1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements a top-down list scheduler, using standard algorithms. 11 // The basic approach uses a priority queue of available nodes to schedule. 12 // One at a time, nodes are taken from the priority queue (thus in priority 13 // order), checked for legality to schedule, and emitted if legal. 14 // 15 // Nodes may not be legal to schedule either due to structural hazards (e.g. 16 // pipeline or resource constraints) or because an input to the instruction has 17 // not completed execution. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #define DEBUG_TYPE "post-RA-sched" 22 #include "AntiDepBreaker.h" 23 #include "AggressiveAntiDepBreaker.h" 24 #include "CriticalAntiDepBreaker.h" 25 #include "RegisterClassInfo.h" 26 #include "ScheduleDAGInstrs.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/CodeGen/LatencyPriorityQueue.h" 29 #include "llvm/CodeGen/SchedulerRegistry.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 36 #include "llvm/Analysis/AliasAnalysis.h" 37 #include "llvm/Target/TargetLowering.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 #include "llvm/Target/TargetRegisterInfo.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/ADT/BitVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include <set> 49 using namespace llvm; 50 51 STATISTIC(NumNoops, "Number of noops inserted"); 52 STATISTIC(NumStalls, "Number of pipeline stalls"); 53 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies"); 54 55 // Post-RA scheduling is enabled with 56 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to 57 // override the target. 58 static cl::opt<bool> 59 EnablePostRAScheduler("post-RA-scheduler", 60 cl::desc("Enable scheduling after register allocation"), 61 cl::init(false), cl::Hidden); 62 static cl::opt<std::string> 63 EnableAntiDepBreaking("break-anti-dependencies", 64 cl::desc("Break post-RA scheduling anti-dependencies: " 65 "\"critical\", \"all\", or \"none\""), 66 cl::init("none"), cl::Hidden); 67 68 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod 69 static cl::opt<int> 70 DebugDiv("postra-sched-debugdiv", 71 cl::desc("Debug control MBBs that are scheduled"), 72 cl::init(0), cl::Hidden); 73 static cl::opt<int> 74 DebugMod("postra-sched-debugmod", 75 cl::desc("Debug control MBBs that are scheduled"), 76 cl::init(0), cl::Hidden); 77 78 AntiDepBreaker::~AntiDepBreaker() { } 79 80 namespace { 81 class PostRAScheduler : public MachineFunctionPass { 82 AliasAnalysis *AA; 83 const TargetInstrInfo *TII; 84 RegisterClassInfo RegClassInfo; 85 CodeGenOpt::Level OptLevel; 86 87 public: 88 static char ID; 89 PostRAScheduler(CodeGenOpt::Level ol) : 90 MachineFunctionPass(ID), OptLevel(ol) {} 91 92 void getAnalysisUsage(AnalysisUsage &AU) const { 93 AU.setPreservesCFG(); 94 AU.addRequired<AliasAnalysis>(); 95 AU.addRequired<MachineDominatorTree>(); 96 AU.addPreserved<MachineDominatorTree>(); 97 AU.addRequired<MachineLoopInfo>(); 98 AU.addPreserved<MachineLoopInfo>(); 99 MachineFunctionPass::getAnalysisUsage(AU); 100 } 101 102 const char *getPassName() const { 103 return "Post RA top-down list latency scheduler"; 104 } 105 106 bool runOnMachineFunction(MachineFunction &Fn); 107 }; 108 char PostRAScheduler::ID = 0; 109 110 class SchedulePostRATDList : public ScheduleDAGInstrs { 111 /// AvailableQueue - The priority queue to use for the available SUnits. 112 /// 113 LatencyPriorityQueue AvailableQueue; 114 115 /// PendingQueue - This contains all of the instructions whose operands have 116 /// been issued, but their results are not ready yet (due to the latency of 117 /// the operation). Once the operands becomes available, the instruction is 118 /// added to the AvailableQueue. 119 std::vector<SUnit*> PendingQueue; 120 121 /// Topo - A topological ordering for SUnits. 122 ScheduleDAGTopologicalSort Topo; 123 124 /// HazardRec - The hazard recognizer to use. 125 ScheduleHazardRecognizer *HazardRec; 126 127 /// AntiDepBreak - Anti-dependence breaking object, or NULL if none 128 AntiDepBreaker *AntiDepBreak; 129 130 /// AA - AliasAnalysis for making memory reference queries. 131 AliasAnalysis *AA; 132 133 /// KillIndices - The index of the most recent kill (proceding bottom-up), 134 /// or ~0u if the register is not live. 135 std::vector<unsigned> KillIndices; 136 137 public: 138 SchedulePostRATDList( 139 MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT, 140 AliasAnalysis *AA, const RegisterClassInfo&, 141 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, 142 SmallVectorImpl<TargetRegisterClass*> &CriticalPathRCs); 143 144 ~SchedulePostRATDList(); 145 146 /// StartBlock - Initialize register live-range state for scheduling in 147 /// this block. 148 /// 149 void StartBlock(MachineBasicBlock *BB); 150 151 /// Schedule - Schedule the instruction range using list scheduling. 152 /// 153 void Schedule(); 154 155 /// Observe - Update liveness information to account for the current 156 /// instruction, which will not be scheduled. 157 /// 158 void Observe(MachineInstr *MI, unsigned Count); 159 160 /// FinishBlock - Clean up register live-range state. 161 /// 162 void FinishBlock(); 163 164 /// FixupKills - Fix register kill flags that have been made 165 /// invalid due to scheduling 166 /// 167 void FixupKills(MachineBasicBlock *MBB); 168 169 private: 170 void ReleaseSucc(SUnit *SU, SDep *SuccEdge); 171 void ReleaseSuccessors(SUnit *SU); 172 void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); 173 void ListScheduleTopDown(); 174 void StartBlockForKills(MachineBasicBlock *BB); 175 176 // ToggleKillFlag - Toggle a register operand kill flag. Other 177 // adjustments may be made to the instruction if necessary. Return 178 // true if the operand has been deleted, false if not. 179 bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO); 180 }; 181 } 182 183 SchedulePostRATDList::SchedulePostRATDList( 184 MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT, 185 AliasAnalysis *AA, const RegisterClassInfo &RCI, 186 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, 187 SmallVectorImpl<TargetRegisterClass*> &CriticalPathRCs) 188 : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits), AA(AA), 189 KillIndices(TRI->getNumRegs()) 190 { 191 const TargetMachine &TM = MF.getTarget(); 192 const InstrItineraryData *InstrItins = TM.getInstrItineraryData(); 193 HazardRec = 194 TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this); 195 AntiDepBreak = 196 ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ? 197 (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) : 198 ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ? 199 (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL)); 200 } 201 202 SchedulePostRATDList::~SchedulePostRATDList() { 203 delete HazardRec; 204 delete AntiDepBreak; 205 } 206 207 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) { 208 TII = Fn.getTarget().getInstrInfo(); 209 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 210 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 211 AliasAnalysis *AA = &getAnalysis<AliasAnalysis>(); 212 RegClassInfo.runOnMachineFunction(Fn); 213 214 // Check for explicit enable/disable of post-ra scheduling. 215 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode = 216 TargetSubtargetInfo::ANTIDEP_NONE; 217 SmallVector<TargetRegisterClass*, 4> CriticalPathRCs; 218 if (EnablePostRAScheduler.getPosition() > 0) { 219 if (!EnablePostRAScheduler) 220 return false; 221 } else { 222 // Check that post-RA scheduling is enabled for this target. 223 // This may upgrade the AntiDepMode. 224 const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>(); 225 if (!ST.enablePostRAScheduler(OptLevel, AntiDepMode, CriticalPathRCs)) 226 return false; 227 } 228 229 // Check for antidep breaking override... 230 if (EnableAntiDepBreaking.getPosition() > 0) { 231 AntiDepMode = (EnableAntiDepBreaking == "all") 232 ? TargetSubtargetInfo::ANTIDEP_ALL 233 : ((EnableAntiDepBreaking == "critical") 234 ? TargetSubtargetInfo::ANTIDEP_CRITICAL 235 : TargetSubtargetInfo::ANTIDEP_NONE); 236 } 237 238 DEBUG(dbgs() << "PostRAScheduler\n"); 239 240 SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode, 241 CriticalPathRCs); 242 243 // Loop over all of the basic blocks 244 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); 245 MBB != MBBe; ++MBB) { 246 #ifndef NDEBUG 247 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod 248 if (DebugDiv > 0) { 249 static int bbcnt = 0; 250 if (bbcnt++ % DebugDiv != DebugMod) 251 continue; 252 dbgs() << "*** DEBUG scheduling " << Fn.getFunction()->getName() 253 << ":BB#" << MBB->getNumber() << " ***\n"; 254 } 255 #endif 256 257 // Initialize register live-range state for scheduling in this block. 258 Scheduler.StartBlock(MBB); 259 260 // Schedule each sequence of instructions not interrupted by a label 261 // or anything else that effectively needs to shut down scheduling. 262 MachineBasicBlock::iterator Current = MBB->end(); 263 unsigned Count = MBB->size(), CurrentCount = Count; 264 for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) { 265 MachineInstr *MI = llvm::prior(I); 266 if (TII->isSchedulingBoundary(MI, MBB, Fn)) { 267 Scheduler.Run(MBB, I, Current, CurrentCount); 268 Scheduler.EmitSchedule(); 269 Current = MI; 270 CurrentCount = Count - 1; 271 Scheduler.Observe(MI, CurrentCount); 272 } 273 I = MI; 274 --Count; 275 if (MI->isBundle()) 276 Count -= MI->getBundleSize(); 277 } 278 assert(Count == 0 && "Instruction count mismatch!"); 279 assert((MBB->begin() == Current || CurrentCount != 0) && 280 "Instruction count mismatch!"); 281 Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount); 282 Scheduler.EmitSchedule(); 283 284 // Clean up register live-range state. 285 Scheduler.FinishBlock(); 286 287 // Update register kills 288 Scheduler.FixupKills(MBB); 289 } 290 291 return true; 292 } 293 294 /// StartBlock - Initialize register live-range state for scheduling in 295 /// this block. 296 /// 297 void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) { 298 // Call the superclass. 299 ScheduleDAGInstrs::StartBlock(BB); 300 301 // Reset the hazard recognizer and anti-dep breaker. 302 HazardRec->Reset(); 303 if (AntiDepBreak != NULL) 304 AntiDepBreak->StartBlock(BB); 305 } 306 307 /// Schedule - Schedule the instruction range using list scheduling. 308 /// 309 void SchedulePostRATDList::Schedule() { 310 // Build the scheduling graph. 311 BuildSchedGraph(AA); 312 313 if (AntiDepBreak != NULL) { 314 unsigned Broken = 315 AntiDepBreak->BreakAntiDependencies(SUnits, Begin, InsertPos, 316 InsertPosIndex, DbgValues); 317 318 if (Broken != 0) { 319 // We made changes. Update the dependency graph. 320 // Theoretically we could update the graph in place: 321 // When a live range is changed to use a different register, remove 322 // the def's anti-dependence *and* output-dependence edges due to 323 // that register, and add new anti-dependence and output-dependence 324 // edges based on the next live range of the register. 325 SUnits.clear(); 326 Sequence.clear(); 327 EntrySU = SUnit(); 328 ExitSU = SUnit(); 329 BuildSchedGraph(AA); 330 331 NumFixedAnti += Broken; 332 } 333 } 334 335 DEBUG(dbgs() << "********** List Scheduling **********\n"); 336 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 337 SUnits[su].dumpAll(this)); 338 339 AvailableQueue.initNodes(SUnits); 340 ListScheduleTopDown(); 341 AvailableQueue.releaseState(); 342 } 343 344 /// Observe - Update liveness information to account for the current 345 /// instruction, which will not be scheduled. 346 /// 347 void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) { 348 if (AntiDepBreak != NULL) 349 AntiDepBreak->Observe(MI, Count, InsertPosIndex); 350 } 351 352 /// FinishBlock - Clean up register live-range state. 353 /// 354 void SchedulePostRATDList::FinishBlock() { 355 if (AntiDepBreak != NULL) 356 AntiDepBreak->FinishBlock(); 357 358 // Call the superclass. 359 ScheduleDAGInstrs::FinishBlock(); 360 } 361 362 /// StartBlockForKills - Initialize register live-range state for updating kills 363 /// 364 void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) { 365 // Initialize the indices to indicate that no registers are live. 366 for (unsigned i = 0; i < TRI->getNumRegs(); ++i) 367 KillIndices[i] = ~0u; 368 369 // Determine the live-out physregs for this block. 370 if (!BB->empty() && BB->back().isReturn()) { 371 // In a return block, examine the function live-out regs. 372 for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(), 373 E = MRI.liveout_end(); I != E; ++I) { 374 unsigned Reg = *I; 375 KillIndices[Reg] = BB->size(); 376 // Repeat, for all subregs. 377 for (const unsigned *Subreg = TRI->getSubRegisters(Reg); 378 *Subreg; ++Subreg) { 379 KillIndices[*Subreg] = BB->size(); 380 } 381 } 382 } 383 else { 384 // In a non-return block, examine the live-in regs of all successors. 385 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 386 SE = BB->succ_end(); SI != SE; ++SI) { 387 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 388 E = (*SI)->livein_end(); I != E; ++I) { 389 unsigned Reg = *I; 390 KillIndices[Reg] = BB->size(); 391 // Repeat, for all subregs. 392 for (const unsigned *Subreg = TRI->getSubRegisters(Reg); 393 *Subreg; ++Subreg) { 394 KillIndices[*Subreg] = BB->size(); 395 } 396 } 397 } 398 } 399 } 400 401 bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI, 402 MachineOperand &MO) { 403 // Setting kill flag... 404 if (!MO.isKill()) { 405 MO.setIsKill(true); 406 return false; 407 } 408 409 // If MO itself is live, clear the kill flag... 410 if (KillIndices[MO.getReg()] != ~0u) { 411 MO.setIsKill(false); 412 return false; 413 } 414 415 // If any subreg of MO is live, then create an imp-def for that 416 // subreg and keep MO marked as killed. 417 MO.setIsKill(false); 418 bool AllDead = true; 419 const unsigned SuperReg = MO.getReg(); 420 for (const unsigned *Subreg = TRI->getSubRegisters(SuperReg); 421 *Subreg; ++Subreg) { 422 if (KillIndices[*Subreg] != ~0u) { 423 MI->addOperand(MachineOperand::CreateReg(*Subreg, 424 true /*IsDef*/, 425 true /*IsImp*/, 426 false /*IsKill*/, 427 false /*IsDead*/)); 428 AllDead = false; 429 } 430 } 431 432 if(AllDead) 433 MO.setIsKill(true); 434 return false; 435 } 436 437 /// FixupKills - Fix the register kill flags, they may have been made 438 /// incorrect by instruction reordering. 439 /// 440 void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) { 441 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); 442 443 std::set<unsigned> killedRegs; 444 BitVector ReservedRegs = TRI->getReservedRegs(MF); 445 446 StartBlockForKills(MBB); 447 448 // Examine block from end to start... 449 unsigned Count = MBB->size(); 450 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); 451 I != E; --Count) { 452 MachineInstr *MI = --I; 453 if (MI->isDebugValue()) 454 continue; 455 456 // Update liveness. Registers that are defed but not used in this 457 // instruction are now dead. Mark register and all subregs as they 458 // are completely defined. 459 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 460 MachineOperand &MO = MI->getOperand(i); 461 if (!MO.isReg()) continue; 462 unsigned Reg = MO.getReg(); 463 if (Reg == 0) continue; 464 if (!MO.isDef()) continue; 465 // Ignore two-addr defs. 466 if (MI->isRegTiedToUseOperand(i)) continue; 467 468 KillIndices[Reg] = ~0u; 469 470 // Repeat for all subregs. 471 for (const unsigned *Subreg = TRI->getSubRegisters(Reg); 472 *Subreg; ++Subreg) { 473 KillIndices[*Subreg] = ~0u; 474 } 475 } 476 477 // Examine all used registers and set/clear kill flag. When a 478 // register is used multiple times we only set the kill flag on 479 // the first use. 480 killedRegs.clear(); 481 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 482 MachineOperand &MO = MI->getOperand(i); 483 if (!MO.isReg() || !MO.isUse()) continue; 484 unsigned Reg = MO.getReg(); 485 if ((Reg == 0) || ReservedRegs.test(Reg)) continue; 486 487 bool kill = false; 488 if (killedRegs.find(Reg) == killedRegs.end()) { 489 kill = true; 490 // A register is not killed if any subregs are live... 491 for (const unsigned *Subreg = TRI->getSubRegisters(Reg); 492 *Subreg; ++Subreg) { 493 if (KillIndices[*Subreg] != ~0u) { 494 kill = false; 495 break; 496 } 497 } 498 499 // If subreg is not live, then register is killed if it became 500 // live in this instruction 501 if (kill) 502 kill = (KillIndices[Reg] == ~0u); 503 } 504 505 if (MO.isKill() != kill) { 506 DEBUG(dbgs() << "Fixing " << MO << " in "); 507 // Warning: ToggleKillFlag may invalidate MO. 508 ToggleKillFlag(MI, MO); 509 DEBUG(MI->dump()); 510 } 511 512 killedRegs.insert(Reg); 513 } 514 515 // Mark any used register (that is not using undef) and subregs as 516 // now live... 517 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 518 MachineOperand &MO = MI->getOperand(i); 519 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; 520 unsigned Reg = MO.getReg(); 521 if ((Reg == 0) || ReservedRegs.test(Reg)) continue; 522 523 KillIndices[Reg] = Count; 524 525 for (const unsigned *Subreg = TRI->getSubRegisters(Reg); 526 *Subreg; ++Subreg) { 527 KillIndices[*Subreg] = Count; 528 } 529 } 530 } 531 } 532 533 //===----------------------------------------------------------------------===// 534 // Top-Down Scheduling 535 //===----------------------------------------------------------------------===// 536 537 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to 538 /// the PendingQueue if the count reaches zero. Also update its cycle bound. 539 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) { 540 SUnit *SuccSU = SuccEdge->getSUnit(); 541 542 #ifndef NDEBUG 543 if (SuccSU->NumPredsLeft == 0) { 544 dbgs() << "*** Scheduling failed! ***\n"; 545 SuccSU->dump(this); 546 dbgs() << " has been released too many times!\n"; 547 llvm_unreachable(0); 548 } 549 #endif 550 --SuccSU->NumPredsLeft; 551 552 // Standard scheduler algorithms will recompute the depth of the successor 553 // here as such: 554 // SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency()); 555 // 556 // However, we lazily compute node depth instead. Note that 557 // ScheduleNodeTopDown has already updated the depth of this node which causes 558 // all descendents to be marked dirty. Setting the successor depth explicitly 559 // here would cause depth to be recomputed for all its ancestors. If the 560 // successor is not yet ready (because of a transitively redundant edge) then 561 // this causes depth computation to be quadratic in the size of the DAG. 562 563 // If all the node's predecessors are scheduled, this node is ready 564 // to be scheduled. Ignore the special ExitSU node. 565 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 566 PendingQueue.push_back(SuccSU); 567 } 568 569 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors. 570 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) { 571 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 572 I != E; ++I) { 573 ReleaseSucc(SU, &*I); 574 } 575 } 576 577 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending 578 /// count of its successors. If a successor pending count is zero, add it to 579 /// the Available queue. 580 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { 581 DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); 582 DEBUG(SU->dump(this)); 583 584 Sequence.push_back(SU); 585 assert(CurCycle >= SU->getDepth() && 586 "Node scheduled above its depth!"); 587 SU->setDepthToAtLeast(CurCycle); 588 589 ReleaseSuccessors(SU); 590 SU->isScheduled = true; 591 AvailableQueue.ScheduledNode(SU); 592 } 593 594 /// ListScheduleTopDown - The main loop of list scheduling for top-down 595 /// schedulers. 596 void SchedulePostRATDList::ListScheduleTopDown() { 597 unsigned CurCycle = 0; 598 599 // We're scheduling top-down but we're visiting the regions in 600 // bottom-up order, so we don't know the hazards at the start of a 601 // region. So assume no hazards (this should usually be ok as most 602 // blocks are a single region). 603 HazardRec->Reset(); 604 605 // Release any successors of the special Entry node. 606 ReleaseSuccessors(&EntrySU); 607 608 // Add all leaves to Available queue. 609 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 610 // It is available if it has no predecessors. 611 bool available = SUnits[i].Preds.empty(); 612 if (available) { 613 AvailableQueue.push(&SUnits[i]); 614 SUnits[i].isAvailable = true; 615 } 616 } 617 618 // In any cycle where we can't schedule any instructions, we must 619 // stall or emit a noop, depending on the target. 620 bool CycleHasInsts = false; 621 622 // While Available queue is not empty, grab the node with the highest 623 // priority. If it is not ready put it back. Schedule the node. 624 std::vector<SUnit*> NotReady; 625 Sequence.reserve(SUnits.size()); 626 while (!AvailableQueue.empty() || !PendingQueue.empty()) { 627 // Check to see if any of the pending instructions are ready to issue. If 628 // so, add them to the available queue. 629 unsigned MinDepth = ~0u; 630 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { 631 if (PendingQueue[i]->getDepth() <= CurCycle) { 632 AvailableQueue.push(PendingQueue[i]); 633 PendingQueue[i]->isAvailable = true; 634 PendingQueue[i] = PendingQueue.back(); 635 PendingQueue.pop_back(); 636 --i; --e; 637 } else if (PendingQueue[i]->getDepth() < MinDepth) 638 MinDepth = PendingQueue[i]->getDepth(); 639 } 640 641 DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this)); 642 643 SUnit *FoundSUnit = 0; 644 bool HasNoopHazards = false; 645 while (!AvailableQueue.empty()) { 646 SUnit *CurSUnit = AvailableQueue.pop(); 647 648 ScheduleHazardRecognizer::HazardType HT = 649 HazardRec->getHazardType(CurSUnit, 0/*no stalls*/); 650 if (HT == ScheduleHazardRecognizer::NoHazard) { 651 FoundSUnit = CurSUnit; 652 break; 653 } 654 655 // Remember if this is a noop hazard. 656 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; 657 658 NotReady.push_back(CurSUnit); 659 } 660 661 // Add the nodes that aren't ready back onto the available list. 662 if (!NotReady.empty()) { 663 AvailableQueue.push_all(NotReady); 664 NotReady.clear(); 665 } 666 667 // If we found a node to schedule... 668 if (FoundSUnit) { 669 // ... schedule the node... 670 ScheduleNodeTopDown(FoundSUnit, CurCycle); 671 HazardRec->EmitInstruction(FoundSUnit); 672 CycleHasInsts = true; 673 if (HazardRec->atIssueLimit()) { 674 DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n'); 675 HazardRec->AdvanceCycle(); 676 ++CurCycle; 677 CycleHasInsts = false; 678 } 679 } else { 680 if (CycleHasInsts) { 681 DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n'); 682 HazardRec->AdvanceCycle(); 683 } else if (!HasNoopHazards) { 684 // Otherwise, we have a pipeline stall, but no other problem, 685 // just advance the current cycle and try again. 686 DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n'); 687 HazardRec->AdvanceCycle(); 688 ++NumStalls; 689 } else { 690 // Otherwise, we have no instructions to issue and we have instructions 691 // that will fault if we don't do this right. This is the case for 692 // processors without pipeline interlocks and other cases. 693 DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n'); 694 HazardRec->EmitNoop(); 695 Sequence.push_back(0); // NULL here means noop 696 ++NumNoops; 697 } 698 699 ++CurCycle; 700 CycleHasInsts = false; 701 } 702 } 703 704 #ifndef NDEBUG 705 VerifySchedule(/*isBottomUp=*/false); 706 #endif 707 } 708 709 //===----------------------------------------------------------------------===// 710 // Public Constructor Functions 711 //===----------------------------------------------------------------------===// 712 713 FunctionPass *llvm::createPostRAScheduler(CodeGenOpt::Level OptLevel) { 714 return new PostRAScheduler(OptLevel); 715 } 716