1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements a top-down list scheduler, using standard algorithms. 11 // The basic approach uses a priority queue of available nodes to schedule. 12 // One at a time, nodes are taken from the priority queue (thus in priority 13 // order), checked for legality to schedule, and emitted if legal. 14 // 15 // Nodes may not be legal to schedule either due to structural hazards (e.g. 16 // pipeline or resource constraints) or because an input to the instruction has 17 // not completed execution. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/CodeGen/Passes.h" 22 #include "AggressiveAntiDepBreaker.h" 23 #include "AntiDepBreaker.h" 24 #include "CriticalAntiDepBreaker.h" 25 #include "llvm/ADT/BitVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/CodeGen/LatencyPriorityQueue.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/RegisterClassInfo.h" 35 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 36 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 37 #include "llvm/CodeGen/SchedulerRegistry.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetInstrInfo.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetRegisterInfo.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 using namespace llvm; 47 48 #define DEBUG_TYPE "post-RA-sched" 49 50 STATISTIC(NumNoops, "Number of noops inserted"); 51 STATISTIC(NumStalls, "Number of pipeline stalls"); 52 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies"); 53 54 // Post-RA scheduling is enabled with 55 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to 56 // override the target. 57 static cl::opt<bool> 58 EnablePostRAScheduler("post-RA-scheduler", 59 cl::desc("Enable scheduling after register allocation"), 60 cl::init(false), cl::Hidden); 61 static cl::opt<std::string> 62 EnableAntiDepBreaking("break-anti-dependencies", 63 cl::desc("Break post-RA scheduling anti-dependencies: " 64 "\"critical\", \"all\", or \"none\""), 65 cl::init("none"), cl::Hidden); 66 67 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod 68 static cl::opt<int> 69 DebugDiv("postra-sched-debugdiv", 70 cl::desc("Debug control MBBs that are scheduled"), 71 cl::init(0), cl::Hidden); 72 static cl::opt<int> 73 DebugMod("postra-sched-debugmod", 74 cl::desc("Debug control MBBs that are scheduled"), 75 cl::init(0), cl::Hidden); 76 77 AntiDepBreaker::~AntiDepBreaker() { } 78 79 namespace { 80 class PostRAScheduler : public MachineFunctionPass { 81 const TargetInstrInfo *TII; 82 RegisterClassInfo RegClassInfo; 83 84 public: 85 static char ID; 86 PostRAScheduler() : MachineFunctionPass(ID) {} 87 88 void getAnalysisUsage(AnalysisUsage &AU) const override { 89 AU.setPreservesCFG(); 90 AU.addRequired<AAResultsWrapperPass>(); 91 AU.addRequired<TargetPassConfig>(); 92 AU.addRequired<MachineDominatorTree>(); 93 AU.addPreserved<MachineDominatorTree>(); 94 AU.addRequired<MachineLoopInfo>(); 95 AU.addPreserved<MachineLoopInfo>(); 96 MachineFunctionPass::getAnalysisUsage(AU); 97 } 98 99 bool runOnMachineFunction(MachineFunction &Fn) override; 100 101 bool enablePostRAScheduler( 102 const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel, 103 TargetSubtargetInfo::AntiDepBreakMode &Mode, 104 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const; 105 }; 106 char PostRAScheduler::ID = 0; 107 108 class SchedulePostRATDList : public ScheduleDAGInstrs { 109 /// AvailableQueue - The priority queue to use for the available SUnits. 110 /// 111 LatencyPriorityQueue AvailableQueue; 112 113 /// PendingQueue - This contains all of the instructions whose operands have 114 /// been issued, but their results are not ready yet (due to the latency of 115 /// the operation). Once the operands becomes available, the instruction is 116 /// added to the AvailableQueue. 117 std::vector<SUnit*> PendingQueue; 118 119 /// HazardRec - The hazard recognizer to use. 120 ScheduleHazardRecognizer *HazardRec; 121 122 /// AntiDepBreak - Anti-dependence breaking object, or NULL if none 123 AntiDepBreaker *AntiDepBreak; 124 125 /// AA - AliasAnalysis for making memory reference queries. 126 AliasAnalysis *AA; 127 128 /// The schedule. Null SUnit*'s represent noop instructions. 129 std::vector<SUnit*> Sequence; 130 131 /// Ordered list of DAG postprocessing steps. 132 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; 133 134 /// The index in BB of RegionEnd. 135 /// 136 /// This is the instruction number from the top of the current block, not 137 /// the SlotIndex. It is only used by the AntiDepBreaker. 138 unsigned EndIndex; 139 140 public: 141 SchedulePostRATDList( 142 MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA, 143 const RegisterClassInfo &, 144 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, 145 SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs); 146 147 ~SchedulePostRATDList() override; 148 149 /// startBlock - Initialize register live-range state for scheduling in 150 /// this block. 151 /// 152 void startBlock(MachineBasicBlock *BB) override; 153 154 // Set the index of RegionEnd within the current BB. 155 void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; } 156 157 /// Initialize the scheduler state for the next scheduling region. 158 void enterRegion(MachineBasicBlock *bb, 159 MachineBasicBlock::iterator begin, 160 MachineBasicBlock::iterator end, 161 unsigned regioninstrs) override; 162 163 /// Notify that the scheduler has finished scheduling the current region. 164 void exitRegion() override; 165 166 /// Schedule - Schedule the instruction range using list scheduling. 167 /// 168 void schedule() override; 169 170 void EmitSchedule(); 171 172 /// Observe - Update liveness information to account for the current 173 /// instruction, which will not be scheduled. 174 /// 175 void Observe(MachineInstr &MI, unsigned Count); 176 177 /// finishBlock - Clean up register live-range state. 178 /// 179 void finishBlock() override; 180 181 private: 182 /// Apply each ScheduleDAGMutation step in order. 183 void postprocessDAG(); 184 185 void ReleaseSucc(SUnit *SU, SDep *SuccEdge); 186 void ReleaseSuccessors(SUnit *SU); 187 void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); 188 void ListScheduleTopDown(); 189 190 void dumpSchedule() const; 191 void emitNoop(unsigned CurCycle); 192 }; 193 } 194 195 char &llvm::PostRASchedulerID = PostRAScheduler::ID; 196 197 INITIALIZE_PASS(PostRAScheduler, "post-RA-sched", 198 "Post RA top-down list latency scheduler", false, false) 199 200 SchedulePostRATDList::SchedulePostRATDList( 201 MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA, 202 const RegisterClassInfo &RCI, 203 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, 204 SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs) 205 : ScheduleDAGInstrs(MF, &MLI), AA(AA), EndIndex(0) { 206 207 const InstrItineraryData *InstrItins = 208 MF.getSubtarget().getInstrItineraryData(); 209 HazardRec = 210 MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer( 211 InstrItins, this); 212 MF.getSubtarget().getPostRAMutations(Mutations); 213 214 assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE || 215 MRI.tracksLiveness()) && 216 "Live-ins must be accurate for anti-dependency breaking"); 217 AntiDepBreak = 218 ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ? 219 (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) : 220 ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ? 221 (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : nullptr)); 222 } 223 224 SchedulePostRATDList::~SchedulePostRATDList() { 225 delete HazardRec; 226 delete AntiDepBreak; 227 } 228 229 /// Initialize state associated with the next scheduling region. 230 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb, 231 MachineBasicBlock::iterator begin, 232 MachineBasicBlock::iterator end, 233 unsigned regioninstrs) { 234 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 235 Sequence.clear(); 236 } 237 238 /// Print the schedule before exiting the region. 239 void SchedulePostRATDList::exitRegion() { 240 DEBUG({ 241 dbgs() << "*** Final schedule ***\n"; 242 dumpSchedule(); 243 dbgs() << '\n'; 244 }); 245 ScheduleDAGInstrs::exitRegion(); 246 } 247 248 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 249 /// dumpSchedule - dump the scheduled Sequence. 250 void SchedulePostRATDList::dumpSchedule() const { 251 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 252 if (SUnit *SU = Sequence[i]) 253 SU->dump(this); 254 else 255 dbgs() << "**** NOOP ****\n"; 256 } 257 } 258 #endif 259 260 bool PostRAScheduler::enablePostRAScheduler( 261 const TargetSubtargetInfo &ST, 262 CodeGenOpt::Level OptLevel, 263 TargetSubtargetInfo::AntiDepBreakMode &Mode, 264 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const { 265 Mode = ST.getAntiDepBreakMode(); 266 ST.getCriticalPathRCs(CriticalPathRCs); 267 return ST.enablePostRAScheduler() && 268 OptLevel >= ST.getOptLevelToEnablePostRAScheduler(); 269 } 270 271 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) { 272 if (skipOptnoneFunction(*Fn.getFunction())) 273 return false; 274 275 TII = Fn.getSubtarget().getInstrInfo(); 276 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 277 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 278 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 279 280 RegClassInfo.runOnMachineFunction(Fn); 281 282 // Check for explicit enable/disable of post-ra scheduling. 283 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode = 284 TargetSubtargetInfo::ANTIDEP_NONE; 285 SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs; 286 if (EnablePostRAScheduler.getPosition() > 0) { 287 if (!EnablePostRAScheduler) 288 return false; 289 } else { 290 // Check that post-RA scheduling is enabled for this target. 291 // This may upgrade the AntiDepMode. 292 if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(), 293 AntiDepMode, CriticalPathRCs)) 294 return false; 295 } 296 297 // Check for antidep breaking override... 298 if (EnableAntiDepBreaking.getPosition() > 0) { 299 AntiDepMode = (EnableAntiDepBreaking == "all") 300 ? TargetSubtargetInfo::ANTIDEP_ALL 301 : ((EnableAntiDepBreaking == "critical") 302 ? TargetSubtargetInfo::ANTIDEP_CRITICAL 303 : TargetSubtargetInfo::ANTIDEP_NONE); 304 } 305 306 DEBUG(dbgs() << "PostRAScheduler\n"); 307 308 SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode, 309 CriticalPathRCs); 310 311 // Loop over all of the basic blocks 312 for (auto &MBB : Fn) { 313 #ifndef NDEBUG 314 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod 315 if (DebugDiv > 0) { 316 static int bbcnt = 0; 317 if (bbcnt++ % DebugDiv != DebugMod) 318 continue; 319 dbgs() << "*** DEBUG scheduling " << Fn.getName() 320 << ":BB#" << MBB.getNumber() << " ***\n"; 321 } 322 #endif 323 324 // Initialize register live-range state for scheduling in this block. 325 Scheduler.startBlock(&MBB); 326 327 // Schedule each sequence of instructions not interrupted by a label 328 // or anything else that effectively needs to shut down scheduling. 329 MachineBasicBlock::iterator Current = MBB.end(); 330 unsigned Count = MBB.size(), CurrentCount = Count; 331 for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) { 332 MachineInstr *MI = std::prev(I); 333 --Count; 334 // Calls are not scheduling boundaries before register allocation, but 335 // post-ra we don't gain anything by scheduling across calls since we 336 // don't need to worry about register pressure. 337 if (MI->isCall() || TII->isSchedulingBoundary(MI, &MBB, Fn)) { 338 Scheduler.enterRegion(&MBB, I, Current, CurrentCount - Count); 339 Scheduler.setEndIndex(CurrentCount); 340 Scheduler.schedule(); 341 Scheduler.exitRegion(); 342 Scheduler.EmitSchedule(); 343 Current = MI; 344 CurrentCount = Count; 345 Scheduler.Observe(*MI, CurrentCount); 346 } 347 I = MI; 348 if (MI->isBundle()) 349 Count -= MI->getBundleSize(); 350 } 351 assert(Count == 0 && "Instruction count mismatch!"); 352 assert((MBB.begin() == Current || CurrentCount != 0) && 353 "Instruction count mismatch!"); 354 Scheduler.enterRegion(&MBB, MBB.begin(), Current, CurrentCount); 355 Scheduler.setEndIndex(CurrentCount); 356 Scheduler.schedule(); 357 Scheduler.exitRegion(); 358 Scheduler.EmitSchedule(); 359 360 // Clean up register live-range state. 361 Scheduler.finishBlock(); 362 363 // Update register kills 364 Scheduler.fixupKills(&MBB); 365 } 366 367 return true; 368 } 369 370 /// StartBlock - Initialize register live-range state for scheduling in 371 /// this block. 372 /// 373 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) { 374 // Call the superclass. 375 ScheduleDAGInstrs::startBlock(BB); 376 377 // Reset the hazard recognizer and anti-dep breaker. 378 HazardRec->Reset(); 379 if (AntiDepBreak) 380 AntiDepBreak->StartBlock(BB); 381 } 382 383 /// Schedule - Schedule the instruction range using list scheduling. 384 /// 385 void SchedulePostRATDList::schedule() { 386 // Build the scheduling graph. 387 buildSchedGraph(AA); 388 389 if (AntiDepBreak) { 390 unsigned Broken = 391 AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd, 392 EndIndex, DbgValues); 393 394 if (Broken != 0) { 395 // We made changes. Update the dependency graph. 396 // Theoretically we could update the graph in place: 397 // When a live range is changed to use a different register, remove 398 // the def's anti-dependence *and* output-dependence edges due to 399 // that register, and add new anti-dependence and output-dependence 400 // edges based on the next live range of the register. 401 ScheduleDAG::clearDAG(); 402 buildSchedGraph(AA); 403 404 NumFixedAnti += Broken; 405 } 406 } 407 408 DEBUG(dbgs() << "********** List Scheduling **********\n"); 409 DEBUG( 410 for (const SUnit &SU : SUnits) { 411 SU.dumpAll(this); 412 dbgs() << '\n'; 413 } 414 ); 415 416 AvailableQueue.initNodes(SUnits); 417 ListScheduleTopDown(); 418 AvailableQueue.releaseState(); 419 } 420 421 /// Observe - Update liveness information to account for the current 422 /// instruction, which will not be scheduled. 423 /// 424 void SchedulePostRATDList::Observe(MachineInstr &MI, unsigned Count) { 425 if (AntiDepBreak) 426 AntiDepBreak->Observe(MI, Count, EndIndex); 427 } 428 429 /// FinishBlock - Clean up register live-range state. 430 /// 431 void SchedulePostRATDList::finishBlock() { 432 if (AntiDepBreak) 433 AntiDepBreak->FinishBlock(); 434 435 // Call the superclass. 436 ScheduleDAGInstrs::finishBlock(); 437 } 438 439 /// Apply each ScheduleDAGMutation step in order. 440 void SchedulePostRATDList::postprocessDAG() { 441 for (auto &M : Mutations) 442 M->apply(this); 443 } 444 445 //===----------------------------------------------------------------------===// 446 // Top-Down Scheduling 447 //===----------------------------------------------------------------------===// 448 449 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to 450 /// the PendingQueue if the count reaches zero. 451 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) { 452 SUnit *SuccSU = SuccEdge->getSUnit(); 453 454 if (SuccEdge->isWeak()) { 455 --SuccSU->WeakPredsLeft; 456 return; 457 } 458 #ifndef NDEBUG 459 if (SuccSU->NumPredsLeft == 0) { 460 dbgs() << "*** Scheduling failed! ***\n"; 461 SuccSU->dump(this); 462 dbgs() << " has been released too many times!\n"; 463 llvm_unreachable(nullptr); 464 } 465 #endif 466 --SuccSU->NumPredsLeft; 467 468 // Standard scheduler algorithms will recompute the depth of the successor 469 // here as such: 470 // SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency()); 471 // 472 // However, we lazily compute node depth instead. Note that 473 // ScheduleNodeTopDown has already updated the depth of this node which causes 474 // all descendents to be marked dirty. Setting the successor depth explicitly 475 // here would cause depth to be recomputed for all its ancestors. If the 476 // successor is not yet ready (because of a transitively redundant edge) then 477 // this causes depth computation to be quadratic in the size of the DAG. 478 479 // If all the node's predecessors are scheduled, this node is ready 480 // to be scheduled. Ignore the special ExitSU node. 481 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 482 PendingQueue.push_back(SuccSU); 483 } 484 485 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors. 486 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) { 487 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 488 I != E; ++I) { 489 ReleaseSucc(SU, &*I); 490 } 491 } 492 493 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending 494 /// count of its successors. If a successor pending count is zero, add it to 495 /// the Available queue. 496 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { 497 DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); 498 DEBUG(SU->dump(this)); 499 500 Sequence.push_back(SU); 501 assert(CurCycle >= SU->getDepth() && 502 "Node scheduled above its depth!"); 503 SU->setDepthToAtLeast(CurCycle); 504 505 ReleaseSuccessors(SU); 506 SU->isScheduled = true; 507 AvailableQueue.scheduledNode(SU); 508 } 509 510 /// emitNoop - Add a noop to the current instruction sequence. 511 void SchedulePostRATDList::emitNoop(unsigned CurCycle) { 512 DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n'); 513 HazardRec->EmitNoop(); 514 Sequence.push_back(nullptr); // NULL here means noop 515 ++NumNoops; 516 } 517 518 /// ListScheduleTopDown - The main loop of list scheduling for top-down 519 /// schedulers. 520 void SchedulePostRATDList::ListScheduleTopDown() { 521 unsigned CurCycle = 0; 522 523 // We're scheduling top-down but we're visiting the regions in 524 // bottom-up order, so we don't know the hazards at the start of a 525 // region. So assume no hazards (this should usually be ok as most 526 // blocks are a single region). 527 HazardRec->Reset(); 528 529 // Release any successors of the special Entry node. 530 ReleaseSuccessors(&EntrySU); 531 532 // Add all leaves to Available queue. 533 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 534 // It is available if it has no predecessors. 535 if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) { 536 AvailableQueue.push(&SUnits[i]); 537 SUnits[i].isAvailable = true; 538 } 539 } 540 541 // In any cycle where we can't schedule any instructions, we must 542 // stall or emit a noop, depending on the target. 543 bool CycleHasInsts = false; 544 545 // While Available queue is not empty, grab the node with the highest 546 // priority. If it is not ready put it back. Schedule the node. 547 std::vector<SUnit*> NotReady; 548 Sequence.reserve(SUnits.size()); 549 while (!AvailableQueue.empty() || !PendingQueue.empty()) { 550 // Check to see if any of the pending instructions are ready to issue. If 551 // so, add them to the available queue. 552 unsigned MinDepth = ~0u; 553 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { 554 if (PendingQueue[i]->getDepth() <= CurCycle) { 555 AvailableQueue.push(PendingQueue[i]); 556 PendingQueue[i]->isAvailable = true; 557 PendingQueue[i] = PendingQueue.back(); 558 PendingQueue.pop_back(); 559 --i; --e; 560 } else if (PendingQueue[i]->getDepth() < MinDepth) 561 MinDepth = PendingQueue[i]->getDepth(); 562 } 563 564 DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this)); 565 566 SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr; 567 bool HasNoopHazards = false; 568 while (!AvailableQueue.empty()) { 569 SUnit *CurSUnit = AvailableQueue.pop(); 570 571 ScheduleHazardRecognizer::HazardType HT = 572 HazardRec->getHazardType(CurSUnit, 0/*no stalls*/); 573 if (HT == ScheduleHazardRecognizer::NoHazard) { 574 if (HazardRec->ShouldPreferAnother(CurSUnit)) { 575 if (!NotPreferredSUnit) { 576 // If this is the first non-preferred node for this cycle, then 577 // record it and continue searching for a preferred node. If this 578 // is not the first non-preferred node, then treat it as though 579 // there had been a hazard. 580 NotPreferredSUnit = CurSUnit; 581 continue; 582 } 583 } else { 584 FoundSUnit = CurSUnit; 585 break; 586 } 587 } 588 589 // Remember if this is a noop hazard. 590 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; 591 592 NotReady.push_back(CurSUnit); 593 } 594 595 // If we have a non-preferred node, push it back onto the available list. 596 // If we did not find a preferred node, then schedule this first 597 // non-preferred node. 598 if (NotPreferredSUnit) { 599 if (!FoundSUnit) { 600 DEBUG(dbgs() << "*** Will schedule a non-preferred instruction...\n"); 601 FoundSUnit = NotPreferredSUnit; 602 } else { 603 AvailableQueue.push(NotPreferredSUnit); 604 } 605 606 NotPreferredSUnit = nullptr; 607 } 608 609 // Add the nodes that aren't ready back onto the available list. 610 if (!NotReady.empty()) { 611 AvailableQueue.push_all(NotReady); 612 NotReady.clear(); 613 } 614 615 // If we found a node to schedule... 616 if (FoundSUnit) { 617 // If we need to emit noops prior to this instruction, then do so. 618 unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit); 619 for (unsigned i = 0; i != NumPreNoops; ++i) 620 emitNoop(CurCycle); 621 622 // ... schedule the node... 623 ScheduleNodeTopDown(FoundSUnit, CurCycle); 624 HazardRec->EmitInstruction(FoundSUnit); 625 CycleHasInsts = true; 626 if (HazardRec->atIssueLimit()) { 627 DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n'); 628 HazardRec->AdvanceCycle(); 629 ++CurCycle; 630 CycleHasInsts = false; 631 } 632 } else { 633 if (CycleHasInsts) { 634 DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n'); 635 HazardRec->AdvanceCycle(); 636 } else if (!HasNoopHazards) { 637 // Otherwise, we have a pipeline stall, but no other problem, 638 // just advance the current cycle and try again. 639 DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n'); 640 HazardRec->AdvanceCycle(); 641 ++NumStalls; 642 } else { 643 // Otherwise, we have no instructions to issue and we have instructions 644 // that will fault if we don't do this right. This is the case for 645 // processors without pipeline interlocks and other cases. 646 emitNoop(CurCycle); 647 } 648 649 ++CurCycle; 650 CycleHasInsts = false; 651 } 652 } 653 654 #ifndef NDEBUG 655 unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false); 656 unsigned Noops = 0; 657 for (unsigned i = 0, e = Sequence.size(); i != e; ++i) 658 if (!Sequence[i]) 659 ++Noops; 660 assert(Sequence.size() - Noops == ScheduledNodes && 661 "The number of nodes scheduled doesn't match the expected number!"); 662 #endif // NDEBUG 663 } 664 665 // EmitSchedule - Emit the machine code in scheduled order. 666 void SchedulePostRATDList::EmitSchedule() { 667 RegionBegin = RegionEnd; 668 669 // If first instruction was a DBG_VALUE then put it back. 670 if (FirstDbgValue) 671 BB->splice(RegionEnd, BB, FirstDbgValue); 672 673 // Then re-insert them according to the given schedule. 674 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 675 if (SUnit *SU = Sequence[i]) 676 BB->splice(RegionEnd, BB, SU->getInstr()); 677 else 678 // Null SUnit* is a noop. 679 TII->insertNoop(*BB, RegionEnd); 680 681 // Update the Begin iterator, as the first instruction in the block 682 // may have been scheduled later. 683 if (i == 0) 684 RegionBegin = std::prev(RegionEnd); 685 } 686 687 // Reinsert any remaining debug_values. 688 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 689 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 690 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 691 MachineInstr *DbgValue = P.first; 692 MachineBasicBlock::iterator OrigPrivMI = P.second; 693 BB->splice(++OrigPrivMI, BB, DbgValue); 694 } 695 DbgValues.clear(); 696 FirstDbgValue = nullptr; 697 } 698