1 //===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RABasic function pass, which provides a minimal 11 // implementation of the basic register allocator. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AllocationOrder.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "Spiller.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/CodeGen/CalcSpillWeights.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveRangeEdit.h" 23 #include "llvm/CodeGen/LiveRegMatrix.h" 24 #include "llvm/CodeGen/LiveStackAnalysis.h" 25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/Passes.h" 31 #include "llvm/CodeGen/RegAllocRegistry.h" 32 #include "llvm/CodeGen/VirtRegMap.h" 33 #include "llvm/PassAnalysisSupport.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetRegisterInfo.h" 37 #include <cstdlib> 38 #include <queue> 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "regalloc" 43 44 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator", 45 createBasicRegisterAllocator); 46 47 namespace { 48 struct CompSpillWeight { 49 bool operator()(LiveInterval *A, LiveInterval *B) const { 50 return A->weight < B->weight; 51 } 52 }; 53 } 54 55 namespace { 56 /// RABasic provides a minimal implementation of the basic register allocation 57 /// algorithm. It prioritizes live virtual registers by spill weight and spills 58 /// whenever a register is unavailable. This is not practical in production but 59 /// provides a useful baseline both for measuring other allocators and comparing 60 /// the speed of the basic algorithm against other styles of allocators. 61 class RABasic : public MachineFunctionPass, 62 public RegAllocBase, 63 private LiveRangeEdit::Delegate { 64 // context 65 MachineFunction *MF; 66 67 // state 68 std::unique_ptr<Spiller> SpillerInstance; 69 std::priority_queue<LiveInterval*, std::vector<LiveInterval*>, 70 CompSpillWeight> Queue; 71 72 // Scratch space. Allocated here to avoid repeated malloc calls in 73 // selectOrSplit(). 74 BitVector UsableRegs; 75 76 bool LRE_CanEraseVirtReg(unsigned) override; 77 void LRE_WillShrinkVirtReg(unsigned) override; 78 79 public: 80 RABasic(); 81 82 /// Return the pass name. 83 StringRef getPassName() const override { return "Basic Register Allocator"; } 84 85 /// RABasic analysis usage. 86 void getAnalysisUsage(AnalysisUsage &AU) const override; 87 88 void releaseMemory() override; 89 90 Spiller &spiller() override { return *SpillerInstance; } 91 92 void enqueue(LiveInterval *LI) override { 93 Queue.push(LI); 94 } 95 96 LiveInterval *dequeue() override { 97 if (Queue.empty()) 98 return nullptr; 99 LiveInterval *LI = Queue.top(); 100 Queue.pop(); 101 return LI; 102 } 103 104 unsigned selectOrSplit(LiveInterval &VirtReg, 105 SmallVectorImpl<unsigned> &SplitVRegs) override; 106 107 /// Perform register allocation. 108 bool runOnMachineFunction(MachineFunction &mf) override; 109 110 MachineFunctionProperties getRequiredProperties() const override { 111 return MachineFunctionProperties().set( 112 MachineFunctionProperties::Property::NoPHIs); 113 } 114 115 // Helper for spilling all live virtual registers currently unified under preg 116 // that interfere with the most recently queried lvr. Return true if spilling 117 // was successful, and append any new spilled/split intervals to splitLVRs. 118 bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg, 119 SmallVectorImpl<unsigned> &SplitVRegs); 120 121 static char ID; 122 }; 123 124 char RABasic::ID = 0; 125 126 } // end anonymous namespace 127 128 char &llvm::RABasicID = RABasic::ID; 129 130 INITIALIZE_PASS_BEGIN(RABasic, "regallocbasic", "Basic Register Allocator", 131 false, false) 132 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 133 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 134 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 135 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 136 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 137 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 138 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 139 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 140 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 141 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 142 INITIALIZE_PASS_END(RABasic, "regallocbasic", "Basic Register Allocator", false, 143 false) 144 145 bool RABasic::LRE_CanEraseVirtReg(unsigned VirtReg) { 146 LiveInterval &LI = LIS->getInterval(VirtReg); 147 if (VRM->hasPhys(VirtReg)) { 148 Matrix->unassign(LI); 149 aboutToRemoveInterval(LI); 150 return true; 151 } 152 // Unassigned virtreg is probably in the priority queue. 153 // RegAllocBase will erase it after dequeueing. 154 // Nonetheless, clear the live-range so that the debug 155 // dump will show the right state for that VirtReg. 156 LI.clear(); 157 return false; 158 } 159 160 void RABasic::LRE_WillShrinkVirtReg(unsigned VirtReg) { 161 if (!VRM->hasPhys(VirtReg)) 162 return; 163 164 // Register is assigned, put it back on the queue for reassignment. 165 LiveInterval &LI = LIS->getInterval(VirtReg); 166 Matrix->unassign(LI); 167 enqueue(&LI); 168 } 169 170 RABasic::RABasic(): MachineFunctionPass(ID) { 171 } 172 173 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const { 174 AU.setPreservesCFG(); 175 AU.addRequired<AAResultsWrapperPass>(); 176 AU.addPreserved<AAResultsWrapperPass>(); 177 AU.addRequired<LiveIntervals>(); 178 AU.addPreserved<LiveIntervals>(); 179 AU.addPreserved<SlotIndexes>(); 180 AU.addRequired<LiveDebugVariables>(); 181 AU.addPreserved<LiveDebugVariables>(); 182 AU.addRequired<LiveStacks>(); 183 AU.addPreserved<LiveStacks>(); 184 AU.addRequired<MachineBlockFrequencyInfo>(); 185 AU.addPreserved<MachineBlockFrequencyInfo>(); 186 AU.addRequiredID(MachineDominatorsID); 187 AU.addPreservedID(MachineDominatorsID); 188 AU.addRequired<MachineLoopInfo>(); 189 AU.addPreserved<MachineLoopInfo>(); 190 AU.addRequired<VirtRegMap>(); 191 AU.addPreserved<VirtRegMap>(); 192 AU.addRequired<LiveRegMatrix>(); 193 AU.addPreserved<LiveRegMatrix>(); 194 MachineFunctionPass::getAnalysisUsage(AU); 195 } 196 197 void RABasic::releaseMemory() { 198 SpillerInstance.reset(); 199 } 200 201 202 // Spill or split all live virtual registers currently unified under PhysReg 203 // that interfere with VirtReg. The newly spilled or split live intervals are 204 // returned by appending them to SplitVRegs. 205 bool RABasic::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg, 206 SmallVectorImpl<unsigned> &SplitVRegs) { 207 // Record each interference and determine if all are spillable before mutating 208 // either the union or live intervals. 209 SmallVector<LiveInterval*, 8> Intfs; 210 211 // Collect interferences assigned to any alias of the physical register. 212 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 213 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 214 Q.collectInterferingVRegs(); 215 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 216 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 217 if (!Intf->isSpillable() || Intf->weight > VirtReg.weight) 218 return false; 219 Intfs.push_back(Intf); 220 } 221 } 222 DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) << 223 " interferences with " << VirtReg << "\n"); 224 assert(!Intfs.empty() && "expected interference"); 225 226 // Spill each interfering vreg allocated to PhysReg or an alias. 227 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 228 LiveInterval &Spill = *Intfs[i]; 229 230 // Skip duplicates. 231 if (!VRM->hasPhys(Spill.reg)) 232 continue; 233 234 // Deallocate the interfering vreg by removing it from the union. 235 // A LiveInterval instance may not be in a union during modification! 236 Matrix->unassign(Spill); 237 238 // Spill the extracted interval. 239 LiveRangeEdit LRE(&Spill, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats); 240 spiller().spill(LRE); 241 } 242 return true; 243 } 244 245 // Driver for the register assignment and splitting heuristics. 246 // Manages iteration over the LiveIntervalUnions. 247 // 248 // This is a minimal implementation of register assignment and splitting that 249 // spills whenever we run out of registers. 250 // 251 // selectOrSplit can only be called once per live virtual register. We then do a 252 // single interference test for each register the correct class until we find an 253 // available register. So, the number of interference tests in the worst case is 254 // |vregs| * |machineregs|. And since the number of interference tests is 255 // minimal, there is no value in caching them outside the scope of 256 // selectOrSplit(). 257 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg, 258 SmallVectorImpl<unsigned> &SplitVRegs) { 259 // Populate a list of physical register spill candidates. 260 SmallVector<unsigned, 8> PhysRegSpillCands; 261 262 // Check for an available register in this class. 263 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 264 while (unsigned PhysReg = Order.next()) { 265 // Check for interference in PhysReg 266 switch (Matrix->checkInterference(VirtReg, PhysReg)) { 267 case LiveRegMatrix::IK_Free: 268 // PhysReg is available, allocate it. 269 return PhysReg; 270 271 case LiveRegMatrix::IK_VirtReg: 272 // Only virtual registers in the way, we may be able to spill them. 273 PhysRegSpillCands.push_back(PhysReg); 274 continue; 275 276 default: 277 // RegMask or RegUnit interference. 278 continue; 279 } 280 } 281 282 // Try to spill another interfering reg with less spill weight. 283 for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(), 284 PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) { 285 if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) 286 continue; 287 288 assert(!Matrix->checkInterference(VirtReg, *PhysRegI) && 289 "Interference after spill."); 290 // Tell the caller to allocate to this newly freed physical register. 291 return *PhysRegI; 292 } 293 294 // No other spill candidates were found, so spill the current VirtReg. 295 DEBUG(dbgs() << "spilling: " << VirtReg << '\n'); 296 if (!VirtReg.isSpillable()) 297 return ~0u; 298 LiveRangeEdit LRE(&VirtReg, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats); 299 spiller().spill(LRE); 300 301 // The live virtual register requesting allocation was spilled, so tell 302 // the caller not to allocate anything during this round. 303 return 0; 304 } 305 306 bool RABasic::runOnMachineFunction(MachineFunction &mf) { 307 DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n" 308 << "********** Function: " 309 << mf.getName() << '\n'); 310 311 MF = &mf; 312 RegAllocBase::init(getAnalysis<VirtRegMap>(), 313 getAnalysis<LiveIntervals>(), 314 getAnalysis<LiveRegMatrix>()); 315 316 calculateSpillWeightsAndHints(*LIS, *MF, VRM, 317 getAnalysis<MachineLoopInfo>(), 318 getAnalysis<MachineBlockFrequencyInfo>()); 319 320 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 321 322 allocatePhysRegs(); 323 postOptimization(); 324 325 // Diagnostic output before rewriting 326 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n"); 327 328 releaseMemory(); 329 return true; 330 } 331 332 FunctionPass* llvm::createBasicRegisterAllocator() 333 { 334 return new RABasic(); 335 } 336