1 //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Perform peephole optimizations on the machine code: 11 // 12 // - Optimize Extensions 13 // 14 // Optimization of sign / zero extension instructions. It may be extended to 15 // handle other instructions with similar properties. 16 // 17 // On some targets, some instructions, e.g. X86 sign / zero extension, may 18 // leave the source value in the lower part of the result. This optimization 19 // will replace some uses of the pre-extension value with uses of the 20 // sub-register of the results. 21 // 22 // - Optimize Comparisons 23 // 24 // Optimization of comparison instructions. For instance, in this code: 25 // 26 // sub r1, 1 27 // cmp r1, 0 28 // bz L1 29 // 30 // If the "sub" instruction all ready sets (or could be modified to set) the 31 // same flag that the "cmp" instruction sets and that "bz" uses, then we can 32 // eliminate the "cmp" instruction. 33 // 34 // Another instance, in this code: 35 // 36 // sub r1, r3 | sub r1, imm 37 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm 38 // bge L1 39 // 40 // If the branch instruction can use flag from "sub", then we can replace 41 // "sub" with "subs" and eliminate the "cmp" instruction. 42 // 43 // - Optimize Loads: 44 // 45 // Loads that can be folded into a later instruction. A load is foldable 46 // if it loads to virtual registers and the virtual register defined has 47 // a single use. 48 // 49 // - Optimize Copies and Bitcast (more generally, target specific copies): 50 // 51 // Rewrite copies and bitcasts to avoid cross register bank copies 52 // when possible. 53 // E.g., Consider the following example, where capital and lower 54 // letters denote different register file: 55 // b = copy A <-- cross-bank copy 56 // C = copy b <-- cross-bank copy 57 // => 58 // b = copy A <-- cross-bank copy 59 // C = copy A <-- same-bank copy 60 // 61 // E.g., for bitcast: 62 // b = bitcast A <-- cross-bank copy 63 // C = bitcast b <-- cross-bank copy 64 // => 65 // b = bitcast A <-- cross-bank copy 66 // C = copy A <-- same-bank copy 67 //===----------------------------------------------------------------------===// 68 69 #include "llvm/CodeGen/Passes.h" 70 #include "llvm/ADT/DenseMap.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallSet.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/CodeGen/MachineDominators.h" 75 #include "llvm/CodeGen/MachineInstrBuilder.h" 76 #include "llvm/CodeGen/MachineRegisterInfo.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Target/TargetInstrInfo.h" 81 #include "llvm/Target/TargetRegisterInfo.h" 82 #include "llvm/Target/TargetSubtargetInfo.h" 83 #include <utility> 84 using namespace llvm; 85 86 #define DEBUG_TYPE "peephole-opt" 87 88 // Optimize Extensions 89 static cl::opt<bool> 90 Aggressive("aggressive-ext-opt", cl::Hidden, 91 cl::desc("Aggressive extension optimization")); 92 93 static cl::opt<bool> 94 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), 95 cl::desc("Disable the peephole optimizer")); 96 97 static cl::opt<bool> 98 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), 99 cl::desc("Disable advanced copy optimization")); 100 101 // Limit the number of PHI instructions to process 102 // in PeepholeOptimizer::getNextSource. 103 static cl::opt<unsigned> RewritePHILimit( 104 "rewrite-phi-limit", cl::Hidden, cl::init(10), 105 cl::desc("Limit the length of PHI chains to lookup")); 106 107 STATISTIC(NumReuse, "Number of extension results reused"); 108 STATISTIC(NumCmps, "Number of compares eliminated"); 109 STATISTIC(NumImmFold, "Number of move immediate folded"); 110 STATISTIC(NumLoadFold, "Number of loads folded"); 111 STATISTIC(NumSelects, "Number of selects optimized"); 112 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized"); 113 STATISTIC(NumRewrittenCopies, "Number of copies rewritten"); 114 115 namespace { 116 class ValueTrackerResult; 117 118 class PeepholeOptimizer : public MachineFunctionPass { 119 const TargetInstrInfo *TII; 120 const TargetRegisterInfo *TRI; 121 MachineRegisterInfo *MRI; 122 MachineDominatorTree *DT; // Machine dominator tree 123 124 public: 125 static char ID; // Pass identification 126 PeepholeOptimizer() : MachineFunctionPass(ID) { 127 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); 128 } 129 130 bool runOnMachineFunction(MachineFunction &MF) override; 131 132 void getAnalysisUsage(AnalysisUsage &AU) const override { 133 AU.setPreservesCFG(); 134 MachineFunctionPass::getAnalysisUsage(AU); 135 if (Aggressive) { 136 AU.addRequired<MachineDominatorTree>(); 137 AU.addPreserved<MachineDominatorTree>(); 138 } 139 } 140 141 /// \brief Track Def -> Use info used for rewriting copies. 142 typedef SmallDenseMap<TargetInstrInfo::RegSubRegPair, ValueTrackerResult> 143 RewriteMapTy; 144 145 private: 146 bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB); 147 bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, 148 SmallPtrSetImpl<MachineInstr*> &LocalMIs); 149 bool optimizeSelect(MachineInstr *MI, 150 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 151 bool optimizeCondBranch(MachineInstr *MI); 152 bool optimizeCoalescableCopy(MachineInstr *MI); 153 bool optimizeUncoalescableCopy(MachineInstr *MI, 154 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 155 bool findNextSource(unsigned Reg, unsigned SubReg, 156 RewriteMapTy &RewriteMap); 157 bool isMoveImmediate(MachineInstr *MI, 158 SmallSet<unsigned, 4> &ImmDefRegs, 159 DenseMap<unsigned, MachineInstr*> &ImmDefMIs); 160 bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB, 161 SmallSet<unsigned, 4> &ImmDefRegs, 162 DenseMap<unsigned, MachineInstr*> &ImmDefMIs); 163 164 /// \brief If copy instruction \p MI is a virtual register copy, track it in 165 /// the set \p CopiedFromRegs and \p CopyMIs. If this virtual register was 166 /// previously seen as a copy, replace the uses of this copy with the 167 /// previously seen copy's destination register. 168 bool foldRedundantCopy(MachineInstr *MI, 169 SmallSet<unsigned, 4> &CopiedFromRegs, 170 DenseMap<unsigned, MachineInstr*> &CopyMIs); 171 172 bool isLoadFoldable(MachineInstr *MI, 173 SmallSet<unsigned, 16> &FoldAsLoadDefCandidates); 174 175 /// \brief Check whether \p MI is understood by the register coalescer 176 /// but may require some rewriting. 177 bool isCoalescableCopy(const MachineInstr &MI) { 178 // SubregToRegs are not interesting, because they are already register 179 // coalescer friendly. 180 return MI.isCopy() || (!DisableAdvCopyOpt && 181 (MI.isRegSequence() || MI.isInsertSubreg() || 182 MI.isExtractSubreg())); 183 } 184 185 /// \brief Check whether \p MI is a copy like instruction that is 186 /// not recognized by the register coalescer. 187 bool isUncoalescableCopy(const MachineInstr &MI) { 188 return MI.isBitcast() || 189 (!DisableAdvCopyOpt && 190 (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 191 MI.isExtractSubregLike())); 192 } 193 }; 194 195 /// \brief Helper class to hold a reply for ValueTracker queries. Contains the 196 /// returned sources for a given search and the instructions where the sources 197 /// were tracked from. 198 class ValueTrackerResult { 199 private: 200 /// Track all sources found by one ValueTracker query. 201 SmallVector<TargetInstrInfo::RegSubRegPair, 2> RegSrcs; 202 203 /// Instruction using the sources in 'RegSrcs'. 204 const MachineInstr *Inst; 205 206 public: 207 ValueTrackerResult() : Inst(nullptr) {} 208 ValueTrackerResult(unsigned Reg, unsigned SubReg) : Inst(nullptr) { 209 addSource(Reg, SubReg); 210 } 211 212 bool isValid() const { return getNumSources() > 0; } 213 214 void setInst(const MachineInstr *I) { Inst = I; } 215 const MachineInstr *getInst() const { return Inst; } 216 217 void clear() { 218 RegSrcs.clear(); 219 Inst = nullptr; 220 } 221 222 void addSource(unsigned SrcReg, unsigned SrcSubReg) { 223 RegSrcs.push_back(TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg)); 224 } 225 226 void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) { 227 assert(Idx < getNumSources() && "Reg pair source out of index"); 228 RegSrcs[Idx] = TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg); 229 } 230 231 int getNumSources() const { return RegSrcs.size(); } 232 233 unsigned getSrcReg(int Idx) const { 234 assert(Idx < getNumSources() && "Reg source out of index"); 235 return RegSrcs[Idx].Reg; 236 } 237 238 unsigned getSrcSubReg(int Idx) const { 239 assert(Idx < getNumSources() && "SubReg source out of index"); 240 return RegSrcs[Idx].SubReg; 241 } 242 243 bool operator==(const ValueTrackerResult &Other) { 244 if (Other.getInst() != getInst()) 245 return false; 246 247 if (Other.getNumSources() != getNumSources()) 248 return false; 249 250 for (int i = 0, e = Other.getNumSources(); i != e; ++i) 251 if (Other.getSrcReg(i) != getSrcReg(i) || 252 Other.getSrcSubReg(i) != getSrcSubReg(i)) 253 return false; 254 return true; 255 } 256 }; 257 258 /// \brief Helper class to track the possible sources of a value defined by 259 /// a (chain of) copy related instructions. 260 /// Given a definition (instruction and definition index), this class 261 /// follows the use-def chain to find successive suitable sources. 262 /// The given source can be used to rewrite the definition into 263 /// def = COPY src. 264 /// 265 /// For instance, let us consider the following snippet: 266 /// v0 = 267 /// v2 = INSERT_SUBREG v1, v0, sub0 268 /// def = COPY v2.sub0 269 /// 270 /// Using a ValueTracker for def = COPY v2.sub0 will give the following 271 /// suitable sources: 272 /// v2.sub0 and v0. 273 /// Then, def can be rewritten into def = COPY v0. 274 class ValueTracker { 275 private: 276 /// The current point into the use-def chain. 277 const MachineInstr *Def; 278 /// The index of the definition in Def. 279 unsigned DefIdx; 280 /// The sub register index of the definition. 281 unsigned DefSubReg; 282 /// The register where the value can be found. 283 unsigned Reg; 284 /// Specifiy whether or not the value tracking looks through 285 /// complex instructions. When this is false, the value tracker 286 /// bails on everything that is not a copy or a bitcast. 287 /// 288 /// Note: This could have been implemented as a specialized version of 289 /// the ValueTracker class but that would have complicated the code of 290 /// the users of this class. 291 bool UseAdvancedTracking; 292 /// MachineRegisterInfo used to perform tracking. 293 const MachineRegisterInfo &MRI; 294 /// Optional TargetInstrInfo used to perform some complex 295 /// tracking. 296 const TargetInstrInfo *TII; 297 298 /// \brief Dispatcher to the right underlying implementation of 299 /// getNextSource. 300 ValueTrackerResult getNextSourceImpl(); 301 /// \brief Specialized version of getNextSource for Copy instructions. 302 ValueTrackerResult getNextSourceFromCopy(); 303 /// \brief Specialized version of getNextSource for Bitcast instructions. 304 ValueTrackerResult getNextSourceFromBitcast(); 305 /// \brief Specialized version of getNextSource for RegSequence 306 /// instructions. 307 ValueTrackerResult getNextSourceFromRegSequence(); 308 /// \brief Specialized version of getNextSource for InsertSubreg 309 /// instructions. 310 ValueTrackerResult getNextSourceFromInsertSubreg(); 311 /// \brief Specialized version of getNextSource for ExtractSubreg 312 /// instructions. 313 ValueTrackerResult getNextSourceFromExtractSubreg(); 314 /// \brief Specialized version of getNextSource for SubregToReg 315 /// instructions. 316 ValueTrackerResult getNextSourceFromSubregToReg(); 317 /// \brief Specialized version of getNextSource for PHI instructions. 318 ValueTrackerResult getNextSourceFromPHI(); 319 320 public: 321 /// \brief Create a ValueTracker instance for the value defined by \p Reg. 322 /// \p DefSubReg represents the sub register index the value tracker will 323 /// track. It does not need to match the sub register index used in the 324 /// definition of \p Reg. 325 /// \p UseAdvancedTracking specifies whether or not the value tracker looks 326 /// through complex instructions. By default (false), it handles only copy 327 /// and bitcast instructions. 328 /// If \p Reg is a physical register, a value tracker constructed with 329 /// this constructor will not find any alternative source. 330 /// Indeed, when \p Reg is a physical register that constructor does not 331 /// know which definition of \p Reg it should track. 332 /// Use the next constructor to track a physical register. 333 ValueTracker(unsigned Reg, unsigned DefSubReg, 334 const MachineRegisterInfo &MRI, 335 bool UseAdvancedTracking = false, 336 const TargetInstrInfo *TII = nullptr) 337 : Def(nullptr), DefIdx(0), DefSubReg(DefSubReg), Reg(Reg), 338 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) { 339 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) { 340 Def = MRI.getVRegDef(Reg); 341 DefIdx = MRI.def_begin(Reg).getOperandNo(); 342 } 343 } 344 345 /// \brief Create a ValueTracker instance for the value defined by 346 /// the pair \p MI, \p DefIdx. 347 /// Unlike the other constructor, the value tracker produced by this one 348 /// may be able to find a new source when the definition is a physical 349 /// register. 350 /// This could be useful to rewrite target specific instructions into 351 /// generic copy instructions. 352 ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg, 353 const MachineRegisterInfo &MRI, 354 bool UseAdvancedTracking = false, 355 const TargetInstrInfo *TII = nullptr) 356 : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg), 357 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) { 358 assert(DefIdx < Def->getDesc().getNumDefs() && 359 Def->getOperand(DefIdx).isReg() && "Invalid definition"); 360 Reg = Def->getOperand(DefIdx).getReg(); 361 } 362 363 /// \brief Following the use-def chain, get the next available source 364 /// for the tracked value. 365 /// \return A ValueTrackerResult containing a set of registers 366 /// and sub registers with tracked values. A ValueTrackerResult with 367 /// an empty set of registers means no source was found. 368 ValueTrackerResult getNextSource(); 369 370 /// \brief Get the last register where the initial value can be found. 371 /// Initially this is the register of the definition. 372 /// Then, after each successful call to getNextSource, this is the 373 /// register of the last source. 374 unsigned getReg() const { return Reg; } 375 }; 376 } 377 378 char PeepholeOptimizer::ID = 0; 379 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; 380 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts", 381 "Peephole Optimizations", false, false) 382 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 383 INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts", 384 "Peephole Optimizations", false, false) 385 386 /// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads 387 /// a single register and writes a single register and it does not modify the 388 /// source, and if the source value is preserved as a sub-register of the 389 /// result, then replace all reachable uses of the source with the subreg of the 390 /// result. 391 /// 392 /// Do not generate an EXTRACT that is used only in a debug use, as this changes 393 /// the code. Since this code does not currently share EXTRACTs, just ignore all 394 /// debug uses. 395 bool PeepholeOptimizer:: 396 optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, 397 SmallPtrSetImpl<MachineInstr*> &LocalMIs) { 398 unsigned SrcReg, DstReg, SubIdx; 399 if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx)) 400 return false; 401 402 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 403 TargetRegisterInfo::isPhysicalRegister(SrcReg)) 404 return false; 405 406 if (MRI->hasOneNonDBGUse(SrcReg)) 407 // No other uses. 408 return false; 409 410 // Ensure DstReg can get a register class that actually supports 411 // sub-registers. Don't change the class until we commit. 412 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 413 DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); 414 if (!DstRC) 415 return false; 416 417 // The ext instr may be operating on a sub-register of SrcReg as well. 418 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit 419 // register. 420 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of 421 // SrcReg:SubIdx should be replaced. 422 bool UseSrcSubIdx = 423 TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; 424 425 // The source has other uses. See if we can replace the other uses with use of 426 // the result of the extension. 427 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs; 428 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 429 ReachedBBs.insert(UI.getParent()); 430 431 // Uses that are in the same BB of uses of the result of the instruction. 432 SmallVector<MachineOperand*, 8> Uses; 433 434 // Uses that the result of the instruction can reach. 435 SmallVector<MachineOperand*, 8> ExtendedUses; 436 437 bool ExtendLife = true; 438 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 439 MachineInstr *UseMI = UseMO.getParent(); 440 if (UseMI == MI) 441 continue; 442 443 if (UseMI->isPHI()) { 444 ExtendLife = false; 445 continue; 446 } 447 448 // Only accept uses of SrcReg:SubIdx. 449 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) 450 continue; 451 452 // It's an error to translate this: 453 // 454 // %reg1025 = <sext> %reg1024 455 // ... 456 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 457 // 458 // into this: 459 // 460 // %reg1025 = <sext> %reg1024 461 // ... 462 // %reg1027 = COPY %reg1025:4 463 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 464 // 465 // The problem here is that SUBREG_TO_REG is there to assert that an 466 // implicit zext occurs. It doesn't insert a zext instruction. If we allow 467 // the COPY here, it will give us the value after the <sext>, not the 468 // original value of %reg1024 before <sext>. 469 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) 470 continue; 471 472 MachineBasicBlock *UseMBB = UseMI->getParent(); 473 if (UseMBB == MBB) { 474 // Local uses that come after the extension. 475 if (!LocalMIs.count(UseMI)) 476 Uses.push_back(&UseMO); 477 } else if (ReachedBBs.count(UseMBB)) { 478 // Non-local uses where the result of the extension is used. Always 479 // replace these unless it's a PHI. 480 Uses.push_back(&UseMO); 481 } else if (Aggressive && DT->dominates(MBB, UseMBB)) { 482 // We may want to extend the live range of the extension result in order 483 // to replace these uses. 484 ExtendedUses.push_back(&UseMO); 485 } else { 486 // Both will be live out of the def MBB anyway. Don't extend live range of 487 // the extension result. 488 ExtendLife = false; 489 break; 490 } 491 } 492 493 if (ExtendLife && !ExtendedUses.empty()) 494 // Extend the liveness of the extension result. 495 Uses.append(ExtendedUses.begin(), ExtendedUses.end()); 496 497 // Now replace all uses. 498 bool Changed = false; 499 if (!Uses.empty()) { 500 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs; 501 502 // Look for PHI uses of the extended result, we don't want to extend the 503 // liveness of a PHI input. It breaks all kinds of assumptions down 504 // stream. A PHI use is expected to be the kill of its source values. 505 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 506 if (UI.isPHI()) 507 PHIBBs.insert(UI.getParent()); 508 509 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 510 for (unsigned i = 0, e = Uses.size(); i != e; ++i) { 511 MachineOperand *UseMO = Uses[i]; 512 MachineInstr *UseMI = UseMO->getParent(); 513 MachineBasicBlock *UseMBB = UseMI->getParent(); 514 if (PHIBBs.count(UseMBB)) 515 continue; 516 517 // About to add uses of DstReg, clear DstReg's kill flags. 518 if (!Changed) { 519 MRI->clearKillFlags(DstReg); 520 MRI->constrainRegClass(DstReg, DstRC); 521 } 522 523 unsigned NewVR = MRI->createVirtualRegister(RC); 524 MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), 525 TII->get(TargetOpcode::COPY), NewVR) 526 .addReg(DstReg, 0, SubIdx); 527 // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set. 528 if (UseSrcSubIdx) { 529 Copy->getOperand(0).setSubReg(SubIdx); 530 Copy->getOperand(0).setIsUndef(); 531 } 532 UseMO->setReg(NewVR); 533 ++NumReuse; 534 Changed = true; 535 } 536 } 537 538 return Changed; 539 } 540 541 /// optimizeCmpInstr - If the instruction is a compare and the previous 542 /// instruction it's comparing against all ready sets (or could be modified to 543 /// set) the same flag as the compare, then we can remove the comparison and use 544 /// the flag from the previous instruction. 545 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI, 546 MachineBasicBlock *MBB) { 547 // If this instruction is a comparison against zero and isn't comparing a 548 // physical register, we can try to optimize it. 549 unsigned SrcReg, SrcReg2; 550 int CmpMask, CmpValue; 551 if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) || 552 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 553 (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2))) 554 return false; 555 556 // Attempt to optimize the comparison instruction. 557 if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { 558 ++NumCmps; 559 return true; 560 } 561 562 return false; 563 } 564 565 /// Optimize a select instruction. 566 bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI, 567 SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 568 unsigned TrueOp = 0; 569 unsigned FalseOp = 0; 570 bool Optimizable = false; 571 SmallVector<MachineOperand, 4> Cond; 572 if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) 573 return false; 574 if (!Optimizable) 575 return false; 576 if (!TII->optimizeSelect(MI, LocalMIs)) 577 return false; 578 MI->eraseFromParent(); 579 ++NumSelects; 580 return true; 581 } 582 583 /// \brief Check if a simpler conditional branch can be 584 // generated 585 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) { 586 return TII->optimizeCondBranch(MI); 587 } 588 589 /// \brief Try to find the next source that share the same register file 590 /// for the value defined by \p Reg and \p SubReg. 591 /// When true is returned, the \p RewriteMap can be used by the client to 592 /// retrieve all Def -> Use along the way up to the next source. Any found 593 /// Use that is not itself a key for another entry, is the next source to 594 /// use. During the search for the next source, multiple sources can be found 595 /// given multiple incoming sources of a PHI instruction. In this case, we 596 /// look in each PHI source for the next source; all found next sources must 597 /// share the same register file as \p Reg and \p SubReg. The client should 598 /// then be capable to rewrite all intermediate PHIs to get the next source. 599 /// \return False if no alternative sources are available. True otherwise. 600 bool PeepholeOptimizer::findNextSource(unsigned Reg, unsigned SubReg, 601 RewriteMapTy &RewriteMap) { 602 // Do not try to find a new source for a physical register. 603 // So far we do not have any motivating example for doing that. 604 // Thus, instead of maintaining untested code, we will revisit that if 605 // that changes at some point. 606 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 607 return false; 608 const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); 609 610 SmallVector<TargetInstrInfo::RegSubRegPair, 4> SrcToLook; 611 TargetInstrInfo::RegSubRegPair CurSrcPair(Reg, SubReg); 612 SrcToLook.push_back(CurSrcPair); 613 614 unsigned PHICount = 0; 615 while (!SrcToLook.empty() && PHICount < RewritePHILimit) { 616 TargetInstrInfo::RegSubRegPair Pair = SrcToLook.pop_back_val(); 617 // As explained above, do not handle physical registers 618 if (TargetRegisterInfo::isPhysicalRegister(Pair.Reg)) 619 return false; 620 621 CurSrcPair = Pair; 622 ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, 623 !DisableAdvCopyOpt, TII); 624 ValueTrackerResult Res; 625 bool ShouldRewrite = false; 626 627 do { 628 // Follow the chain of copies until we reach the top of the use-def chain 629 // or find a more suitable source. 630 Res = ValTracker.getNextSource(); 631 if (!Res.isValid()) 632 break; 633 634 // Insert the Def -> Use entry for the recently found source. 635 ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); 636 if (CurSrcRes.isValid()) { 637 assert(CurSrcRes == Res && "ValueTrackerResult found must match"); 638 // An existent entry with multiple sources is a PHI cycle we must avoid. 639 // Otherwise it's an entry with a valid next source we already found. 640 if (CurSrcRes.getNumSources() > 1) { 641 DEBUG(dbgs() << "findNextSource: found PHI cycle, aborting...\n"); 642 return false; 643 } 644 break; 645 } 646 RewriteMap.insert(std::make_pair(CurSrcPair, Res)); 647 648 // ValueTrackerResult usually have one source unless it's the result from 649 // a PHI instruction. Add the found PHI edges to be looked up further. 650 unsigned NumSrcs = Res.getNumSources(); 651 if (NumSrcs > 1) { 652 PHICount++; 653 for (unsigned i = 0; i < NumSrcs; ++i) 654 SrcToLook.push_back(TargetInstrInfo::RegSubRegPair( 655 Res.getSrcReg(i), Res.getSrcSubReg(i))); 656 break; 657 } 658 659 CurSrcPair.Reg = Res.getSrcReg(0); 660 CurSrcPair.SubReg = Res.getSrcSubReg(0); 661 // Do not extend the live-ranges of physical registers as they add 662 // constraints to the register allocator. Moreover, if we want to extend 663 // the live-range of a physical register, unlike SSA virtual register, 664 // we will have to check that they aren't redefine before the related use. 665 if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg)) 666 return false; 667 668 const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); 669 ShouldRewrite = TRI->shouldRewriteCopySrc(DefRC, SubReg, SrcRC, 670 CurSrcPair.SubReg); 671 } while (!ShouldRewrite); 672 673 // Continue looking for new sources... 674 if (Res.isValid()) 675 continue; 676 677 // Do not continue searching for a new source if the there's at least 678 // one use-def which cannot be rewritten. 679 if (!ShouldRewrite) 680 return false; 681 } 682 683 if (PHICount >= RewritePHILimit) { 684 DEBUG(dbgs() << "findNextSource: PHI limit reached\n"); 685 return false; 686 } 687 688 // If we did not find a more suitable source, there is nothing to optimize. 689 return CurSrcPair.Reg != Reg; 690 } 691 692 /// \brief Insert a PHI instruction with incoming edges \p SrcRegs that are 693 /// guaranteed to have the same register class. This is necessary whenever we 694 /// successfully traverse a PHI instruction and find suitable sources coming 695 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def 696 /// suitable to be used in a new COPY instruction. 697 static MachineInstr * 698 insertPHI(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 699 const SmallVectorImpl<TargetInstrInfo::RegSubRegPair> &SrcRegs, 700 MachineInstr *OrigPHI) { 701 assert(!SrcRegs.empty() && "No sources to create a PHI instruction?"); 702 703 const TargetRegisterClass *NewRC = MRI->getRegClass(SrcRegs[0].Reg); 704 unsigned NewVR = MRI->createVirtualRegister(NewRC); 705 MachineBasicBlock *MBB = OrigPHI->getParent(); 706 MachineInstrBuilder MIB = BuildMI(*MBB, OrigPHI, OrigPHI->getDebugLoc(), 707 TII->get(TargetOpcode::PHI), NewVR); 708 709 unsigned MBBOpIdx = 2; 710 for (auto RegPair : SrcRegs) { 711 MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); 712 MIB.addMBB(OrigPHI->getOperand(MBBOpIdx).getMBB()); 713 // Since we're extended the lifetime of RegPair.Reg, clear the 714 // kill flags to account for that and make RegPair.Reg reaches 715 // the new PHI. 716 MRI->clearKillFlags(RegPair.Reg); 717 MBBOpIdx += 2; 718 } 719 720 return MIB; 721 } 722 723 namespace { 724 /// \brief Helper class to rewrite the arguments of a copy-like instruction. 725 class CopyRewriter { 726 protected: 727 /// The copy-like instruction. 728 MachineInstr &CopyLike; 729 /// The index of the source being rewritten. 730 unsigned CurrentSrcIdx; 731 732 public: 733 CopyRewriter(MachineInstr &MI) : CopyLike(MI), CurrentSrcIdx(0) {} 734 735 virtual ~CopyRewriter() {} 736 737 /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and 738 /// the related value that it affects (TrackReg, TrackSubReg). 739 /// A source is considered rewritable if its register class and the 740 /// register class of the related TrackReg may not be register 741 /// coalescer friendly. In other words, given a copy-like instruction 742 /// not all the arguments may be returned at rewritable source, since 743 /// some arguments are none to be register coalescer friendly. 744 /// 745 /// Each call of this method moves the current source to the next 746 /// rewritable source. 747 /// For instance, let CopyLike be the instruction to rewrite. 748 /// CopyLike has one definition and one source: 749 /// dst.dstSubIdx = CopyLike src.srcSubIdx. 750 /// 751 /// The first call will give the first rewritable source, i.e., 752 /// the only source this instruction has: 753 /// (SrcReg, SrcSubReg) = (src, srcSubIdx). 754 /// This source defines the whole definition, i.e., 755 /// (TrackReg, TrackSubReg) = (dst, dstSubIdx). 756 /// 757 /// The second and subsequent calls will return false, as there is only one 758 /// rewritable source. 759 /// 760 /// \return True if a rewritable source has been found, false otherwise. 761 /// The output arguments are valid if and only if true is returned. 762 virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 763 unsigned &TrackReg, 764 unsigned &TrackSubReg) { 765 // If CurrentSrcIdx == 1, this means this function has already been called 766 // once. CopyLike has one definition and one argument, thus, there is 767 // nothing else to rewrite. 768 if (!CopyLike.isCopy() || CurrentSrcIdx == 1) 769 return false; 770 // This is the first call to getNextRewritableSource. 771 // Move the CurrentSrcIdx to remember that we made that call. 772 CurrentSrcIdx = 1; 773 // The rewritable source is the argument. 774 const MachineOperand &MOSrc = CopyLike.getOperand(1); 775 SrcReg = MOSrc.getReg(); 776 SrcSubReg = MOSrc.getSubReg(); 777 // What we track are the alternative sources of the definition. 778 const MachineOperand &MODef = CopyLike.getOperand(0); 779 TrackReg = MODef.getReg(); 780 TrackSubReg = MODef.getSubReg(); 781 return true; 782 } 783 784 /// \brief Rewrite the current source with \p NewReg and \p NewSubReg 785 /// if possible. 786 /// \return True if the rewriting was possible, false otherwise. 787 virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) { 788 if (!CopyLike.isCopy() || CurrentSrcIdx != 1) 789 return false; 790 MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); 791 MOSrc.setReg(NewReg); 792 MOSrc.setSubReg(NewSubReg); 793 return true; 794 } 795 796 /// \brief Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find 797 /// the new source to use for rewrite. If \p HandleMultipleSources is true and 798 /// multiple sources for a given \p Def are found along the way, we found a 799 /// PHI instructions that needs to be rewritten. 800 /// TODO: HandleMultipleSources should be removed once we test PHI handling 801 /// with coalescable copies. 802 TargetInstrInfo::RegSubRegPair 803 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 804 TargetInstrInfo::RegSubRegPair Def, 805 PeepholeOptimizer::RewriteMapTy &RewriteMap, 806 bool HandleMultipleSources = true) { 807 808 TargetInstrInfo::RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); 809 do { 810 ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); 811 // If there are no entries on the map, LookupSrc is the new source. 812 if (!Res.isValid()) 813 return LookupSrc; 814 815 // There's only one source for this definition, keep searching... 816 unsigned NumSrcs = Res.getNumSources(); 817 if (NumSrcs == 1) { 818 LookupSrc.Reg = Res.getSrcReg(0); 819 LookupSrc.SubReg = Res.getSrcSubReg(0); 820 continue; 821 } 822 823 // TODO: Remove once multiple srcs w/ coalescable copies are supported. 824 if (!HandleMultipleSources) 825 break; 826 827 // Multiple sources, recurse into each source to find a new source 828 // for it. Then, rewrite the PHI accordingly to its new edges. 829 SmallVector<TargetInstrInfo::RegSubRegPair, 4> NewPHISrcs; 830 for (unsigned i = 0; i < NumSrcs; ++i) { 831 TargetInstrInfo::RegSubRegPair PHISrc(Res.getSrcReg(i), 832 Res.getSrcSubReg(i)); 833 NewPHISrcs.push_back( 834 getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); 835 } 836 837 // Build the new PHI node and return its def register as the new source. 838 MachineInstr *OrigPHI = const_cast<MachineInstr *>(Res.getInst()); 839 MachineInstr *NewPHI = insertPHI(MRI, TII, NewPHISrcs, OrigPHI); 840 DEBUG(dbgs() << "-- getNewSource\n"); 841 DEBUG(dbgs() << " Replacing: " << *OrigPHI); 842 DEBUG(dbgs() << " With: " << *NewPHI); 843 const MachineOperand &MODef = NewPHI->getOperand(0); 844 return TargetInstrInfo::RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 845 846 } while (1); 847 848 return TargetInstrInfo::RegSubRegPair(0, 0); 849 } 850 851 /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap 852 /// and create a new COPY instruction. More info about RewriteMap in 853 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 854 /// Uncoalescable copies, since they are copy like instructions that aren't 855 /// recognized by the register allocator. 856 virtual MachineInstr * 857 RewriteSource(TargetInstrInfo::RegSubRegPair Def, 858 PeepholeOptimizer::RewriteMapTy &RewriteMap) { 859 return nullptr; 860 } 861 }; 862 863 /// \brief Helper class to rewrite uncoalescable copy like instructions 864 /// into new COPY (coalescable friendly) instructions. 865 class UncoalescableRewriter : public CopyRewriter { 866 protected: 867 const TargetInstrInfo &TII; 868 MachineRegisterInfo &MRI; 869 /// The number of defs in the bitcast 870 unsigned NumDefs; 871 872 public: 873 UncoalescableRewriter(MachineInstr &MI, const TargetInstrInfo &TII, 874 MachineRegisterInfo &MRI) 875 : CopyRewriter(MI), TII(TII), MRI(MRI) { 876 NumDefs = MI.getDesc().getNumDefs(); 877 } 878 879 /// \brief Get the next rewritable def source (TrackReg, TrackSubReg) 880 /// All such sources need to be considered rewritable in order to 881 /// rewrite a uncoalescable copy-like instruction. This method return 882 /// each definition that must be checked if rewritable. 883 /// 884 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 885 unsigned &TrackReg, 886 unsigned &TrackSubReg) override { 887 // Find the next non-dead definition and continue from there. 888 if (CurrentSrcIdx == NumDefs) 889 return false; 890 891 while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { 892 ++CurrentSrcIdx; 893 if (CurrentSrcIdx == NumDefs) 894 return false; 895 } 896 897 // What we track are the alternative sources of the definition. 898 const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); 899 TrackReg = MODef.getReg(); 900 TrackSubReg = MODef.getSubReg(); 901 902 CurrentSrcIdx++; 903 return true; 904 } 905 906 /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap 907 /// and create a new COPY instruction. More info about RewriteMap in 908 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 909 /// Uncoalescable copies, since they are copy like instructions that aren't 910 /// recognized by the register allocator. 911 MachineInstr * 912 RewriteSource(TargetInstrInfo::RegSubRegPair Def, 913 PeepholeOptimizer::RewriteMapTy &RewriteMap) override { 914 assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) && 915 "We do not rewrite physical registers"); 916 917 // Find the new source to use in the COPY rewrite. 918 TargetInstrInfo::RegSubRegPair NewSrc = 919 getNewSource(&MRI, &TII, Def, RewriteMap); 920 921 // Insert the COPY. 922 const TargetRegisterClass *DefRC = MRI.getRegClass(Def.Reg); 923 unsigned NewVR = MRI.createVirtualRegister(DefRC); 924 925 MachineInstr *NewCopy = 926 BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), 927 TII.get(TargetOpcode::COPY), NewVR) 928 .addReg(NewSrc.Reg, 0, NewSrc.SubReg); 929 930 NewCopy->getOperand(0).setSubReg(Def.SubReg); 931 if (Def.SubReg) 932 NewCopy->getOperand(0).setIsUndef(); 933 934 DEBUG(dbgs() << "-- RewriteSource\n"); 935 DEBUG(dbgs() << " Replacing: " << CopyLike); 936 DEBUG(dbgs() << " With: " << *NewCopy); 937 MRI.replaceRegWith(Def.Reg, NewVR); 938 MRI.clearKillFlags(NewVR); 939 940 // We extended the lifetime of NewSrc.Reg, clear the kill flags to 941 // account for that. 942 MRI.clearKillFlags(NewSrc.Reg); 943 944 return NewCopy; 945 } 946 }; 947 948 /// \brief Specialized rewriter for INSERT_SUBREG instruction. 949 class InsertSubregRewriter : public CopyRewriter { 950 public: 951 InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) { 952 assert(MI.isInsertSubreg() && "Invalid instruction"); 953 } 954 955 /// \brief See CopyRewriter::getNextRewritableSource. 956 /// Here CopyLike has the following form: 957 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. 958 /// Src1 has the same register class has dst, hence, there is 959 /// nothing to rewrite. 960 /// Src2.src2SubIdx, may not be register coalescer friendly. 961 /// Therefore, the first call to this method returns: 962 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 963 /// (TrackReg, TrackSubReg) = (dst, subIdx). 964 /// 965 /// Subsequence calls will return false. 966 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 967 unsigned &TrackReg, 968 unsigned &TrackSubReg) override { 969 // If we already get the only source we can rewrite, return false. 970 if (CurrentSrcIdx == 2) 971 return false; 972 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. 973 CurrentSrcIdx = 2; 974 const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); 975 SrcReg = MOInsertedReg.getReg(); 976 SrcSubReg = MOInsertedReg.getSubReg(); 977 const MachineOperand &MODef = CopyLike.getOperand(0); 978 979 // We want to track something that is compatible with the 980 // partial definition. 981 TrackReg = MODef.getReg(); 982 if (MODef.getSubReg()) 983 // Bail if we have to compose sub-register indices. 984 return false; 985 TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm(); 986 return true; 987 } 988 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 989 if (CurrentSrcIdx != 2) 990 return false; 991 // We are rewriting the inserted reg. 992 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 993 MO.setReg(NewReg); 994 MO.setSubReg(NewSubReg); 995 return true; 996 } 997 }; 998 999 /// \brief Specialized rewriter for EXTRACT_SUBREG instruction. 1000 class ExtractSubregRewriter : public CopyRewriter { 1001 const TargetInstrInfo &TII; 1002 1003 public: 1004 ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) 1005 : CopyRewriter(MI), TII(TII) { 1006 assert(MI.isExtractSubreg() && "Invalid instruction"); 1007 } 1008 1009 /// \brief See CopyRewriter::getNextRewritableSource. 1010 /// Here CopyLike has the following form: 1011 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. 1012 /// There is only one rewritable source: Src.subIdx, 1013 /// which defines dst.dstSubIdx. 1014 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 1015 unsigned &TrackReg, 1016 unsigned &TrackSubReg) override { 1017 // If we already get the only source we can rewrite, return false. 1018 if (CurrentSrcIdx == 1) 1019 return false; 1020 // We are looking at v1 = EXTRACT_SUBREG v0, sub0. 1021 CurrentSrcIdx = 1; 1022 const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); 1023 SrcReg = MOExtractedReg.getReg(); 1024 // If we have to compose sub-register indices, bail out. 1025 if (MOExtractedReg.getSubReg()) 1026 return false; 1027 1028 SrcSubReg = CopyLike.getOperand(2).getImm(); 1029 1030 // We want to track something that is compatible with the definition. 1031 const MachineOperand &MODef = CopyLike.getOperand(0); 1032 TrackReg = MODef.getReg(); 1033 TrackSubReg = MODef.getSubReg(); 1034 return true; 1035 } 1036 1037 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1038 // The only source we can rewrite is the input register. 1039 if (CurrentSrcIdx != 1) 1040 return false; 1041 1042 CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); 1043 1044 // If we find a source that does not require to extract something, 1045 // rewrite the operation with a copy. 1046 if (!NewSubReg) { 1047 // Move the current index to an invalid position. 1048 // We do not want another call to this method to be able 1049 // to do any change. 1050 CurrentSrcIdx = -1; 1051 // Rewrite the operation as a COPY. 1052 // Get rid of the sub-register index. 1053 CopyLike.RemoveOperand(2); 1054 // Morph the operation into a COPY. 1055 CopyLike.setDesc(TII.get(TargetOpcode::COPY)); 1056 return true; 1057 } 1058 CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); 1059 return true; 1060 } 1061 }; 1062 1063 /// \brief Specialized rewriter for REG_SEQUENCE instruction. 1064 class RegSequenceRewriter : public CopyRewriter { 1065 public: 1066 RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) { 1067 assert(MI.isRegSequence() && "Invalid instruction"); 1068 } 1069 1070 /// \brief See CopyRewriter::getNextRewritableSource. 1071 /// Here CopyLike has the following form: 1072 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. 1073 /// Each call will return a different source, walking all the available 1074 /// source. 1075 /// 1076 /// The first call returns: 1077 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). 1078 /// (TrackReg, TrackSubReg) = (dst, subIdx1). 1079 /// 1080 /// The second call returns: 1081 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 1082 /// (TrackReg, TrackSubReg) = (dst, subIdx2). 1083 /// 1084 /// And so on, until all the sources have been traversed, then 1085 /// it returns false. 1086 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 1087 unsigned &TrackReg, 1088 unsigned &TrackSubReg) override { 1089 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. 1090 1091 // If this is the first call, move to the first argument. 1092 if (CurrentSrcIdx == 0) { 1093 CurrentSrcIdx = 1; 1094 } else { 1095 // Otherwise, move to the next argument and check that it is valid. 1096 CurrentSrcIdx += 2; 1097 if (CurrentSrcIdx >= CopyLike.getNumOperands()) 1098 return false; 1099 } 1100 const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); 1101 SrcReg = MOInsertedReg.getReg(); 1102 // If we have to compose sub-register indices, bail out. 1103 if ((SrcSubReg = MOInsertedReg.getSubReg())) 1104 return false; 1105 1106 // We want to track something that is compatible with the related 1107 // partial definition. 1108 TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); 1109 1110 const MachineOperand &MODef = CopyLike.getOperand(0); 1111 TrackReg = MODef.getReg(); 1112 // If we have to compose sub-registers, bail. 1113 return MODef.getSubReg() == 0; 1114 } 1115 1116 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1117 // We cannot rewrite out of bound operands. 1118 // Moreover, rewritable sources are at odd positions. 1119 if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) 1120 return false; 1121 1122 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 1123 MO.setReg(NewReg); 1124 MO.setSubReg(NewSubReg); 1125 return true; 1126 } 1127 }; 1128 } // End namespace. 1129 1130 /// \brief Get the appropriated CopyRewriter for \p MI. 1131 /// \return A pointer to a dynamically allocated CopyRewriter or nullptr 1132 /// if no rewriter works for \p MI. 1133 static CopyRewriter *getCopyRewriter(MachineInstr &MI, 1134 const TargetInstrInfo &TII, 1135 MachineRegisterInfo &MRI) { 1136 // Handle uncoalescable copy-like instructions. 1137 if (MI.isBitcast() || (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 1138 MI.isExtractSubregLike())) 1139 return new UncoalescableRewriter(MI, TII, MRI); 1140 1141 switch (MI.getOpcode()) { 1142 default: 1143 return nullptr; 1144 case TargetOpcode::COPY: 1145 return new CopyRewriter(MI); 1146 case TargetOpcode::INSERT_SUBREG: 1147 return new InsertSubregRewriter(MI); 1148 case TargetOpcode::EXTRACT_SUBREG: 1149 return new ExtractSubregRewriter(MI, TII); 1150 case TargetOpcode::REG_SEQUENCE: 1151 return new RegSequenceRewriter(MI); 1152 } 1153 llvm_unreachable(nullptr); 1154 } 1155 1156 /// \brief Optimize generic copy instructions to avoid cross 1157 /// register bank copy. The optimization looks through a chain of 1158 /// copies and tries to find a source that has a compatible register 1159 /// class. 1160 /// Two register classes are considered to be compatible if they share 1161 /// the same register bank. 1162 /// New copies issued by this optimization are register allocator 1163 /// friendly. This optimization does not remove any copy as it may 1164 /// overconstrain the register allocator, but replaces some operands 1165 /// when possible. 1166 /// \pre isCoalescableCopy(*MI) is true. 1167 /// \return True, when \p MI has been rewritten. False otherwise. 1168 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) { 1169 assert(MI && isCoalescableCopy(*MI) && "Invalid argument"); 1170 assert(MI->getDesc().getNumDefs() == 1 && 1171 "Coalescer can understand multiple defs?!"); 1172 const MachineOperand &MODef = MI->getOperand(0); 1173 // Do not rewrite physical definitions. 1174 if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg())) 1175 return false; 1176 1177 bool Changed = false; 1178 // Get the right rewriter for the current copy. 1179 std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI)); 1180 // If none exists, bail out. 1181 if (!CpyRewriter) 1182 return false; 1183 // Rewrite each rewritable source. 1184 unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg; 1185 while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg, 1186 TrackSubReg)) { 1187 // Keep track of PHI nodes and its incoming edges when looking for sources. 1188 RewriteMapTy RewriteMap; 1189 // Try to find a more suitable source. If we failed to do so, or get the 1190 // actual source, move to the next source. 1191 if (!findNextSource(TrackReg, TrackSubReg, RewriteMap)) 1192 continue; 1193 1194 // Get the new source to rewrite. TODO: Only enable handling of multiple 1195 // sources (PHIs) once we have a motivating example and testcases for it. 1196 TargetInstrInfo::RegSubRegPair TrackPair(TrackReg, TrackSubReg); 1197 TargetInstrInfo::RegSubRegPair NewSrc = CpyRewriter->getNewSource( 1198 MRI, TII, TrackPair, RewriteMap, false /* multiple sources */); 1199 if (SrcReg == NewSrc.Reg || NewSrc.Reg == 0) 1200 continue; 1201 1202 // Rewrite source. 1203 if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { 1204 // We may have extended the live-range of NewSrc, account for that. 1205 MRI->clearKillFlags(NewSrc.Reg); 1206 Changed = true; 1207 } 1208 } 1209 // TODO: We could have a clean-up method to tidy the instruction. 1210 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 1211 // => v0 = COPY v1 1212 // Currently we haven't seen motivating example for that and we 1213 // want to avoid untested code. 1214 NumRewrittenCopies += Changed; 1215 return Changed; 1216 } 1217 1218 /// \brief Optimize copy-like instructions to create 1219 /// register coalescer friendly instruction. 1220 /// The optimization tries to kill-off the \p MI by looking 1221 /// through a chain of copies to find a source that has a compatible 1222 /// register class. 1223 /// If such a source is found, it replace \p MI by a generic COPY 1224 /// operation. 1225 /// \pre isUncoalescableCopy(*MI) is true. 1226 /// \return True, when \p MI has been optimized. In that case, \p MI has 1227 /// been removed from its parent. 1228 /// All COPY instructions created, are inserted in \p LocalMIs. 1229 bool PeepholeOptimizer::optimizeUncoalescableCopy( 1230 MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 1231 assert(MI && isUncoalescableCopy(*MI) && "Invalid argument"); 1232 1233 // Check if we can rewrite all the values defined by this instruction. 1234 SmallVector<TargetInstrInfo::RegSubRegPair, 4> RewritePairs; 1235 // Get the right rewriter for the current copy. 1236 std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI)); 1237 // If none exists, bail out. 1238 if (!CpyRewriter) 1239 return false; 1240 1241 // Rewrite each rewritable source by generating new COPYs. This works 1242 // differently from optimizeCoalescableCopy since it first makes sure that all 1243 // definitions can be rewritten. 1244 RewriteMapTy RewriteMap; 1245 unsigned Reg, SubReg, CopyDefReg, CopyDefSubReg; 1246 while (CpyRewriter->getNextRewritableSource(Reg, SubReg, CopyDefReg, 1247 CopyDefSubReg)) { 1248 // If a physical register is here, this is probably for a good reason. 1249 // Do not rewrite that. 1250 if (TargetRegisterInfo::isPhysicalRegister(CopyDefReg)) 1251 return false; 1252 1253 // If we do not know how to rewrite this definition, there is no point 1254 // in trying to kill this instruction. 1255 TargetInstrInfo::RegSubRegPair Def(CopyDefReg, CopyDefSubReg); 1256 if (!findNextSource(Def.Reg, Def.SubReg, RewriteMap)) 1257 return false; 1258 1259 RewritePairs.push_back(Def); 1260 } 1261 1262 // The change is possible for all defs, do it. 1263 for (const auto &Def : RewritePairs) { 1264 // Rewrite the "copy" in a way the register coalescer understands. 1265 MachineInstr *NewCopy = CpyRewriter->RewriteSource(Def, RewriteMap); 1266 assert(NewCopy && "Should be able to always generate a new copy"); 1267 LocalMIs.insert(NewCopy); 1268 } 1269 1270 // MI is now dead. 1271 MI->eraseFromParent(); 1272 ++NumUncoalescableCopies; 1273 return true; 1274 } 1275 1276 /// isLoadFoldable - Check whether MI is a candidate for folding into a later 1277 /// instruction. We only fold loads to virtual registers and the virtual 1278 /// register defined has a single use. 1279 bool PeepholeOptimizer::isLoadFoldable( 1280 MachineInstr *MI, 1281 SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) { 1282 if (!MI->canFoldAsLoad() || !MI->mayLoad()) 1283 return false; 1284 const MCInstrDesc &MCID = MI->getDesc(); 1285 if (MCID.getNumDefs() != 1) 1286 return false; 1287 1288 unsigned Reg = MI->getOperand(0).getReg(); 1289 // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting 1290 // loads. It should be checked when processing uses of the load, since 1291 // uses can be removed during peephole. 1292 if (!MI->getOperand(0).getSubReg() && 1293 TargetRegisterInfo::isVirtualRegister(Reg) && 1294 MRI->hasOneNonDBGUse(Reg)) { 1295 FoldAsLoadDefCandidates.insert(Reg); 1296 return true; 1297 } 1298 return false; 1299 } 1300 1301 bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI, 1302 SmallSet<unsigned, 4> &ImmDefRegs, 1303 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) { 1304 const MCInstrDesc &MCID = MI->getDesc(); 1305 if (!MI->isMoveImmediate()) 1306 return false; 1307 if (MCID.getNumDefs() != 1) 1308 return false; 1309 unsigned Reg = MI->getOperand(0).getReg(); 1310 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1311 ImmDefMIs.insert(std::make_pair(Reg, MI)); 1312 ImmDefRegs.insert(Reg); 1313 return true; 1314 } 1315 1316 return false; 1317 } 1318 1319 /// foldImmediate - Try folding register operands that are defined by move 1320 /// immediate instructions, i.e. a trivial constant folding optimization, if 1321 /// and only if the def and use are in the same BB. 1322 bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB, 1323 SmallSet<unsigned, 4> &ImmDefRegs, 1324 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) { 1325 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 1326 MachineOperand &MO = MI->getOperand(i); 1327 if (!MO.isReg() || MO.isDef()) 1328 continue; 1329 unsigned Reg = MO.getReg(); 1330 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1331 continue; 1332 if (ImmDefRegs.count(Reg) == 0) 1333 continue; 1334 DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg); 1335 assert(II != ImmDefMIs.end()); 1336 if (TII->FoldImmediate(MI, II->second, Reg, MRI)) { 1337 ++NumImmFold; 1338 return true; 1339 } 1340 } 1341 return false; 1342 } 1343 1344 // FIXME: This is very simple and misses some cases which should be handled when 1345 // motivating examples are found. 1346 // 1347 // The copy rewriting logic should look at uses as well as defs and be able to 1348 // eliminate copies across blocks. 1349 // 1350 // Later copies that are subregister extracts will also not be eliminated since 1351 // only the first copy is considered. 1352 // 1353 // e.g. 1354 // %vreg1 = COPY %vreg0 1355 // %vreg2 = COPY %vreg0:sub1 1356 // 1357 // Should replace %vreg2 uses with %vreg1:sub1 1358 bool PeepholeOptimizer::foldRedundantCopy( 1359 MachineInstr *MI, 1360 SmallSet<unsigned, 4> &CopySrcRegs, 1361 DenseMap<unsigned, MachineInstr *> &CopyMIs) { 1362 assert(MI->isCopy()); 1363 1364 unsigned SrcReg = MI->getOperand(1).getReg(); 1365 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1366 return false; 1367 1368 unsigned DstReg = MI->getOperand(0).getReg(); 1369 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1370 return false; 1371 1372 if (CopySrcRegs.insert(SrcReg).second) { 1373 // First copy of this reg seen. 1374 CopyMIs.insert(std::make_pair(SrcReg, MI)); 1375 return false; 1376 } 1377 1378 MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second; 1379 1380 unsigned SrcSubReg = MI->getOperand(1).getSubReg(); 1381 unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg(); 1382 1383 // Can't replace different subregister extracts. 1384 if (SrcSubReg != PrevSrcSubReg) 1385 return false; 1386 1387 unsigned PrevDstReg = PrevCopy->getOperand(0).getReg(); 1388 1389 // Only replace if the copy register class is the same. 1390 // 1391 // TODO: If we have multiple copies to different register classes, we may want 1392 // to track multiple copies of the same source register. 1393 if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg)) 1394 return false; 1395 1396 MRI->replaceRegWith(DstReg, PrevDstReg); 1397 1398 // Lifetime of the previous copy has been extended. 1399 MRI->clearKillFlags(PrevDstReg); 1400 return true; 1401 } 1402 1403 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { 1404 if (skipOptnoneFunction(*MF.getFunction())) 1405 return false; 1406 1407 DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); 1408 DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); 1409 1410 if (DisablePeephole) 1411 return false; 1412 1413 TII = MF.getSubtarget().getInstrInfo(); 1414 TRI = MF.getSubtarget().getRegisterInfo(); 1415 MRI = &MF.getRegInfo(); 1416 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr; 1417 1418 bool Changed = false; 1419 1420 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { 1421 MachineBasicBlock *MBB = &*I; 1422 1423 bool SeenMoveImm = false; 1424 1425 // During this forward scan, at some point it needs to answer the question 1426 // "given a pointer to an MI in the current BB, is it located before or 1427 // after the current instruction". 1428 // To perform this, the following set keeps track of the MIs already seen 1429 // during the scan, if a MI is not in the set, it is assumed to be located 1430 // after. Newly created MIs have to be inserted in the set as well. 1431 SmallPtrSet<MachineInstr*, 16> LocalMIs; 1432 SmallSet<unsigned, 4> ImmDefRegs; 1433 DenseMap<unsigned, MachineInstr*> ImmDefMIs; 1434 SmallSet<unsigned, 16> FoldAsLoadDefCandidates; 1435 1436 // Set of virtual registers that are copied from. 1437 SmallSet<unsigned, 4> CopySrcRegs; 1438 DenseMap<unsigned, MachineInstr *> CopySrcMIs; 1439 1440 for (MachineBasicBlock::iterator 1441 MII = I->begin(), MIE = I->end(); MII != MIE; ) { 1442 MachineInstr *MI = &*MII; 1443 // We may be erasing MI below, increment MII now. 1444 ++MII; 1445 LocalMIs.insert(MI); 1446 1447 // Skip debug values. They should not affect this peephole optimization. 1448 if (MI->isDebugValue()) 1449 continue; 1450 1451 // If we run into an instruction we can't fold across, discard 1452 // the load candidates. 1453 if (MI->isLoadFoldBarrier()) 1454 FoldAsLoadDefCandidates.clear(); 1455 1456 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || 1457 MI->isKill() || MI->isInlineAsm() || 1458 MI->hasUnmodeledSideEffects()) 1459 continue; 1460 1461 if ((isUncoalescableCopy(*MI) && 1462 optimizeUncoalescableCopy(MI, LocalMIs)) || 1463 (MI->isCompare() && optimizeCmpInstr(MI, MBB)) || 1464 (MI->isSelect() && optimizeSelect(MI, LocalMIs))) { 1465 // MI is deleted. 1466 LocalMIs.erase(MI); 1467 Changed = true; 1468 continue; 1469 } 1470 1471 if (MI->isConditionalBranch() && optimizeCondBranch(MI)) { 1472 Changed = true; 1473 continue; 1474 } 1475 1476 if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) { 1477 // MI is just rewritten. 1478 Changed = true; 1479 continue; 1480 } 1481 1482 if (MI->isCopy() && foldRedundantCopy(MI, CopySrcRegs, CopySrcMIs)) { 1483 LocalMIs.erase(MI); 1484 MI->eraseFromParent(); 1485 Changed = true; 1486 continue; 1487 } 1488 1489 if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) { 1490 SeenMoveImm = true; 1491 } else { 1492 Changed |= optimizeExtInstr(MI, MBB, LocalMIs); 1493 // optimizeExtInstr might have created new instructions after MI 1494 // and before the already incremented MII. Adjust MII so that the 1495 // next iteration sees the new instructions. 1496 MII = MI; 1497 ++MII; 1498 if (SeenMoveImm) 1499 Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs); 1500 } 1501 1502 // Check whether MI is a load candidate for folding into a later 1503 // instruction. If MI is not a candidate, check whether we can fold an 1504 // earlier load into MI. 1505 if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) && 1506 !FoldAsLoadDefCandidates.empty()) { 1507 const MCInstrDesc &MIDesc = MI->getDesc(); 1508 for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands(); 1509 ++i) { 1510 const MachineOperand &MOp = MI->getOperand(i); 1511 if (!MOp.isReg()) 1512 continue; 1513 unsigned FoldAsLoadDefReg = MOp.getReg(); 1514 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { 1515 // We need to fold load after optimizeCmpInstr, since 1516 // optimizeCmpInstr can enable folding by converting SUB to CMP. 1517 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and 1518 // we need it for markUsesInDebugValueAsUndef(). 1519 unsigned FoldedReg = FoldAsLoadDefReg; 1520 MachineInstr *DefMI = nullptr; 1521 MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI, 1522 FoldAsLoadDefReg, 1523 DefMI); 1524 if (FoldMI) { 1525 // Update LocalMIs since we replaced MI with FoldMI and deleted 1526 // DefMI. 1527 DEBUG(dbgs() << "Replacing: " << *MI); 1528 DEBUG(dbgs() << " With: " << *FoldMI); 1529 LocalMIs.erase(MI); 1530 LocalMIs.erase(DefMI); 1531 LocalMIs.insert(FoldMI); 1532 MI->eraseFromParent(); 1533 DefMI->eraseFromParent(); 1534 MRI->markUsesInDebugValueAsUndef(FoldedReg); 1535 FoldAsLoadDefCandidates.erase(FoldedReg); 1536 ++NumLoadFold; 1537 // MI is replaced with FoldMI. 1538 Changed = true; 1539 break; 1540 } 1541 } 1542 } 1543 } 1544 } 1545 } 1546 1547 return Changed; 1548 } 1549 1550 ValueTrackerResult ValueTracker::getNextSourceFromCopy() { 1551 assert(Def->isCopy() && "Invalid definition"); 1552 // Copy instruction are supposed to be: Def = Src. 1553 // If someone breaks this assumption, bad things will happen everywhere. 1554 assert(Def->getNumOperands() == 2 && "Invalid number of operands"); 1555 1556 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) 1557 // If we look for a different subreg, it means we want a subreg of src. 1558 // Bails as we do not support composing subregs yet. 1559 return ValueTrackerResult(); 1560 // Otherwise, we want the whole source. 1561 const MachineOperand &Src = Def->getOperand(1); 1562 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1563 } 1564 1565 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { 1566 assert(Def->isBitcast() && "Invalid definition"); 1567 1568 // Bail if there are effects that a plain copy will not expose. 1569 if (Def->hasUnmodeledSideEffects()) 1570 return ValueTrackerResult(); 1571 1572 // Bitcasts with more than one def are not supported. 1573 if (Def->getDesc().getNumDefs() != 1) 1574 return ValueTrackerResult(); 1575 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) 1576 // If we look for a different subreg, it means we want a subreg of the src. 1577 // Bails as we do not support composing subregs yet. 1578 return ValueTrackerResult(); 1579 1580 unsigned SrcIdx = Def->getNumOperands(); 1581 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; 1582 ++OpIdx) { 1583 const MachineOperand &MO = Def->getOperand(OpIdx); 1584 if (!MO.isReg() || !MO.getReg()) 1585 continue; 1586 assert(!MO.isDef() && "We should have skipped all the definitions by now"); 1587 if (SrcIdx != EndOpIdx) 1588 // Multiple sources? 1589 return ValueTrackerResult(); 1590 SrcIdx = OpIdx; 1591 } 1592 const MachineOperand &Src = Def->getOperand(SrcIdx); 1593 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1594 } 1595 1596 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { 1597 assert((Def->isRegSequence() || Def->isRegSequenceLike()) && 1598 "Invalid definition"); 1599 1600 if (Def->getOperand(DefIdx).getSubReg()) 1601 // If we are composing subregs, bail out. 1602 // The case we are checking is Def.<subreg> = REG_SEQUENCE. 1603 // This should almost never happen as the SSA property is tracked at 1604 // the register level (as opposed to the subreg level). 1605 // I.e., 1606 // Def.sub0 = 1607 // Def.sub1 = 1608 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for 1609 // Def. Thus, it must not be generated. 1610 // However, some code could theoretically generates a single 1611 // Def.sub0 (i.e, not defining the other subregs) and we would 1612 // have this case. 1613 // If we can ascertain (or force) that this never happens, we could 1614 // turn that into an assertion. 1615 return ValueTrackerResult(); 1616 1617 if (!TII) 1618 // We could handle the REG_SEQUENCE here, but we do not want to 1619 // duplicate the code from the generic TII. 1620 return ValueTrackerResult(); 1621 1622 SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs; 1623 if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) 1624 return ValueTrackerResult(); 1625 1626 // We are looking at: 1627 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1628 // Check if one of the operand defines the subreg we are interested in. 1629 for (auto &RegSeqInput : RegSeqInputRegs) { 1630 if (RegSeqInput.SubIdx == DefSubReg) { 1631 if (RegSeqInput.SubReg) 1632 // Bail if we have to compose sub registers. 1633 return ValueTrackerResult(); 1634 1635 return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); 1636 } 1637 } 1638 1639 // If the subreg we are tracking is super-defined by another subreg, 1640 // we could follow this value. However, this would require to compose 1641 // the subreg and we do not do that for now. 1642 return ValueTrackerResult(); 1643 } 1644 1645 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { 1646 assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && 1647 "Invalid definition"); 1648 1649 if (Def->getOperand(DefIdx).getSubReg()) 1650 // If we are composing subreg, bail out. 1651 // Same remark as getNextSourceFromRegSequence. 1652 // I.e., this may be turned into an assert. 1653 return ValueTrackerResult(); 1654 1655 if (!TII) 1656 // We could handle the REG_SEQUENCE here, but we do not want to 1657 // duplicate the code from the generic TII. 1658 return ValueTrackerResult(); 1659 1660 TargetInstrInfo::RegSubRegPair BaseReg; 1661 TargetInstrInfo::RegSubRegPairAndIdx InsertedReg; 1662 if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) 1663 return ValueTrackerResult(); 1664 1665 // We are looking at: 1666 // Def = INSERT_SUBREG v0, v1, sub1 1667 // There are two cases: 1668 // 1. DefSubReg == sub1, get v1. 1669 // 2. DefSubReg != sub1, the value may be available through v0. 1670 1671 // #1 Check if the inserted register matches the required sub index. 1672 if (InsertedReg.SubIdx == DefSubReg) { 1673 return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); 1674 } 1675 // #2 Otherwise, if the sub register we are looking for is not partial 1676 // defined by the inserted element, we can look through the main 1677 // register (v0). 1678 const MachineOperand &MODef = Def->getOperand(DefIdx); 1679 // If the result register (Def) and the base register (v0) do not 1680 // have the same register class or if we have to compose 1681 // subregisters, bail out. 1682 if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || 1683 BaseReg.SubReg) 1684 return ValueTrackerResult(); 1685 1686 // Get the TRI and check if the inserted sub-register overlaps with the 1687 // sub-register we are tracking. 1688 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 1689 if (!TRI || 1690 (TRI->getSubRegIndexLaneMask(DefSubReg) & 1691 TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0) 1692 return ValueTrackerResult(); 1693 // At this point, the value is available in v0 via the same subreg 1694 // we used for Def. 1695 return ValueTrackerResult(BaseReg.Reg, DefSubReg); 1696 } 1697 1698 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { 1699 assert((Def->isExtractSubreg() || 1700 Def->isExtractSubregLike()) && "Invalid definition"); 1701 // We are looking at: 1702 // Def = EXTRACT_SUBREG v0, sub0 1703 1704 // Bail if we have to compose sub registers. 1705 // Indeed, if DefSubReg != 0, we would have to compose it with sub0. 1706 if (DefSubReg) 1707 return ValueTrackerResult(); 1708 1709 if (!TII) 1710 // We could handle the EXTRACT_SUBREG here, but we do not want to 1711 // duplicate the code from the generic TII. 1712 return ValueTrackerResult(); 1713 1714 TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg; 1715 if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) 1716 return ValueTrackerResult(); 1717 1718 // Bail if we have to compose sub registers. 1719 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. 1720 if (ExtractSubregInputReg.SubReg) 1721 return ValueTrackerResult(); 1722 // Otherwise, the value is available in the v0.sub0. 1723 return ValueTrackerResult(ExtractSubregInputReg.Reg, ExtractSubregInputReg.SubIdx); 1724 } 1725 1726 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { 1727 assert(Def->isSubregToReg() && "Invalid definition"); 1728 // We are looking at: 1729 // Def = SUBREG_TO_REG Imm, v0, sub0 1730 1731 // Bail if we have to compose sub registers. 1732 // If DefSubReg != sub0, we would have to check that all the bits 1733 // we track are included in sub0 and if yes, we would have to 1734 // determine the right subreg in v0. 1735 if (DefSubReg != Def->getOperand(3).getImm()) 1736 return ValueTrackerResult(); 1737 // Bail if we have to compose sub registers. 1738 // Likewise, if v0.subreg != 0, we would have to compose it with sub0. 1739 if (Def->getOperand(2).getSubReg()) 1740 return ValueTrackerResult(); 1741 1742 return ValueTrackerResult(Def->getOperand(2).getReg(), 1743 Def->getOperand(3).getImm()); 1744 } 1745 1746 /// \brief Explore each PHI incoming operand and return its sources 1747 ValueTrackerResult ValueTracker::getNextSourceFromPHI() { 1748 assert(Def->isPHI() && "Invalid definition"); 1749 ValueTrackerResult Res; 1750 1751 // If we look for a different subreg, bail as we do not support composing 1752 // subregs yet. 1753 if (Def->getOperand(0).getSubReg() != DefSubReg) 1754 return ValueTrackerResult(); 1755 1756 // Return all register sources for PHI instructions. 1757 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { 1758 auto &MO = Def->getOperand(i); 1759 assert(MO.isReg() && "Invalid PHI instruction"); 1760 Res.addSource(MO.getReg(), MO.getSubReg()); 1761 } 1762 1763 return Res; 1764 } 1765 1766 ValueTrackerResult ValueTracker::getNextSourceImpl() { 1767 assert(Def && "This method needs a valid definition"); 1768 1769 assert( 1770 (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic()) && 1771 Def->getOperand(DefIdx).isDef() && "Invalid DefIdx"); 1772 if (Def->isCopy()) 1773 return getNextSourceFromCopy(); 1774 if (Def->isBitcast()) 1775 return getNextSourceFromBitcast(); 1776 // All the remaining cases involve "complex" instructions. 1777 // Bail if we did not ask for the advanced tracking. 1778 if (!UseAdvancedTracking) 1779 return ValueTrackerResult(); 1780 if (Def->isRegSequence() || Def->isRegSequenceLike()) 1781 return getNextSourceFromRegSequence(); 1782 if (Def->isInsertSubreg() || Def->isInsertSubregLike()) 1783 return getNextSourceFromInsertSubreg(); 1784 if (Def->isExtractSubreg() || Def->isExtractSubregLike()) 1785 return getNextSourceFromExtractSubreg(); 1786 if (Def->isSubregToReg()) 1787 return getNextSourceFromSubregToReg(); 1788 if (Def->isPHI()) 1789 return getNextSourceFromPHI(); 1790 return ValueTrackerResult(); 1791 } 1792 1793 ValueTrackerResult ValueTracker::getNextSource() { 1794 // If we reach a point where we cannot move up in the use-def chain, 1795 // there is nothing we can get. 1796 if (!Def) 1797 return ValueTrackerResult(); 1798 1799 ValueTrackerResult Res = getNextSourceImpl(); 1800 if (Res.isValid()) { 1801 // Update definition, definition index, and subregister for the 1802 // next call of getNextSource. 1803 // Update the current register. 1804 bool OneRegSrc = Res.getNumSources() == 1; 1805 if (OneRegSrc) 1806 Reg = Res.getSrcReg(0); 1807 // Update the result before moving up in the use-def chain 1808 // with the instruction containing the last found sources. 1809 Res.setInst(Def); 1810 1811 // If we can still move up in the use-def chain, move to the next 1812 // definition. 1813 if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) { 1814 Def = MRI.getVRegDef(Reg); 1815 DefIdx = MRI.def_begin(Reg).getOperandNo(); 1816 DefSubReg = Res.getSrcSubReg(0); 1817 return Res; 1818 } 1819 } 1820 // If we end up here, this means we will not be able to find another source 1821 // for the next iteration. Make sure any new call to getNextSource bails out 1822 // early by cutting the use-def chain. 1823 Def = nullptr; 1824 return Res; 1825 } 1826