1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a top-down list scheduler, using standard algorithms.
11 // The basic approach uses a priority queue of available nodes to schedule.
12 // One at a time, nodes are taken from the priority queue (thus in priority
13 // order), checked for legality to schedule, and emitted if legal.
14 //
15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
16 // pipeline or resource constraints) or because an input to the instruction has
17 // not completed execution.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "AggressiveAntiDepBreaker.h"
22 #include "AntiDepBreaker.h"
23 #include "CriticalAntiDepBreaker.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/CodeGen/LatencyPriorityQueue.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/Passes.h"
33 #include "llvm/CodeGen/RegisterClassInfo.h"
34 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
35 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36 #include "llvm/CodeGen/SchedulerRegistry.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetInstrInfo.h"
42 #include "llvm/Target/TargetLowering.h"
43 #include "llvm/Target/TargetRegisterInfo.h"
44 #include "llvm/Target/TargetSubtargetInfo.h"
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "post-RA-sched"
48 
49 STATISTIC(NumNoops, "Number of noops inserted");
50 STATISTIC(NumStalls, "Number of pipeline stalls");
51 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
52 
53 // Post-RA scheduling is enabled with
54 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
55 // override the target.
56 static cl::opt<bool>
57 EnablePostRAScheduler("post-RA-scheduler",
58                        cl::desc("Enable scheduling after register allocation"),
59                        cl::init(false), cl::Hidden);
60 static cl::opt<std::string>
61 EnableAntiDepBreaking("break-anti-dependencies",
62                       cl::desc("Break post-RA scheduling anti-dependencies: "
63                                "\"critical\", \"all\", or \"none\""),
64                       cl::init("none"), cl::Hidden);
65 
66 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
67 static cl::opt<int>
68 DebugDiv("postra-sched-debugdiv",
69                       cl::desc("Debug control MBBs that are scheduled"),
70                       cl::init(0), cl::Hidden);
71 static cl::opt<int>
72 DebugMod("postra-sched-debugmod",
73                       cl::desc("Debug control MBBs that are scheduled"),
74                       cl::init(0), cl::Hidden);
75 
76 AntiDepBreaker::~AntiDepBreaker() { }
77 
78 namespace {
79   class PostRAScheduler : public MachineFunctionPass {
80     const TargetInstrInfo *TII;
81     RegisterClassInfo RegClassInfo;
82 
83   public:
84     static char ID;
85     PostRAScheduler() : MachineFunctionPass(ID) {}
86 
87     void getAnalysisUsage(AnalysisUsage &AU) const override {
88       AU.setPreservesCFG();
89       AU.addRequired<AAResultsWrapperPass>();
90       AU.addRequired<TargetPassConfig>();
91       AU.addRequired<MachineDominatorTree>();
92       AU.addPreserved<MachineDominatorTree>();
93       AU.addRequired<MachineLoopInfo>();
94       AU.addPreserved<MachineLoopInfo>();
95       MachineFunctionPass::getAnalysisUsage(AU);
96     }
97 
98     MachineFunctionProperties getRequiredProperties() const override {
99       return MachineFunctionProperties().set(
100           MachineFunctionProperties::Property::AllVRegsAllocated);
101     }
102 
103     bool runOnMachineFunction(MachineFunction &Fn) override;
104 
105     bool enablePostRAScheduler(
106         const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel,
107         TargetSubtargetInfo::AntiDepBreakMode &Mode,
108         TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const;
109   };
110   char PostRAScheduler::ID = 0;
111 
112   class SchedulePostRATDList : public ScheduleDAGInstrs {
113     /// AvailableQueue - The priority queue to use for the available SUnits.
114     ///
115     LatencyPriorityQueue AvailableQueue;
116 
117     /// PendingQueue - This contains all of the instructions whose operands have
118     /// been issued, but their results are not ready yet (due to the latency of
119     /// the operation).  Once the operands becomes available, the instruction is
120     /// added to the AvailableQueue.
121     std::vector<SUnit*> PendingQueue;
122 
123     /// HazardRec - The hazard recognizer to use.
124     ScheduleHazardRecognizer *HazardRec;
125 
126     /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
127     AntiDepBreaker *AntiDepBreak;
128 
129     /// AA - AliasAnalysis for making memory reference queries.
130     AliasAnalysis *AA;
131 
132     /// The schedule. Null SUnit*'s represent noop instructions.
133     std::vector<SUnit*> Sequence;
134 
135     /// Ordered list of DAG postprocessing steps.
136     std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
137 
138     /// The index in BB of RegionEnd.
139     ///
140     /// This is the instruction number from the top of the current block, not
141     /// the SlotIndex. It is only used by the AntiDepBreaker.
142     unsigned EndIndex;
143 
144   public:
145     SchedulePostRATDList(
146         MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
147         const RegisterClassInfo &,
148         TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
149         SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs);
150 
151     ~SchedulePostRATDList() override;
152 
153     /// startBlock - Initialize register live-range state for scheduling in
154     /// this block.
155     ///
156     void startBlock(MachineBasicBlock *BB) override;
157 
158     // Set the index of RegionEnd within the current BB.
159     void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; }
160 
161     /// Initialize the scheduler state for the next scheduling region.
162     void enterRegion(MachineBasicBlock *bb,
163                      MachineBasicBlock::iterator begin,
164                      MachineBasicBlock::iterator end,
165                      unsigned regioninstrs) override;
166 
167     /// Notify that the scheduler has finished scheduling the current region.
168     void exitRegion() override;
169 
170     /// Schedule - Schedule the instruction range using list scheduling.
171     ///
172     void schedule() override;
173 
174     void EmitSchedule();
175 
176     /// Observe - Update liveness information to account for the current
177     /// instruction, which will not be scheduled.
178     ///
179     void Observe(MachineInstr &MI, unsigned Count);
180 
181     /// finishBlock - Clean up register live-range state.
182     ///
183     void finishBlock() override;
184 
185   private:
186     /// Apply each ScheduleDAGMutation step in order.
187     void postprocessDAG();
188 
189     void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
190     void ReleaseSuccessors(SUnit *SU);
191     void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
192     void ListScheduleTopDown();
193 
194     void dumpSchedule() const;
195     void emitNoop(unsigned CurCycle);
196   };
197 }
198 
199 char &llvm::PostRASchedulerID = PostRAScheduler::ID;
200 
201 INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
202                 "Post RA top-down list latency scheduler", false, false)
203 
204 SchedulePostRATDList::SchedulePostRATDList(
205     MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
206     const RegisterClassInfo &RCI,
207     TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
208     SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs)
209     : ScheduleDAGInstrs(MF, &MLI), AA(AA), EndIndex(0) {
210 
211   const InstrItineraryData *InstrItins =
212       MF.getSubtarget().getInstrItineraryData();
213   HazardRec =
214       MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer(
215           InstrItins, this);
216   MF.getSubtarget().getPostRAMutations(Mutations);
217 
218   assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
219           MRI.tracksLiveness()) &&
220          "Live-ins must be accurate for anti-dependency breaking");
221   AntiDepBreak =
222     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
223      (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
224      ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
225       (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : nullptr));
226 }
227 
228 SchedulePostRATDList::~SchedulePostRATDList() {
229   delete HazardRec;
230   delete AntiDepBreak;
231 }
232 
233 /// Initialize state associated with the next scheduling region.
234 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
235                  MachineBasicBlock::iterator begin,
236                  MachineBasicBlock::iterator end,
237                  unsigned regioninstrs) {
238   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
239   Sequence.clear();
240 }
241 
242 /// Print the schedule before exiting the region.
243 void SchedulePostRATDList::exitRegion() {
244   DEBUG({
245       dbgs() << "*** Final schedule ***\n";
246       dumpSchedule();
247       dbgs() << '\n';
248     });
249   ScheduleDAGInstrs::exitRegion();
250 }
251 
252 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
253 /// dumpSchedule - dump the scheduled Sequence.
254 void SchedulePostRATDList::dumpSchedule() const {
255   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
256     if (SUnit *SU = Sequence[i])
257       SU->dump(this);
258     else
259       dbgs() << "**** NOOP ****\n";
260   }
261 }
262 #endif
263 
264 bool PostRAScheduler::enablePostRAScheduler(
265     const TargetSubtargetInfo &ST,
266     CodeGenOpt::Level OptLevel,
267     TargetSubtargetInfo::AntiDepBreakMode &Mode,
268     TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const {
269   Mode = ST.getAntiDepBreakMode();
270   ST.getCriticalPathRCs(CriticalPathRCs);
271   return ST.enablePostRAScheduler() &&
272          OptLevel >= ST.getOptLevelToEnablePostRAScheduler();
273 }
274 
275 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
276   if (skipFunction(*Fn.getFunction()))
277     return false;
278 
279   TII = Fn.getSubtarget().getInstrInfo();
280   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
281   AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
282   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
283 
284   RegClassInfo.runOnMachineFunction(Fn);
285 
286   // Check for explicit enable/disable of post-ra scheduling.
287   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
288     TargetSubtargetInfo::ANTIDEP_NONE;
289   SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
290   if (EnablePostRAScheduler.getPosition() > 0) {
291     if (!EnablePostRAScheduler)
292       return false;
293   } else {
294     // Check that post-RA scheduling is enabled for this target.
295     // This may upgrade the AntiDepMode.
296     if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(),
297                                AntiDepMode, CriticalPathRCs))
298       return false;
299   }
300 
301   // Check for antidep breaking override...
302   if (EnableAntiDepBreaking.getPosition() > 0) {
303     AntiDepMode = (EnableAntiDepBreaking == "all")
304       ? TargetSubtargetInfo::ANTIDEP_ALL
305       : ((EnableAntiDepBreaking == "critical")
306          ? TargetSubtargetInfo::ANTIDEP_CRITICAL
307          : TargetSubtargetInfo::ANTIDEP_NONE);
308   }
309 
310   DEBUG(dbgs() << "PostRAScheduler\n");
311 
312   SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode,
313                                  CriticalPathRCs);
314 
315   // Loop over all of the basic blocks
316   for (auto &MBB : Fn) {
317 #ifndef NDEBUG
318     // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
319     if (DebugDiv > 0) {
320       static int bbcnt = 0;
321       if (bbcnt++ % DebugDiv != DebugMod)
322         continue;
323       dbgs() << "*** DEBUG scheduling " << Fn.getName()
324              << ":BB#" << MBB.getNumber() << " ***\n";
325     }
326 #endif
327 
328     // Initialize register live-range state for scheduling in this block.
329     Scheduler.startBlock(&MBB);
330 
331     // Schedule each sequence of instructions not interrupted by a label
332     // or anything else that effectively needs to shut down scheduling.
333     MachineBasicBlock::iterator Current = MBB.end();
334     unsigned Count = MBB.size(), CurrentCount = Count;
335     for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) {
336       MachineInstr *MI = std::prev(I);
337       --Count;
338       // Calls are not scheduling boundaries before register allocation, but
339       // post-ra we don't gain anything by scheduling across calls since we
340       // don't need to worry about register pressure.
341       if (MI->isCall() || TII->isSchedulingBoundary(MI, &MBB, Fn)) {
342         Scheduler.enterRegion(&MBB, I, Current, CurrentCount - Count);
343         Scheduler.setEndIndex(CurrentCount);
344         Scheduler.schedule();
345         Scheduler.exitRegion();
346         Scheduler.EmitSchedule();
347         Current = MI;
348         CurrentCount = Count;
349         Scheduler.Observe(*MI, CurrentCount);
350       }
351       I = MI;
352       if (MI->isBundle())
353         Count -= MI->getBundleSize();
354     }
355     assert(Count == 0 && "Instruction count mismatch!");
356     assert((MBB.begin() == Current || CurrentCount != 0) &&
357            "Instruction count mismatch!");
358     Scheduler.enterRegion(&MBB, MBB.begin(), Current, CurrentCount);
359     Scheduler.setEndIndex(CurrentCount);
360     Scheduler.schedule();
361     Scheduler.exitRegion();
362     Scheduler.EmitSchedule();
363 
364     // Clean up register live-range state.
365     Scheduler.finishBlock();
366 
367     // Update register kills
368     Scheduler.fixupKills(&MBB);
369   }
370 
371   return true;
372 }
373 
374 /// StartBlock - Initialize register live-range state for scheduling in
375 /// this block.
376 ///
377 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
378   // Call the superclass.
379   ScheduleDAGInstrs::startBlock(BB);
380 
381   // Reset the hazard recognizer and anti-dep breaker.
382   HazardRec->Reset();
383   if (AntiDepBreak)
384     AntiDepBreak->StartBlock(BB);
385 }
386 
387 /// Schedule - Schedule the instruction range using list scheduling.
388 ///
389 void SchedulePostRATDList::schedule() {
390   // Build the scheduling graph.
391   buildSchedGraph(AA);
392 
393   if (AntiDepBreak) {
394     unsigned Broken =
395       AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
396                                           EndIndex, DbgValues);
397 
398     if (Broken != 0) {
399       // We made changes. Update the dependency graph.
400       // Theoretically we could update the graph in place:
401       // When a live range is changed to use a different register, remove
402       // the def's anti-dependence *and* output-dependence edges due to
403       // that register, and add new anti-dependence and output-dependence
404       // edges based on the next live range of the register.
405       ScheduleDAG::clearDAG();
406       buildSchedGraph(AA);
407 
408       NumFixedAnti += Broken;
409     }
410   }
411 
412   postprocessDAG();
413 
414   DEBUG(dbgs() << "********** List Scheduling **********\n");
415   DEBUG(
416     for (const SUnit &SU : SUnits) {
417       SU.dumpAll(this);
418       dbgs() << '\n';
419     }
420   );
421 
422   AvailableQueue.initNodes(SUnits);
423   ListScheduleTopDown();
424   AvailableQueue.releaseState();
425 }
426 
427 /// Observe - Update liveness information to account for the current
428 /// instruction, which will not be scheduled.
429 ///
430 void SchedulePostRATDList::Observe(MachineInstr &MI, unsigned Count) {
431   if (AntiDepBreak)
432     AntiDepBreak->Observe(MI, Count, EndIndex);
433 }
434 
435 /// FinishBlock - Clean up register live-range state.
436 ///
437 void SchedulePostRATDList::finishBlock() {
438   if (AntiDepBreak)
439     AntiDepBreak->FinishBlock();
440 
441   // Call the superclass.
442   ScheduleDAGInstrs::finishBlock();
443 }
444 
445 /// Apply each ScheduleDAGMutation step in order.
446 void SchedulePostRATDList::postprocessDAG() {
447   for (auto &M : Mutations)
448     M->apply(this);
449 }
450 
451 //===----------------------------------------------------------------------===//
452 //  Top-Down Scheduling
453 //===----------------------------------------------------------------------===//
454 
455 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
456 /// the PendingQueue if the count reaches zero.
457 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
458   SUnit *SuccSU = SuccEdge->getSUnit();
459 
460   if (SuccEdge->isWeak()) {
461     --SuccSU->WeakPredsLeft;
462     return;
463   }
464 #ifndef NDEBUG
465   if (SuccSU->NumPredsLeft == 0) {
466     dbgs() << "*** Scheduling failed! ***\n";
467     SuccSU->dump(this);
468     dbgs() << " has been released too many times!\n";
469     llvm_unreachable(nullptr);
470   }
471 #endif
472   --SuccSU->NumPredsLeft;
473 
474   // Standard scheduler algorithms will recompute the depth of the successor
475   // here as such:
476   //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
477   //
478   // However, we lazily compute node depth instead. Note that
479   // ScheduleNodeTopDown has already updated the depth of this node which causes
480   // all descendents to be marked dirty. Setting the successor depth explicitly
481   // here would cause depth to be recomputed for all its ancestors. If the
482   // successor is not yet ready (because of a transitively redundant edge) then
483   // this causes depth computation to be quadratic in the size of the DAG.
484 
485   // If all the node's predecessors are scheduled, this node is ready
486   // to be scheduled. Ignore the special ExitSU node.
487   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
488     PendingQueue.push_back(SuccSU);
489 }
490 
491 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
492 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
493   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
494        I != E; ++I) {
495     ReleaseSucc(SU, &*I);
496   }
497 }
498 
499 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
500 /// count of its successors. If a successor pending count is zero, add it to
501 /// the Available queue.
502 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
503   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
504   DEBUG(SU->dump(this));
505 
506   Sequence.push_back(SU);
507   assert(CurCycle >= SU->getDepth() &&
508          "Node scheduled above its depth!");
509   SU->setDepthToAtLeast(CurCycle);
510 
511   ReleaseSuccessors(SU);
512   SU->isScheduled = true;
513   AvailableQueue.scheduledNode(SU);
514 }
515 
516 /// emitNoop - Add a noop to the current instruction sequence.
517 void SchedulePostRATDList::emitNoop(unsigned CurCycle) {
518   DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
519   HazardRec->EmitNoop();
520   Sequence.push_back(nullptr);   // NULL here means noop
521   ++NumNoops;
522 }
523 
524 /// ListScheduleTopDown - The main loop of list scheduling for top-down
525 /// schedulers.
526 void SchedulePostRATDList::ListScheduleTopDown() {
527   unsigned CurCycle = 0;
528 
529   // We're scheduling top-down but we're visiting the regions in
530   // bottom-up order, so we don't know the hazards at the start of a
531   // region. So assume no hazards (this should usually be ok as most
532   // blocks are a single region).
533   HazardRec->Reset();
534 
535   // Release any successors of the special Entry node.
536   ReleaseSuccessors(&EntrySU);
537 
538   // Add all leaves to Available queue.
539   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
540     // It is available if it has no predecessors.
541     if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
542       AvailableQueue.push(&SUnits[i]);
543       SUnits[i].isAvailable = true;
544     }
545   }
546 
547   // In any cycle where we can't schedule any instructions, we must
548   // stall or emit a noop, depending on the target.
549   bool CycleHasInsts = false;
550 
551   // While Available queue is not empty, grab the node with the highest
552   // priority. If it is not ready put it back.  Schedule the node.
553   std::vector<SUnit*> NotReady;
554   Sequence.reserve(SUnits.size());
555   while (!AvailableQueue.empty() || !PendingQueue.empty()) {
556     // Check to see if any of the pending instructions are ready to issue.  If
557     // so, add them to the available queue.
558     unsigned MinDepth = ~0u;
559     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
560       if (PendingQueue[i]->getDepth() <= CurCycle) {
561         AvailableQueue.push(PendingQueue[i]);
562         PendingQueue[i]->isAvailable = true;
563         PendingQueue[i] = PendingQueue.back();
564         PendingQueue.pop_back();
565         --i; --e;
566       } else if (PendingQueue[i]->getDepth() < MinDepth)
567         MinDepth = PendingQueue[i]->getDepth();
568     }
569 
570     DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
571 
572     SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr;
573     bool HasNoopHazards = false;
574     while (!AvailableQueue.empty()) {
575       SUnit *CurSUnit = AvailableQueue.pop();
576 
577       ScheduleHazardRecognizer::HazardType HT =
578         HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
579       if (HT == ScheduleHazardRecognizer::NoHazard) {
580         if (HazardRec->ShouldPreferAnother(CurSUnit)) {
581           if (!NotPreferredSUnit) {
582             // If this is the first non-preferred node for this cycle, then
583             // record it and continue searching for a preferred node. If this
584             // is not the first non-preferred node, then treat it as though
585             // there had been a hazard.
586             NotPreferredSUnit = CurSUnit;
587             continue;
588           }
589         } else {
590           FoundSUnit = CurSUnit;
591           break;
592         }
593       }
594 
595       // Remember if this is a noop hazard.
596       HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
597 
598       NotReady.push_back(CurSUnit);
599     }
600 
601     // If we have a non-preferred node, push it back onto the available list.
602     // If we did not find a preferred node, then schedule this first
603     // non-preferred node.
604     if (NotPreferredSUnit) {
605       if (!FoundSUnit) {
606         DEBUG(dbgs() << "*** Will schedule a non-preferred instruction...\n");
607         FoundSUnit = NotPreferredSUnit;
608       } else {
609         AvailableQueue.push(NotPreferredSUnit);
610       }
611 
612       NotPreferredSUnit = nullptr;
613     }
614 
615     // Add the nodes that aren't ready back onto the available list.
616     if (!NotReady.empty()) {
617       AvailableQueue.push_all(NotReady);
618       NotReady.clear();
619     }
620 
621     // If we found a node to schedule...
622     if (FoundSUnit) {
623       // If we need to emit noops prior to this instruction, then do so.
624       unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit);
625       for (unsigned i = 0; i != NumPreNoops; ++i)
626         emitNoop(CurCycle);
627 
628       // ... schedule the node...
629       ScheduleNodeTopDown(FoundSUnit, CurCycle);
630       HazardRec->EmitInstruction(FoundSUnit);
631       CycleHasInsts = true;
632       if (HazardRec->atIssueLimit()) {
633         DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
634         HazardRec->AdvanceCycle();
635         ++CurCycle;
636         CycleHasInsts = false;
637       }
638     } else {
639       if (CycleHasInsts) {
640         DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
641         HazardRec->AdvanceCycle();
642       } else if (!HasNoopHazards) {
643         // Otherwise, we have a pipeline stall, but no other problem,
644         // just advance the current cycle and try again.
645         DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
646         HazardRec->AdvanceCycle();
647         ++NumStalls;
648       } else {
649         // Otherwise, we have no instructions to issue and we have instructions
650         // that will fault if we don't do this right.  This is the case for
651         // processors without pipeline interlocks and other cases.
652         emitNoop(CurCycle);
653       }
654 
655       ++CurCycle;
656       CycleHasInsts = false;
657     }
658   }
659 
660 #ifndef NDEBUG
661   unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
662   unsigned Noops = 0;
663   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
664     if (!Sequence[i])
665       ++Noops;
666   assert(Sequence.size() - Noops == ScheduledNodes &&
667          "The number of nodes scheduled doesn't match the expected number!");
668 #endif // NDEBUG
669 }
670 
671 // EmitSchedule - Emit the machine code in scheduled order.
672 void SchedulePostRATDList::EmitSchedule() {
673   RegionBegin = RegionEnd;
674 
675   // If first instruction was a DBG_VALUE then put it back.
676   if (FirstDbgValue)
677     BB->splice(RegionEnd, BB, FirstDbgValue);
678 
679   // Then re-insert them according to the given schedule.
680   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
681     if (SUnit *SU = Sequence[i])
682       BB->splice(RegionEnd, BB, SU->getInstr());
683     else
684       // Null SUnit* is a noop.
685       TII->insertNoop(*BB, RegionEnd);
686 
687     // Update the Begin iterator, as the first instruction in the block
688     // may have been scheduled later.
689     if (i == 0)
690       RegionBegin = std::prev(RegionEnd);
691   }
692 
693   // Reinsert any remaining debug_values.
694   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
695          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
696     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
697     MachineInstr *DbgValue = P.first;
698     MachineBasicBlock::iterator OrigPrivMI = P.second;
699     BB->splice(++OrigPrivMI, BB, DbgValue);
700   }
701   DbgValues.clear();
702   FirstDbgValue = nullptr;
703 }
704