hint.asMCReg();
781       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
782       EvictionCost MaxCost;
783       MaxCost.setBrokenHints(1);
784       if (canEvictInterference(VirtReg, PhysHint, true, MaxCost,
785                                FixedRegisters)) {
786         evictInterference(VirtReg, PhysHint, NewVRegs);
787         return PhysHint;
788       }
789       // Record the missed hint, we may be able to recover
790       // at the end if the surrounding allocation changed.
791       SetOfBrokenHints.insert(&VirtReg);
792     }
793 
794   // Try to evict interference from a cheaper alternative.
795   unsigned Cost = TRI->getCostPerUse(PhysReg);
796 
797   // Most registers have 0 additional cost.
798   if (!Cost)
799     return PhysReg;
800 
801   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
802                     << Cost << '\n');
803   Register CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
804   return CheapReg ? CheapReg : PhysReg;
805 }
806 
807 //===----------------------------------------------------------------------===//
808 //                         Interference eviction
809 //===----------------------------------------------------------------------===//
810 
811 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) {
812   auto Order =
813       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
814   MCRegister PhysReg;
815   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
816     if ((*I).id() == PrevReg.id())
817       continue;
818 
819     MCRegUnitIterator Units(*I, TRI);
820     for (; Units.isValid(); ++Units) {
821       // Instantiate a "subquery", not to be confused with the Queries array.
822       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
823       if (subQ.checkInterference())
824         break;
825     }
826     // If no units have interference, break out with the current PhysReg.
827     if (!Units.isValid())
828       PhysReg = *I;
829   }
830   if (PhysReg)
831     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
832                       << printReg(PrevReg, TRI) << " to "
833                       << printReg(PhysReg, TRI) << '\n');
834   return PhysReg;
835 }
836 
837 /// shouldEvict - determine if A should evict the assigned live range B. The
838 /// eviction policy defined by this function together with the allocation order
839 /// defined by enqueue() decides which registers ultimately end up being split
840 /// and spilled.
841 ///
842 /// Cascade numbers are used to prevent infinite loops if this function is a
843 /// cyclic relation.
844 ///
845 /// @param A          The live range to be assigned.
846 /// @param IsHint     True when A is about to be assigned to its preferred
847 ///                   register.
848 /// @param B          The live range to be evicted.
849 /// @param BreaksHint True when B is already assigned to its preferred register.
850 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
851                            LiveInterval &B, bool BreaksHint) {
852   bool CanSplit = getStage(B) < RS_Spill;
853 
854   // Be fairly aggressive about following hints as long as the evictee can be
855   // split.
856   if (CanSplit && IsHint && !BreaksHint)
857     return true;
858 
859   if (A.weight() > B.weight()) {
860     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n');
861     return true;
862   }
863   return false;
864 }
865 
866 /// canEvictInterference - Return true if all interferences between VirtReg and
867 /// PhysReg can be evicted.
868 ///
869 /// @param VirtReg Live range that is about to be assigned.
870 /// @param PhysReg Desired register for assignment.
871 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
872 /// @param MaxCost Only look for cheaper candidates and update with new cost
873 ///                when returning true.
874 /// @returns True when interference can be evicted cheaper than MaxCost.
875 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, MCRegister PhysReg,
876                                     bool IsHint, EvictionCost &MaxCost,
877                                     const SmallVirtRegSet &FixedRegisters) {
878   // It is only possible to evict virtual register interference.
879   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
880     return false;
881 
882   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
883 
884   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
885   // involved in an eviction before. If a cascade number was assigned, deny
886   // evicting anything with the same or a newer cascade number. This prevents
887   // infinite eviction loops.
888   //
889   // This works out so a register without a cascade number is allowed to evict
890   // anything, and it can be evicted by anything.
891   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
892   if (!Cascade)
893     Cascade = NextCascade;
894 
895   EvictionCost Cost;
896   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
897     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
898     // If there is 10 or more interferences, chances are one is heavier.
899     if (Q.collectInterferingVRegs(10) >= 10)
900       return false;
901 
902     // Check if any interfering live range is heavier than MaxWeight.
903     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
904       assert(Register::isVirtualRegister(Intf->reg()) &&
905              "Only expecting virtual register interference from query");
906 
907       // Do not allow eviction of a virtual register if we are in the middle
908       // of last-chance recoloring and this virtual register is one that we
909       // have scavenged a physical register for.
910       if (FixedRegisters.count(Intf->reg()))
911         return false;
912 
913       // Never evict spill products. They cannot split or spill.
914       if (getStage(*Intf) == RS_Done)
915         return false;
916       // Once a live range becomes small enough, it is urgent that we find a
917       // register for it. This is indicated by an infinite spill weight. These
918       // urgent live ranges get to evict almost anything.
919       //
920       // Also allow urgent evictions of unspillable ranges from a strictly
921       // larger allocation order.
922       bool Urgent =
923           !VirtReg.isSpillable() &&
924           (Intf->isSpillable() ||
925            RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
926                RegClassInfo.getNumAllocatableRegs(
927                    MRI->getRegClass(Intf->reg())));
928       // Only evict older cascades or live ranges without a cascade.
929       unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade;
930       if (Cascade <= IntfCascade) {
931         if (!Urgent)
932           return false;
933         // We permit breaking cascades for urgent evictions. It should be the
934         // last resort, though, so make it really expensive.
935         Cost.BrokenHints += 10;
936       }
937       // Would this break a satisfied hint?
938       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
939       // Update eviction cost.
940       Cost.BrokenHints += BreaksHint;
941       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
942       // Abort if this would be too expensive.
943       if (!(Cost < MaxCost))
944         return false;
945       if (Urgent)
946         continue;
947       // Apply the eviction policy for non-urgent evictions.
948       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
949         return false;
950       // If !MaxCost.isMax(), then we're just looking for a cheap register.
951       // Evicting another local live range in this case could lead to suboptimal
952       // coloring.
953       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
954           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
955         return false;
956       }
957     }
958   }
959   MaxCost = Cost;
960   return true;
961 }
962 
963 /// Return true if all interferences between VirtReg and PhysReg between
964 /// Start and End can be evicted.
965 ///
966 /// \param VirtReg Live range that is about to be assigned.
967 /// \param PhysReg Desired register for assignment.
968 /// \param Start   Start of range to look for interferences.
969 /// \param End     End of range to look for interferences.
970 /// \param MaxCost Only look for cheaper candidates and update with new cost
971 ///                when returning true.
972 /// \return True when interference can be evicted cheaper than MaxCost.
973 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
974                                            MCRegister PhysReg, SlotIndex Start,
975                                            SlotIndex End,
976                                            EvictionCost &MaxCost) {
977   EvictionCost Cost;
978 
979   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
980     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
981 
982     // Check if any interfering live range is heavier than MaxWeight.
983     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
984       // Check if interference overlast the segment in interest.
985       if (!Intf->overlaps(Start, End))
986         continue;
987 
988       // Cannot evict non virtual reg interference.
989       if (!Register::isVirtualRegister(Intf->reg()))
990         return false;
991       // Never evict spill products. They cannot split or spill.
992       if (getStage(*Intf) == RS_Done)
993         return false;
994 
995       // Would this break a satisfied hint?
996       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
997       // Update eviction cost.
998       Cost.BrokenHints += BreaksHint;
999       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
1000       // Abort if this would be too expensive.
1001       if (!(Cost < MaxCost))
1002         return false;
1003     }
1004   }
1005 
1006   if (Cost.MaxWeight == 0)
1007     return false;
1008 
1009   MaxCost = Cost;
1010   return true;
1011 }
1012 
1013 /// Return the physical register that will be best
1014 /// candidate for eviction by a local split interval that will be created
1015 /// between Start and End.
1016 ///
1017 /// \param Order            The allocation order
1018 /// \param VirtReg          Live range that is about to be assigned.
1019 /// \param Start            Start of range to look for interferences
1020 /// \param End              End of range to look for interferences
1021 /// \param BestEvictweight  The eviction cost of that eviction
1022 /// \return The PhysReg which is the best candidate for eviction and the
1023 /// eviction cost in BestEvictweight
1024 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1025                                             LiveInterval &VirtReg,
1026                                             SlotIndex Start, SlotIndex End,
1027                                             float *BestEvictweight) {
1028   EvictionCost BestEvictCost;
1029   BestEvictCost.setMax();
1030   BestEvictCost.MaxWeight = VirtReg.weight();
1031   unsigned BestEvicteePhys = 0;
1032 
1033   // Go over all physical registers and find the best candidate for eviction
1034   for (auto PhysReg : Order.getOrder()) {
1035 
1036     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1037                                      BestEvictCost))
1038       continue;
1039 
1040     // Best so far.
1041     BestEvicteePhys = PhysReg;
1042   }
1043   *BestEvictweight = BestEvictCost.MaxWeight;
1044   return BestEvicteePhys;
1045 }
1046 
1047 /// evictInterference - Evict any interferring registers that prevent VirtReg
1048 /// from being assigned to Physreg. This assumes that canEvictInterference
1049 /// returned true.
1050 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg,
1051                                  SmallVectorImpl<Register> &NewVRegs) {
1052   // Make sure that VirtReg has a cascade number, and assign that cascade
1053   // number to every evicted register. These live ranges than then only be
1054   // evicted by a newer cascade, preventing infinite loops.
1055   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
1056   if (!Cascade)
1057     Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++;
1058 
1059   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1060                     << " interference: Cascade " << Cascade << '\n');
1061 
1062   // Collect all interfering virtregs first.
1063   SmallVector<LiveInterval*, 8> Intfs;
1064   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1065     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1066     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1067     // should be fast, we may need to recalculate if when different physregs
1068     // overlap the same register unit so we had different SubRanges queried
1069     // against it.
1070     Q.collectInterferingVRegs();
1071     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1072     Intfs.append(IVR.begin(), IVR.end());
1073   }
1074 
1075   // Evict them second. This will invalidate the queries.
1076   for (LiveInterval *Intf : Intfs) {
1077     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1078     if (!VRM->hasPhys(Intf->reg()))
1079       continue;
1080 
1081     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
1082 
1083     Matrix->unassign(*Intf);
1084     assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade ||
1085             VirtReg.isSpillable() < Intf->isSpillable()) &&
1086            "Cannot decrease cascade number, illegal eviction");
1087     ExtraRegInfo[Intf->reg()].Cascade = Cascade;
1088     ++NumEvicted;
1089     NewVRegs.push_back(Intf->reg());
1090   }
1091 }
1092 
1093 /// Returns true if the given \p PhysReg is a callee saved register and has not
1094 /// been used for allocation yet.
1095 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
1096   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1097   if (!CSR)
1098     return false;
1099 
1100   return !Matrix->isPhysRegUsed(PhysReg);
1101 }
1102 
1103 /// tryEvict - Try to evict all interferences for a physreg.
1104 /// @param  VirtReg Currently unassigned virtual register.
1105 /// @param  Order   Physregs to try.
1106 /// @return         Physreg to assign VirtReg, or 0.
1107 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
1108                             AllocationOrder &Order,
1109                             SmallVectorImpl<Register> &NewVRegs,
1110                             unsigned CostPerUseLimit,
1111                             const SmallVirtRegSet &FixedRegisters) {
1112   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1113                      TimePassesIsEnabled);
1114 
1115   // Keep track of the cheapest interference seen so far.
1116   EvictionCost BestCost;
1117   BestCost.setMax();
1118   MCRegister BestPhys;
1119   unsigned OrderLimit = Order.getOrder().size();
1120 
1121   // When we are just looking for a reduced cost per use, don't break any
1122   // hints, and only evict smaller spill weights.
1123   if (CostPerUseLimit < ~0u) {
1124     BestCost.BrokenHints = 0;
1125     BestCost.MaxWeight = VirtReg.weight();
1126 
1127     // Check of any registers in RC are below CostPerUseLimit.
1128     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
1129     unsigned MinCost = RegClassInfo.getMinCost(RC);
1130     if (MinCost >= CostPerUseLimit) {
1131       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1132                         << MinCost << ", no cheaper registers to be found.\n");
1133       return 0;
1134     }
1135 
1136     // It is normal for register classes to have a long tail of registers with
1137     // the same cost. We don't need to look at them if they're too expensive.
1138     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
1139       OrderLimit = RegClassInfo.getLastCostChange(RC);
1140       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1141                         << " regs.\n");
1142     }
1143   }
1144 
1145   for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
1146        ++I) {
1147     MCRegister PhysReg = *I;
1148     assert(PhysReg);
1149     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
1150       continue;
1151     // The first use of a callee-saved register in a function has cost 1.
1152     // Don't start using a CSR when the CostPerUseLimit is low.
1153     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1154       LLVM_DEBUG(
1155           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1156                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1157                  << '\n');
1158       continue;
1159     }
1160 
1161     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1162                               FixedRegisters))
1163       continue;
1164 
1165     // Best so far.
1166     BestPhys = PhysReg;
1167 
1168     // Stop if the hint can be used.
1169     if (I.isHint())
1170       break;
1171   }
1172 
1173   if (!BestPhys)
1174     return 0;
1175 
1176   evictInterference(VirtReg, BestPhys, NewVRegs);
1177   return BestPhys;
1178 }
1179 
1180 //===----------------------------------------------------------------------===//
1181 //                              Region Splitting
1182 //===----------------------------------------------------------------------===//
1183 
1184 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1185 /// interference pattern in Physreg and its aliases. Add the constraints to
1186 /// SpillPlacement and return the static cost of this split in Cost, assuming
1187 /// that all preferences in SplitConstraints are met.
1188 /// Return false if there are no bundles with positive bias.
1189 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1190                                    BlockFrequency &Cost) {
1191   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1192 
1193   // Reset interference dependent info.
1194   SplitConstraints.resize(UseBlocks.size());
1195   BlockFrequency StaticCost = 0;
1196   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1197     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1198     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1199 
1200     BC.Number = BI.MBB->getNumber();
1201     Intf.moveToBlock(BC.Number);
1202     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1203     BC.Exit = (BI.LiveOut &&
1204                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1205                   ? SpillPlacement::PrefReg
1206                   : SpillPlacement::DontCare;
1207     BC.ChangesValue = BI.FirstDef.isValid();
1208 
1209     if (!Intf.hasInterference())
1210       continue;
1211 
1212     // Number of spill code instructions to insert.
1213     unsigned Ins = 0;
1214 
1215     // Interference for the live-in value.
1216     if (BI.LiveIn) {
1217       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1218         BC.Entry = SpillPlacement::MustSpill;
1219         ++Ins;
1220       } else if (Intf.first() < BI.FirstInstr) {
1221         BC.Entry = SpillPlacement::PrefSpill;
1222         ++Ins;
1223       } else if (Intf.first() < BI.LastInstr) {
1224         ++Ins;
1225       }
1226 
1227       // Abort if the spill cannot be inserted at the MBB' start
1228       if (((BC.Entry == SpillPlacement::MustSpill) ||
1229            (BC.Entry == SpillPlacement::PrefSpill)) &&
1230           SlotIndex::isEarlierInstr(BI.FirstInstr,
1231                                     SA->getFirstSplitPoint(BC.Number)))
1232         return false;
1233     }
1234 
1235     // Interference for the live-out value.
1236     if (BI.LiveOut) {
1237       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1238         BC.Exit = SpillPlacement::MustSpill;
1239         ++Ins;
1240       } else if (Intf.last() > BI.LastInstr) {
1241         BC.Exit = SpillPlacement::PrefSpill;
1242         ++Ins;
1243       } else if (Intf.last() > BI.FirstInstr) {
1244         ++Ins;
1245       }
1246     }
1247 
1248     // Accumulate the total frequency of inserted spill code.
1249     while (Ins--)
1250       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1251   }
1252   Cost = StaticCost;
1253 
1254   // Add constraints for use-blocks. Note that these are the only constraints
1255   // that may add a positive bias, it is downhill from here.
1256   SpillPlacer->addConstraints(SplitConstraints);
1257   return SpillPlacer->scanActiveBundles();
1258 }
1259 
1260 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1261 /// live-through blocks in Blocks.
1262 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1263                                      ArrayRef<unsigned> Blocks) {
1264   const unsigned GroupSize = 8;
1265   SpillPlacement::BlockConstraint BCS[GroupSize];
1266   unsigned TBS[GroupSize];
1267   unsigned B = 0, T = 0;
1268 
1269   for (unsigned Number : Blocks) {
1270     Intf.moveToBlock(Number);
1271 
1272     if (!Intf.hasInterference()) {
1273       assert(T < GroupSize && "Array overflow");
1274       TBS[T] = Number;
1275       if (++T == GroupSize) {
1276         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1277         T = 0;
1278       }
1279       continue;
1280     }
1281 
1282     assert(B < GroupSize && "Array overflow");
1283     BCS[B].Number = Number;
1284 
1285     // Abort if the spill cannot be inserted at the MBB' start
1286     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1287     if (!MBB->empty() &&
1288         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
1289                                   SA->getFirstSplitPoint(Number)))
1290       return false;
1291     // Interference for the live-in value.
1292     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1293       BCS[B].Entry = SpillPlacement::MustSpill;
1294     else
1295       BCS[B].Entry = SpillPlacement::PrefSpill;
1296 
1297     // Interference for the live-out value.
1298     if (Intf.last() >= SA->getLastSplitPoint(Number))
1299       BCS[B].Exit = SpillPlacement::MustSpill;
1300     else
1301       BCS[B].Exit = SpillPlacement::PrefSpill;
1302 
1303     if (++B == GroupSize) {
1304       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1305       B = 0;
1306     }
1307   }
1308 
1309   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1310   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1311   return true;
1312 }
1313 
1314 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1315   // Keep track of through blocks that have not been added to SpillPlacer.
1316   BitVector Todo = SA->getThroughBlocks();
1317   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1318   unsigned AddedTo = 0;
1319 #ifndef NDEBUG
1320   unsigned Visited = 0;
1321 #endif
1322 
1323   while (true) {
1324     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1325     // Find new through blocks in the periphery of PrefRegBundles.
1326     for (unsigned Bundle : NewBundles) {
1327       // Look at all blocks connected to Bundle in the full graph.
1328       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1329       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1330            I != E; ++I) {
1331         unsigned Block = *I;
1332         if (!Todo.test(Block))
1333           continue;
1334         Todo.reset(Block);
1335         // This is a new through block. Add it to SpillPlacer later.
1336         ActiveBlocks.push_back(Block);
1337 #ifndef NDEBUG
1338         ++Visited;
1339 #endif
1340       }
1341     }
1342     // Any new blocks to add?
1343     if (ActiveBlocks.size() == AddedTo)
1344       break;
1345 
1346     // Compute through constraints from the interference, or assume that all
1347     // through blocks prefer spilling when forming compact regions.
1348     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1349     if (Cand.PhysReg) {
1350       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1351         return false;
1352     } else
1353       // Provide a strong negative bias on through blocks to prevent unwanted
1354       // liveness on loop backedges.
1355       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1356     AddedTo = ActiveBlocks.size();
1357 
1358     // Perhaps iterating can enable more bundles?
1359     SpillPlacer->iterate();
1360   }
1361   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1362   return true;
1363 }
1364 
1365 /// calcCompactRegion - Compute the set of edge bundles that should be live
1366 /// when splitting the current live range into compact regions.  Compact
1367 /// regions can be computed without looking at interference.  They are the
1368 /// regions formed by removing all the live-through blocks from the live range.
1369 ///
1370 /// Returns false if the current live range is already compact, or if the
1371 /// compact regions would form single block regions anyway.
1372 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1373   // Without any through blocks, the live range is already compact.
1374   if (!SA->getNumThroughBlocks())
1375     return false;
1376 
1377   // Compact regions don't correspond to any physreg.
1378   Cand.reset(IntfCache, MCRegister::NoRegister);
1379 
1380   LLVM_DEBUG(dbgs() << "Compact region bundles");
1381 
1382   // Use the spill placer to determine the live bundles. GrowRegion pretends
1383   // that all the through blocks have interference when PhysReg is unset.
1384   SpillPlacer->prepare(Cand.LiveBundles);
1385 
1386   // The static split cost will be zero since Cand.Intf reports no interference.
1387   BlockFrequency Cost;
1388   if (!addSplitConstraints(Cand.Intf, Cost)) {
1389     LLVM_DEBUG(dbgs() << ", none.\n");
1390     return false;
1391   }
1392 
1393   if (!growRegion(Cand)) {
1394     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1395     return false;
1396   }
1397 
1398   SpillPlacer->finish();
1399 
1400   if (!Cand.LiveBundles.any()) {
1401     LLVM_DEBUG(dbgs() << ", none.\n");
1402     return false;
1403   }
1404 
1405   LLVM_DEBUG({
1406     for (int I : Cand.LiveBundles.set_bits())
1407       dbgs() << " EB#" << I;
1408     dbgs() << ".\n";
1409   });
1410   return true;
1411 }
1412 
1413 /// calcSpillCost - Compute how expensive it would be to split the live range in
1414 /// SA around all use blocks instead of forming bundle regions.
1415 BlockFrequency RAGreedy::calcSpillCost() {
1416   BlockFrequency Cost = 0;
1417   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1418   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1419     unsigned Number = BI.MBB->getNumber();
1420     // We normally only need one spill instruction - a load or a store.
1421     Cost += SpillPlacer->getBlockFrequency(Number);
1422 
1423     // Unless the value is redefined in the block.
1424     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1425       Cost += SpillPlacer->getBlockFrequency(Number);
1426   }
1427   return Cost;
1428 }
1429 
1430 /// Check if splitting Evictee will create a local split interval in
1431 /// basic block number BBNumber that may cause a bad eviction chain. This is
1432 /// intended to prevent bad eviction sequences like:
1433 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1434 /// movl	%ecx, %ebp
1435 /// movl	%ebx, %ecx
1436 /// movl	%edi, %ebx
1437 /// movl	%edx, %edi
1438 /// cltd
1439 /// idivl	%esi
1440 /// movl	%edi, %edx
1441 /// movl	%ebx, %edi
1442 /// movl	%ecx, %ebx
1443 /// movl	%ebp, %ecx
1444 /// movl	16(%esp), %ebp          # 4 - byte Reload
1445 ///
1446 /// Such sequences are created in 2 scenarios:
1447 ///
1448 /// Scenario #1:
1449 /// %0 is evicted from physreg0 by %1.
1450 /// Evictee %0 is intended for region splitting with split candidate
1451 /// physreg0 (the reg %0 was evicted from).
1452 /// Region splitting creates a local interval because of interference with the
1453 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1454 /// and "by stack" intervals and local interval created when interference
1455 /// occurs).
1456 /// One of the split intervals ends up evicting %2 from physreg1.
1457 /// Evictee %2 is intended for region splitting with split candidate
1458 /// physreg1.
1459 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1460 ///
1461 /// Scenario #2
1462 /// %0 is evicted from physreg0 by %1.
1463 /// %2 is evicted from physreg2 by %3 etc.
1464 /// Evictee %0 is intended for region splitting with split candidate
1465 /// physreg1.
1466 /// Region splitting creates a local interval because of interference with the
1467 /// evictor %1.
1468 /// One of the split intervals ends up evicting back original evictor %1
1469 /// from physreg0 (the reg %0 was evicted from).
1470 /// Another evictee %2 is intended for region splitting with split candidate
1471 /// physreg1.
1472 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1473 ///
1474 /// \param Evictee  The register considered to be split.
1475 /// \param Cand     The split candidate that determines the physical register
1476 ///                 we are splitting for and the interferences.
1477 /// \param BBNumber The number of a BB for which the region split process will
1478 ///                 create a local split interval.
1479 /// \param Order    The physical registers that may get evicted by a split
1480 ///                 artifact of Evictee.
1481 /// \return True if splitting Evictee may cause a bad eviction chain, false
1482 /// otherwise.
1483 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
1484                                           GlobalSplitCandidate &Cand,
1485                                           unsigned BBNumber,
1486                                           const AllocationOrder &Order) {
1487   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1488   unsigned Evictor = VregEvictorInfo.first;
1489   MCRegister PhysReg = VregEvictorInfo.second;
1490 
1491   // No actual evictor.
1492   if (!Evictor || !PhysReg)
1493     return false;
1494 
1495   float MaxWeight = 0;
1496   unsigned FutureEvictedPhysReg =
1497       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1498                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1499 
1500   // The bad eviction chain occurs when either the split candidate is the
1501   // evicting reg or one of the split artifact will evict the evicting reg.
1502   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1503     return false;
1504 
1505   Cand.Intf.moveToBlock(BBNumber);
1506 
1507   // Check to see if the Evictor contains interference (with Evictee) in the
1508   // given BB. If so, this interference caused the eviction of Evictee from
1509   // PhysReg. This suggest that we will create a local interval during the
1510   // region split to avoid this interference This local interval may cause a bad
1511   // eviction chain.
1512   if (!LIS->hasInterval(Evictor))
1513     return false;
1514   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1515   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1516     return false;
1517 
1518   // Now, check to see if the local interval we will create is going to be
1519   // expensive enough to evict somebody If so, this may cause a bad eviction
1520   // chain.
1521   float splitArtifactWeight =
1522       VRAI->futureWeight(LIS->getInterval(Evictee),
1523                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1524   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1525     return false;
1526 
1527   return true;
1528 }
1529 
1530 /// Check if splitting VirtRegToSplit will create a local split interval
1531 /// in basic block number BBNumber that may cause a spill.
1532 ///
1533 /// \param VirtRegToSplit The register considered to be split.
1534 /// \param Cand           The split candidate that determines the physical
1535 ///                       register we are splitting for and the interferences.
1536 /// \param BBNumber       The number of a BB for which the region split process
1537 ///                       will create a local split interval.
1538 /// \param Order          The physical registers that may get evicted by a
1539 ///                       split artifact of VirtRegToSplit.
1540 /// \return True if splitting VirtRegToSplit may cause a spill, false
1541 /// otherwise.
1542 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1543                                        GlobalSplitCandidate &Cand,
1544                                        unsigned BBNumber,
1545                                        const AllocationOrder &Order) {
1546   Cand.Intf.moveToBlock(BBNumber);
1547 
1548   // Check if the local interval will find a non interfereing assignment.
1549   for (auto PhysReg : Order.getOrder()) {
1550     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1551                                    Cand.Intf.last(), PhysReg))
1552       return false;
1553   }
1554 
1555   // Check if the local interval will evict a cheaper interval.
1556   float CheapestEvictWeight = 0;
1557   unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
1558       Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1559       Cand.Intf.last(), &CheapestEvictWeight);
1560 
1561   // Have we found an interval that can be evicted?
1562   if (FutureEvictedPhysReg) {
1563     float splitArtifactWeight =
1564         VRAI->futureWeight(LIS->getInterval(VirtRegToSplit),
1565                            Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1566     // Will the weight of the local interval be higher than the cheapest evictee
1567     // weight? If so it will evict it and will not cause a spill.
1568     if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1569       return false;
1570   }
1571 
1572   // The local interval is not able to find non interferencing assignment and
1573   // not able to evict a less worthy interval, therfore, it can cause a spill.
1574   return true;
1575 }
1576 
1577 /// calcGlobalSplitCost - Return the global split cost of following the split
1578 /// pattern in LiveBundles. This cost should be added to the local cost of the
1579 /// interference pattern in SplitConstraints.
1580 ///
1581 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1582                                              const AllocationOrder &Order,
1583                                              bool *CanCauseEvictionChain) {
1584   BlockFrequency GlobalCost = 0;
1585   const BitVector &LiveBundles = Cand.LiveBundles;
1586   Register VirtRegToSplit = SA->getParent().reg();
1587   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1588   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1589     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1590     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1591     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1592     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1593     unsigned Ins = 0;
1594 
1595     Cand.Intf.moveToBlock(BC.Number);
1596     // Check wheather a local interval is going to be created during the region
1597     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1598     // is enabled.
1599     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1600         BI.LiveOut && RegIn && RegOut) {
1601 
1602       if (CanCauseEvictionChain &&
1603           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1604         // This interference causes our eviction from this assignment, we might
1605         // evict somebody else and eventually someone will spill, add that cost.
1606         // See splitCanCauseEvictionChain for detailed description of scenarios.
1607         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1608         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1609 
1610         *CanCauseEvictionChain = true;
1611 
1612       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1613                                          Order)) {
1614         // This interference causes local interval to spill, add that cost.
1615         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1616         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1617       }
1618     }
1619 
1620     if (BI.LiveIn)
1621       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1622     if (BI.LiveOut)
1623       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1624     while (Ins--)
1625       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1626   }
1627 
1628   for (unsigned Number : Cand.ActiveBlocks) {
1629     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1630     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1631     if (!RegIn && !RegOut)
1632       continue;
1633     if (RegIn && RegOut) {
1634       // We need double spill code if this block has interference.
1635       Cand.Intf.moveToBlock(Number);
1636       if (Cand.Intf.hasInterference()) {
1637         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1638         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1639 
1640         // Check wheather a local interval is going to be created during the
1641         // region split.
1642         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1643             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1644           // This interference cause our eviction from this assignment, we might
1645           // evict somebody else, add that cost.
1646           // See splitCanCauseEvictionChain for detailed description of
1647           // scenarios.
1648           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1649           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1650 
1651           *CanCauseEvictionChain = true;
1652         }
1653       }
1654       continue;
1655     }
1656     // live-in / stack-out or stack-in live-out.
1657     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1658   }
1659   return GlobalCost;
1660 }
1661 
1662 /// splitAroundRegion - Split the current live range around the regions
1663 /// determined by BundleCand and GlobalCand.
1664 ///
1665 /// Before calling this function, GlobalCand and BundleCand must be initialized
1666 /// so each bundle is assigned to a valid candidate, or NoCand for the
1667 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1668 /// objects must be initialized for the current live range, and intervals
1669 /// created for the used candidates.
1670 ///
1671 /// @param LREdit    The LiveRangeEdit object handling the current split.
1672 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1673 ///                  must appear in this list.
1674 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1675                                  ArrayRef<unsigned> UsedCands) {
1676   // These are the intervals created for new global ranges. We may create more
1677   // intervals for local ranges.
1678   const unsigned NumGlobalIntvs = LREdit.size();
1679   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1680                     << " globals.\n");
1681   assert(NumGlobalIntvs && "No global intervals configured");
1682 
1683   // Isolate even single instructions when dealing with a proper sub-class.
1684   // That guarantees register class inflation for the stack interval because it
1685   // is all copies.
1686   unsigned Reg = SA->getParent().reg();
1687   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1688 
1689   // First handle all the blocks with uses.
1690   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1691   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1692     unsigned Number = BI.MBB->getNumber();
1693     unsigned IntvIn = 0, IntvOut = 0;
1694     SlotIndex IntfIn, IntfOut;
1695     if (BI.LiveIn) {
1696       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1697       if (CandIn != NoCand) {
1698         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1699         IntvIn = Cand.IntvIdx;
1700         Cand.Intf.moveToBlock(Number);
1701         IntfIn = Cand.Intf.first();
1702       }
1703     }
1704     if (BI.LiveOut) {
1705       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1706       if (CandOut != NoCand) {
1707         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1708         IntvOut = Cand.IntvIdx;
1709         Cand.Intf.moveToBlock(Number);
1710         IntfOut = Cand.Intf.last();
1711       }
1712     }
1713 
1714     // Create separate intervals for isolated blocks with multiple uses.
1715     if (!IntvIn && !IntvOut) {
1716       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1717       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1718         SE->splitSingleBlock(BI);
1719       continue;
1720     }
1721 
1722     if (IntvIn && IntvOut)
1723       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1724     else if (IntvIn)
1725       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1726     else
1727       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1728   }
1729 
1730   // Handle live-through blocks. The relevant live-through blocks are stored in
1731   // the ActiveBlocks list with each candidate. We need to filter out
1732   // duplicates.
1733   BitVector Todo = SA->getThroughBlocks();
1734   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1735     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1736     for (unsigned Number : Blocks) {
1737       if (!Todo.test(Number))
1738         continue;
1739       Todo.reset(Number);
1740 
1741       unsigned IntvIn = 0, IntvOut = 0;
1742       SlotIndex IntfIn, IntfOut;
1743 
1744       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1745       if (CandIn != NoCand) {
1746         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1747         IntvIn = Cand.IntvIdx;
1748         Cand.Intf.moveToBlock(Number);
1749         IntfIn = Cand.Intf.first();
1750       }
1751 
1752       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1753       if (CandOut != NoCand) {
1754         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1755         IntvOut = Cand.IntvIdx;
1756         Cand.Intf.moveToBlock(Number);
1757         IntfOut = Cand.Intf.last();
1758       }
1759       if (!IntvIn && !IntvOut)
1760         continue;
1761       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1762     }
1763   }
1764 
1765   ++NumGlobalSplits;
1766 
1767   SmallVector<unsigned, 8> IntvMap;
1768   SE->finish(&IntvMap);
1769   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1770 
1771   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1772   unsigned OrigBlocks = SA->getNumLiveBlocks();
1773 
1774   // Sort out the new intervals created by splitting. We get four kinds:
1775   // - Remainder intervals should not be split again.
1776   // - Candidate intervals can be assigned to Cand.PhysReg.
1777   // - Block-local splits are candidates for local splitting.
1778   // - DCE leftovers should go back on the queue.
1779   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1780     LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1781 
1782     // Ignore old intervals from DCE.
1783     if (getStage(Reg) != RS_New)
1784       continue;
1785 
1786     // Remainder interval. Don't try splitting again, spill if it doesn't
1787     // allocate.
1788     if (IntvMap[I] == 0) {
1789       setStage(Reg, RS_Spill);
1790       continue;
1791     }
1792 
1793     // Global intervals. Allow repeated splitting as long as the number of live
1794     // blocks is strictly decreasing.
1795     if (IntvMap[I] < NumGlobalIntvs) {
1796       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1797         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1798                           << " blocks as original.\n");
1799         // Don't allow repeated splitting as a safe guard against looping.
1800         setStage(Reg, RS_Split2);
1801       }
1802       continue;
1803     }
1804 
1805     // Other intervals are treated as new. This includes local intervals created
1806     // for blocks with multiple uses, and anything created by DCE.
1807   }
1808 
1809   if (VerifyEnabled)
1810     MF->verify(this, "After splitting live range around region");
1811 }
1812 
1813 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg,
1814                                     AllocationOrder &Order,
1815                                     SmallVectorImpl<Register> &NewVRegs) {
1816   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1817     return MCRegister::NoRegister;
1818   unsigned NumCands = 0;
1819   BlockFrequency SpillCost = calcSpillCost();
1820   BlockFrequency BestCost;
1821 
1822   // Check if we can split this live range around a compact region.
1823   bool HasCompact = calcCompactRegion(GlobalCand.front());
1824   if (HasCompact) {
1825     // Yes, keep GlobalCand[0] as the compact region candidate.
1826     NumCands = 1;
1827     BestCost = BlockFrequency::getMaxFrequency();
1828   } else {
1829     // No benefit from the compact region, our fallback will be per-block
1830     // splitting. Make sure we find a solution that is cheaper than spilling.
1831     BestCost = SpillCost;
1832     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1833                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1834   }
1835 
1836   bool CanCauseEvictionChain = false;
1837   unsigned BestCand =
1838       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1839                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1840 
1841   // Split candidates with compact regions can cause a bad eviction sequence.
1842   // See splitCanCauseEvictionChain for detailed description of scenarios.
1843   // To avoid it, we need to comapre the cost with the spill cost and not the
1844   // current max frequency.
1845   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1846     CanCauseEvictionChain) {
1847     return MCRegister::NoRegister;
1848   }
1849 
1850   // No solutions found, fall back to single block splitting.
1851   if (!HasCompact && BestCand == NoCand)
1852     return MCRegister::NoRegister;
1853 
1854   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1855 }
1856 
1857 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1858                                             AllocationOrder &Order,
1859                                             BlockFrequency &BestCost,
1860                                             unsigned &NumCands, bool IgnoreCSR,
1861                                             bool *CanCauseEvictionChain) {
1862   unsigned BestCand = NoCand;
1863   for (MCPhysReg PhysReg : Order) {
1864     assert(PhysReg);
1865     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1866       continue;
1867 
1868     // Discard bad candidates before we run out of interference cache cursors.
1869     // This will only affect register classes with a lot of registers (>32).
1870     if (NumCands == IntfCache.getMaxCursors()) {
1871       unsigned WorstCount = ~0u;
1872       unsigned Worst = 0;
1873       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1874         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1875           continue;
1876         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1877         if (Count < WorstCount) {
1878           Worst = CandIndex;
1879           WorstCount = Count;
1880         }
1881       }
1882       --NumCands;
1883       GlobalCand[Worst] = GlobalCand[NumCands];
1884       if (BestCand == NumCands)
1885         BestCand = Worst;
1886     }
1887 
1888     if (GlobalCand.size() <= NumCands)
1889       GlobalCand.resize(NumCands+1);
1890     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1891     Cand.reset(IntfCache, PhysReg);
1892 
1893     SpillPlacer->prepare(Cand.LiveBundles);
1894     BlockFrequency Cost;
1895     if (!addSplitConstraints(Cand.Intf, Cost)) {
1896       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1897       continue;
1898     }
1899     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1900                MBFI->printBlockFreq(dbgs(), Cost));
1901     if (Cost >= BestCost) {
1902       LLVM_DEBUG({
1903         if (BestCand == NoCand)
1904           dbgs() << " worse than no bundles\n";
1905         else
1906           dbgs() << " worse than "
1907                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1908       });
1909       continue;
1910     }
1911     if (!growRegion(Cand)) {
1912       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1913       continue;
1914     }
1915 
1916     SpillPlacer->finish();
1917 
1918     // No live bundles, defer to splitSingleBlocks().
1919     if (!Cand.LiveBundles.any()) {
1920       LLVM_DEBUG(dbgs() << " no bundles.\n");
1921       continue;
1922     }
1923 
1924     bool HasEvictionChain = false;
1925     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1926     LLVM_DEBUG({
1927       dbgs() << ", total = ";
1928       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1929       for (int I : Cand.LiveBundles.set_bits())
1930         dbgs() << " EB#" << I;
1931       dbgs() << ".\n";
1932     });
1933     if (Cost < BestCost) {
1934       BestCand = NumCands;
1935       BestCost = Cost;
1936       // See splitCanCauseEvictionChain for detailed description of bad
1937       // eviction chain scenarios.
1938       if (CanCauseEvictionChain)
1939         *CanCauseEvictionChain = HasEvictionChain;
1940     }
1941     ++NumCands;
1942   }
1943 
1944   if (CanCauseEvictionChain && BestCand != NoCand) {
1945     // See splitCanCauseEvictionChain for detailed description of bad
1946     // eviction chain scenarios.
1947     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1948                       << printReg(VirtReg.reg(), TRI) << "  may ");
1949     if (!(*CanCauseEvictionChain))
1950       LLVM_DEBUG(dbgs() << "not ");
1951     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1952   }
1953 
1954   return BestCand;
1955 }
1956 
1957 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1958                                  bool HasCompact,
1959                                  SmallVectorImpl<Register> &NewVRegs) {
1960   SmallVector<unsigned, 8> UsedCands;
1961   // Prepare split editor.
1962   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1963   SE->reset(LREdit, SplitSpillMode);
1964 
1965   // Assign all edge bundles to the preferred candidate, or NoCand.
1966   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1967 
1968   // Assign bundles for the best candidate region.
1969   if (BestCand != NoCand) {
1970     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1971     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1972       UsedCands.push_back(BestCand);
1973       Cand.IntvIdx = SE->openIntv();
1974       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1975                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1976       (void)B;
1977     }
1978   }
1979 
1980   // Assign bundles for the compact region.
1981   if (HasCompact) {
1982     GlobalSplitCandidate &Cand = GlobalCand.front();
1983     assert(!Cand.PhysReg && "Compact region has no physreg");
1984     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1985       UsedCands.push_back(0);
1986       Cand.IntvIdx = SE->openIntv();
1987       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1988                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1989       (void)B;
1990     }
1991   }
1992 
1993   splitAroundRegion(LREdit, UsedCands);
1994   return 0;
1995 }
1996 
1997 //===----------------------------------------------------------------------===//
1998 //                            Per-Block Splitting
1999 //===----------------------------------------------------------------------===//
2000 
2001 /// tryBlockSplit - Split a global live range around every block with uses. This
2002 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2003 /// they don't allocate.
2004 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2005                                  SmallVectorImpl<Register> &NewVRegs) {
2006   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2007   Register Reg = VirtReg.reg();
2008   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2009   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2010   SE->reset(LREdit, SplitSpillMode);
2011   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2012   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
2013     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2014       SE->splitSingleBlock(BI);
2015   }
2016   // No blocks were split.
2017   if (LREdit.empty())
2018     return 0;
2019 
2020   // We did split for some blocks.
2021   SmallVector<unsigned, 8> IntvMap;
2022   SE->finish(&IntvMap);
2023 
2024   // Tell LiveDebugVariables about the new ranges.
2025   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2026 
2027   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2028 
2029   // Sort out the new intervals created by splitting. The remainder interval
2030   // goes straight to spilling, the new local ranges get to stay RS_New.
2031   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
2032     LiveInterval &LI = LIS->getInterval(LREdit.get(I));
2033     if (getStage(LI) == RS_New && IntvMap[I] == 0)
2034       setStage(LI, RS_Spill);
2035   }
2036 
2037   if (VerifyEnabled)
2038     MF->verify(this, "After splitting live range around basic blocks");
2039   return 0;
2040 }
2041 
2042 //===----------------------------------------------------------------------===//
2043 //                         Per-Instruction Splitting
2044 //===----------------------------------------------------------------------===//
2045 
2046 /// Get the number of allocatable registers that match the constraints of \p Reg
2047 /// on \p MI and that are also in \p SuperRC.
2048 static unsigned getNumAllocatableRegsForConstraints(
2049     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
2050     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2051     const RegisterClassInfo &RCI) {
2052   assert(SuperRC && "Invalid register class");
2053 
2054   const TargetRegisterClass *ConstrainedRC =
2055       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2056                                              /* ExploreBundle */ true);
2057   if (!ConstrainedRC)
2058     return 0;
2059   return RCI.getNumAllocatableRegs(ConstrainedRC);
2060 }
2061 
2062 /// tryInstructionSplit - Split a live range around individual instructions.
2063 /// This is normally not worthwhile since the spiller is doing essentially the
2064 /// same thing. However, when the live range is in a constrained register
2065 /// class, it may help to insert copies such that parts of the live range can
2066 /// be moved to a larger register class.
2067 ///
2068 /// This is similar to spilling to a larger register class.
2069 unsigned
2070 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2071                               SmallVectorImpl<Register> &NewVRegs) {
2072   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2073   // There is no point to this if there are no larger sub-classes.
2074   if (!RegClassInfo.isProperSubClass(CurRC))
2075     return 0;
2076 
2077   // Always enable split spill mode, since we're effectively spilling to a
2078   // register.
2079   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2080   SE->reset(LREdit, SplitEditor::SM_Size);
2081 
2082   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2083   if (Uses.size() <= 1)
2084     return 0;
2085 
2086   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2087                     << " individual instrs.\n");
2088 
2089   const TargetRegisterClass *SuperRC =
2090       TRI->getLargestLegalSuperClass(CurRC, *MF);
2091   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2092   // Split around every non-copy instruction if this split will relax
2093   // the constraints on the virtual register.
2094   // Otherwise, splitting just inserts uncoalescable copies that do not help
2095   // the allocation.
2096   for (const auto &Use : Uses) {
2097     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
2098       if (MI->isFullCopy() ||
2099           SuperRCNumAllocatableRegs ==
2100               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
2101                                                   TII, TRI, RCI)) {
2102         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
2103         continue;
2104       }
2105     SE->openIntv();
2106     SlotIndex SegStart = SE->enterIntvBefore(Use);
2107     SlotIndex SegStop = SE->leaveIntvAfter(Use);
2108     SE->useIntv(SegStart, SegStop);
2109   }
2110 
2111   if (LREdit.empty()) {
2112     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2113     return 0;
2114   }
2115 
2116   SmallVector<unsigned, 8> IntvMap;
2117   SE->finish(&IntvMap);
2118   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2119   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2120 
2121   // Assign all new registers to RS_Spill. This was the last chance.
2122   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2123   return 0;
2124 }
2125 
2126 //===----------------------------------------------------------------------===//
2127 //                             Local Splitting
2128 //===----------------------------------------------------------------------===//
2129 
2130 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2131 /// in order to use PhysReg between two entries in SA->UseSlots.
2132 ///
2133 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
2134 ///
2135 void RAGreedy::calcGapWeights(MCRegister PhysReg,
2136                               SmallVectorImpl<float> &GapWeight) {
2137   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2138   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2139   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2140   const unsigned NumGaps = Uses.size()-1;
2141 
2142   // Start and end points for the interference check.
2143   SlotIndex StartIdx =
2144     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2145   SlotIndex StopIdx =
2146     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2147 
2148   GapWeight.assign(NumGaps, 0.0f);
2149 
2150   // Add interference from each overlapping register.
2151   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2152     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2153           .checkInterference())
2154       continue;
2155 
2156     // We know that VirtReg is a continuous interval from FirstInstr to
2157     // LastInstr, so we don't need InterferenceQuery.
2158     //
2159     // Interference that overlaps an instruction is counted in both gaps
2160     // surrounding the instruction. The exception is interference before
2161     // StartIdx and after StopIdx.
2162     //
2163     LiveIntervalUnion::SegmentIter IntI =
2164       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2165     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2166       // Skip the gaps before IntI.
2167       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2168         if (++Gap == NumGaps)
2169           break;
2170       if (Gap == NumGaps)
2171         break;
2172 
2173       // Update the gaps covered by IntI.
2174       const float weight = IntI.value()->weight();
2175       for (; Gap != NumGaps; ++Gap) {
2176         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2177         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2178           break;
2179       }
2180       if (Gap == NumGaps)
2181         break;
2182     }
2183   }
2184 
2185   // Add fixed interference.
2186   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2187     const LiveRange &LR = LIS->getRegUnit(*Units);
2188     LiveRange::const_iterator I = LR.find(StartIdx);
2189     LiveRange::const_iterator E = LR.end();
2190 
2191     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2192     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2193       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2194         if (++Gap == NumGaps)
2195           break;
2196       if (Gap == NumGaps)
2197         break;
2198 
2199       for (; Gap != NumGaps; ++Gap) {
2200         GapWeight[Gap] = huge_valf;
2201         if (Uses[Gap+1].getBaseIndex() >= I->end)
2202           break;
2203       }
2204       if (Gap == NumGaps)
2205         break;
2206     }
2207   }
2208 }
2209 
2210 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2211 /// basic block.
2212 ///
2213 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2214                                  SmallVectorImpl<Register> &NewVRegs) {
2215   // TODO: the function currently only handles a single UseBlock; it should be
2216   // possible to generalize.
2217   if (SA->getUseBlocks().size() != 1)
2218     return 0;
2219 
2220   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2221 
2222   // Note that it is possible to have an interval that is live-in or live-out
2223   // while only covering a single block - A phi-def can use undef values from
2224   // predecessors, and the block could be a single-block loop.
2225   // We don't bother doing anything clever about such a case, we simply assume
2226   // that the interval is continuous from FirstInstr to LastInstr. We should
2227   // make sure that we don't do anything illegal to such an interval, though.
2228 
2229   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2230   if (Uses.size() <= 2)
2231     return 0;
2232   const unsigned NumGaps = Uses.size()-1;
2233 
2234   LLVM_DEBUG({
2235     dbgs() << "tryLocalSplit: ";
2236     for (const auto &Use : Uses)
2237       dbgs() << ' ' << Use;
2238     dbgs() << '\n';
2239   });
2240 
2241   // If VirtReg is live across any register mask operands, compute a list of
2242   // gaps with register masks.
2243   SmallVector<unsigned, 8> RegMaskGaps;
2244   if (Matrix->checkRegMaskInterference(VirtReg)) {
2245     // Get regmask slots for the whole block.
2246     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2247     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2248     // Constrain to VirtReg's live range.
2249     unsigned RI =
2250         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2251     unsigned RE = RMS.size();
2252     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
2253       // Look for Uses[I] <= RMS <= Uses[I + 1].
2254       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
2255       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
2256         continue;
2257       // Skip a regmask on the same instruction as the last use. It doesn't
2258       // overlap the live range.
2259       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
2260         break;
2261       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
2262                         << Uses[I + 1]);
2263       RegMaskGaps.push_back(I);
2264       // Advance ri to the next gap. A regmask on one of the uses counts in
2265       // both gaps.
2266       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
2267         ++RI;
2268     }
2269     LLVM_DEBUG(dbgs() << '\n');
2270   }
2271 
2272   // Since we allow local split results to be split again, there is a risk of
2273   // creating infinite loops. It is tempting to require that the new live
2274   // ranges have less instructions than the original. That would guarantee
2275   // convergence, but it is too strict. A live range with 3 instructions can be
2276   // split 2+3 (including the COPY), and we want to allow that.
2277   //
2278   // Instead we use these rules:
2279   //
2280   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2281   //    noop split, of course).
2282   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2283   //    the new ranges must have fewer instructions than before the split.
2284   // 3. New ranges with the same number of instructions are marked RS_Split2,
2285   //    smaller ranges are marked RS_New.
2286   //
2287   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2288   // excessive splitting and infinite loops.
2289   //
2290   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2291 
2292   // Best split candidate.
2293   unsigned BestBefore = NumGaps;
2294   unsigned BestAfter = 0;
2295   float BestDiff = 0;
2296 
2297   const float blockFreq =
2298     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2299     (1.0f / MBFI->getEntryFreq());
2300   SmallVector<float, 8> GapWeight;
2301 
2302   for (MCPhysReg PhysReg : Order) {
2303     assert(PhysReg);
2304     // Keep track of the largest spill weight that would need to be evicted in
2305     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
2306     calcGapWeights(PhysReg, GapWeight);
2307 
2308     // Remove any gaps with regmask clobbers.
2309     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2310       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
2311         GapWeight[RegMaskGaps[I]] = huge_valf;
2312 
2313     // Try to find the best sequence of gaps to close.
2314     // The new spill weight must be larger than any gap interference.
2315 
2316     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2317     unsigned SplitBefore = 0, SplitAfter = 1;
2318 
2319     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2320     // It is the spill weight that needs to be evicted.
2321     float MaxGap = GapWeight[0];
2322 
2323     while (true) {
2324       // Live before/after split?
2325       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2326       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2327 
2328       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2329                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
2330 
2331       // Stop before the interval gets so big we wouldn't be making progress.
2332       if (!LiveBefore && !LiveAfter) {
2333         LLVM_DEBUG(dbgs() << " all\n");
2334         break;
2335       }
2336       // Should the interval be extended or shrunk?
2337       bool Shrink = true;
2338 
2339       // How many gaps would the new range have?
2340       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2341 
2342       // Legally, without causing looping?
2343       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2344 
2345       if (Legal && MaxGap < huge_valf) {
2346         // Estimate the new spill weight. Each instruction reads or writes the
2347         // register. Conservatively assume there are no read-modify-write
2348         // instructions.
2349         //
2350         // Try to guess the size of the new interval.
2351         const float EstWeight = normalizeSpillWeight(
2352             blockFreq * (NewGaps + 1),
2353             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2354                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2355             1);
2356         // Would this split be possible to allocate?
2357         // Never allocate all gaps, we wouldn't be making progress.
2358         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2359         if (EstWeight * Hysteresis >= MaxGap) {
2360           Shrink = false;
2361           float Diff = EstWeight - MaxGap;
2362           if (Diff > BestDiff) {
2363             LLVM_DEBUG(dbgs() << " (best)");
2364             BestDiff = Hysteresis * Diff;
2365             BestBefore = SplitBefore;
2366             BestAfter = SplitAfter;
2367           }
2368         }
2369       }
2370 
2371       // Try to shrink.
2372       if (Shrink) {
2373         if (++SplitBefore < SplitAfter) {
2374           LLVM_DEBUG(dbgs() << " shrink\n");
2375           // Recompute the max when necessary.
2376           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2377             MaxGap = GapWeight[SplitBefore];
2378             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
2379               MaxGap = std::max(MaxGap, GapWeight[I]);
2380           }
2381           continue;
2382         }
2383         MaxGap = 0;
2384       }
2385 
2386       // Try to extend the interval.
2387       if (SplitAfter >= NumGaps) {
2388         LLVM_DEBUG(dbgs() << " end\n");
2389         break;
2390       }
2391 
2392       LLVM_DEBUG(dbgs() << " extend\n");
2393       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2394     }
2395   }
2396 
2397   // Didn't find any candidates?
2398   if (BestBefore == NumGaps)
2399     return 0;
2400 
2401   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2402                     << Uses[BestAfter] << ", " << BestDiff << ", "
2403                     << (BestAfter - BestBefore + 1) << " instrs\n");
2404 
2405   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2406   SE->reset(LREdit);
2407 
2408   SE->openIntv();
2409   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2410   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2411   SE->useIntv(SegStart, SegStop);
2412   SmallVector<unsigned, 8> IntvMap;
2413   SE->finish(&IntvMap);
2414   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2415 
2416   // If the new range has the same number of instructions as before, mark it as
2417   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2418   // leave the new intervals as RS_New so they can compete.
2419   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2420   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2421   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2422   if (NewGaps >= NumGaps) {
2423     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2424     assert(!ProgressRequired && "Didn't make progress when it was required.");
2425     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
2426       if (IntvMap[I] == 1) {
2427         setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
2428         LLVM_DEBUG(dbgs() << printReg(LREdit.get(I)));
2429       }
2430     LLVM_DEBUG(dbgs() << '\n');
2431   }
2432   ++NumLocalSplits;
2433 
2434   return 0;
2435 }
2436 
2437 //===----------------------------------------------------------------------===//
2438 //                          Live Range Splitting
2439 //===----------------------------------------------------------------------===//
2440 
2441 /// trySplit - Try to split VirtReg or one of its interferences, making it
2442 /// assignable.
2443 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2444 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2445                             SmallVectorImpl<Register> &NewVRegs,
2446                             const SmallVirtRegSet &FixedRegisters) {
2447   // Ranges must be Split2 or less.
2448   if (getStage(VirtReg) >= RS_Spill)
2449     return 0;
2450 
2451   // Local intervals are handled separately.
2452   if (LIS->intervalIsInOneMBB(VirtReg)) {
2453     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2454                        TimerGroupDescription, TimePassesIsEnabled);
2455     SA->analyze(&VirtReg);
2456     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2457     if (PhysReg || !NewVRegs.empty())
2458       return PhysReg;
2459     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2460   }
2461 
2462   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2463                      TimerGroupDescription, TimePassesIsEnabled);
2464 
2465   SA->analyze(&VirtReg);
2466 
2467   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2468   // coalescer. That may cause the range to become allocatable which means that
2469   // tryRegionSplit won't be making progress. This check should be replaced with
2470   // an assertion when the coalescer is fixed.
2471   if (SA->didRepairRange()) {
2472     // VirtReg has changed, so all cached queries are invalid.
2473     Matrix->invalidateVirtRegs();
2474     if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
2475       return PhysReg;
2476   }
2477 
2478   // First try to split around a region spanning multiple blocks. RS_Split2
2479   // ranges already made dubious progress with region splitting, so they go
2480   // straight to single block splitting.
2481   if (getStage(VirtReg) < RS_Split2) {
2482     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2483     if (PhysReg || !NewVRegs.empty())
2484       return PhysReg;
2485   }
2486 
2487   // Then isolate blocks.
2488   return tryBlockSplit(VirtReg, Order, NewVRegs);
2489 }
2490 
2491 //===----------------------------------------------------------------------===//
2492 //                          Last Chance Recoloring
2493 //===----------------------------------------------------------------------===//
2494 
2495 /// Return true if \p reg has any tied def operand.
2496 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2497   for (const MachineOperand &MO : MRI->def_operands(reg))
2498     if (MO.isTied())
2499       return true;
2500 
2501   return false;
2502 }
2503 
2504 /// mayRecolorAllInterferences - Check if the virtual registers that
2505 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2506 /// recolored to free \p PhysReg.
2507 /// When true is returned, \p RecoloringCandidates has been augmented with all
2508 /// the live intervals that need to be recolored in order to free \p PhysReg
2509 /// for \p VirtReg.
2510 /// \p FixedRegisters contains all the virtual registers that cannot be
2511 /// recolored.
2512 bool RAGreedy::mayRecolorAllInterferences(
2513     MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates,
2514     const SmallVirtRegSet &FixedRegisters) {
2515   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2516 
2517   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2518     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2519     // If there is LastChanceRecoloringMaxInterference or more interferences,
2520     // chances are one would not be recolorable.
2521     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2522         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2523       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2524       CutOffInfo |= CO_Interf;
2525       return false;
2526     }
2527     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
2528       // If Intf is done and sit on the same register class as VirtReg,
2529       // it would not be recolorable as it is in the same state as VirtReg.
2530       // However, if VirtReg has tied defs and Intf doesn't, then
2531       // there is still a point in examining if it can be recolorable.
2532       if (((getStage(*Intf) == RS_Done &&
2533             MRI->getRegClass(Intf->reg()) == CurRC) &&
2534            !(hasTiedDef(MRI, VirtReg.reg()) &&
2535              !hasTiedDef(MRI, Intf->reg()))) ||
2536           FixedRegisters.count(Intf->reg())) {
2537         LLVM_DEBUG(
2538             dbgs() << "Early abort: the interference is not recolorable.\n");
2539         return false;
2540       }
2541       RecoloringCandidates.insert(Intf);
2542     }
2543   }
2544   return true;
2545 }
2546 
2547 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2548 /// its interferences.
2549 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2550 /// virtual register that was using it. The recoloring process may recursively
2551 /// use the last chance recoloring. Therefore, when a virtual register has been
2552 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2553 /// be last-chance-recolored again during this recoloring "session".
2554 /// E.g.,
2555 /// Let
2556 /// vA can use {R1, R2    }
2557 /// vB can use {    R2, R3}
2558 /// vC can use {R1        }
2559 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2560 /// instance) and they all interfere.
2561 ///
2562 /// vA is assigned R1
2563 /// vB is assigned R2
2564 /// vC tries to evict vA but vA is already done.
2565 /// Regular register allocation fails.
2566 ///
2567 /// Last chance recoloring kicks in:
2568 /// vC does as if vA was evicted => vC uses R1.
2569 /// vC is marked as fixed.
2570 /// vA needs to find a color.
2571 /// None are available.
2572 /// vA cannot evict vC: vC is a fixed virtual register now.
2573 /// vA does as if vB was evicted => vA uses R2.
2574 /// vB needs to find a color.
2575 /// R3 is available.
2576 /// Recoloring => vC = R1, vA = R2, vB = R3
2577 ///
2578 /// \p Order defines the preferred allocation order for \p VirtReg.
2579 /// \p NewRegs will contain any new virtual register that have been created
2580 /// (split, spill) during the process and that must be assigned.
2581 /// \p FixedRegisters contains all the virtual registers that cannot be
2582 /// recolored.
2583 /// \p Depth gives the current depth of the last chance recoloring.
2584 /// \return a physical register that can be used for VirtReg or ~0u if none
2585 /// exists.
2586 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2587                                            AllocationOrder &Order,
2588                                            SmallVectorImpl<Register> &NewVRegs,
2589                                            SmallVirtRegSet &FixedRegisters,
2590                                            unsigned Depth) {
2591   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2592     return ~0u;
2593 
2594   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2595   // Ranges must be Done.
2596   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2597          "Last chance recoloring should really be last chance");
2598   // Set the max depth to LastChanceRecoloringMaxDepth.
2599   // We may want to reconsider that if we end up with a too large search space
2600   // for target with hundreds of registers.
2601   // Indeed, in that case we may want to cut the search space earlier.
2602   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2603     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2604     CutOffInfo |= CO_Depth;
2605     return ~0u;
2606   }
2607 
2608   // Set of Live intervals that will need to be recolored.
2609   SmallLISet RecoloringCandidates;
2610   // Record the original mapping virtual register to physical register in case
2611   // the recoloring fails.
2612   DenseMap<Register, MCRegister> VirtRegToPhysReg;
2613   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2614   // this recoloring "session".
2615   assert(!FixedRegisters.count(VirtReg.reg()));
2616   FixedRegisters.insert(VirtReg.reg());
2617   SmallVector<Register, 4> CurrentNewVRegs;
2618 
2619   for (MCRegister PhysReg : Order) {
2620     assert(PhysReg.isValid());
2621     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2622                       << printReg(PhysReg, TRI) << '\n');
2623     RecoloringCandidates.clear();
2624     VirtRegToPhysReg.clear();
2625     CurrentNewVRegs.clear();
2626 
2627     // It is only possible to recolor virtual register interference.
2628     if (Matrix->checkInterference(VirtReg, PhysReg) >
2629         LiveRegMatrix::IK_VirtReg) {
2630       LLVM_DEBUG(
2631           dbgs() << "Some interferences are not with virtual registers.\n");
2632 
2633       continue;
2634     }
2635 
2636     // Early give up on this PhysReg if it is obvious we cannot recolor all
2637     // the interferences.
2638     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2639                                     FixedRegisters)) {
2640       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2641       continue;
2642     }
2643 
2644     // RecoloringCandidates contains all the virtual registers that interfer
2645     // with VirtReg on PhysReg (or one of its aliases).
2646     // Enqueue them for recoloring and perform the actual recoloring.
2647     PQueue RecoloringQueue;
2648     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2649                               EndIt = RecoloringCandidates.end();
2650          It != EndIt; ++It) {
2651       Register ItVirtReg = (*It)->reg();
2652       enqueue(RecoloringQueue, *It);
2653       assert(VRM->hasPhys(ItVirtReg) &&
2654              "Interferences are supposed to be with allocated variables");
2655 
2656       // Record the current allocation.
2657       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2658       // unset the related struct.
2659       Matrix->unassign(**It);
2660     }
2661 
2662     // Do as if VirtReg was assigned to PhysReg so that the underlying
2663     // recoloring has the right information about the interferes and
2664     // available colors.
2665     Matrix->assign(VirtReg, PhysReg);
2666 
2667     // Save the current recoloring state.
2668     // If we cannot recolor all the interferences, we will have to start again
2669     // at this point for the next physical register.
2670     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2671     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2672                                 FixedRegisters, Depth)) {
2673       // Push the queued vregs into the main queue.
2674       for (Register NewVReg : CurrentNewVRegs)
2675         NewVRegs.push_back(NewVReg);
2676       // Do not mess up with the global assignment process.
2677       // I.e., VirtReg must be unassigned.
2678       Matrix->unassign(VirtReg);
2679       return PhysReg;
2680     }
2681 
2682     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2683                       << printReg(PhysReg, TRI) << '\n');
2684 
2685     // The recoloring attempt failed, undo the changes.
2686     FixedRegisters = SaveFixedRegisters;
2687     Matrix->unassign(VirtReg);
2688 
2689     // For a newly created vreg which is also in RecoloringCandidates,
2690     // don't add it to NewVRegs because its physical register will be restored
2691     // below. Other vregs in CurrentNewVRegs are created by calling
2692     // selectOrSplit and should be added into NewVRegs.
2693     for (SmallVectorImpl<Register>::iterator Next = CurrentNewVRegs.begin(),
2694                                              End = CurrentNewVRegs.end();
2695          Next != End; ++Next) {
2696       if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2697         continue;
2698       NewVRegs.push_back(*Next);
2699     }
2700 
2701     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2702                               EndIt = RecoloringCandidates.end();
2703          It != EndIt; ++It) {
2704       Register ItVirtReg = (*It)->reg();
2705       if (VRM->hasPhys(ItVirtReg))
2706         Matrix->unassign(**It);
2707       MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2708       Matrix->assign(**It, ItPhysReg);
2709     }
2710   }
2711 
2712   // Last chance recoloring did not worked either, give up.
2713   return ~0u;
2714 }
2715 
2716 /// tryRecoloringCandidates - Try to assign a new color to every register
2717 /// in \RecoloringQueue.
2718 /// \p NewRegs will contain any new virtual register created during the
2719 /// recoloring process.
2720 /// \p FixedRegisters[in/out] contains all the registers that have been
2721 /// recolored.
2722 /// \return true if all virtual registers in RecoloringQueue were successfully
2723 /// recolored, false otherwise.
2724 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2725                                        SmallVectorImpl<Register> &NewVRegs,
2726                                        SmallVirtRegSet &FixedRegisters,
2727                                        unsigned Depth) {
2728   while (!RecoloringQueue.empty()) {
2729     LiveInterval *LI = dequeue(RecoloringQueue);
2730     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2731     MCRegister PhysReg =
2732         selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2733     // When splitting happens, the live-range may actually be empty.
2734     // In that case, this is okay to continue the recoloring even
2735     // if we did not find an alternative color for it. Indeed,
2736     // there will not be anything to color for LI in the end.
2737     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2738       return false;
2739 
2740     if (!PhysReg) {
2741       assert(LI->empty() && "Only empty live-range do not require a register");
2742       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2743                         << " succeeded. Empty LI.\n");
2744       continue;
2745     }
2746     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2747                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2748 
2749     Matrix->assign(*LI, PhysReg);
2750     FixedRegisters.insert(LI->reg());
2751   }
2752   return true;
2753 }
2754 
2755 //===----------------------------------------------------------------------===//
2756 //                            Main Entry Point
2757 //===----------------------------------------------------------------------===//
2758 
2759 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2760                                    SmallVectorImpl<Register> &NewVRegs) {
2761   CutOffInfo = CO_None;
2762   LLVMContext &Ctx = MF->getFunction().getContext();
2763   SmallVirtRegSet FixedRegisters;
2764   MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2765   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2766     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2767     if (CutOffEncountered == CO_Depth)
2768       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2769                     "reached. Use -fexhaustive-register-search to skip "
2770                     "cutoffs");
2771     else if (CutOffEncountered == CO_Interf)
2772       Ctx.emitError("register allocation failed: maximum interference for "
2773                     "recoloring reached. Use -fexhaustive-register-search "
2774                     "to skip cutoffs");
2775     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2776       Ctx.emitError("register allocation failed: maximum interference and "
2777                     "depth for recoloring reached. Use "
2778                     "-fexhaustive-register-search to skip cutoffs");
2779   }
2780   return Reg;
2781 }
2782 
2783 /// Using a CSR for the first time has a cost because it causes push|pop
2784 /// to be added to prologue|epilogue. Splitting a cold section of the live
2785 /// range can have lower cost than using the CSR for the first time;
2786 /// Spilling a live range in the cold path can have lower cost than using
2787 /// the CSR for the first time. Returns the physical register if we decide
2788 /// to use the CSR; otherwise return 0.
2789 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2790                                          AllocationOrder &Order,
2791                                          Register PhysReg,
2792                                          unsigned &CostPerUseLimit,
2793                                          SmallVectorImpl<Register> &NewVRegs) {
2794   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2795     // We choose spill over using the CSR for the first time if the spill cost
2796     // is lower than CSRCost.
2797     SA->analyze(&VirtReg);
2798     if (calcSpillCost() >= CSRCost)
2799       return PhysReg;
2800 
2801     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2802     // we will not use a callee-saved register in tryEvict.
2803     CostPerUseLimit = 1;
2804     return 0;
2805   }
2806   if (getStage(VirtReg) < RS_Split) {
2807     // We choose pre-splitting over using the CSR for the first time if
2808     // the cost of splitting is lower than CSRCost.
2809     SA->analyze(&VirtReg);
2810     unsigned NumCands = 0;
2811     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2812     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2813                                                  NumCands, true /*IgnoreCSR*/);
2814     if (BestCand == NoCand)
2815       // Use the CSR if we can't find a region split below CSRCost.
2816       return PhysReg;
2817 
2818     // Perform the actual pre-splitting.
2819     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2820     return 0;
2821   }
2822   return PhysReg;
2823 }
2824 
2825 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2826   // Do not keep invalid information around.
2827   SetOfBrokenHints.remove(&LI);
2828 }
2829 
2830 void RAGreedy::initializeCSRCost() {
2831   // We use the larger one out of the command-line option and the value report
2832   // by TRI.
2833   CSRCost = BlockFrequency(
2834       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2835   if (!CSRCost.getFrequency())
2836     return;
2837 
2838   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2839   uint64_t ActualEntry = MBFI->getEntryFreq();
2840   if (!ActualEntry) {
2841     CSRCost = 0;
2842     return;
2843   }
2844   uint64_t FixedEntry = 1 << 14;
2845   if (ActualEntry < FixedEntry)
2846     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2847   else if (ActualEntry <= UINT32_MAX)
2848     // Invert the fraction and divide.
2849     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2850   else
2851     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2852     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2853 }
2854 
2855 /// Collect the hint info for \p Reg.
2856 /// The results are stored into \p Out.
2857 /// \p Out is not cleared before being populated.
2858 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2859   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2860     if (!Instr.isFullCopy())
2861       continue;
2862     // Look for the other end of the copy.
2863     Register OtherReg = Instr.getOperand(0).getReg();
2864     if (OtherReg == Reg) {
2865       OtherReg = Instr.getOperand(1).getReg();
2866       if (OtherReg == Reg)
2867         continue;
2868     }
2869     // Get the current assignment.
2870     Register OtherPhysReg = Register::isPhysicalRegister(OtherReg)
2871                                 ? OtherReg
2872                                 : Register(VRM->getPhys(OtherReg));
2873     // Push the collected information.
2874     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2875                            OtherPhysReg));
2876   }
2877 }
2878 
2879 /// Using the given \p List, compute the cost of the broken hints if
2880 /// \p PhysReg was used.
2881 /// \return The cost of \p List for \p PhysReg.
2882 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2883                                            MCRegister PhysReg) {
2884   BlockFrequency Cost = 0;
2885   for (const HintInfo &Info : List) {
2886     if (Info.PhysReg != PhysReg)
2887       Cost += Info.Freq;
2888   }
2889   return Cost;
2890 }
2891 
2892 /// Using the register assigned to \p VirtReg, try to recolor
2893 /// all the live ranges that are copy-related with \p VirtReg.
2894 /// The recoloring is then propagated to all the live-ranges that have
2895 /// been recolored and so on, until no more copies can be coalesced or
2896 /// it is not profitable.
2897 /// For a given live range, profitability is determined by the sum of the
2898 /// frequencies of the non-identity copies it would introduce with the old
2899 /// and new register.
2900 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2901   // We have a broken hint, check if it is possible to fix it by
2902   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2903   // some register and PhysReg may be available for the other live-ranges.
2904   SmallSet<unsigned, 4> Visited;
2905   SmallVector<unsigned, 2> RecoloringCandidates;
2906   HintsInfo Info;
2907   unsigned Reg = VirtReg.reg();
2908   MCRegister PhysReg = VRM->getPhys(Reg);
2909   // Start the recoloring algorithm from the input live-interval, then
2910   // it will propagate to the ones that are copy-related with it.
2911   Visited.insert(Reg);
2912   RecoloringCandidates.push_back(Reg);
2913 
2914   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2915                     << '(' << printReg(PhysReg, TRI) << ")\n");
2916 
2917   do {
2918     Reg = RecoloringCandidates.pop_back_val();
2919 
2920     // We cannot recolor physical register.
2921     if (Register::isPhysicalRegister(Reg))
2922       continue;
2923 
2924     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2925 
2926     // Get the live interval mapped with this virtual register to be able
2927     // to check for the interference with the new color.
2928     LiveInterval &LI = LIS->getInterval(Reg);
2929     MCRegister CurrPhys = VRM->getPhys(Reg);
2930     // Check that the new color matches the register class constraints and
2931     // that it is free for this live range.
2932     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2933                                 Matrix->checkInterference(LI, PhysReg)))
2934       continue;
2935 
2936     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2937                       << ") is recolorable.\n");
2938 
2939     // Gather the hint info.
2940     Info.clear();
2941     collectHintInfo(Reg, Info);
2942     // Check if recoloring the live-range will increase the cost of the
2943     // non-identity copies.
2944     if (CurrPhys != PhysReg) {
2945       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2946       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2947       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2948       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2949                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2950                         << '\n');
2951       if (OldCopiesCost < NewCopiesCost) {
2952         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2953         continue;
2954       }
2955       // At this point, the cost is either cheaper or equal. If it is
2956       // equal, we consider this is profitable because it may expose
2957       // more recoloring opportunities.
2958       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2959       // Recolor the live-range.
2960       Matrix->unassign(LI);
2961       Matrix->assign(LI, PhysReg);
2962     }
2963     // Push all copy-related live-ranges to keep reconciling the broken
2964     // hints.
2965     for (const HintInfo &HI : Info) {
2966       if (Visited.insert(HI.Reg).second)
2967         RecoloringCandidates.push_back(HI.Reg);
2968     }
2969   } while (!RecoloringCandidates.empty());
2970 }
2971 
2972 /// Try to recolor broken hints.
2973 /// Broken hints may be repaired by recoloring when an evicted variable
2974 /// freed up a register for a larger live-range.
2975 /// Consider the following example:
2976 /// BB1:
2977 ///   a =
2978 ///   b =
2979 /// BB2:
2980 ///   ...
2981 ///   = b
2982 ///   = a
2983 /// Let us assume b gets split:
2984 /// BB1:
2985 ///   a =
2986 ///   b =
2987 /// BB2:
2988 ///   c = b
2989 ///   ...
2990 ///   d = c
2991 ///   = d
2992 ///   = a
2993 /// Because of how the allocation work, b, c, and d may be assigned different
2994 /// colors. Now, if a gets evicted later:
2995 /// BB1:
2996 ///   a =
2997 ///   st a, SpillSlot
2998 ///   b =
2999 /// BB2:
3000 ///   c = b
3001 ///   ...
3002 ///   d = c
3003 ///   = d
3004 ///   e = ld SpillSlot
3005 ///   = e
3006 /// This is likely that we can assign the same register for b, c, and d,
3007 /// getting rid of 2 copies.
3008 void RAGreedy::tryHintsRecoloring() {
3009   for (LiveInterval *LI : SetOfBrokenHints) {
3010     assert(Register::isVirtualRegister(LI->reg()) &&
3011            "Recoloring is possible only for virtual registers");
3012     // Some dead defs may be around (e.g., because of debug uses).
3013     // Ignore those.
3014     if (!VRM->hasPhys(LI->reg()))
3015       continue;
3016     tryHintRecoloring(*LI);
3017   }
3018 }
3019 
3020 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3021                                        SmallVectorImpl<Register> &NewVRegs,
3022                                        SmallVirtRegSet &FixedRegisters,
3023                                        unsigned Depth) {
3024   unsigned CostPerUseLimit = ~0u;
3025   // First try assigning a free register.
3026   auto Order =
3027       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
3028   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3029     // If VirtReg got an assignment, the eviction info is no longre relevant.
3030     LastEvicted.clearEvicteeInfo(VirtReg.reg());
3031     // When NewVRegs is not empty, we may have made decisions such as evicting
3032     // a virtual register, go with the earlier decisions and use the physical
3033     // register.
3034     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3035         NewVRegs.empty()) {
3036       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3037                                                 CostPerUseLimit, NewVRegs);
3038       if (CSRReg || !NewVRegs.empty())
3039         // Return now if we decide to use a CSR or create new vregs due to
3040         // pre-splitting.
3041         return CSRReg;
3042     } else
3043       return PhysReg;
3044   }
3045 
3046   LiveRangeStage Stage = getStage(VirtReg);
3047   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3048                     << ExtraRegInfo[VirtReg.reg()].Cascade << '\n');
3049 
3050   // Try to evict a less worthy live range, but only for ranges from the primary
3051   // queue. The RS_Split ranges already failed to do this, and they should not
3052   // get a second chance until they have been split.
3053   if (Stage != RS_Split)
3054     if (Register PhysReg =
3055             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3056                      FixedRegisters)) {
3057       Register Hint = MRI->getSimpleHint(VirtReg.reg());
3058       // If VirtReg has a hint and that hint is broken record this
3059       // virtual register as a recoloring candidate for broken hint.
3060       // Indeed, since we evicted a variable in its neighborhood it is
3061       // likely we can at least partially recolor some of the
3062       // copy-related live-ranges.
3063       if (Hint && Hint != PhysReg)
3064         SetOfBrokenHints.insert(&VirtReg);
3065       // If VirtReg eviction someone, the eviction info for it as an evictee is
3066       // no longre relevant.
3067       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3068       return PhysReg;
3069     }
3070 
3071   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3072 
3073   // The first time we see a live range, don't try to split or spill.
3074   // Wait until the second time, when all smaller ranges have been allocated.
3075   // This gives a better picture of the interference to split around.
3076   if (Stage < RS_Split) {
3077     setStage(VirtReg, RS_Split);
3078     LLVM_DEBUG(dbgs() << "wait for second round\n");
3079     NewVRegs.push_back(VirtReg.reg());
3080     return 0;
3081   }
3082 
3083   if (Stage < RS_Spill) {
3084     // Try splitting VirtReg or interferences.
3085     unsigned NewVRegSizeBefore = NewVRegs.size();
3086     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3087     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3088       // If VirtReg got split, the eviction info is no longer relevant.
3089       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3090       return PhysReg;
3091     }
3092   }
3093 
3094   // If we couldn't allocate a register from spilling, there is probably some
3095   // invalid inline assembly. The base class will report it.
3096   if (Stage >= RS_Done || !VirtReg.isSpillable())
3097     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3098                                    Depth);
3099 
3100   // Finally spill VirtReg itself.
3101   if ((EnableDeferredSpilling ||
3102        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
3103       getStage(VirtReg) < RS_Memory) {
3104     // TODO: This is experimental and in particular, we do not model
3105     // the live range splitting done by spilling correctly.
3106     // We would need a deep integration with the spiller to do the
3107     // right thing here. Anyway, that is still good for early testing.
3108     setStage(VirtReg, RS_Memory);
3109     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3110     NewVRegs.push_back(VirtReg.reg());
3111   } else {
3112     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3113                        TimerGroupDescription, TimePassesIsEnabled);
3114     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3115     spiller().spill(LRE);
3116     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3117 
3118     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3119     // the new regs are kept in LDV (still mapping to the old register), until
3120     // we rewrite spilled locations in LDV at a later stage.
3121     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
3122 
3123     if (VerifyEnabled)
3124       MF->verify(this, "After spilling");
3125   }
3126 
3127   // The live virtual register requesting allocation was spilled, so tell
3128   // the caller not to allocate anything during this round.
3129   return 0;
3130 }
3131 
3132 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3133                                             unsigned &FoldedReloads,
3134                                             unsigned &Spills,
3135                                             unsigned &FoldedSpills) {
3136   Reloads = 0;
3137   FoldedReloads = 0;
3138   Spills = 0;
3139   FoldedSpills = 0;
3140 
3141   // Sum up the spill and reloads in subloops.
3142   for (MachineLoop *SubLoop : *L) {
3143     unsigned SubReloads;
3144     unsigned SubFoldedReloads;
3145     unsigned SubSpills;
3146     unsigned SubFoldedSpills;
3147 
3148     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3149                                  SubSpills, SubFoldedSpills);
3150     Reloads += SubReloads;
3151     FoldedReloads += SubFoldedReloads;
3152     Spills += SubSpills;
3153     FoldedSpills += SubFoldedSpills;
3154   }
3155 
3156   const MachineFrameInfo &MFI = MF->getFrameInfo();
3157   int FI;
3158 
3159   for (MachineBasicBlock *MBB : L->getBlocks())
3160     // Handle blocks that were not included in subloops.
3161     if (Loops->getLoopFor(MBB) == L)
3162       for (MachineInstr &MI : *MBB) {
3163         SmallVector<const MachineMemOperand *, 2> Accesses;
3164         auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3165           return MFI.isSpillSlotObjectIndex(
3166               cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3167                   ->getFrameIndex());
3168         };
3169 
3170         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3171           ++Reloads;
3172         else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3173                  llvm::any_of(Accesses, isSpillSlotAccess))
3174           ++FoldedReloads;
3175         else if (TII->isStoreToStackSlot(MI, FI) &&
3176                  MFI.isSpillSlotObjectIndex(FI))
3177           ++Spills;
3178         else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3179                  llvm::any_of(Accesses, isSpillSlotAccess))
3180           ++FoldedSpills;
3181       }
3182 
3183   if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3184     using namespace ore;
3185 
3186     ORE->emit([&]() {
3187       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3188                                         L->getStartLoc(), L->getHeader());
3189       if (Spills)
3190         R << NV("NumSpills", Spills) << " spills ";
3191       if (FoldedSpills)
3192         R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3193       if (Reloads)
3194         R << NV("NumReloads", Reloads) << " reloads ";
3195       if (FoldedReloads)
3196         R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3197       R << "generated in loop";
3198       return R;
3199     });
3200   }
3201 }
3202 
3203 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3204   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3205                     << "********** Function: " << mf.getName() << '\n');
3206 
3207   MF = &mf;
3208   TRI = MF->getSubtarget().getRegisterInfo();
3209   TII = MF->getSubtarget().getInstrInfo();
3210   RCI.runOnMachineFunction(mf);
3211 
3212   EnableLocalReassign = EnableLocalReassignment ||
3213                         MF->getSubtarget().enableRALocalReassignment(
3214                             MF->getTarget().getOptLevel());
3215 
3216   EnableAdvancedRASplitCost =
3217       ConsiderLocalIntervalCost.getNumOccurrences()
3218           ? ConsiderLocalIntervalCost
3219           : MF->getSubtarget().enableAdvancedRASplitCost();
3220 
3221   if (VerifyEnabled)
3222     MF->verify(this, "Before greedy register allocator");
3223 
3224   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3225                      getAnalysis<LiveIntervals>(),
3226                      getAnalysis<LiveRegMatrix>());
3227   Indexes = &getAnalysis<SlotIndexes>();
3228   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3229   DomTree = &getAnalysis<MachineDominatorTree>();
3230   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3231   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3232   Loops = &getAnalysis<MachineLoopInfo>();
3233   Bundles = &getAnalysis<EdgeBundles>();
3234   SpillPlacer = &getAnalysis<SpillPlacement>();
3235   DebugVars = &getAnalysis<LiveDebugVariables>();
3236   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3237 
3238   initializeCSRCost();
3239 
3240   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
3241 
3242   VRAI->calculateSpillWeightsAndHints();
3243 
3244   LLVM_DEBUG(LIS->dump());
3245 
3246   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3247   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3248   ExtraRegInfo.clear();
3249   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3250   NextCascade = 1;
3251   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3252   GlobalCand.resize(32);  // This will grow as needed.
3253   SetOfBrokenHints.clear();
3254   LastEvicted.clear();
3255 
3256   allocatePhysRegs();
3257   tryHintsRecoloring();
3258   postOptimization();
3259   reportNumberOfSplillsReloads();
3260 
3261   releaseMemory();
3262   return true;
3263 }
3264