1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements a top-down list scheduler, using standard algorithms. 11 // The basic approach uses a priority queue of available nodes to schedule. 12 // One at a time, nodes are taken from the priority queue (thus in priority 13 // order), checked for legality to schedule, and emitted if legal. 14 // 15 // Nodes may not be legal to schedule either due to structural hazards (e.g. 16 // pipeline or resource constraints) or because an input to the instruction has 17 // not completed execution. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/CodeGen/Passes.h" 22 #include "AggressiveAntiDepBreaker.h" 23 #include "AntiDepBreaker.h" 24 #include "CriticalAntiDepBreaker.h" 25 #include "llvm/ADT/BitVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/CodeGen/LatencyPriorityQueue.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/RegisterClassInfo.h" 35 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 36 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 37 #include "llvm/CodeGen/SchedulerRegistry.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Target/TargetInstrInfo.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetRegisterInfo.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 using namespace llvm; 47 48 #define DEBUG_TYPE "post-RA-sched" 49 50 STATISTIC(NumNoops, "Number of noops inserted"); 51 STATISTIC(NumStalls, "Number of pipeline stalls"); 52 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies"); 53 54 // Post-RA scheduling is enabled with 55 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to 56 // override the target. 57 static cl::opt<bool> 58 EnablePostRAScheduler("post-RA-scheduler", 59 cl::desc("Enable scheduling after register allocation"), 60 cl::init(false), cl::Hidden); 61 static cl::opt<std::string> 62 EnableAntiDepBreaking("break-anti-dependencies", 63 cl::desc("Break post-RA scheduling anti-dependencies: " 64 "\"critical\", \"all\", or \"none\""), 65 cl::init("none"), cl::Hidden); 66 67 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod 68 static cl::opt<int> 69 DebugDiv("postra-sched-debugdiv", 70 cl::desc("Debug control MBBs that are scheduled"), 71 cl::init(0), cl::Hidden); 72 static cl::opt<int> 73 DebugMod("postra-sched-debugmod", 74 cl::desc("Debug control MBBs that are scheduled"), 75 cl::init(0), cl::Hidden); 76 77 AntiDepBreaker::~AntiDepBreaker() { } 78 79 namespace { 80 class PostRAScheduler : public MachineFunctionPass { 81 const TargetInstrInfo *TII; 82 RegisterClassInfo RegClassInfo; 83 84 public: 85 static char ID; 86 PostRAScheduler() : MachineFunctionPass(ID) {} 87 88 void getAnalysisUsage(AnalysisUsage &AU) const override { 89 AU.setPreservesCFG(); 90 AU.addRequired<AAResultsWrapperPass>(); 91 AU.addRequired<TargetPassConfig>(); 92 AU.addRequired<MachineDominatorTree>(); 93 AU.addPreserved<MachineDominatorTree>(); 94 AU.addRequired<MachineLoopInfo>(); 95 AU.addPreserved<MachineLoopInfo>(); 96 MachineFunctionPass::getAnalysisUsage(AU); 97 } 98 99 bool runOnMachineFunction(MachineFunction &Fn) override; 100 101 bool enablePostRAScheduler( 102 const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel, 103 TargetSubtargetInfo::AntiDepBreakMode &Mode, 104 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const; 105 }; 106 char PostRAScheduler::ID = 0; 107 108 class SchedulePostRATDList : public ScheduleDAGInstrs { 109 /// AvailableQueue - The priority queue to use for the available SUnits. 110 /// 111 LatencyPriorityQueue AvailableQueue; 112 113 /// PendingQueue - This contains all of the instructions whose operands have 114 /// been issued, but their results are not ready yet (due to the latency of 115 /// the operation). Once the operands becomes available, the instruction is 116 /// added to the AvailableQueue. 117 std::vector<SUnit*> PendingQueue; 118 119 /// HazardRec - The hazard recognizer to use. 120 ScheduleHazardRecognizer *HazardRec; 121 122 /// AntiDepBreak - Anti-dependence breaking object, or NULL if none 123 AntiDepBreaker *AntiDepBreak; 124 125 /// AA - AliasAnalysis for making memory reference queries. 126 AliasAnalysis *AA; 127 128 /// The schedule. Null SUnit*'s represent noop instructions. 129 std::vector<SUnit*> Sequence; 130 131 /// The index in BB of RegionEnd. 132 /// 133 /// This is the instruction number from the top of the current block, not 134 /// the SlotIndex. It is only used by the AntiDepBreaker. 135 unsigned EndIndex; 136 137 public: 138 SchedulePostRATDList( 139 MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA, 140 const RegisterClassInfo &, 141 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, 142 SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs); 143 144 ~SchedulePostRATDList() override; 145 146 /// startBlock - Initialize register live-range state for scheduling in 147 /// this block. 148 /// 149 void startBlock(MachineBasicBlock *BB) override; 150 151 // Set the index of RegionEnd within the current BB. 152 void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; } 153 154 /// Initialize the scheduler state for the next scheduling region. 155 void enterRegion(MachineBasicBlock *bb, 156 MachineBasicBlock::iterator begin, 157 MachineBasicBlock::iterator end, 158 unsigned regioninstrs) override; 159 160 /// Notify that the scheduler has finished scheduling the current region. 161 void exitRegion() override; 162 163 /// Schedule - Schedule the instruction range using list scheduling. 164 /// 165 void schedule() override; 166 167 void EmitSchedule(); 168 169 /// Observe - Update liveness information to account for the current 170 /// instruction, which will not be scheduled. 171 /// 172 void Observe(MachineInstr *MI, unsigned Count); 173 174 /// finishBlock - Clean up register live-range state. 175 /// 176 void finishBlock() override; 177 178 private: 179 void ReleaseSucc(SUnit *SU, SDep *SuccEdge); 180 void ReleaseSuccessors(SUnit *SU); 181 void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); 182 void ListScheduleTopDown(); 183 184 void dumpSchedule() const; 185 void emitNoop(unsigned CurCycle); 186 }; 187 } 188 189 char &llvm::PostRASchedulerID = PostRAScheduler::ID; 190 191 INITIALIZE_PASS(PostRAScheduler, "post-RA-sched", 192 "Post RA top-down list latency scheduler", false, false) 193 194 SchedulePostRATDList::SchedulePostRATDList( 195 MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA, 196 const RegisterClassInfo &RCI, 197 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, 198 SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs) 199 : ScheduleDAGInstrs(MF, &MLI, /*IsPostRA=*/true), AA(AA), EndIndex(0) { 200 201 const InstrItineraryData *InstrItins = 202 MF.getSubtarget().getInstrItineraryData(); 203 HazardRec = 204 MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer( 205 InstrItins, this); 206 207 assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE || 208 MRI.tracksLiveness()) && 209 "Live-ins must be accurate for anti-dependency breaking"); 210 AntiDepBreak = 211 ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ? 212 (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) : 213 ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ? 214 (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : nullptr)); 215 } 216 217 SchedulePostRATDList::~SchedulePostRATDList() { 218 delete HazardRec; 219 delete AntiDepBreak; 220 } 221 222 /// Initialize state associated with the next scheduling region. 223 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb, 224 MachineBasicBlock::iterator begin, 225 MachineBasicBlock::iterator end, 226 unsigned regioninstrs) { 227 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 228 Sequence.clear(); 229 } 230 231 /// Print the schedule before exiting the region. 232 void SchedulePostRATDList::exitRegion() { 233 DEBUG({ 234 dbgs() << "*** Final schedule ***\n"; 235 dumpSchedule(); 236 dbgs() << '\n'; 237 }); 238 ScheduleDAGInstrs::exitRegion(); 239 } 240 241 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 242 /// dumpSchedule - dump the scheduled Sequence. 243 void SchedulePostRATDList::dumpSchedule() const { 244 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 245 if (SUnit *SU = Sequence[i]) 246 SU->dump(this); 247 else 248 dbgs() << "**** NOOP ****\n"; 249 } 250 } 251 #endif 252 253 bool PostRAScheduler::enablePostRAScheduler( 254 const TargetSubtargetInfo &ST, 255 CodeGenOpt::Level OptLevel, 256 TargetSubtargetInfo::AntiDepBreakMode &Mode, 257 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const { 258 Mode = ST.getAntiDepBreakMode(); 259 ST.getCriticalPathRCs(CriticalPathRCs); 260 return ST.enablePostRAScheduler() && 261 OptLevel >= ST.getOptLevelToEnablePostRAScheduler(); 262 } 263 264 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) { 265 if (skipOptnoneFunction(*Fn.getFunction())) 266 return false; 267 268 TII = Fn.getSubtarget().getInstrInfo(); 269 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 270 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 271 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 272 273 RegClassInfo.runOnMachineFunction(Fn); 274 275 // Check for explicit enable/disable of post-ra scheduling. 276 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode = 277 TargetSubtargetInfo::ANTIDEP_NONE; 278 SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs; 279 if (EnablePostRAScheduler.getPosition() > 0) { 280 if (!EnablePostRAScheduler) 281 return false; 282 } else { 283 // Check that post-RA scheduling is enabled for this target. 284 // This may upgrade the AntiDepMode. 285 if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(), 286 AntiDepMode, CriticalPathRCs)) 287 return false; 288 } 289 290 // Check for antidep breaking override... 291 if (EnableAntiDepBreaking.getPosition() > 0) { 292 AntiDepMode = (EnableAntiDepBreaking == "all") 293 ? TargetSubtargetInfo::ANTIDEP_ALL 294 : ((EnableAntiDepBreaking == "critical") 295 ? TargetSubtargetInfo::ANTIDEP_CRITICAL 296 : TargetSubtargetInfo::ANTIDEP_NONE); 297 } 298 299 DEBUG(dbgs() << "PostRAScheduler\n"); 300 301 SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode, 302 CriticalPathRCs); 303 304 // Loop over all of the basic blocks 305 for (auto &MBB : Fn) { 306 #ifndef NDEBUG 307 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod 308 if (DebugDiv > 0) { 309 static int bbcnt = 0; 310 if (bbcnt++ % DebugDiv != DebugMod) 311 continue; 312 dbgs() << "*** DEBUG scheduling " << Fn.getName() 313 << ":BB#" << MBB.getNumber() << " ***\n"; 314 } 315 #endif 316 317 // Initialize register live-range state for scheduling in this block. 318 Scheduler.startBlock(&MBB); 319 320 // Schedule each sequence of instructions not interrupted by a label 321 // or anything else that effectively needs to shut down scheduling. 322 MachineBasicBlock::iterator Current = MBB.end(); 323 unsigned Count = MBB.size(), CurrentCount = Count; 324 for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) { 325 MachineInstr *MI = std::prev(I); 326 --Count; 327 // Calls are not scheduling boundaries before register allocation, but 328 // post-ra we don't gain anything by scheduling across calls since we 329 // don't need to worry about register pressure. 330 if (MI->isCall() || TII->isSchedulingBoundary(MI, &MBB, Fn)) { 331 Scheduler.enterRegion(&MBB, I, Current, CurrentCount - Count); 332 Scheduler.setEndIndex(CurrentCount); 333 Scheduler.schedule(); 334 Scheduler.exitRegion(); 335 Scheduler.EmitSchedule(); 336 Current = MI; 337 CurrentCount = Count; 338 Scheduler.Observe(MI, CurrentCount); 339 } 340 I = MI; 341 if (MI->isBundle()) 342 Count -= MI->getBundleSize(); 343 } 344 assert(Count == 0 && "Instruction count mismatch!"); 345 assert((MBB.begin() == Current || CurrentCount != 0) && 346 "Instruction count mismatch!"); 347 Scheduler.enterRegion(&MBB, MBB.begin(), Current, CurrentCount); 348 Scheduler.setEndIndex(CurrentCount); 349 Scheduler.schedule(); 350 Scheduler.exitRegion(); 351 Scheduler.EmitSchedule(); 352 353 // Clean up register live-range state. 354 Scheduler.finishBlock(); 355 356 // Update register kills 357 Scheduler.fixupKills(&MBB); 358 } 359 360 return true; 361 } 362 363 /// StartBlock - Initialize register live-range state for scheduling in 364 /// this block. 365 /// 366 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) { 367 // Call the superclass. 368 ScheduleDAGInstrs::startBlock(BB); 369 370 // Reset the hazard recognizer and anti-dep breaker. 371 HazardRec->Reset(); 372 if (AntiDepBreak) 373 AntiDepBreak->StartBlock(BB); 374 } 375 376 /// Schedule - Schedule the instruction range using list scheduling. 377 /// 378 void SchedulePostRATDList::schedule() { 379 // Build the scheduling graph. 380 buildSchedGraph(AA); 381 382 if (AntiDepBreak) { 383 unsigned Broken = 384 AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd, 385 EndIndex, DbgValues); 386 387 if (Broken != 0) { 388 // We made changes. Update the dependency graph. 389 // Theoretically we could update the graph in place: 390 // When a live range is changed to use a different register, remove 391 // the def's anti-dependence *and* output-dependence edges due to 392 // that register, and add new anti-dependence and output-dependence 393 // edges based on the next live range of the register. 394 ScheduleDAG::clearDAG(); 395 buildSchedGraph(AA); 396 397 NumFixedAnti += Broken; 398 } 399 } 400 401 DEBUG(dbgs() << "********** List Scheduling **********\n"); 402 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 403 SUnits[su].dumpAll(this)); 404 405 AvailableQueue.initNodes(SUnits); 406 ListScheduleTopDown(); 407 AvailableQueue.releaseState(); 408 } 409 410 /// Observe - Update liveness information to account for the current 411 /// instruction, which will not be scheduled. 412 /// 413 void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) { 414 if (AntiDepBreak) 415 AntiDepBreak->Observe(MI, Count, EndIndex); 416 } 417 418 /// FinishBlock - Clean up register live-range state. 419 /// 420 void SchedulePostRATDList::finishBlock() { 421 if (AntiDepBreak) 422 AntiDepBreak->FinishBlock(); 423 424 // Call the superclass. 425 ScheduleDAGInstrs::finishBlock(); 426 } 427 428 //===----------------------------------------------------------------------===// 429 // Top-Down Scheduling 430 //===----------------------------------------------------------------------===// 431 432 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to 433 /// the PendingQueue if the count reaches zero. 434 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) { 435 SUnit *SuccSU = SuccEdge->getSUnit(); 436 437 if (SuccEdge->isWeak()) { 438 --SuccSU->WeakPredsLeft; 439 return; 440 } 441 #ifndef NDEBUG 442 if (SuccSU->NumPredsLeft == 0) { 443 dbgs() << "*** Scheduling failed! ***\n"; 444 SuccSU->dump(this); 445 dbgs() << " has been released too many times!\n"; 446 llvm_unreachable(nullptr); 447 } 448 #endif 449 --SuccSU->NumPredsLeft; 450 451 // Standard scheduler algorithms will recompute the depth of the successor 452 // here as such: 453 // SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency()); 454 // 455 // However, we lazily compute node depth instead. Note that 456 // ScheduleNodeTopDown has already updated the depth of this node which causes 457 // all descendents to be marked dirty. Setting the successor depth explicitly 458 // here would cause depth to be recomputed for all its ancestors. If the 459 // successor is not yet ready (because of a transitively redundant edge) then 460 // this causes depth computation to be quadratic in the size of the DAG. 461 462 // If all the node's predecessors are scheduled, this node is ready 463 // to be scheduled. Ignore the special ExitSU node. 464 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 465 PendingQueue.push_back(SuccSU); 466 } 467 468 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors. 469 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) { 470 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 471 I != E; ++I) { 472 ReleaseSucc(SU, &*I); 473 } 474 } 475 476 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending 477 /// count of its successors. If a successor pending count is zero, add it to 478 /// the Available queue. 479 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { 480 DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); 481 DEBUG(SU->dump(this)); 482 483 Sequence.push_back(SU); 484 assert(CurCycle >= SU->getDepth() && 485 "Node scheduled above its depth!"); 486 SU->setDepthToAtLeast(CurCycle); 487 488 ReleaseSuccessors(SU); 489 SU->isScheduled = true; 490 AvailableQueue.scheduledNode(SU); 491 } 492 493 /// emitNoop - Add a noop to the current instruction sequence. 494 void SchedulePostRATDList::emitNoop(unsigned CurCycle) { 495 DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n'); 496 HazardRec->EmitNoop(); 497 Sequence.push_back(nullptr); // NULL here means noop 498 ++NumNoops; 499 } 500 501 /// ListScheduleTopDown - The main loop of list scheduling for top-down 502 /// schedulers. 503 void SchedulePostRATDList::ListScheduleTopDown() { 504 unsigned CurCycle = 0; 505 506 // We're scheduling top-down but we're visiting the regions in 507 // bottom-up order, so we don't know the hazards at the start of a 508 // region. So assume no hazards (this should usually be ok as most 509 // blocks are a single region). 510 HazardRec->Reset(); 511 512 // Release any successors of the special Entry node. 513 ReleaseSuccessors(&EntrySU); 514 515 // Add all leaves to Available queue. 516 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 517 // It is available if it has no predecessors. 518 if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) { 519 AvailableQueue.push(&SUnits[i]); 520 SUnits[i].isAvailable = true; 521 } 522 } 523 524 // In any cycle where we can't schedule any instructions, we must 525 // stall or emit a noop, depending on the target. 526 bool CycleHasInsts = false; 527 528 // While Available queue is not empty, grab the node with the highest 529 // priority. If it is not ready put it back. Schedule the node. 530 std::vector<SUnit*> NotReady; 531 Sequence.reserve(SUnits.size()); 532 while (!AvailableQueue.empty() || !PendingQueue.empty()) { 533 // Check to see if any of the pending instructions are ready to issue. If 534 // so, add them to the available queue. 535 unsigned MinDepth = ~0u; 536 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { 537 if (PendingQueue[i]->getDepth() <= CurCycle) { 538 AvailableQueue.push(PendingQueue[i]); 539 PendingQueue[i]->isAvailable = true; 540 PendingQueue[i] = PendingQueue.back(); 541 PendingQueue.pop_back(); 542 --i; --e; 543 } else if (PendingQueue[i]->getDepth() < MinDepth) 544 MinDepth = PendingQueue[i]->getDepth(); 545 } 546 547 DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this)); 548 549 SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr; 550 bool HasNoopHazards = false; 551 while (!AvailableQueue.empty()) { 552 SUnit *CurSUnit = AvailableQueue.pop(); 553 554 ScheduleHazardRecognizer::HazardType HT = 555 HazardRec->getHazardType(CurSUnit, 0/*no stalls*/); 556 if (HT == ScheduleHazardRecognizer::NoHazard) { 557 if (HazardRec->ShouldPreferAnother(CurSUnit)) { 558 if (!NotPreferredSUnit) { 559 // If this is the first non-preferred node for this cycle, then 560 // record it and continue searching for a preferred node. If this 561 // is not the first non-preferred node, then treat it as though 562 // there had been a hazard. 563 NotPreferredSUnit = CurSUnit; 564 continue; 565 } 566 } else { 567 FoundSUnit = CurSUnit; 568 break; 569 } 570 } 571 572 // Remember if this is a noop hazard. 573 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; 574 575 NotReady.push_back(CurSUnit); 576 } 577 578 // If we have a non-preferred node, push it back onto the available list. 579 // If we did not find a preferred node, then schedule this first 580 // non-preferred node. 581 if (NotPreferredSUnit) { 582 if (!FoundSUnit) { 583 DEBUG(dbgs() << "*** Will schedule a non-preferred instruction...\n"); 584 FoundSUnit = NotPreferredSUnit; 585 } else { 586 AvailableQueue.push(NotPreferredSUnit); 587 } 588 589 NotPreferredSUnit = nullptr; 590 } 591 592 // Add the nodes that aren't ready back onto the available list. 593 if (!NotReady.empty()) { 594 AvailableQueue.push_all(NotReady); 595 NotReady.clear(); 596 } 597 598 // If we found a node to schedule... 599 if (FoundSUnit) { 600 // If we need to emit noops prior to this instruction, then do so. 601 unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit); 602 for (unsigned i = 0; i != NumPreNoops; ++i) 603 emitNoop(CurCycle); 604 605 // ... schedule the node... 606 ScheduleNodeTopDown(FoundSUnit, CurCycle); 607 HazardRec->EmitInstruction(FoundSUnit); 608 CycleHasInsts = true; 609 if (HazardRec->atIssueLimit()) { 610 DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n'); 611 HazardRec->AdvanceCycle(); 612 ++CurCycle; 613 CycleHasInsts = false; 614 } 615 } else { 616 if (CycleHasInsts) { 617 DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n'); 618 HazardRec->AdvanceCycle(); 619 } else if (!HasNoopHazards) { 620 // Otherwise, we have a pipeline stall, but no other problem, 621 // just advance the current cycle and try again. 622 DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n'); 623 HazardRec->AdvanceCycle(); 624 ++NumStalls; 625 } else { 626 // Otherwise, we have no instructions to issue and we have instructions 627 // that will fault if we don't do this right. This is the case for 628 // processors without pipeline interlocks and other cases. 629 emitNoop(CurCycle); 630 } 631 632 ++CurCycle; 633 CycleHasInsts = false; 634 } 635 } 636 637 #ifndef NDEBUG 638 unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false); 639 unsigned Noops = 0; 640 for (unsigned i = 0, e = Sequence.size(); i != e; ++i) 641 if (!Sequence[i]) 642 ++Noops; 643 assert(Sequence.size() - Noops == ScheduledNodes && 644 "The number of nodes scheduled doesn't match the expected number!"); 645 #endif // NDEBUG 646 } 647 648 // EmitSchedule - Emit the machine code in scheduled order. 649 void SchedulePostRATDList::EmitSchedule() { 650 RegionBegin = RegionEnd; 651 652 // If first instruction was a DBG_VALUE then put it back. 653 if (FirstDbgValue) 654 BB->splice(RegionEnd, BB, FirstDbgValue); 655 656 // Then re-insert them according to the given schedule. 657 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 658 if (SUnit *SU = Sequence[i]) 659 BB->splice(RegionEnd, BB, SU->getInstr()); 660 else 661 // Null SUnit* is a noop. 662 TII->insertNoop(*BB, RegionEnd); 663 664 // Update the Begin iterator, as the first instruction in the block 665 // may have been scheduled later. 666 if (i == 0) 667 RegionBegin = std::prev(RegionEnd); 668 } 669 670 // Reinsert any remaining debug_values. 671 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 672 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 673 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 674 MachineInstr *DbgValue = P.first; 675 MachineBasicBlock::iterator OrigPrivMI = P.second; 676 BB->splice(++OrigPrivMI, BB, DbgValue); 677 } 678 DbgValues.clear(); 679 FirstDbgValue = nullptr; 680 } 681