1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Perform peephole optimizations on the machine code:
11 //
12 // - Optimize Extensions
13 //
14 //     Optimization of sign / zero extension instructions. It may be extended to
15 //     handle other instructions with similar properties.
16 //
17 //     On some targets, some instructions, e.g. X86 sign / zero extension, may
18 //     leave the source value in the lower part of the result. This optimization
19 //     will replace some uses of the pre-extension value with uses of the
20 //     sub-register of the results.
21 //
22 // - Optimize Comparisons
23 //
24 //     Optimization of comparison instructions. For instance, in this code:
25 //
26 //       sub r1, 1
27 //       cmp r1, 0
28 //       bz  L1
29 //
30 //     If the "sub" instruction all ready sets (or could be modified to set) the
31 //     same flag that the "cmp" instruction sets and that "bz" uses, then we can
32 //     eliminate the "cmp" instruction.
33 //
34 //     Another instance, in this code:
35 //
36 //       sub r1, r3 | sub r1, imm
37 //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
38 //       bge L1
39 //
40 //     If the branch instruction can use flag from "sub", then we can replace
41 //     "sub" with "subs" and eliminate the "cmp" instruction.
42 //
43 // - Optimize Loads:
44 //
45 //     Loads that can be folded into a later instruction. A load is foldable
46 //     if it loads to virtual registers and the virtual register defined has
47 //     a single use.
48 //
49 // - Optimize Copies and Bitcast (more generally, target specific copies):
50 //
51 //     Rewrite copies and bitcasts to avoid cross register bank copies
52 //     when possible.
53 //     E.g., Consider the following example, where capital and lower
54 //     letters denote different register file:
55 //     b = copy A <-- cross-bank copy
56 //     C = copy b <-- cross-bank copy
57 //   =>
58 //     b = copy A <-- cross-bank copy
59 //     C = copy A <-- same-bank copy
60 //
61 //     E.g., for bitcast:
62 //     b = bitcast A <-- cross-bank copy
63 //     C = bitcast b <-- cross-bank copy
64 //   =>
65 //     b = bitcast A <-- cross-bank copy
66 //     C = copy A    <-- same-bank copy
67 //===----------------------------------------------------------------------===//
68 
69 #include "llvm/ADT/DenseMap.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/SmallPtrSet.h"
72 #include "llvm/ADT/SmallSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/CodeGen/MachineBasicBlock.h"
76 #include "llvm/CodeGen/MachineDominators.h"
77 #include "llvm/CodeGen/MachineFunction.h"
78 #include "llvm/CodeGen/MachineFunctionPass.h"
79 #include "llvm/CodeGen/MachineInstr.h"
80 #include "llvm/CodeGen/MachineInstrBuilder.h"
81 #include "llvm/CodeGen/MachineLoopInfo.h"
82 #include "llvm/CodeGen/MachineOperand.h"
83 #include "llvm/CodeGen/MachineRegisterInfo.h"
84 #include "llvm/MC/LaneBitmask.h"
85 #include "llvm/MC/MCInstrDesc.h"
86 #include "llvm/Pass.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Debug.h"
89 #include "llvm/Support/ErrorHandling.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include "llvm/Target/TargetInstrInfo.h"
92 #include "llvm/Target/TargetOpcodes.h"
93 #include "llvm/Target/TargetRegisterInfo.h"
94 #include "llvm/Target/TargetSubtargetInfo.h"
95 #include <cassert>
96 #include <cstdint>
97 #include <memory>
98 #include <utility>
99 
100 using namespace llvm;
101 
102 #define DEBUG_TYPE "peephole-opt"
103 
104 // Optimize Extensions
105 static cl::opt<bool>
106 Aggressive("aggressive-ext-opt", cl::Hidden,
107            cl::desc("Aggressive extension optimization"));
108 
109 static cl::opt<bool>
110 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
111                 cl::desc("Disable the peephole optimizer"));
112 
113 static cl::opt<bool>
114 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
115                   cl::desc("Disable advanced copy optimization"));
116 
117 static cl::opt<bool> DisableNAPhysCopyOpt(
118     "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
119     cl::desc("Disable non-allocatable physical register copy optimization"));
120 
121 // Limit the number of PHI instructions to process
122 // in PeepholeOptimizer::getNextSource.
123 static cl::opt<unsigned> RewritePHILimit(
124     "rewrite-phi-limit", cl::Hidden, cl::init(10),
125     cl::desc("Limit the length of PHI chains to lookup"));
126 
127 // Limit the length of recurrence chain when evaluating the benefit of
128 // commuting operands.
129 static cl::opt<unsigned> MaxRecurrenceChain(
130     "recurrence-chain-limit", cl::Hidden, cl::init(3),
131     cl::desc("Maximum length of recurrence chain when evaluating the benefit "
132              "of commuting operands"));
133 
134 
135 STATISTIC(NumReuse,      "Number of extension results reused");
136 STATISTIC(NumCmps,       "Number of compares eliminated");
137 STATISTIC(NumImmFold,    "Number of move immediate folded");
138 STATISTIC(NumLoadFold,   "Number of loads folded");
139 STATISTIC(NumSelects,    "Number of selects optimized");
140 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
141 STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
142 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
143 
144 namespace {
145 
146   class ValueTrackerResult;
147   class RecurrenceInstr;
148 
149   class PeepholeOptimizer : public MachineFunctionPass {
150     const TargetInstrInfo *TII;
151     const TargetRegisterInfo *TRI;
152     MachineRegisterInfo   *MRI;
153     MachineDominatorTree  *DT;  // Machine dominator tree
154     MachineLoopInfo       *MLI;
155 
156   public:
157     static char ID; // Pass identification
158 
159     PeepholeOptimizer() : MachineFunctionPass(ID) {
160       initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
161     }
162 
163     bool runOnMachineFunction(MachineFunction &MF) override;
164 
165     void getAnalysisUsage(AnalysisUsage &AU) const override {
166       AU.setPreservesCFG();
167       MachineFunctionPass::getAnalysisUsage(AU);
168       AU.addRequired<MachineLoopInfo>();
169       AU.addPreserved<MachineLoopInfo>();
170       if (Aggressive) {
171         AU.addRequired<MachineDominatorTree>();
172         AU.addPreserved<MachineDominatorTree>();
173       }
174     }
175 
176     /// \brief Track Def -> Use info used for rewriting copies.
177     using RewriteMapTy =
178         SmallDenseMap<TargetInstrInfo::RegSubRegPair, ValueTrackerResult>;
179 
180     /// \brief Sequence of instructions that formulate recurrence cycle.
181     using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
182 
183   private:
184     bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
185     bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
186                           SmallPtrSetImpl<MachineInstr*> &LocalMIs);
187     bool optimizeSelect(MachineInstr *MI,
188                         SmallPtrSetImpl<MachineInstr *> &LocalMIs);
189     bool optimizeCondBranch(MachineInstr *MI);
190     bool optimizeCoalescableCopy(MachineInstr *MI);
191     bool optimizeUncoalescableCopy(MachineInstr *MI,
192                                    SmallPtrSetImpl<MachineInstr *> &LocalMIs);
193     bool optimizeRecurrence(MachineInstr &PHI);
194     bool findNextSource(unsigned Reg, unsigned SubReg,
195                         RewriteMapTy &RewriteMap);
196     bool isMoveImmediate(MachineInstr *MI,
197                          SmallSet<unsigned, 4> &ImmDefRegs,
198                          DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
199     bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
200                        SmallSet<unsigned, 4> &ImmDefRegs,
201                        DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
202 
203     /// \brief Finds recurrence cycles, but only ones that formulated around
204     /// a def operand and a use operand that are tied. If there is a use
205     /// operand commutable with the tied use operand, find recurrence cycle
206     /// along that operand as well.
207     bool findTargetRecurrence(unsigned Reg,
208                               const SmallSet<unsigned, 2> &TargetReg,
209                               RecurrenceCycle &RC);
210 
211     /// \brief If copy instruction \p MI is a virtual register copy, track it in
212     /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was
213     /// previously seen as a copy, replace the uses of this copy with the
214     /// previously seen copy's destination register.
215     bool foldRedundantCopy(MachineInstr *MI,
216                            SmallSet<unsigned, 4> &CopySrcRegs,
217                            DenseMap<unsigned, MachineInstr *> &CopyMIs);
218 
219     /// \brief Is the register \p Reg a non-allocatable physical register?
220     bool isNAPhysCopy(unsigned Reg);
221 
222     /// \brief If copy instruction \p MI is a non-allocatable virtual<->physical
223     /// register copy, track it in the \p NAPhysToVirtMIs map. If this
224     /// non-allocatable physical register was previously copied to a virtual
225     /// registered and hasn't been clobbered, the virt->phys copy can be
226     /// deleted.
227     bool foldRedundantNAPhysCopy(
228         MachineInstr *MI,
229         DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs);
230 
231     bool isLoadFoldable(MachineInstr *MI,
232                         SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
233 
234     /// \brief Check whether \p MI is understood by the register coalescer
235     /// but may require some rewriting.
236     bool isCoalescableCopy(const MachineInstr &MI) {
237       // SubregToRegs are not interesting, because they are already register
238       // coalescer friendly.
239       return MI.isCopy() || (!DisableAdvCopyOpt &&
240                              (MI.isRegSequence() || MI.isInsertSubreg() ||
241                               MI.isExtractSubreg()));
242     }
243 
244     /// \brief Check whether \p MI is a copy like instruction that is
245     /// not recognized by the register coalescer.
246     bool isUncoalescableCopy(const MachineInstr &MI) {
247       return MI.isBitcast() ||
248              (!DisableAdvCopyOpt &&
249               (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
250                MI.isExtractSubregLike()));
251     }
252   };
253 
254   /// \brief Helper class to hold instructions that are inside recurrence
255   /// cycles. The recurrence cycle is formulated around 1) a def operand and its
256   /// tied use operand, or 2) a def operand and a use operand that is commutable
257   /// with another use operand which is tied to the def operand. In the latter
258   /// case, index of the tied use operand and the commutable use operand are
259   /// maintained with CommutePair.
260   class RecurrenceInstr {
261   public:
262     using IndexPair = std::pair<unsigned, unsigned>;
263 
264     RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
265     RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
266       : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
267 
268     MachineInstr *getMI() const { return MI; }
269     Optional<IndexPair> getCommutePair() const { return CommutePair; }
270 
271   private:
272     MachineInstr *MI;
273     Optional<IndexPair> CommutePair;
274   };
275 
276   /// \brief Helper class to hold a reply for ValueTracker queries. Contains the
277   /// returned sources for a given search and the instructions where the sources
278   /// were tracked from.
279   class ValueTrackerResult {
280   private:
281     /// Track all sources found by one ValueTracker query.
282     SmallVector<TargetInstrInfo::RegSubRegPair, 2> RegSrcs;
283 
284     /// Instruction using the sources in 'RegSrcs'.
285     const MachineInstr *Inst = nullptr;
286 
287   public:
288     ValueTrackerResult() = default;
289 
290     ValueTrackerResult(unsigned Reg, unsigned SubReg) {
291       addSource(Reg, SubReg);
292     }
293 
294     bool isValid() const { return getNumSources() > 0; }
295 
296     void setInst(const MachineInstr *I) { Inst = I; }
297     const MachineInstr *getInst() const { return Inst; }
298 
299     void clear() {
300       RegSrcs.clear();
301       Inst = nullptr;
302     }
303 
304     void addSource(unsigned SrcReg, unsigned SrcSubReg) {
305       RegSrcs.push_back(TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg));
306     }
307 
308     void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) {
309       assert(Idx < getNumSources() && "Reg pair source out of index");
310       RegSrcs[Idx] = TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg);
311     }
312 
313     int getNumSources() const { return RegSrcs.size(); }
314 
315     unsigned getSrcReg(int Idx) const {
316       assert(Idx < getNumSources() && "Reg source out of index");
317       return RegSrcs[Idx].Reg;
318     }
319 
320     unsigned getSrcSubReg(int Idx) const {
321       assert(Idx < getNumSources() && "SubReg source out of index");
322       return RegSrcs[Idx].SubReg;
323     }
324 
325     bool operator==(const ValueTrackerResult &Other) {
326       if (Other.getInst() != getInst())
327         return false;
328 
329       if (Other.getNumSources() != getNumSources())
330         return false;
331 
332       for (int i = 0, e = Other.getNumSources(); i != e; ++i)
333         if (Other.getSrcReg(i) != getSrcReg(i) ||
334             Other.getSrcSubReg(i) != getSrcSubReg(i))
335           return false;
336       return true;
337     }
338   };
339 
340   /// \brief Helper class to track the possible sources of a value defined by
341   /// a (chain of) copy related instructions.
342   /// Given a definition (instruction and definition index), this class
343   /// follows the use-def chain to find successive suitable sources.
344   /// The given source can be used to rewrite the definition into
345   /// def = COPY src.
346   ///
347   /// For instance, let us consider the following snippet:
348   /// v0 =
349   /// v2 = INSERT_SUBREG v1, v0, sub0
350   /// def = COPY v2.sub0
351   ///
352   /// Using a ValueTracker for def = COPY v2.sub0 will give the following
353   /// suitable sources:
354   /// v2.sub0 and v0.
355   /// Then, def can be rewritten into def = COPY v0.
356   class ValueTracker {
357   private:
358     /// The current point into the use-def chain.
359     const MachineInstr *Def = nullptr;
360 
361     /// The index of the definition in Def.
362     unsigned DefIdx = 0;
363 
364     /// The sub register index of the definition.
365     unsigned DefSubReg;
366 
367     /// The register where the value can be found.
368     unsigned Reg;
369 
370     /// Specifiy whether or not the value tracking looks through
371     /// complex instructions. When this is false, the value tracker
372     /// bails on everything that is not a copy or a bitcast.
373     ///
374     /// Note: This could have been implemented as a specialized version of
375     /// the ValueTracker class but that would have complicated the code of
376     /// the users of this class.
377     bool UseAdvancedTracking;
378 
379     /// MachineRegisterInfo used to perform tracking.
380     const MachineRegisterInfo &MRI;
381 
382     /// Optional TargetInstrInfo used to perform some complex
383     /// tracking.
384     const TargetInstrInfo *TII;
385 
386     /// \brief Dispatcher to the right underlying implementation of
387     /// getNextSource.
388     ValueTrackerResult getNextSourceImpl();
389 
390     /// \brief Specialized version of getNextSource for Copy instructions.
391     ValueTrackerResult getNextSourceFromCopy();
392 
393     /// \brief Specialized version of getNextSource for Bitcast instructions.
394     ValueTrackerResult getNextSourceFromBitcast();
395 
396     /// \brief Specialized version of getNextSource for RegSequence
397     /// instructions.
398     ValueTrackerResult getNextSourceFromRegSequence();
399 
400     /// \brief Specialized version of getNextSource for InsertSubreg
401     /// instructions.
402     ValueTrackerResult getNextSourceFromInsertSubreg();
403 
404     /// \brief Specialized version of getNextSource for ExtractSubreg
405     /// instructions.
406     ValueTrackerResult getNextSourceFromExtractSubreg();
407 
408     /// \brief Specialized version of getNextSource for SubregToReg
409     /// instructions.
410     ValueTrackerResult getNextSourceFromSubregToReg();
411 
412     /// \brief Specialized version of getNextSource for PHI instructions.
413     ValueTrackerResult getNextSourceFromPHI();
414 
415   public:
416     /// \brief Create a ValueTracker instance for the value defined by \p Reg.
417     /// \p DefSubReg represents the sub register index the value tracker will
418     /// track. It does not need to match the sub register index used in the
419     /// definition of \p Reg.
420     /// \p UseAdvancedTracking specifies whether or not the value tracker looks
421     /// through complex instructions. By default (false), it handles only copy
422     /// and bitcast instructions.
423     /// If \p Reg is a physical register, a value tracker constructed with
424     /// this constructor will not find any alternative source.
425     /// Indeed, when \p Reg is a physical register that constructor does not
426     /// know which definition of \p Reg it should track.
427     /// Use the next constructor to track a physical register.
428     ValueTracker(unsigned Reg, unsigned DefSubReg,
429                  const MachineRegisterInfo &MRI,
430                  bool UseAdvancedTracking = false,
431                  const TargetInstrInfo *TII = nullptr)
432         : DefSubReg(DefSubReg), Reg(Reg),
433           UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
434       if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
435         Def = MRI.getVRegDef(Reg);
436         DefIdx = MRI.def_begin(Reg).getOperandNo();
437       }
438     }
439 
440     /// \brief Create a ValueTracker instance for the value defined by
441     /// the pair \p MI, \p DefIdx.
442     /// Unlike the other constructor, the value tracker produced by this one
443     /// may be able to find a new source when the definition is a physical
444     /// register.
445     /// This could be useful to rewrite target specific instructions into
446     /// generic copy instructions.
447     ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg,
448                  const MachineRegisterInfo &MRI,
449                  bool UseAdvancedTracking = false,
450                  const TargetInstrInfo *TII = nullptr)
451         : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg),
452           UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
453       assert(DefIdx < Def->getDesc().getNumDefs() &&
454              Def->getOperand(DefIdx).isReg() && "Invalid definition");
455       Reg = Def->getOperand(DefIdx).getReg();
456     }
457 
458     /// \brief Following the use-def chain, get the next available source
459     /// for the tracked value.
460     /// \return A ValueTrackerResult containing a set of registers
461     /// and sub registers with tracked values. A ValueTrackerResult with
462     /// an empty set of registers means no source was found.
463     ValueTrackerResult getNextSource();
464 
465     /// \brief Get the last register where the initial value can be found.
466     /// Initially this is the register of the definition.
467     /// Then, after each successful call to getNextSource, this is the
468     /// register of the last source.
469     unsigned getReg() const { return Reg; }
470   };
471 
472 } // end anonymous namespace
473 
474 char PeepholeOptimizer::ID = 0;
475 
476 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
477 
478 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
479                 "Peephole Optimizations", false, false)
480 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
481 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
482 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
483                 "Peephole Optimizations", false, false)
484 
485 /// If instruction is a copy-like instruction, i.e. it reads a single register
486 /// and writes a single register and it does not modify the source, and if the
487 /// source value is preserved as a sub-register of the result, then replace all
488 /// reachable uses of the source with the subreg of the result.
489 ///
490 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
491 /// the code. Since this code does not currently share EXTRACTs, just ignore all
492 /// debug uses.
493 bool PeepholeOptimizer::
494 optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
495                  SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
496   unsigned SrcReg, DstReg, SubIdx;
497   if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
498     return false;
499 
500   if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
501       TargetRegisterInfo::isPhysicalRegister(SrcReg))
502     return false;
503 
504   if (MRI->hasOneNonDBGUse(SrcReg))
505     // No other uses.
506     return false;
507 
508   // Ensure DstReg can get a register class that actually supports
509   // sub-registers. Don't change the class until we commit.
510   const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
511   DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
512   if (!DstRC)
513     return false;
514 
515   // The ext instr may be operating on a sub-register of SrcReg as well.
516   // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
517   // register.
518   // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
519   // SrcReg:SubIdx should be replaced.
520   bool UseSrcSubIdx =
521       TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
522 
523   // The source has other uses. See if we can replace the other uses with use of
524   // the result of the extension.
525   SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
526   for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
527     ReachedBBs.insert(UI.getParent());
528 
529   // Uses that are in the same BB of uses of the result of the instruction.
530   SmallVector<MachineOperand*, 8> Uses;
531 
532   // Uses that the result of the instruction can reach.
533   SmallVector<MachineOperand*, 8> ExtendedUses;
534 
535   bool ExtendLife = true;
536   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
537     MachineInstr *UseMI = UseMO.getParent();
538     if (UseMI == MI)
539       continue;
540 
541     if (UseMI->isPHI()) {
542       ExtendLife = false;
543       continue;
544     }
545 
546     // Only accept uses of SrcReg:SubIdx.
547     if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
548       continue;
549 
550     // It's an error to translate this:
551     //
552     //    %reg1025 = <sext> %reg1024
553     //     ...
554     //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
555     //
556     // into this:
557     //
558     //    %reg1025 = <sext> %reg1024
559     //     ...
560     //    %reg1027 = COPY %reg1025:4
561     //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
562     //
563     // The problem here is that SUBREG_TO_REG is there to assert that an
564     // implicit zext occurs. It doesn't insert a zext instruction. If we allow
565     // the COPY here, it will give us the value after the <sext>, not the
566     // original value of %reg1024 before <sext>.
567     if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
568       continue;
569 
570     MachineBasicBlock *UseMBB = UseMI->getParent();
571     if (UseMBB == MBB) {
572       // Local uses that come after the extension.
573       if (!LocalMIs.count(UseMI))
574         Uses.push_back(&UseMO);
575     } else if (ReachedBBs.count(UseMBB)) {
576       // Non-local uses where the result of the extension is used. Always
577       // replace these unless it's a PHI.
578       Uses.push_back(&UseMO);
579     } else if (Aggressive && DT->dominates(MBB, UseMBB)) {
580       // We may want to extend the live range of the extension result in order
581       // to replace these uses.
582       ExtendedUses.push_back(&UseMO);
583     } else {
584       // Both will be live out of the def MBB anyway. Don't extend live range of
585       // the extension result.
586       ExtendLife = false;
587       break;
588     }
589   }
590 
591   if (ExtendLife && !ExtendedUses.empty())
592     // Extend the liveness of the extension result.
593     Uses.append(ExtendedUses.begin(), ExtendedUses.end());
594 
595   // Now replace all uses.
596   bool Changed = false;
597   if (!Uses.empty()) {
598     SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
599 
600     // Look for PHI uses of the extended result, we don't want to extend the
601     // liveness of a PHI input. It breaks all kinds of assumptions down
602     // stream. A PHI use is expected to be the kill of its source values.
603     for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
604       if (UI.isPHI())
605         PHIBBs.insert(UI.getParent());
606 
607     const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
608     for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
609       MachineOperand *UseMO = Uses[i];
610       MachineInstr *UseMI = UseMO->getParent();
611       MachineBasicBlock *UseMBB = UseMI->getParent();
612       if (PHIBBs.count(UseMBB))
613         continue;
614 
615       // About to add uses of DstReg, clear DstReg's kill flags.
616       if (!Changed) {
617         MRI->clearKillFlags(DstReg);
618         MRI->constrainRegClass(DstReg, DstRC);
619       }
620 
621       unsigned NewVR = MRI->createVirtualRegister(RC);
622       MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
623                                    TII->get(TargetOpcode::COPY), NewVR)
624         .addReg(DstReg, 0, SubIdx);
625       // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
626       if (UseSrcSubIdx) {
627         Copy->getOperand(0).setSubReg(SubIdx);
628         Copy->getOperand(0).setIsUndef();
629       }
630       UseMO->setReg(NewVR);
631       ++NumReuse;
632       Changed = true;
633     }
634   }
635 
636   return Changed;
637 }
638 
639 /// If the instruction is a compare and the previous instruction it's comparing
640 /// against already sets (or could be modified to set) the same flag as the
641 /// compare, then we can remove the comparison and use the flag from the
642 /// previous instruction.
643 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
644                                          MachineBasicBlock *MBB) {
645   // If this instruction is a comparison against zero and isn't comparing a
646   // physical register, we can try to optimize it.
647   unsigned SrcReg, SrcReg2;
648   int CmpMask, CmpValue;
649   if (!TII->analyzeCompare(*MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
650       TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
651       (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
652     return false;
653 
654   // Attempt to optimize the comparison instruction.
655   if (TII->optimizeCompareInstr(*MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
656     ++NumCmps;
657     return true;
658   }
659 
660   return false;
661 }
662 
663 /// Optimize a select instruction.
664 bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI,
665                             SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
666   unsigned TrueOp = 0;
667   unsigned FalseOp = 0;
668   bool Optimizable = false;
669   SmallVector<MachineOperand, 4> Cond;
670   if (TII->analyzeSelect(*MI, Cond, TrueOp, FalseOp, Optimizable))
671     return false;
672   if (!Optimizable)
673     return false;
674   if (!TII->optimizeSelect(*MI, LocalMIs))
675     return false;
676   MI->eraseFromParent();
677   ++NumSelects;
678   return true;
679 }
680 
681 /// \brief Check if a simpler conditional branch can be
682 /// generated
683 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) {
684   return TII->optimizeCondBranch(*MI);
685 }
686 
687 /// \brief Try to find the next source that share the same register file
688 /// for the value defined by \p Reg and \p SubReg.
689 /// When true is returned, the \p RewriteMap can be used by the client to
690 /// retrieve all Def -> Use along the way up to the next source. Any found
691 /// Use that is not itself a key for another entry, is the next source to
692 /// use. During the search for the next source, multiple sources can be found
693 /// given multiple incoming sources of a PHI instruction. In this case, we
694 /// look in each PHI source for the next source; all found next sources must
695 /// share the same register file as \p Reg and \p SubReg. The client should
696 /// then be capable to rewrite all intermediate PHIs to get the next source.
697 /// \return False if no alternative sources are available. True otherwise.
698 bool PeepholeOptimizer::findNextSource(unsigned Reg, unsigned SubReg,
699                                        RewriteMapTy &RewriteMap) {
700   // Do not try to find a new source for a physical register.
701   // So far we do not have any motivating example for doing that.
702   // Thus, instead of maintaining untested code, we will revisit that if
703   // that changes at some point.
704   if (TargetRegisterInfo::isPhysicalRegister(Reg))
705     return false;
706   const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
707 
708   SmallVector<TargetInstrInfo::RegSubRegPair, 4> SrcToLook;
709   TargetInstrInfo::RegSubRegPair CurSrcPair(Reg, SubReg);
710   SrcToLook.push_back(CurSrcPair);
711 
712   unsigned PHICount = 0;
713   while (!SrcToLook.empty() && PHICount < RewritePHILimit) {
714     TargetInstrInfo::RegSubRegPair Pair = SrcToLook.pop_back_val();
715     // As explained above, do not handle physical registers
716     if (TargetRegisterInfo::isPhysicalRegister(Pair.Reg))
717       return false;
718 
719     CurSrcPair = Pair;
720     ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI,
721                             !DisableAdvCopyOpt, TII);
722     ValueTrackerResult Res;
723     bool ShouldRewrite = false;
724 
725     do {
726       // Follow the chain of copies until we reach the top of the use-def chain
727       // or find a more suitable source.
728       Res = ValTracker.getNextSource();
729       if (!Res.isValid())
730         break;
731 
732       // Insert the Def -> Use entry for the recently found source.
733       ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
734       if (CurSrcRes.isValid()) {
735         assert(CurSrcRes == Res && "ValueTrackerResult found must match");
736         // An existent entry with multiple sources is a PHI cycle we must avoid.
737         // Otherwise it's an entry with a valid next source we already found.
738         if (CurSrcRes.getNumSources() > 1) {
739           DEBUG(dbgs() << "findNextSource: found PHI cycle, aborting...\n");
740           return false;
741         }
742         break;
743       }
744       RewriteMap.insert(std::make_pair(CurSrcPair, Res));
745 
746       // ValueTrackerResult usually have one source unless it's the result from
747       // a PHI instruction. Add the found PHI edges to be looked up further.
748       unsigned NumSrcs = Res.getNumSources();
749       if (NumSrcs > 1) {
750         PHICount++;
751         for (unsigned i = 0; i < NumSrcs; ++i)
752           SrcToLook.push_back(TargetInstrInfo::RegSubRegPair(
753               Res.getSrcReg(i), Res.getSrcSubReg(i)));
754         break;
755       }
756 
757       CurSrcPair.Reg = Res.getSrcReg(0);
758       CurSrcPair.SubReg = Res.getSrcSubReg(0);
759       // Do not extend the live-ranges of physical registers as they add
760       // constraints to the register allocator. Moreover, if we want to extend
761       // the live-range of a physical register, unlike SSA virtual register,
762       // we will have to check that they aren't redefine before the related use.
763       if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg))
764         return false;
765 
766       const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
767       ShouldRewrite = TRI->shouldRewriteCopySrc(DefRC, SubReg, SrcRC,
768                                                 CurSrcPair.SubReg);
769     } while (!ShouldRewrite);
770 
771     // Continue looking for new sources...
772     if (Res.isValid())
773       continue;
774 
775     // Do not continue searching for a new source if the there's at least
776     // one use-def which cannot be rewritten.
777     if (!ShouldRewrite)
778       return false;
779   }
780 
781   if (PHICount >= RewritePHILimit) {
782     DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
783     return false;
784   }
785 
786   // If we did not find a more suitable source, there is nothing to optimize.
787   return CurSrcPair.Reg != Reg;
788 }
789 
790 /// \brief Insert a PHI instruction with incoming edges \p SrcRegs that are
791 /// guaranteed to have the same register class. This is necessary whenever we
792 /// successfully traverse a PHI instruction and find suitable sources coming
793 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
794 /// suitable to be used in a new COPY instruction.
795 static MachineInstr *
796 insertPHI(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
797           const SmallVectorImpl<TargetInstrInfo::RegSubRegPair> &SrcRegs,
798           MachineInstr *OrigPHI) {
799   assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
800 
801   const TargetRegisterClass *NewRC = MRI->getRegClass(SrcRegs[0].Reg);
802   unsigned NewVR = MRI->createVirtualRegister(NewRC);
803   MachineBasicBlock *MBB = OrigPHI->getParent();
804   MachineInstrBuilder MIB = BuildMI(*MBB, OrigPHI, OrigPHI->getDebugLoc(),
805                                     TII->get(TargetOpcode::PHI), NewVR);
806 
807   unsigned MBBOpIdx = 2;
808   for (auto RegPair : SrcRegs) {
809     MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
810     MIB.addMBB(OrigPHI->getOperand(MBBOpIdx).getMBB());
811     // Since we're extended the lifetime of RegPair.Reg, clear the
812     // kill flags to account for that and make RegPair.Reg reaches
813     // the new PHI.
814     MRI->clearKillFlags(RegPair.Reg);
815     MBBOpIdx += 2;
816   }
817 
818   return MIB;
819 }
820 
821 namespace {
822 
823 /// \brief Helper class to rewrite the arguments of a copy-like instruction.
824 class CopyRewriter {
825 protected:
826   /// The copy-like instruction.
827   MachineInstr &CopyLike;
828 
829   /// The index of the source being rewritten.
830   unsigned CurrentSrcIdx = 0;
831 
832 public:
833   CopyRewriter(MachineInstr &MI) : CopyLike(MI) {}
834   virtual ~CopyRewriter() = default;
835 
836   /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and
837   /// the related value that it affects (TrackReg, TrackSubReg).
838   /// A source is considered rewritable if its register class and the
839   /// register class of the related TrackReg may not be register
840   /// coalescer friendly. In other words, given a copy-like instruction
841   /// not all the arguments may be returned at rewritable source, since
842   /// some arguments are none to be register coalescer friendly.
843   ///
844   /// Each call of this method moves the current source to the next
845   /// rewritable source.
846   /// For instance, let CopyLike be the instruction to rewrite.
847   /// CopyLike has one definition and one source:
848   /// dst.dstSubIdx = CopyLike src.srcSubIdx.
849   ///
850   /// The first call will give the first rewritable source, i.e.,
851   /// the only source this instruction has:
852   /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
853   /// This source defines the whole definition, i.e.,
854   /// (TrackReg, TrackSubReg) = (dst, dstSubIdx).
855   ///
856   /// The second and subsequent calls will return false, as there is only one
857   /// rewritable source.
858   ///
859   /// \return True if a rewritable source has been found, false otherwise.
860   /// The output arguments are valid if and only if true is returned.
861   virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
862                                        unsigned &TrackReg,
863                                        unsigned &TrackSubReg) {
864     // If CurrentSrcIdx == 1, this means this function has already been called
865     // once. CopyLike has one definition and one argument, thus, there is
866     // nothing else to rewrite.
867     if (!CopyLike.isCopy() || CurrentSrcIdx == 1)
868       return false;
869     // This is the first call to getNextRewritableSource.
870     // Move the CurrentSrcIdx to remember that we made that call.
871     CurrentSrcIdx = 1;
872     // The rewritable source is the argument.
873     const MachineOperand &MOSrc = CopyLike.getOperand(1);
874     SrcReg = MOSrc.getReg();
875     SrcSubReg = MOSrc.getSubReg();
876     // What we track are the alternative sources of the definition.
877     const MachineOperand &MODef = CopyLike.getOperand(0);
878     TrackReg = MODef.getReg();
879     TrackSubReg = MODef.getSubReg();
880     return true;
881   }
882 
883   /// \brief Rewrite the current source with \p NewReg and \p NewSubReg
884   /// if possible.
885   /// \return True if the rewriting was possible, false otherwise.
886   virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) {
887     if (!CopyLike.isCopy() || CurrentSrcIdx != 1)
888       return false;
889     MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
890     MOSrc.setReg(NewReg);
891     MOSrc.setSubReg(NewSubReg);
892     return true;
893   }
894 
895   /// \brief Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find
896   /// the new source to use for rewrite. If \p HandleMultipleSources is true and
897   /// multiple sources for a given \p Def are found along the way, we found a
898   /// PHI instructions that needs to be rewritten.
899   /// TODO: HandleMultipleSources should be removed once we test PHI handling
900   /// with coalescable copies.
901   TargetInstrInfo::RegSubRegPair
902   getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
903                TargetInstrInfo::RegSubRegPair Def,
904                PeepholeOptimizer::RewriteMapTy &RewriteMap,
905                bool HandleMultipleSources = true) {
906     TargetInstrInfo::RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
907     do {
908       ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
909       // If there are no entries on the map, LookupSrc is the new source.
910       if (!Res.isValid())
911         return LookupSrc;
912 
913       // There's only one source for this definition, keep searching...
914       unsigned NumSrcs = Res.getNumSources();
915       if (NumSrcs == 1) {
916         LookupSrc.Reg = Res.getSrcReg(0);
917         LookupSrc.SubReg = Res.getSrcSubReg(0);
918         continue;
919       }
920 
921       // TODO: Remove once multiple srcs w/ coalescable copies are supported.
922       if (!HandleMultipleSources)
923         break;
924 
925       // Multiple sources, recurse into each source to find a new source
926       // for it. Then, rewrite the PHI accordingly to its new edges.
927       SmallVector<TargetInstrInfo::RegSubRegPair, 4> NewPHISrcs;
928       for (unsigned i = 0; i < NumSrcs; ++i) {
929         TargetInstrInfo::RegSubRegPair PHISrc(Res.getSrcReg(i),
930                                               Res.getSrcSubReg(i));
931         NewPHISrcs.push_back(
932             getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
933       }
934 
935       // Build the new PHI node and return its def register as the new source.
936       MachineInstr *OrigPHI = const_cast<MachineInstr *>(Res.getInst());
937       MachineInstr *NewPHI = insertPHI(MRI, TII, NewPHISrcs, OrigPHI);
938       DEBUG(dbgs() << "-- getNewSource\n");
939       DEBUG(dbgs() << "   Replacing: " << *OrigPHI);
940       DEBUG(dbgs() << "        With: " << *NewPHI);
941       const MachineOperand &MODef = NewPHI->getOperand(0);
942       return TargetInstrInfo::RegSubRegPair(MODef.getReg(), MODef.getSubReg());
943 
944     } while (true);
945 
946     return TargetInstrInfo::RegSubRegPair(0, 0);
947   }
948 
949   /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap
950   /// and create a new COPY instruction. More info about RewriteMap in
951   /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
952   /// Uncoalescable copies, since they are copy like instructions that aren't
953   /// recognized by the register allocator.
954   virtual MachineInstr *
955   RewriteSource(TargetInstrInfo::RegSubRegPair Def,
956                 PeepholeOptimizer::RewriteMapTy &RewriteMap) {
957     return nullptr;
958   }
959 };
960 
961 /// \brief Helper class to rewrite uncoalescable copy like instructions
962 /// into new COPY (coalescable friendly) instructions.
963 class UncoalescableRewriter : public CopyRewriter {
964 protected:
965   const TargetInstrInfo &TII;
966   MachineRegisterInfo   &MRI;
967 
968   /// The number of defs in the bitcast
969   unsigned NumDefs;
970 
971 public:
972   UncoalescableRewriter(MachineInstr &MI, const TargetInstrInfo &TII,
973                          MachineRegisterInfo &MRI)
974       : CopyRewriter(MI), TII(TII), MRI(MRI) {
975     NumDefs = MI.getDesc().getNumDefs();
976   }
977 
978   /// \brief Get the next rewritable def source (TrackReg, TrackSubReg)
979   /// All such sources need to be considered rewritable in order to
980   /// rewrite a uncoalescable copy-like instruction. This method return
981   /// each definition that must be checked if rewritable.
982   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
983                                unsigned &TrackReg,
984                                unsigned &TrackSubReg) override {
985     // Find the next non-dead definition and continue from there.
986     if (CurrentSrcIdx == NumDefs)
987       return false;
988 
989     while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
990       ++CurrentSrcIdx;
991       if (CurrentSrcIdx == NumDefs)
992         return false;
993     }
994 
995     // What we track are the alternative sources of the definition.
996     const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
997     TrackReg = MODef.getReg();
998     TrackSubReg = MODef.getSubReg();
999 
1000     CurrentSrcIdx++;
1001     return true;
1002   }
1003 
1004   /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap
1005   /// and create a new COPY instruction. More info about RewriteMap in
1006   /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1007   /// Uncoalescable copies, since they are copy like instructions that aren't
1008   /// recognized by the register allocator.
1009   MachineInstr *
1010   RewriteSource(TargetInstrInfo::RegSubRegPair Def,
1011                 PeepholeOptimizer::RewriteMapTy &RewriteMap) override {
1012     assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) &&
1013            "We do not rewrite physical registers");
1014 
1015     // Find the new source to use in the COPY rewrite.
1016     TargetInstrInfo::RegSubRegPair NewSrc =
1017         getNewSource(&MRI, &TII, Def, RewriteMap);
1018 
1019     // Insert the COPY.
1020     const TargetRegisterClass *DefRC = MRI.getRegClass(Def.Reg);
1021     unsigned NewVR = MRI.createVirtualRegister(DefRC);
1022 
1023     MachineInstr *NewCopy =
1024         BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1025                 TII.get(TargetOpcode::COPY), NewVR)
1026             .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1027 
1028     NewCopy->getOperand(0).setSubReg(Def.SubReg);
1029     if (Def.SubReg)
1030       NewCopy->getOperand(0).setIsUndef();
1031 
1032     DEBUG(dbgs() << "-- RewriteSource\n");
1033     DEBUG(dbgs() << "   Replacing: " << CopyLike);
1034     DEBUG(dbgs() << "        With: " << *NewCopy);
1035     MRI.replaceRegWith(Def.Reg, NewVR);
1036     MRI.clearKillFlags(NewVR);
1037 
1038     // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1039     // account for that.
1040     MRI.clearKillFlags(NewSrc.Reg);
1041 
1042     return NewCopy;
1043   }
1044 };
1045 
1046 /// \brief Specialized rewriter for INSERT_SUBREG instruction.
1047 class InsertSubregRewriter : public CopyRewriter {
1048 public:
1049   InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) {
1050     assert(MI.isInsertSubreg() && "Invalid instruction");
1051   }
1052 
1053   /// \brief See CopyRewriter::getNextRewritableSource.
1054   /// Here CopyLike has the following form:
1055   /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
1056   /// Src1 has the same register class has dst, hence, there is
1057   /// nothing to rewrite.
1058   /// Src2.src2SubIdx, may not be register coalescer friendly.
1059   /// Therefore, the first call to this method returns:
1060   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1061   /// (TrackReg, TrackSubReg) = (dst, subIdx).
1062   ///
1063   /// Subsequence calls will return false.
1064   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
1065                                unsigned &TrackReg,
1066                                unsigned &TrackSubReg) override {
1067     // If we already get the only source we can rewrite, return false.
1068     if (CurrentSrcIdx == 2)
1069       return false;
1070     // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
1071     CurrentSrcIdx = 2;
1072     const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
1073     SrcReg = MOInsertedReg.getReg();
1074     SrcSubReg = MOInsertedReg.getSubReg();
1075     const MachineOperand &MODef = CopyLike.getOperand(0);
1076 
1077     // We want to track something that is compatible with the
1078     // partial definition.
1079     TrackReg = MODef.getReg();
1080     if (MODef.getSubReg())
1081       // Bail if we have to compose sub-register indices.
1082       return false;
1083     TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm();
1084     return true;
1085   }
1086 
1087   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
1088     if (CurrentSrcIdx != 2)
1089       return false;
1090     // We are rewriting the inserted reg.
1091     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1092     MO.setReg(NewReg);
1093     MO.setSubReg(NewSubReg);
1094     return true;
1095   }
1096 };
1097 
1098 /// \brief Specialized rewriter for EXTRACT_SUBREG instruction.
1099 class ExtractSubregRewriter : public CopyRewriter {
1100   const TargetInstrInfo &TII;
1101 
1102 public:
1103   ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
1104       : CopyRewriter(MI), TII(TII) {
1105     assert(MI.isExtractSubreg() && "Invalid instruction");
1106   }
1107 
1108   /// \brief See CopyRewriter::getNextRewritableSource.
1109   /// Here CopyLike has the following form:
1110   /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
1111   /// There is only one rewritable source: Src.subIdx,
1112   /// which defines dst.dstSubIdx.
1113   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
1114                                unsigned &TrackReg,
1115                                unsigned &TrackSubReg) override {
1116     // If we already get the only source we can rewrite, return false.
1117     if (CurrentSrcIdx == 1)
1118       return false;
1119     // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
1120     CurrentSrcIdx = 1;
1121     const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
1122     SrcReg = MOExtractedReg.getReg();
1123     // If we have to compose sub-register indices, bail out.
1124     if (MOExtractedReg.getSubReg())
1125       return false;
1126 
1127     SrcSubReg = CopyLike.getOperand(2).getImm();
1128 
1129     // We want to track something that is compatible with the definition.
1130     const MachineOperand &MODef = CopyLike.getOperand(0);
1131     TrackReg = MODef.getReg();
1132     TrackSubReg = MODef.getSubReg();
1133     return true;
1134   }
1135 
1136   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
1137     // The only source we can rewrite is the input register.
1138     if (CurrentSrcIdx != 1)
1139       return false;
1140 
1141     CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
1142 
1143     // If we find a source that does not require to extract something,
1144     // rewrite the operation with a copy.
1145     if (!NewSubReg) {
1146       // Move the current index to an invalid position.
1147       // We do not want another call to this method to be able
1148       // to do any change.
1149       CurrentSrcIdx = -1;
1150       // Rewrite the operation as a COPY.
1151       // Get rid of the sub-register index.
1152       CopyLike.RemoveOperand(2);
1153       // Morph the operation into a COPY.
1154       CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1155       return true;
1156     }
1157     CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1158     return true;
1159   }
1160 };
1161 
1162 /// \brief Specialized rewriter for REG_SEQUENCE instruction.
1163 class RegSequenceRewriter : public CopyRewriter {
1164 public:
1165   RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) {
1166     assert(MI.isRegSequence() && "Invalid instruction");
1167   }
1168 
1169   /// \brief See CopyRewriter::getNextRewritableSource.
1170   /// Here CopyLike has the following form:
1171   /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1172   /// Each call will return a different source, walking all the available
1173   /// source.
1174   ///
1175   /// The first call returns:
1176   /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1177   /// (TrackReg, TrackSubReg) = (dst, subIdx1).
1178   ///
1179   /// The second call returns:
1180   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1181   /// (TrackReg, TrackSubReg) = (dst, subIdx2).
1182   ///
1183   /// And so on, until all the sources have been traversed, then
1184   /// it returns false.
1185   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
1186                                unsigned &TrackReg,
1187                                unsigned &TrackSubReg) override {
1188     // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1189 
1190     // If this is the first call, move to the first argument.
1191     if (CurrentSrcIdx == 0) {
1192       CurrentSrcIdx = 1;
1193     } else {
1194       // Otherwise, move to the next argument and check that it is valid.
1195       CurrentSrcIdx += 2;
1196       if (CurrentSrcIdx >= CopyLike.getNumOperands())
1197         return false;
1198     }
1199     const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1200     SrcReg = MOInsertedReg.getReg();
1201     // If we have to compose sub-register indices, bail out.
1202     if ((SrcSubReg = MOInsertedReg.getSubReg()))
1203       return false;
1204 
1205     // We want to track something that is compatible with the related
1206     // partial definition.
1207     TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1208 
1209     const MachineOperand &MODef = CopyLike.getOperand(0);
1210     TrackReg = MODef.getReg();
1211     // If we have to compose sub-registers, bail.
1212     return MODef.getSubReg() == 0;
1213   }
1214 
1215   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
1216     // We cannot rewrite out of bound operands.
1217     // Moreover, rewritable sources are at odd positions.
1218     if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1219       return false;
1220 
1221     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1222     MO.setReg(NewReg);
1223     MO.setSubReg(NewSubReg);
1224     return true;
1225   }
1226 };
1227 
1228 } // end anonymous namespace
1229 
1230 /// \brief Get the appropriated CopyRewriter for \p MI.
1231 /// \return A pointer to a dynamically allocated CopyRewriter or nullptr
1232 /// if no rewriter works for \p MI.
1233 static CopyRewriter *getCopyRewriter(MachineInstr &MI,
1234                                      const TargetInstrInfo &TII,
1235                                      MachineRegisterInfo &MRI) {
1236   // Handle uncoalescable copy-like instructions.
1237   if (MI.isBitcast() || (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1238                          MI.isExtractSubregLike()))
1239     return new UncoalescableRewriter(MI, TII, MRI);
1240 
1241   switch (MI.getOpcode()) {
1242   default:
1243     return nullptr;
1244   case TargetOpcode::COPY:
1245     return new CopyRewriter(MI);
1246   case TargetOpcode::INSERT_SUBREG:
1247     return new InsertSubregRewriter(MI);
1248   case TargetOpcode::EXTRACT_SUBREG:
1249     return new ExtractSubregRewriter(MI, TII);
1250   case TargetOpcode::REG_SEQUENCE:
1251     return new RegSequenceRewriter(MI);
1252   }
1253   llvm_unreachable(nullptr);
1254 }
1255 
1256 /// \brief Optimize generic copy instructions to avoid cross
1257 /// register bank copy. The optimization looks through a chain of
1258 /// copies and tries to find a source that has a compatible register
1259 /// class.
1260 /// Two register classes are considered to be compatible if they share
1261 /// the same register bank.
1262 /// New copies issued by this optimization are register allocator
1263 /// friendly. This optimization does not remove any copy as it may
1264 /// overconstrain the register allocator, but replaces some operands
1265 /// when possible.
1266 /// \pre isCoalescableCopy(*MI) is true.
1267 /// \return True, when \p MI has been rewritten. False otherwise.
1268 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) {
1269   assert(MI && isCoalescableCopy(*MI) && "Invalid argument");
1270   assert(MI->getDesc().getNumDefs() == 1 &&
1271          "Coalescer can understand multiple defs?!");
1272   const MachineOperand &MODef = MI->getOperand(0);
1273   // Do not rewrite physical definitions.
1274   if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
1275     return false;
1276 
1277   bool Changed = false;
1278   // Get the right rewriter for the current copy.
1279   std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI));
1280   // If none exists, bail out.
1281   if (!CpyRewriter)
1282     return false;
1283   // Rewrite each rewritable source.
1284   unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg;
1285   while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg,
1286                                               TrackSubReg)) {
1287     // Keep track of PHI nodes and its incoming edges when looking for sources.
1288     RewriteMapTy RewriteMap;
1289     // Try to find a more suitable source. If we failed to do so, or get the
1290     // actual source, move to the next source.
1291     if (!findNextSource(TrackReg, TrackSubReg, RewriteMap))
1292       continue;
1293 
1294     // Get the new source to rewrite. TODO: Only enable handling of multiple
1295     // sources (PHIs) once we have a motivating example and testcases for it.
1296     TargetInstrInfo::RegSubRegPair TrackPair(TrackReg, TrackSubReg);
1297     TargetInstrInfo::RegSubRegPair NewSrc = CpyRewriter->getNewSource(
1298         MRI, TII, TrackPair, RewriteMap, false /* multiple sources */);
1299     if (SrcReg == NewSrc.Reg || NewSrc.Reg == 0)
1300       continue;
1301 
1302     // Rewrite source.
1303     if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1304       // We may have extended the live-range of NewSrc, account for that.
1305       MRI->clearKillFlags(NewSrc.Reg);
1306       Changed = true;
1307     }
1308   }
1309   // TODO: We could have a clean-up method to tidy the instruction.
1310   // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1311   // => v0 = COPY v1
1312   // Currently we haven't seen motivating example for that and we
1313   // want to avoid untested code.
1314   NumRewrittenCopies += Changed;
1315   return Changed;
1316 }
1317 
1318 /// \brief Optimize copy-like instructions to create
1319 /// register coalescer friendly instruction.
1320 /// The optimization tries to kill-off the \p MI by looking
1321 /// through a chain of copies to find a source that has a compatible
1322 /// register class.
1323 /// If such a source is found, it replace \p MI by a generic COPY
1324 /// operation.
1325 /// \pre isUncoalescableCopy(*MI) is true.
1326 /// \return True, when \p MI has been optimized. In that case, \p MI has
1327 /// been removed from its parent.
1328 /// All COPY instructions created, are inserted in \p LocalMIs.
1329 bool PeepholeOptimizer::optimizeUncoalescableCopy(
1330     MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1331   assert(MI && isUncoalescableCopy(*MI) && "Invalid argument");
1332 
1333   // Check if we can rewrite all the values defined by this instruction.
1334   SmallVector<TargetInstrInfo::RegSubRegPair, 4> RewritePairs;
1335   // Get the right rewriter for the current copy.
1336   std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI));
1337   // If none exists, bail out.
1338   if (!CpyRewriter)
1339     return false;
1340 
1341   // Rewrite each rewritable source by generating new COPYs. This works
1342   // differently from optimizeCoalescableCopy since it first makes sure that all
1343   // definitions can be rewritten.
1344   RewriteMapTy RewriteMap;
1345   unsigned Reg, SubReg, CopyDefReg, CopyDefSubReg;
1346   while (CpyRewriter->getNextRewritableSource(Reg, SubReg, CopyDefReg,
1347                                               CopyDefSubReg)) {
1348     // If a physical register is here, this is probably for a good reason.
1349     // Do not rewrite that.
1350     if (TargetRegisterInfo::isPhysicalRegister(CopyDefReg))
1351       return false;
1352 
1353     // If we do not know how to rewrite this definition, there is no point
1354     // in trying to kill this instruction.
1355     TargetInstrInfo::RegSubRegPair Def(CopyDefReg, CopyDefSubReg);
1356     if (!findNextSource(Def.Reg, Def.SubReg, RewriteMap))
1357       return false;
1358 
1359     RewritePairs.push_back(Def);
1360   }
1361 
1362   // The change is possible for all defs, do it.
1363   for (const auto &Def : RewritePairs) {
1364     // Rewrite the "copy" in a way the register coalescer understands.
1365     MachineInstr *NewCopy = CpyRewriter->RewriteSource(Def, RewriteMap);
1366     assert(NewCopy && "Should be able to always generate a new copy");
1367     LocalMIs.insert(NewCopy);
1368   }
1369 
1370   // MI is now dead.
1371   MI->eraseFromParent();
1372   ++NumUncoalescableCopies;
1373   return true;
1374 }
1375 
1376 /// Check whether MI is a candidate for folding into a later instruction.
1377 /// We only fold loads to virtual registers and the virtual register defined
1378 /// has a single use.
1379 bool PeepholeOptimizer::isLoadFoldable(
1380     MachineInstr *MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
1381   if (!MI->canFoldAsLoad() || !MI->mayLoad())
1382     return false;
1383   const MCInstrDesc &MCID = MI->getDesc();
1384   if (MCID.getNumDefs() != 1)
1385     return false;
1386 
1387   unsigned Reg = MI->getOperand(0).getReg();
1388   // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
1389   // loads. It should be checked when processing uses of the load, since
1390   // uses can be removed during peephole.
1391   if (!MI->getOperand(0).getSubReg() &&
1392       TargetRegisterInfo::isVirtualRegister(Reg) &&
1393       MRI->hasOneNonDBGUse(Reg)) {
1394     FoldAsLoadDefCandidates.insert(Reg);
1395     return true;
1396   }
1397   return false;
1398 }
1399 
1400 bool PeepholeOptimizer::isMoveImmediate(
1401     MachineInstr *MI, SmallSet<unsigned, 4> &ImmDefRegs,
1402     DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1403   const MCInstrDesc &MCID = MI->getDesc();
1404   if (!MI->isMoveImmediate())
1405     return false;
1406   if (MCID.getNumDefs() != 1)
1407     return false;
1408   unsigned Reg = MI->getOperand(0).getReg();
1409   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1410     ImmDefMIs.insert(std::make_pair(Reg, MI));
1411     ImmDefRegs.insert(Reg);
1412     return true;
1413   }
1414 
1415   return false;
1416 }
1417 
1418 /// Try folding register operands that are defined by move immediate
1419 /// instructions, i.e. a trivial constant folding optimization, if
1420 /// and only if the def and use are in the same BB.
1421 bool PeepholeOptimizer::foldImmediate(
1422     MachineInstr *MI, MachineBasicBlock *MBB, SmallSet<unsigned, 4> &ImmDefRegs,
1423     DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1424   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
1425     MachineOperand &MO = MI->getOperand(i);
1426     if (!MO.isReg() || MO.isDef())
1427       continue;
1428     // Ignore dead implicit defs.
1429     if (MO.isImplicit() && MO.isDead())
1430       continue;
1431     unsigned Reg = MO.getReg();
1432     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1433       continue;
1434     if (ImmDefRegs.count(Reg) == 0)
1435       continue;
1436     DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
1437     assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1438     if (TII->FoldImmediate(*MI, *II->second, Reg, MRI)) {
1439       ++NumImmFold;
1440       return true;
1441     }
1442   }
1443   return false;
1444 }
1445 
1446 // FIXME: This is very simple and misses some cases which should be handled when
1447 // motivating examples are found.
1448 //
1449 // The copy rewriting logic should look at uses as well as defs and be able to
1450 // eliminate copies across blocks.
1451 //
1452 // Later copies that are subregister extracts will also not be eliminated since
1453 // only the first copy is considered.
1454 //
1455 // e.g.
1456 // %vreg1 = COPY %vreg0
1457 // %vreg2 = COPY %vreg0:sub1
1458 //
1459 // Should replace %vreg2 uses with %vreg1:sub1
1460 bool PeepholeOptimizer::foldRedundantCopy(
1461     MachineInstr *MI, SmallSet<unsigned, 4> &CopySrcRegs,
1462     DenseMap<unsigned, MachineInstr *> &CopyMIs) {
1463   assert(MI->isCopy() && "expected a COPY machine instruction");
1464 
1465   unsigned SrcReg = MI->getOperand(1).getReg();
1466   if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1467     return false;
1468 
1469   unsigned DstReg = MI->getOperand(0).getReg();
1470   if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1471     return false;
1472 
1473   if (CopySrcRegs.insert(SrcReg).second) {
1474     // First copy of this reg seen.
1475     CopyMIs.insert(std::make_pair(SrcReg, MI));
1476     return false;
1477   }
1478 
1479   MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second;
1480 
1481   unsigned SrcSubReg = MI->getOperand(1).getSubReg();
1482   unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg();
1483 
1484   // Can't replace different subregister extracts.
1485   if (SrcSubReg != PrevSrcSubReg)
1486     return false;
1487 
1488   unsigned PrevDstReg = PrevCopy->getOperand(0).getReg();
1489 
1490   // Only replace if the copy register class is the same.
1491   //
1492   // TODO: If we have multiple copies to different register classes, we may want
1493   // to track multiple copies of the same source register.
1494   if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1495     return false;
1496 
1497   MRI->replaceRegWith(DstReg, PrevDstReg);
1498 
1499   // Lifetime of the previous copy has been extended.
1500   MRI->clearKillFlags(PrevDstReg);
1501   return true;
1502 }
1503 
1504 bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) {
1505   return TargetRegisterInfo::isPhysicalRegister(Reg) &&
1506          !MRI->isAllocatable(Reg);
1507 }
1508 
1509 bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1510     MachineInstr *MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) {
1511   assert(MI->isCopy() && "expected a COPY machine instruction");
1512 
1513   if (DisableNAPhysCopyOpt)
1514     return false;
1515 
1516   unsigned DstReg = MI->getOperand(0).getReg();
1517   unsigned SrcReg = MI->getOperand(1).getReg();
1518   if (isNAPhysCopy(SrcReg) && TargetRegisterInfo::isVirtualRegister(DstReg)) {
1519     // %vreg = COPY %PHYSREG
1520     // Avoid using a datastructure which can track multiple live non-allocatable
1521     // phys->virt copies since LLVM doesn't seem to do this.
1522     NAPhysToVirtMIs.insert({SrcReg, MI});
1523     return false;
1524   }
1525 
1526   if (!(TargetRegisterInfo::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg)))
1527     return false;
1528 
1529   // %PHYSREG = COPY %vreg
1530   auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1531   if (PrevCopy == NAPhysToVirtMIs.end()) {
1532     // We can't remove the copy: there was an intervening clobber of the
1533     // non-allocatable physical register after the copy to virtual.
1534     DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " << *MI
1535                  << '\n');
1536     return false;
1537   }
1538 
1539   unsigned PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1540   if (PrevDstReg == SrcReg) {
1541     // Remove the virt->phys copy: we saw the virtual register definition, and
1542     // the non-allocatable physical register's state hasn't changed since then.
1543     DEBUG(dbgs() << "NAPhysCopy: erasing " << *MI << '\n');
1544     ++NumNAPhysCopies;
1545     return true;
1546   }
1547 
1548   // Potential missed optimization opportunity: we saw a different virtual
1549   // register get a copy of the non-allocatable physical register, and we only
1550   // track one such copy. Avoid getting confused by this new non-allocatable
1551   // physical register definition, and remove it from the tracked copies.
1552   DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << *MI << '\n');
1553   NAPhysToVirtMIs.erase(PrevCopy);
1554   return false;
1555 }
1556 
1557 /// \bried Returns true if \p MO is a virtual register operand.
1558 static bool isVirtualRegisterOperand(MachineOperand &MO) {
1559   if (!MO.isReg())
1560     return false;
1561   return TargetRegisterInfo::isVirtualRegister(MO.getReg());
1562 }
1563 
1564 bool PeepholeOptimizer::findTargetRecurrence(
1565     unsigned Reg, const SmallSet<unsigned, 2> &TargetRegs,
1566     RecurrenceCycle &RC) {
1567   // Recurrence found if Reg is in TargetRegs.
1568   if (TargetRegs.count(Reg))
1569     return true;
1570 
1571   // TODO: Curerntly, we only allow the last instruction of the recurrence
1572   // cycle (the instruction that feeds the PHI instruction) to have more than
1573   // one uses to guarantee that commuting operands does not tie registers
1574   // with overlapping live range. Once we have actual live range info of
1575   // each register, this constraint can be relaxed.
1576   if (!MRI->hasOneNonDBGUse(Reg))
1577     return false;
1578 
1579   // Give up if the reccurrence chain length is longer than the limit.
1580   if (RC.size() >= MaxRecurrenceChain)
1581     return false;
1582 
1583   MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1584   unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
1585 
1586   // Only interested in recurrences whose instructions have only one def, which
1587   // is a virtual register.
1588   if (MI.getDesc().getNumDefs() != 1)
1589     return false;
1590 
1591   MachineOperand &DefOp = MI.getOperand(0);
1592   if (!isVirtualRegisterOperand(DefOp))
1593     return false;
1594 
1595   // Check if def operand of MI is tied to any use operand. We are only
1596   // interested in the case that all the instructions in the recurrence chain
1597   // have there def operand tied with one of the use operand.
1598   unsigned TiedUseIdx;
1599   if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1600     return false;
1601 
1602   if (Idx == TiedUseIdx) {
1603     RC.push_back(RecurrenceInstr(&MI));
1604     return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1605   } else {
1606     // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1607     unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1608     if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1609       RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1610       return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1611     }
1612   }
1613 
1614   return false;
1615 }
1616 
1617 /// \brief Phi instructions will eventually be lowered to copy instructions. If
1618 /// phi is in a loop header, a recurrence may formulated around the source and
1619 /// destination of the phi. For such case commuting operands of the instructions
1620 /// in the recurrence may enable coalescing of the copy instruction generated
1621 /// from the phi. For example, if there is a recurrence of
1622 ///
1623 /// LoopHeader:
1624 ///   %vreg1 = phi(%vreg0, %vreg100)
1625 /// LoopLatch:
1626 ///   %vreg0<def, tied1> = ADD %vreg2<def, tied0>, %vreg1
1627 ///
1628 /// , the fact that vreg0 and vreg2 are in the same tied operands set makes
1629 /// the coalescing of copy instruction generated from the phi in
1630 /// LoopHeader(i.e. %vreg1 = COPY %vreg0) impossible, because %vreg1 and
1631 /// %vreg2 have overlapping live range. This introduces additional move
1632 /// instruction to the final assembly. However, if we commute %vreg2 and
1633 /// %vreg1 of ADD instruction, the redundant move instruction can be
1634 /// avoided.
1635 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1636   SmallSet<unsigned, 2> TargetRegs;
1637   for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1638     MachineOperand &MO = PHI.getOperand(Idx);
1639     assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1640     TargetRegs.insert(MO.getReg());
1641   }
1642 
1643   bool Changed = false;
1644   RecurrenceCycle RC;
1645   if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1646     // Commutes operands of instructions in RC if necessary so that the copy to
1647     // be generated from PHI can be coalesced.
1648     DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1649     for (auto &RI : RC) {
1650       DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1651       auto CP = RI.getCommutePair();
1652       if (CP) {
1653         Changed = true;
1654         TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1655                                 (*CP).second);
1656         DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1657       }
1658     }
1659   }
1660 
1661   return Changed;
1662 }
1663 
1664 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1665   if (skipFunction(*MF.getFunction()))
1666     return false;
1667 
1668   DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1669   DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1670 
1671   if (DisablePeephole)
1672     return false;
1673 
1674   TII = MF.getSubtarget().getInstrInfo();
1675   TRI = MF.getSubtarget().getRegisterInfo();
1676   MRI = &MF.getRegInfo();
1677   DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1678   MLI = &getAnalysis<MachineLoopInfo>();
1679 
1680   bool Changed = false;
1681 
1682   for (MachineBasicBlock &MBB : MF) {
1683     bool SeenMoveImm = false;
1684 
1685     // During this forward scan, at some point it needs to answer the question
1686     // "given a pointer to an MI in the current BB, is it located before or
1687     // after the current instruction".
1688     // To perform this, the following set keeps track of the MIs already seen
1689     // during the scan, if a MI is not in the set, it is assumed to be located
1690     // after. Newly created MIs have to be inserted in the set as well.
1691     SmallPtrSet<MachineInstr*, 16> LocalMIs;
1692     SmallSet<unsigned, 4> ImmDefRegs;
1693     DenseMap<unsigned, MachineInstr*> ImmDefMIs;
1694     SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
1695 
1696     // Track when a non-allocatable physical register is copied to a virtual
1697     // register so that useless moves can be removed.
1698     //
1699     // %PHYSREG is the map index; MI is the last valid `%vreg = COPY %PHYSREG`
1700     // without any intervening re-definition of %PHYSREG.
1701     DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs;
1702 
1703     // Set of virtual registers that are copied from.
1704     SmallSet<unsigned, 4> CopySrcRegs;
1705     DenseMap<unsigned, MachineInstr *> CopySrcMIs;
1706 
1707     bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1708 
1709     for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1710          MII != MIE; ) {
1711       MachineInstr *MI = &*MII;
1712       // We may be erasing MI below, increment MII now.
1713       ++MII;
1714       LocalMIs.insert(MI);
1715 
1716       // Skip debug values. They should not affect this peephole optimization.
1717       if (MI->isDebugValue())
1718           continue;
1719 
1720       if (MI->isPosition())
1721         continue;
1722 
1723       if (IsLoopHeader && MI->isPHI()) {
1724         if (optimizeRecurrence(*MI)) {
1725           Changed = true;
1726           continue;
1727         }
1728       }
1729 
1730       if (!MI->isCopy()) {
1731         for (const auto &Op : MI->operands()) {
1732           // Visit all operands: definitions can be implicit or explicit.
1733           if (Op.isReg()) {
1734             unsigned Reg = Op.getReg();
1735             if (Op.isDef() && isNAPhysCopy(Reg)) {
1736               const auto &Def = NAPhysToVirtMIs.find(Reg);
1737               if (Def != NAPhysToVirtMIs.end()) {
1738                 // A new definition of the non-allocatable physical register
1739                 // invalidates previous copies.
1740                 DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI
1741                              << '\n');
1742                 NAPhysToVirtMIs.erase(Def);
1743               }
1744             }
1745           } else if (Op.isRegMask()) {
1746             const uint32_t *RegMask = Op.getRegMask();
1747             for (auto &RegMI : NAPhysToVirtMIs) {
1748               unsigned Def = RegMI.first;
1749               if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1750                 DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI
1751                              << '\n');
1752                 NAPhysToVirtMIs.erase(Def);
1753               }
1754             }
1755           }
1756         }
1757       }
1758 
1759       if (MI->isImplicitDef() || MI->isKill())
1760         continue;
1761 
1762       if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1763         // Blow away all non-allocatable physical registers knowledge since we
1764         // don't know what's correct anymore.
1765         //
1766         // FIXME: handle explicit asm clobbers.
1767         DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " << *MI
1768                      << '\n');
1769         NAPhysToVirtMIs.clear();
1770       }
1771 
1772       if ((isUncoalescableCopy(*MI) &&
1773            optimizeUncoalescableCopy(MI, LocalMIs)) ||
1774           (MI->isCompare() && optimizeCmpInstr(MI, &MBB)) ||
1775           (MI->isSelect() && optimizeSelect(MI, LocalMIs))) {
1776         // MI is deleted.
1777         LocalMIs.erase(MI);
1778         Changed = true;
1779         continue;
1780       }
1781 
1782       if (MI->isConditionalBranch() && optimizeCondBranch(MI)) {
1783         Changed = true;
1784         continue;
1785       }
1786 
1787       if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) {
1788         // MI is just rewritten.
1789         Changed = true;
1790         continue;
1791       }
1792 
1793       if (MI->isCopy() &&
1794           (foldRedundantCopy(MI, CopySrcRegs, CopySrcMIs) ||
1795            foldRedundantNAPhysCopy(MI, NAPhysToVirtMIs))) {
1796         LocalMIs.erase(MI);
1797         MI->eraseFromParent();
1798         Changed = true;
1799         continue;
1800       }
1801 
1802       if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
1803         SeenMoveImm = true;
1804       } else {
1805         Changed |= optimizeExtInstr(MI, &MBB, LocalMIs);
1806         // optimizeExtInstr might have created new instructions after MI
1807         // and before the already incremented MII. Adjust MII so that the
1808         // next iteration sees the new instructions.
1809         MII = MI;
1810         ++MII;
1811         if (SeenMoveImm)
1812           Changed |= foldImmediate(MI, &MBB, ImmDefRegs, ImmDefMIs);
1813       }
1814 
1815       // Check whether MI is a load candidate for folding into a later
1816       // instruction. If MI is not a candidate, check whether we can fold an
1817       // earlier load into MI.
1818       if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) &&
1819           !FoldAsLoadDefCandidates.empty()) {
1820 
1821         // We visit each operand even after successfully folding a previous
1822         // one.  This allows us to fold multiple loads into a single
1823         // instruction.  We do assume that optimizeLoadInstr doesn't insert
1824         // foldable uses earlier in the argument list.  Since we don't restart
1825         // iteration, we'd miss such cases.
1826         const MCInstrDesc &MIDesc = MI->getDesc();
1827         for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
1828              ++i) {
1829           const MachineOperand &MOp = MI->getOperand(i);
1830           if (!MOp.isReg())
1831             continue;
1832           unsigned FoldAsLoadDefReg = MOp.getReg();
1833           if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1834             // We need to fold load after optimizeCmpInstr, since
1835             // optimizeCmpInstr can enable folding by converting SUB to CMP.
1836             // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1837             // we need it for markUsesInDebugValueAsUndef().
1838             unsigned FoldedReg = FoldAsLoadDefReg;
1839             MachineInstr *DefMI = nullptr;
1840             if (MachineInstr *FoldMI =
1841                     TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1842               // Update LocalMIs since we replaced MI with FoldMI and deleted
1843               // DefMI.
1844               DEBUG(dbgs() << "Replacing: " << *MI);
1845               DEBUG(dbgs() << "     With: " << *FoldMI);
1846               LocalMIs.erase(MI);
1847               LocalMIs.erase(DefMI);
1848               LocalMIs.insert(FoldMI);
1849               MI->eraseFromParent();
1850               DefMI->eraseFromParent();
1851               MRI->markUsesInDebugValueAsUndef(FoldedReg);
1852               FoldAsLoadDefCandidates.erase(FoldedReg);
1853               ++NumLoadFold;
1854 
1855               // MI is replaced with FoldMI so we can continue trying to fold
1856               Changed = true;
1857               MI = FoldMI;
1858             }
1859           }
1860         }
1861       }
1862 
1863       // If we run into an instruction we can't fold across, discard
1864       // the load candidates.  Note: We might be able to fold *into* this
1865       // instruction, so this needs to be after the folding logic.
1866       if (MI->isLoadFoldBarrier()) {
1867         DEBUG(dbgs() << "Encountered load fold barrier on " << *MI << "\n");
1868         FoldAsLoadDefCandidates.clear();
1869       }
1870     }
1871   }
1872 
1873   return Changed;
1874 }
1875 
1876 ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1877   assert(Def->isCopy() && "Invalid definition");
1878   // Copy instruction are supposed to be: Def = Src.
1879   // If someone breaks this assumption, bad things will happen everywhere.
1880   assert(Def->getNumOperands() == 2 && "Invalid number of operands");
1881 
1882   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1883     // If we look for a different subreg, it means we want a subreg of src.
1884     // Bails as we do not support composing subregs yet.
1885     return ValueTrackerResult();
1886   // Otherwise, we want the whole source.
1887   const MachineOperand &Src = Def->getOperand(1);
1888   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1889 }
1890 
1891 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1892   assert(Def->isBitcast() && "Invalid definition");
1893 
1894   // Bail if there are effects that a plain copy will not expose.
1895   if (Def->hasUnmodeledSideEffects())
1896     return ValueTrackerResult();
1897 
1898   // Bitcasts with more than one def are not supported.
1899   if (Def->getDesc().getNumDefs() != 1)
1900     return ValueTrackerResult();
1901   const MachineOperand DefOp = Def->getOperand(DefIdx);
1902   if (DefOp.getSubReg() != DefSubReg)
1903     // If we look for a different subreg, it means we want a subreg of the src.
1904     // Bails as we do not support composing subregs yet.
1905     return ValueTrackerResult();
1906 
1907   unsigned SrcIdx = Def->getNumOperands();
1908   for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1909        ++OpIdx) {
1910     const MachineOperand &MO = Def->getOperand(OpIdx);
1911     if (!MO.isReg() || !MO.getReg())
1912       continue;
1913     // Ignore dead implicit defs.
1914     if (MO.isImplicit() && MO.isDead())
1915       continue;
1916     assert(!MO.isDef() && "We should have skipped all the definitions by now");
1917     if (SrcIdx != EndOpIdx)
1918       // Multiple sources?
1919       return ValueTrackerResult();
1920     SrcIdx = OpIdx;
1921   }
1922 
1923   // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1924   // will break the assumed guarantees for the upper bits.
1925   for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1926     if (UseMI.isSubregToReg())
1927       return ValueTrackerResult();
1928   }
1929 
1930   const MachineOperand &Src = Def->getOperand(SrcIdx);
1931   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1932 }
1933 
1934 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1935   assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1936          "Invalid definition");
1937 
1938   if (Def->getOperand(DefIdx).getSubReg())
1939     // If we are composing subregs, bail out.
1940     // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1941     // This should almost never happen as the SSA property is tracked at
1942     // the register level (as opposed to the subreg level).
1943     // I.e.,
1944     // Def.sub0 =
1945     // Def.sub1 =
1946     // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1947     // Def. Thus, it must not be generated.
1948     // However, some code could theoretically generates a single
1949     // Def.sub0 (i.e, not defining the other subregs) and we would
1950     // have this case.
1951     // If we can ascertain (or force) that this never happens, we could
1952     // turn that into an assertion.
1953     return ValueTrackerResult();
1954 
1955   if (!TII)
1956     // We could handle the REG_SEQUENCE here, but we do not want to
1957     // duplicate the code from the generic TII.
1958     return ValueTrackerResult();
1959 
1960   SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1961   if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1962     return ValueTrackerResult();
1963 
1964   // We are looking at:
1965   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1966   // Check if one of the operand defines the subreg we are interested in.
1967   for (auto &RegSeqInput : RegSeqInputRegs) {
1968     if (RegSeqInput.SubIdx == DefSubReg) {
1969       if (RegSeqInput.SubReg)
1970         // Bail if we have to compose sub registers.
1971         return ValueTrackerResult();
1972 
1973       return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1974     }
1975   }
1976 
1977   // If the subreg we are tracking is super-defined by another subreg,
1978   // we could follow this value. However, this would require to compose
1979   // the subreg and we do not do that for now.
1980   return ValueTrackerResult();
1981 }
1982 
1983 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1984   assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1985          "Invalid definition");
1986 
1987   if (Def->getOperand(DefIdx).getSubReg())
1988     // If we are composing subreg, bail out.
1989     // Same remark as getNextSourceFromRegSequence.
1990     // I.e., this may be turned into an assert.
1991     return ValueTrackerResult();
1992 
1993   if (!TII)
1994     // We could handle the REG_SEQUENCE here, but we do not want to
1995     // duplicate the code from the generic TII.
1996     return ValueTrackerResult();
1997 
1998   TargetInstrInfo::RegSubRegPair BaseReg;
1999   TargetInstrInfo::RegSubRegPairAndIdx InsertedReg;
2000   if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
2001     return ValueTrackerResult();
2002 
2003   // We are looking at:
2004   // Def = INSERT_SUBREG v0, v1, sub1
2005   // There are two cases:
2006   // 1. DefSubReg == sub1, get v1.
2007   // 2. DefSubReg != sub1, the value may be available through v0.
2008 
2009   // #1 Check if the inserted register matches the required sub index.
2010   if (InsertedReg.SubIdx == DefSubReg) {
2011     return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
2012   }
2013   // #2 Otherwise, if the sub register we are looking for is not partial
2014   // defined by the inserted element, we can look through the main
2015   // register (v0).
2016   const MachineOperand &MODef = Def->getOperand(DefIdx);
2017   // If the result register (Def) and the base register (v0) do not
2018   // have the same register class or if we have to compose
2019   // subregisters, bail out.
2020   if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
2021       BaseReg.SubReg)
2022     return ValueTrackerResult();
2023 
2024   // Get the TRI and check if the inserted sub-register overlaps with the
2025   // sub-register we are tracking.
2026   const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
2027   if (!TRI ||
2028       !(TRI->getSubRegIndexLaneMask(DefSubReg) &
2029         TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
2030     return ValueTrackerResult();
2031   // At this point, the value is available in v0 via the same subreg
2032   // we used for Def.
2033   return ValueTrackerResult(BaseReg.Reg, DefSubReg);
2034 }
2035 
2036 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
2037   assert((Def->isExtractSubreg() ||
2038           Def->isExtractSubregLike()) && "Invalid definition");
2039   // We are looking at:
2040   // Def = EXTRACT_SUBREG v0, sub0
2041 
2042   // Bail if we have to compose sub registers.
2043   // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
2044   if (DefSubReg)
2045     return ValueTrackerResult();
2046 
2047   if (!TII)
2048     // We could handle the EXTRACT_SUBREG here, but we do not want to
2049     // duplicate the code from the generic TII.
2050     return ValueTrackerResult();
2051 
2052   TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg;
2053   if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
2054     return ValueTrackerResult();
2055 
2056   // Bail if we have to compose sub registers.
2057   // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
2058   if (ExtractSubregInputReg.SubReg)
2059     return ValueTrackerResult();
2060   // Otherwise, the value is available in the v0.sub0.
2061   return ValueTrackerResult(ExtractSubregInputReg.Reg,
2062                             ExtractSubregInputReg.SubIdx);
2063 }
2064 
2065 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2066   assert(Def->isSubregToReg() && "Invalid definition");
2067   // We are looking at:
2068   // Def = SUBREG_TO_REG Imm, v0, sub0
2069 
2070   // Bail if we have to compose sub registers.
2071   // If DefSubReg != sub0, we would have to check that all the bits
2072   // we track are included in sub0 and if yes, we would have to
2073   // determine the right subreg in v0.
2074   if (DefSubReg != Def->getOperand(3).getImm())
2075     return ValueTrackerResult();
2076   // Bail if we have to compose sub registers.
2077   // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2078   if (Def->getOperand(2).getSubReg())
2079     return ValueTrackerResult();
2080 
2081   return ValueTrackerResult(Def->getOperand(2).getReg(),
2082                             Def->getOperand(3).getImm());
2083 }
2084 
2085 /// \brief Explore each PHI incoming operand and return its sources
2086 ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2087   assert(Def->isPHI() && "Invalid definition");
2088   ValueTrackerResult Res;
2089 
2090   // If we look for a different subreg, bail as we do not support composing
2091   // subregs yet.
2092   if (Def->getOperand(0).getSubReg() != DefSubReg)
2093     return ValueTrackerResult();
2094 
2095   // Return all register sources for PHI instructions.
2096   for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2097     auto &MO = Def->getOperand(i);
2098     assert(MO.isReg() && "Invalid PHI instruction");
2099     Res.addSource(MO.getReg(), MO.getSubReg());
2100   }
2101 
2102   return Res;
2103 }
2104 
2105 ValueTrackerResult ValueTracker::getNextSourceImpl() {
2106   assert(Def && "This method needs a valid definition");
2107 
2108   assert(((Def->getOperand(DefIdx).isDef() &&
2109            (DefIdx < Def->getDesc().getNumDefs() ||
2110             Def->getDesc().isVariadic())) ||
2111           Def->getOperand(DefIdx).isImplicit()) &&
2112          "Invalid DefIdx");
2113   if (Def->isCopy())
2114     return getNextSourceFromCopy();
2115   if (Def->isBitcast())
2116     return getNextSourceFromBitcast();
2117   // All the remaining cases involve "complex" instructions.
2118   // Bail if we did not ask for the advanced tracking.
2119   if (!UseAdvancedTracking)
2120     return ValueTrackerResult();
2121   if (Def->isRegSequence() || Def->isRegSequenceLike())
2122     return getNextSourceFromRegSequence();
2123   if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2124     return getNextSourceFromInsertSubreg();
2125   if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2126     return getNextSourceFromExtractSubreg();
2127   if (Def->isSubregToReg())
2128     return getNextSourceFromSubregToReg();
2129   if (Def->isPHI())
2130     return getNextSourceFromPHI();
2131   return ValueTrackerResult();
2132 }
2133 
2134 ValueTrackerResult ValueTracker::getNextSource() {
2135   // If we reach a point where we cannot move up in the use-def chain,
2136   // there is nothing we can get.
2137   if (!Def)
2138     return ValueTrackerResult();
2139 
2140   ValueTrackerResult Res = getNextSourceImpl();
2141   if (Res.isValid()) {
2142     // Update definition, definition index, and subregister for the
2143     // next call of getNextSource.
2144     // Update the current register.
2145     bool OneRegSrc = Res.getNumSources() == 1;
2146     if (OneRegSrc)
2147       Reg = Res.getSrcReg(0);
2148     // Update the result before moving up in the use-def chain
2149     // with the instruction containing the last found sources.
2150     Res.setInst(Def);
2151 
2152     // If we can still move up in the use-def chain, move to the next
2153     // definition.
2154     if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) {
2155       Def = MRI.getVRegDef(Reg);
2156       DefIdx = MRI.def_begin(Reg).getOperandNo();
2157       DefSubReg = Res.getSrcSubReg(0);
2158       return Res;
2159     }
2160   }
2161   // If we end up here, this means we will not be able to find another source
2162   // for the next iteration. Make sure any new call to getNextSource bails out
2163   // early by cutting the use-def chain.
2164   Def = nullptr;
2165   return Res;
2166 }
2167