1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Perform peephole optimizations on the machine code: 10 // 11 // - Optimize Extensions 12 // 13 // Optimization of sign / zero extension instructions. It may be extended to 14 // handle other instructions with similar properties. 15 // 16 // On some targets, some instructions, e.g. X86 sign / zero extension, may 17 // leave the source value in the lower part of the result. This optimization 18 // will replace some uses of the pre-extension value with uses of the 19 // sub-register of the results. 20 // 21 // - Optimize Comparisons 22 // 23 // Optimization of comparison instructions. For instance, in this code: 24 // 25 // sub r1, 1 26 // cmp r1, 0 27 // bz L1 28 // 29 // If the "sub" instruction all ready sets (or could be modified to set) the 30 // same flag that the "cmp" instruction sets and that "bz" uses, then we can 31 // eliminate the "cmp" instruction. 32 // 33 // Another instance, in this code: 34 // 35 // sub r1, r3 | sub r1, imm 36 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm 37 // bge L1 38 // 39 // If the branch instruction can use flag from "sub", then we can replace 40 // "sub" with "subs" and eliminate the "cmp" instruction. 41 // 42 // - Optimize Loads: 43 // 44 // Loads that can be folded into a later instruction. A load is foldable 45 // if it loads to virtual registers and the virtual register defined has 46 // a single use. 47 // 48 // - Optimize Copies and Bitcast (more generally, target specific copies): 49 // 50 // Rewrite copies and bitcasts to avoid cross register bank copies 51 // when possible. 52 // E.g., Consider the following example, where capital and lower 53 // letters denote different register file: 54 // b = copy A <-- cross-bank copy 55 // C = copy b <-- cross-bank copy 56 // => 57 // b = copy A <-- cross-bank copy 58 // C = copy A <-- same-bank copy 59 // 60 // E.g., for bitcast: 61 // b = bitcast A <-- cross-bank copy 62 // C = bitcast b <-- cross-bank copy 63 // => 64 // b = bitcast A <-- cross-bank copy 65 // C = copy A <-- same-bank copy 66 //===----------------------------------------------------------------------===// 67 68 #include "llvm/ADT/DenseMap.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/SmallPtrSet.h" 71 #include "llvm/ADT/SmallSet.h" 72 #include "llvm/ADT/SmallVector.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/CodeGen/MachineBasicBlock.h" 75 #include "llvm/CodeGen/MachineDominators.h" 76 #include "llvm/CodeGen/MachineFunction.h" 77 #include "llvm/CodeGen/MachineFunctionPass.h" 78 #include "llvm/CodeGen/MachineInstr.h" 79 #include "llvm/CodeGen/MachineInstrBuilder.h" 80 #include "llvm/CodeGen/MachineLoopInfo.h" 81 #include "llvm/CodeGen/MachineOperand.h" 82 #include "llvm/CodeGen/MachineRegisterInfo.h" 83 #include "llvm/CodeGen/TargetInstrInfo.h" 84 #include "llvm/CodeGen/TargetOpcodes.h" 85 #include "llvm/CodeGen/TargetRegisterInfo.h" 86 #include "llvm/CodeGen/TargetSubtargetInfo.h" 87 #include "llvm/InitializePasses.h" 88 #include "llvm/MC/LaneBitmask.h" 89 #include "llvm/MC/MCInstrDesc.h" 90 #include "llvm/Pass.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/raw_ostream.h" 94 #include <cassert> 95 #include <cstdint> 96 #include <memory> 97 #include <utility> 98 99 using namespace llvm; 100 using RegSubRegPair = TargetInstrInfo::RegSubRegPair; 101 using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx; 102 103 #define DEBUG_TYPE "peephole-opt" 104 105 // Optimize Extensions 106 static cl::opt<bool> 107 Aggressive("aggressive-ext-opt", cl::Hidden, 108 cl::desc("Aggressive extension optimization")); 109 110 static cl::opt<bool> 111 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), 112 cl::desc("Disable the peephole optimizer")); 113 114 /// Specifiy whether or not the value tracking looks through 115 /// complex instructions. When this is true, the value tracker 116 /// bails on everything that is not a copy or a bitcast. 117 static cl::opt<bool> 118 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), 119 cl::desc("Disable advanced copy optimization")); 120 121 static cl::opt<bool> DisableNAPhysCopyOpt( 122 "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false), 123 cl::desc("Disable non-allocatable physical register copy optimization")); 124 125 // Limit the number of PHI instructions to process 126 // in PeepholeOptimizer::getNextSource. 127 static cl::opt<unsigned> RewritePHILimit( 128 "rewrite-phi-limit", cl::Hidden, cl::init(10), 129 cl::desc("Limit the length of PHI chains to lookup")); 130 131 // Limit the length of recurrence chain when evaluating the benefit of 132 // commuting operands. 133 static cl::opt<unsigned> MaxRecurrenceChain( 134 "recurrence-chain-limit", cl::Hidden, cl::init(3), 135 cl::desc("Maximum length of recurrence chain when evaluating the benefit " 136 "of commuting operands")); 137 138 139 STATISTIC(NumReuse, "Number of extension results reused"); 140 STATISTIC(NumCmps, "Number of compares eliminated"); 141 STATISTIC(NumImmFold, "Number of move immediate folded"); 142 STATISTIC(NumLoadFold, "Number of loads folded"); 143 STATISTIC(NumSelects, "Number of selects optimized"); 144 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized"); 145 STATISTIC(NumRewrittenCopies, "Number of copies rewritten"); 146 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed"); 147 148 namespace { 149 150 class ValueTrackerResult; 151 class RecurrenceInstr; 152 153 class PeepholeOptimizer : public MachineFunctionPass { 154 const TargetInstrInfo *TII; 155 const TargetRegisterInfo *TRI; 156 MachineRegisterInfo *MRI; 157 MachineDominatorTree *DT; // Machine dominator tree 158 MachineLoopInfo *MLI; 159 160 public: 161 static char ID; // Pass identification 162 163 PeepholeOptimizer() : MachineFunctionPass(ID) { 164 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); 165 } 166 167 bool runOnMachineFunction(MachineFunction &MF) override; 168 169 void getAnalysisUsage(AnalysisUsage &AU) const override { 170 AU.setPreservesCFG(); 171 MachineFunctionPass::getAnalysisUsage(AU); 172 AU.addRequired<MachineLoopInfo>(); 173 AU.addPreserved<MachineLoopInfo>(); 174 if (Aggressive) { 175 AU.addRequired<MachineDominatorTree>(); 176 AU.addPreserved<MachineDominatorTree>(); 177 } 178 } 179 180 MachineFunctionProperties getRequiredProperties() const override { 181 return MachineFunctionProperties() 182 .set(MachineFunctionProperties::Property::IsSSA); 183 } 184 185 /// Track Def -> Use info used for rewriting copies. 186 using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>; 187 188 /// Sequence of instructions that formulate recurrence cycle. 189 using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>; 190 191 private: 192 bool optimizeCmpInstr(MachineInstr &MI); 193 bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, 194 SmallPtrSetImpl<MachineInstr*> &LocalMIs); 195 bool optimizeSelect(MachineInstr &MI, 196 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 197 bool optimizeCondBranch(MachineInstr &MI); 198 bool optimizeCoalescableCopy(MachineInstr &MI); 199 bool optimizeUncoalescableCopy(MachineInstr &MI, 200 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 201 bool optimizeRecurrence(MachineInstr &PHI); 202 bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap); 203 bool isMoveImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, 204 DenseMap<Register, MachineInstr *> &ImmDefMIs); 205 bool foldImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, 206 DenseMap<Register, MachineInstr *> &ImmDefMIs); 207 208 /// Finds recurrence cycles, but only ones that formulated around 209 /// a def operand and a use operand that are tied. If there is a use 210 /// operand commutable with the tied use operand, find recurrence cycle 211 /// along that operand as well. 212 bool findTargetRecurrence(Register Reg, 213 const SmallSet<Register, 2> &TargetReg, 214 RecurrenceCycle &RC); 215 216 /// If copy instruction \p MI is a virtual register copy, track it in 217 /// the set \p CopyMIs. If this virtual register was previously seen as a 218 /// copy, replace the uses of this copy with the previously seen copy's 219 /// destination register. 220 bool foldRedundantCopy(MachineInstr &MI, 221 DenseMap<RegSubRegPair, MachineInstr *> &CopyMIs); 222 223 /// Is the register \p Reg a non-allocatable physical register? 224 bool isNAPhysCopy(Register Reg); 225 226 /// If copy instruction \p MI is a non-allocatable virtual<->physical 227 /// register copy, track it in the \p NAPhysToVirtMIs map. If this 228 /// non-allocatable physical register was previously copied to a virtual 229 /// registered and hasn't been clobbered, the virt->phys copy can be 230 /// deleted. 231 bool foldRedundantNAPhysCopy( 232 MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs); 233 234 bool isLoadFoldable(MachineInstr &MI, 235 SmallSet<Register, 16> &FoldAsLoadDefCandidates); 236 237 /// Check whether \p MI is understood by the register coalescer 238 /// but may require some rewriting. 239 bool isCoalescableCopy(const MachineInstr &MI) { 240 // SubregToRegs are not interesting, because they are already register 241 // coalescer friendly. 242 return MI.isCopy() || (!DisableAdvCopyOpt && 243 (MI.isRegSequence() || MI.isInsertSubreg() || 244 MI.isExtractSubreg())); 245 } 246 247 /// Check whether \p MI is a copy like instruction that is 248 /// not recognized by the register coalescer. 249 bool isUncoalescableCopy(const MachineInstr &MI) { 250 return MI.isBitcast() || 251 (!DisableAdvCopyOpt && 252 (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 253 MI.isExtractSubregLike())); 254 } 255 256 MachineInstr &rewriteSource(MachineInstr &CopyLike, 257 RegSubRegPair Def, RewriteMapTy &RewriteMap); 258 }; 259 260 /// Helper class to hold instructions that are inside recurrence cycles. 261 /// The recurrence cycle is formulated around 1) a def operand and its 262 /// tied use operand, or 2) a def operand and a use operand that is commutable 263 /// with another use operand which is tied to the def operand. In the latter 264 /// case, index of the tied use operand and the commutable use operand are 265 /// maintained with CommutePair. 266 class RecurrenceInstr { 267 public: 268 using IndexPair = std::pair<unsigned, unsigned>; 269 270 RecurrenceInstr(MachineInstr *MI) : MI(MI) {} 271 RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2) 272 : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {} 273 274 MachineInstr *getMI() const { return MI; } 275 Optional<IndexPair> getCommutePair() const { return CommutePair; } 276 277 private: 278 MachineInstr *MI; 279 Optional<IndexPair> CommutePair; 280 }; 281 282 /// Helper class to hold a reply for ValueTracker queries. 283 /// Contains the returned sources for a given search and the instructions 284 /// where the sources were tracked from. 285 class ValueTrackerResult { 286 private: 287 /// Track all sources found by one ValueTracker query. 288 SmallVector<RegSubRegPair, 2> RegSrcs; 289 290 /// Instruction using the sources in 'RegSrcs'. 291 const MachineInstr *Inst = nullptr; 292 293 public: 294 ValueTrackerResult() = default; 295 296 ValueTrackerResult(Register Reg, unsigned SubReg) { 297 addSource(Reg, SubReg); 298 } 299 300 bool isValid() const { return getNumSources() > 0; } 301 302 void setInst(const MachineInstr *I) { Inst = I; } 303 const MachineInstr *getInst() const { return Inst; } 304 305 void clear() { 306 RegSrcs.clear(); 307 Inst = nullptr; 308 } 309 310 void addSource(Register SrcReg, unsigned SrcSubReg) { 311 RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg)); 312 } 313 314 void setSource(int Idx, Register SrcReg, unsigned SrcSubReg) { 315 assert(Idx < getNumSources() && "Reg pair source out of index"); 316 RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg); 317 } 318 319 int getNumSources() const { return RegSrcs.size(); } 320 321 RegSubRegPair getSrc(int Idx) const { 322 return RegSrcs[Idx]; 323 } 324 325 Register getSrcReg(int Idx) const { 326 assert(Idx < getNumSources() && "Reg source out of index"); 327 return RegSrcs[Idx].Reg; 328 } 329 330 unsigned getSrcSubReg(int Idx) const { 331 assert(Idx < getNumSources() && "SubReg source out of index"); 332 return RegSrcs[Idx].SubReg; 333 } 334 335 bool operator==(const ValueTrackerResult &Other) const { 336 if (Other.getInst() != getInst()) 337 return false; 338 339 if (Other.getNumSources() != getNumSources()) 340 return false; 341 342 for (int i = 0, e = Other.getNumSources(); i != e; ++i) 343 if (Other.getSrcReg(i) != getSrcReg(i) || 344 Other.getSrcSubReg(i) != getSrcSubReg(i)) 345 return false; 346 return true; 347 } 348 }; 349 350 /// Helper class to track the possible sources of a value defined by 351 /// a (chain of) copy related instructions. 352 /// Given a definition (instruction and definition index), this class 353 /// follows the use-def chain to find successive suitable sources. 354 /// The given source can be used to rewrite the definition into 355 /// def = COPY src. 356 /// 357 /// For instance, let us consider the following snippet: 358 /// v0 = 359 /// v2 = INSERT_SUBREG v1, v0, sub0 360 /// def = COPY v2.sub0 361 /// 362 /// Using a ValueTracker for def = COPY v2.sub0 will give the following 363 /// suitable sources: 364 /// v2.sub0 and v0. 365 /// Then, def can be rewritten into def = COPY v0. 366 class ValueTracker { 367 private: 368 /// The current point into the use-def chain. 369 const MachineInstr *Def = nullptr; 370 371 /// The index of the definition in Def. 372 unsigned DefIdx = 0; 373 374 /// The sub register index of the definition. 375 unsigned DefSubReg; 376 377 /// The register where the value can be found. 378 Register Reg; 379 380 /// MachineRegisterInfo used to perform tracking. 381 const MachineRegisterInfo &MRI; 382 383 /// Optional TargetInstrInfo used to perform some complex tracking. 384 const TargetInstrInfo *TII; 385 386 /// Dispatcher to the right underlying implementation of getNextSource. 387 ValueTrackerResult getNextSourceImpl(); 388 389 /// Specialized version of getNextSource for Copy instructions. 390 ValueTrackerResult getNextSourceFromCopy(); 391 392 /// Specialized version of getNextSource for Bitcast instructions. 393 ValueTrackerResult getNextSourceFromBitcast(); 394 395 /// Specialized version of getNextSource for RegSequence instructions. 396 ValueTrackerResult getNextSourceFromRegSequence(); 397 398 /// Specialized version of getNextSource for InsertSubreg instructions. 399 ValueTrackerResult getNextSourceFromInsertSubreg(); 400 401 /// Specialized version of getNextSource for ExtractSubreg instructions. 402 ValueTrackerResult getNextSourceFromExtractSubreg(); 403 404 /// Specialized version of getNextSource for SubregToReg instructions. 405 ValueTrackerResult getNextSourceFromSubregToReg(); 406 407 /// Specialized version of getNextSource for PHI instructions. 408 ValueTrackerResult getNextSourceFromPHI(); 409 410 public: 411 /// Create a ValueTracker instance for the value defined by \p Reg. 412 /// \p DefSubReg represents the sub register index the value tracker will 413 /// track. It does not need to match the sub register index used in the 414 /// definition of \p Reg. 415 /// If \p Reg is a physical register, a value tracker constructed with 416 /// this constructor will not find any alternative source. 417 /// Indeed, when \p Reg is a physical register that constructor does not 418 /// know which definition of \p Reg it should track. 419 /// Use the next constructor to track a physical register. 420 ValueTracker(Register Reg, unsigned DefSubReg, 421 const MachineRegisterInfo &MRI, 422 const TargetInstrInfo *TII = nullptr) 423 : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) { 424 if (!Reg.isPhysical()) { 425 Def = MRI.getVRegDef(Reg); 426 DefIdx = MRI.def_begin(Reg).getOperandNo(); 427 } 428 } 429 430 /// Following the use-def chain, get the next available source 431 /// for the tracked value. 432 /// \return A ValueTrackerResult containing a set of registers 433 /// and sub registers with tracked values. A ValueTrackerResult with 434 /// an empty set of registers means no source was found. 435 ValueTrackerResult getNextSource(); 436 }; 437 438 } // end anonymous namespace 439 440 char PeepholeOptimizer::ID = 0; 441 442 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; 443 444 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE, 445 "Peephole Optimizations", false, false) 446 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 447 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 448 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE, 449 "Peephole Optimizations", false, false) 450 451 /// If instruction is a copy-like instruction, i.e. it reads a single register 452 /// and writes a single register and it does not modify the source, and if the 453 /// source value is preserved as a sub-register of the result, then replace all 454 /// reachable uses of the source with the subreg of the result. 455 /// 456 /// Do not generate an EXTRACT that is used only in a debug use, as this changes 457 /// the code. Since this code does not currently share EXTRACTs, just ignore all 458 /// debug uses. 459 bool PeepholeOptimizer:: 460 optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, 461 SmallPtrSetImpl<MachineInstr*> &LocalMIs) { 462 Register SrcReg, DstReg; 463 unsigned SubIdx; 464 if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx)) 465 return false; 466 467 if (DstReg.isPhysical() || SrcReg.isPhysical()) 468 return false; 469 470 if (MRI->hasOneNonDBGUse(SrcReg)) 471 // No other uses. 472 return false; 473 474 // Ensure DstReg can get a register class that actually supports 475 // sub-registers. Don't change the class until we commit. 476 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 477 DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); 478 if (!DstRC) 479 return false; 480 481 // The ext instr may be operating on a sub-register of SrcReg as well. 482 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit 483 // register. 484 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of 485 // SrcReg:SubIdx should be replaced. 486 bool UseSrcSubIdx = 487 TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; 488 489 // The source has other uses. See if we can replace the other uses with use of 490 // the result of the extension. 491 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs; 492 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 493 ReachedBBs.insert(UI.getParent()); 494 495 // Uses that are in the same BB of uses of the result of the instruction. 496 SmallVector<MachineOperand*, 8> Uses; 497 498 // Uses that the result of the instruction can reach. 499 SmallVector<MachineOperand*, 8> ExtendedUses; 500 501 bool ExtendLife = true; 502 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 503 MachineInstr *UseMI = UseMO.getParent(); 504 if (UseMI == &MI) 505 continue; 506 507 if (UseMI->isPHI()) { 508 ExtendLife = false; 509 continue; 510 } 511 512 // Only accept uses of SrcReg:SubIdx. 513 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) 514 continue; 515 516 // It's an error to translate this: 517 // 518 // %reg1025 = <sext> %reg1024 519 // ... 520 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 521 // 522 // into this: 523 // 524 // %reg1025 = <sext> %reg1024 525 // ... 526 // %reg1027 = COPY %reg1025:4 527 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 528 // 529 // The problem here is that SUBREG_TO_REG is there to assert that an 530 // implicit zext occurs. It doesn't insert a zext instruction. If we allow 531 // the COPY here, it will give us the value after the <sext>, not the 532 // original value of %reg1024 before <sext>. 533 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) 534 continue; 535 536 MachineBasicBlock *UseMBB = UseMI->getParent(); 537 if (UseMBB == &MBB) { 538 // Local uses that come after the extension. 539 if (!LocalMIs.count(UseMI)) 540 Uses.push_back(&UseMO); 541 } else if (ReachedBBs.count(UseMBB)) { 542 // Non-local uses where the result of the extension is used. Always 543 // replace these unless it's a PHI. 544 Uses.push_back(&UseMO); 545 } else if (Aggressive && DT->dominates(&MBB, UseMBB)) { 546 // We may want to extend the live range of the extension result in order 547 // to replace these uses. 548 ExtendedUses.push_back(&UseMO); 549 } else { 550 // Both will be live out of the def MBB anyway. Don't extend live range of 551 // the extension result. 552 ExtendLife = false; 553 break; 554 } 555 } 556 557 if (ExtendLife && !ExtendedUses.empty()) 558 // Extend the liveness of the extension result. 559 Uses.append(ExtendedUses.begin(), ExtendedUses.end()); 560 561 // Now replace all uses. 562 bool Changed = false; 563 if (!Uses.empty()) { 564 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs; 565 566 // Look for PHI uses of the extended result, we don't want to extend the 567 // liveness of a PHI input. It breaks all kinds of assumptions down 568 // stream. A PHI use is expected to be the kill of its source values. 569 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 570 if (UI.isPHI()) 571 PHIBBs.insert(UI.getParent()); 572 573 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 574 for (unsigned i = 0, e = Uses.size(); i != e; ++i) { 575 MachineOperand *UseMO = Uses[i]; 576 MachineInstr *UseMI = UseMO->getParent(); 577 MachineBasicBlock *UseMBB = UseMI->getParent(); 578 if (PHIBBs.count(UseMBB)) 579 continue; 580 581 // About to add uses of DstReg, clear DstReg's kill flags. 582 if (!Changed) { 583 MRI->clearKillFlags(DstReg); 584 MRI->constrainRegClass(DstReg, DstRC); 585 } 586 587 // SubReg defs are illegal in machine SSA phase, 588 // we should not generate SubReg defs. 589 // 590 // For example, for the instructions: 591 // 592 // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc 593 // %3:gprc_and_gprc_nor0 = COPY %0.sub_32:g8rc 594 // 595 // We should generate: 596 // 597 // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc 598 // %6:gprc_and_gprc_nor0 = COPY %1.sub_32:g8rc_and_g8rc_nox0 599 // %3:gprc_and_gprc_nor0 = COPY %6:gprc_and_gprc_nor0 600 // 601 if (UseSrcSubIdx) 602 RC = MRI->getRegClass(UseMI->getOperand(0).getReg()); 603 604 Register NewVR = MRI->createVirtualRegister(RC); 605 BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), 606 TII->get(TargetOpcode::COPY), NewVR) 607 .addReg(DstReg, 0, SubIdx); 608 if (UseSrcSubIdx) 609 UseMO->setSubReg(0); 610 611 UseMO->setReg(NewVR); 612 ++NumReuse; 613 Changed = true; 614 } 615 } 616 617 return Changed; 618 } 619 620 /// If the instruction is a compare and the previous instruction it's comparing 621 /// against already sets (or could be modified to set) the same flag as the 622 /// compare, then we can remove the comparison and use the flag from the 623 /// previous instruction. 624 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) { 625 // If this instruction is a comparison against zero and isn't comparing a 626 // physical register, we can try to optimize it. 627 Register SrcReg, SrcReg2; 628 int64_t CmpMask, CmpValue; 629 if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) || 630 SrcReg.isPhysical() || SrcReg2.isPhysical()) 631 return false; 632 633 // Attempt to optimize the comparison instruction. 634 LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI); 635 if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { 636 LLVM_DEBUG(dbgs() << " -> Successfully optimized compare!\n"); 637 ++NumCmps; 638 return true; 639 } 640 641 return false; 642 } 643 644 /// Optimize a select instruction. 645 bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI, 646 SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 647 unsigned TrueOp = 0; 648 unsigned FalseOp = 0; 649 bool Optimizable = false; 650 SmallVector<MachineOperand, 4> Cond; 651 if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) 652 return false; 653 if (!Optimizable) 654 return false; 655 if (!TII->optimizeSelect(MI, LocalMIs)) 656 return false; 657 LLVM_DEBUG(dbgs() << "Deleting select: " << MI); 658 MI.eraseFromParent(); 659 ++NumSelects; 660 return true; 661 } 662 663 /// Check if a simpler conditional branch can be generated. 664 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) { 665 return TII->optimizeCondBranch(MI); 666 } 667 668 /// Try to find the next source that share the same register file 669 /// for the value defined by \p Reg and \p SubReg. 670 /// When true is returned, the \p RewriteMap can be used by the client to 671 /// retrieve all Def -> Use along the way up to the next source. Any found 672 /// Use that is not itself a key for another entry, is the next source to 673 /// use. During the search for the next source, multiple sources can be found 674 /// given multiple incoming sources of a PHI instruction. In this case, we 675 /// look in each PHI source for the next source; all found next sources must 676 /// share the same register file as \p Reg and \p SubReg. The client should 677 /// then be capable to rewrite all intermediate PHIs to get the next source. 678 /// \return False if no alternative sources are available. True otherwise. 679 bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg, 680 RewriteMapTy &RewriteMap) { 681 // Do not try to find a new source for a physical register. 682 // So far we do not have any motivating example for doing that. 683 // Thus, instead of maintaining untested code, we will revisit that if 684 // that changes at some point. 685 Register Reg = RegSubReg.Reg; 686 if (Reg.isPhysical()) 687 return false; 688 const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); 689 690 SmallVector<RegSubRegPair, 4> SrcToLook; 691 RegSubRegPair CurSrcPair = RegSubReg; 692 SrcToLook.push_back(CurSrcPair); 693 694 unsigned PHICount = 0; 695 do { 696 CurSrcPair = SrcToLook.pop_back_val(); 697 // As explained above, do not handle physical registers 698 if (Register::isPhysicalRegister(CurSrcPair.Reg)) 699 return false; 700 701 ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII); 702 703 // Follow the chain of copies until we find a more suitable source, a phi 704 // or have to abort. 705 while (true) { 706 ValueTrackerResult Res = ValTracker.getNextSource(); 707 // Abort at the end of a chain (without finding a suitable source). 708 if (!Res.isValid()) 709 return false; 710 711 // Insert the Def -> Use entry for the recently found source. 712 ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); 713 if (CurSrcRes.isValid()) { 714 assert(CurSrcRes == Res && "ValueTrackerResult found must match"); 715 // An existent entry with multiple sources is a PHI cycle we must avoid. 716 // Otherwise it's an entry with a valid next source we already found. 717 if (CurSrcRes.getNumSources() > 1) { 718 LLVM_DEBUG(dbgs() 719 << "findNextSource: found PHI cycle, aborting...\n"); 720 return false; 721 } 722 break; 723 } 724 RewriteMap.insert(std::make_pair(CurSrcPair, Res)); 725 726 // ValueTrackerResult usually have one source unless it's the result from 727 // a PHI instruction. Add the found PHI edges to be looked up further. 728 unsigned NumSrcs = Res.getNumSources(); 729 if (NumSrcs > 1) { 730 PHICount++; 731 if (PHICount >= RewritePHILimit) { 732 LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n"); 733 return false; 734 } 735 736 for (unsigned i = 0; i < NumSrcs; ++i) 737 SrcToLook.push_back(Res.getSrc(i)); 738 break; 739 } 740 741 CurSrcPair = Res.getSrc(0); 742 // Do not extend the live-ranges of physical registers as they add 743 // constraints to the register allocator. Moreover, if we want to extend 744 // the live-range of a physical register, unlike SSA virtual register, 745 // we will have to check that they aren't redefine before the related use. 746 if (Register::isPhysicalRegister(CurSrcPair.Reg)) 747 return false; 748 749 // Keep following the chain if the value isn't any better yet. 750 const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); 751 if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC, 752 CurSrcPair.SubReg)) 753 continue; 754 755 // We currently cannot deal with subreg operands on PHI instructions 756 // (see insertPHI()). 757 if (PHICount > 0 && CurSrcPair.SubReg != 0) 758 continue; 759 760 // We found a suitable source, and are done with this chain. 761 break; 762 } 763 } while (!SrcToLook.empty()); 764 765 // If we did not find a more suitable source, there is nothing to optimize. 766 return CurSrcPair.Reg != Reg; 767 } 768 769 /// Insert a PHI instruction with incoming edges \p SrcRegs that are 770 /// guaranteed to have the same register class. This is necessary whenever we 771 /// successfully traverse a PHI instruction and find suitable sources coming 772 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def 773 /// suitable to be used in a new COPY instruction. 774 static MachineInstr & 775 insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 776 const SmallVectorImpl<RegSubRegPair> &SrcRegs, 777 MachineInstr &OrigPHI) { 778 assert(!SrcRegs.empty() && "No sources to create a PHI instruction?"); 779 780 const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg); 781 // NewRC is only correct if no subregisters are involved. findNextSource() 782 // should have rejected those cases already. 783 assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand"); 784 Register NewVR = MRI.createVirtualRegister(NewRC); 785 MachineBasicBlock *MBB = OrigPHI.getParent(); 786 MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(), 787 TII.get(TargetOpcode::PHI), NewVR); 788 789 unsigned MBBOpIdx = 2; 790 for (const RegSubRegPair &RegPair : SrcRegs) { 791 MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); 792 MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB()); 793 // Since we're extended the lifetime of RegPair.Reg, clear the 794 // kill flags to account for that and make RegPair.Reg reaches 795 // the new PHI. 796 MRI.clearKillFlags(RegPair.Reg); 797 MBBOpIdx += 2; 798 } 799 800 return *MIB; 801 } 802 803 namespace { 804 805 /// Interface to query instructions amenable to copy rewriting. 806 class Rewriter { 807 protected: 808 MachineInstr &CopyLike; 809 unsigned CurrentSrcIdx = 0; ///< The index of the source being rewritten. 810 public: 811 Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {} 812 virtual ~Rewriter() = default; 813 814 /// Get the next rewritable source (SrcReg, SrcSubReg) and 815 /// the related value that it affects (DstReg, DstSubReg). 816 /// A source is considered rewritable if its register class and the 817 /// register class of the related DstReg may not be register 818 /// coalescer friendly. In other words, given a copy-like instruction 819 /// not all the arguments may be returned at rewritable source, since 820 /// some arguments are none to be register coalescer friendly. 821 /// 822 /// Each call of this method moves the current source to the next 823 /// rewritable source. 824 /// For instance, let CopyLike be the instruction to rewrite. 825 /// CopyLike has one definition and one source: 826 /// dst.dstSubIdx = CopyLike src.srcSubIdx. 827 /// 828 /// The first call will give the first rewritable source, i.e., 829 /// the only source this instruction has: 830 /// (SrcReg, SrcSubReg) = (src, srcSubIdx). 831 /// This source defines the whole definition, i.e., 832 /// (DstReg, DstSubReg) = (dst, dstSubIdx). 833 /// 834 /// The second and subsequent calls will return false, as there is only one 835 /// rewritable source. 836 /// 837 /// \return True if a rewritable source has been found, false otherwise. 838 /// The output arguments are valid if and only if true is returned. 839 virtual bool getNextRewritableSource(RegSubRegPair &Src, 840 RegSubRegPair &Dst) = 0; 841 842 /// Rewrite the current source with \p NewReg and \p NewSubReg if possible. 843 /// \return True if the rewriting was possible, false otherwise. 844 virtual bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) = 0; 845 }; 846 847 /// Rewriter for COPY instructions. 848 class CopyRewriter : public Rewriter { 849 public: 850 CopyRewriter(MachineInstr &MI) : Rewriter(MI) { 851 assert(MI.isCopy() && "Expected copy instruction"); 852 } 853 virtual ~CopyRewriter() = default; 854 855 bool getNextRewritableSource(RegSubRegPair &Src, 856 RegSubRegPair &Dst) override { 857 // CurrentSrcIdx > 0 means this function has already been called. 858 if (CurrentSrcIdx > 0) 859 return false; 860 // This is the first call to getNextRewritableSource. 861 // Move the CurrentSrcIdx to remember that we made that call. 862 CurrentSrcIdx = 1; 863 // The rewritable source is the argument. 864 const MachineOperand &MOSrc = CopyLike.getOperand(1); 865 Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg()); 866 // What we track are the alternative sources of the definition. 867 const MachineOperand &MODef = CopyLike.getOperand(0); 868 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 869 return true; 870 } 871 872 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { 873 if (CurrentSrcIdx != 1) 874 return false; 875 MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); 876 MOSrc.setReg(NewReg); 877 MOSrc.setSubReg(NewSubReg); 878 return true; 879 } 880 }; 881 882 /// Helper class to rewrite uncoalescable copy like instructions 883 /// into new COPY (coalescable friendly) instructions. 884 class UncoalescableRewriter : public Rewriter { 885 unsigned NumDefs; ///< Number of defs in the bitcast. 886 887 public: 888 UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) { 889 NumDefs = MI.getDesc().getNumDefs(); 890 } 891 892 /// \see See Rewriter::getNextRewritableSource() 893 /// All such sources need to be considered rewritable in order to 894 /// rewrite a uncoalescable copy-like instruction. This method return 895 /// each definition that must be checked if rewritable. 896 bool getNextRewritableSource(RegSubRegPair &Src, 897 RegSubRegPair &Dst) override { 898 // Find the next non-dead definition and continue from there. 899 if (CurrentSrcIdx == NumDefs) 900 return false; 901 902 while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { 903 ++CurrentSrcIdx; 904 if (CurrentSrcIdx == NumDefs) 905 return false; 906 } 907 908 // What we track are the alternative sources of the definition. 909 Src = RegSubRegPair(0, 0); 910 const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); 911 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 912 913 CurrentSrcIdx++; 914 return true; 915 } 916 917 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { 918 return false; 919 } 920 }; 921 922 /// Specialized rewriter for INSERT_SUBREG instruction. 923 class InsertSubregRewriter : public Rewriter { 924 public: 925 InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) { 926 assert(MI.isInsertSubreg() && "Invalid instruction"); 927 } 928 929 /// \see See Rewriter::getNextRewritableSource() 930 /// Here CopyLike has the following form: 931 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. 932 /// Src1 has the same register class has dst, hence, there is 933 /// nothing to rewrite. 934 /// Src2.src2SubIdx, may not be register coalescer friendly. 935 /// Therefore, the first call to this method returns: 936 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 937 /// (DstReg, DstSubReg) = (dst, subIdx). 938 /// 939 /// Subsequence calls will return false. 940 bool getNextRewritableSource(RegSubRegPair &Src, 941 RegSubRegPair &Dst) override { 942 // If we already get the only source we can rewrite, return false. 943 if (CurrentSrcIdx == 2) 944 return false; 945 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. 946 CurrentSrcIdx = 2; 947 const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); 948 Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg()); 949 const MachineOperand &MODef = CopyLike.getOperand(0); 950 951 // We want to track something that is compatible with the 952 // partial definition. 953 if (MODef.getSubReg()) 954 // Bail if we have to compose sub-register indices. 955 return false; 956 Dst = RegSubRegPair(MODef.getReg(), 957 (unsigned)CopyLike.getOperand(3).getImm()); 958 return true; 959 } 960 961 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { 962 if (CurrentSrcIdx != 2) 963 return false; 964 // We are rewriting the inserted reg. 965 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 966 MO.setReg(NewReg); 967 MO.setSubReg(NewSubReg); 968 return true; 969 } 970 }; 971 972 /// Specialized rewriter for EXTRACT_SUBREG instruction. 973 class ExtractSubregRewriter : public Rewriter { 974 const TargetInstrInfo &TII; 975 976 public: 977 ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) 978 : Rewriter(MI), TII(TII) { 979 assert(MI.isExtractSubreg() && "Invalid instruction"); 980 } 981 982 /// \see Rewriter::getNextRewritableSource() 983 /// Here CopyLike has the following form: 984 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. 985 /// There is only one rewritable source: Src.subIdx, 986 /// which defines dst.dstSubIdx. 987 bool getNextRewritableSource(RegSubRegPair &Src, 988 RegSubRegPair &Dst) override { 989 // If we already get the only source we can rewrite, return false. 990 if (CurrentSrcIdx == 1) 991 return false; 992 // We are looking at v1 = EXTRACT_SUBREG v0, sub0. 993 CurrentSrcIdx = 1; 994 const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); 995 // If we have to compose sub-register indices, bail out. 996 if (MOExtractedReg.getSubReg()) 997 return false; 998 999 Src = RegSubRegPair(MOExtractedReg.getReg(), 1000 CopyLike.getOperand(2).getImm()); 1001 1002 // We want to track something that is compatible with the definition. 1003 const MachineOperand &MODef = CopyLike.getOperand(0); 1004 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 1005 return true; 1006 } 1007 1008 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { 1009 // The only source we can rewrite is the input register. 1010 if (CurrentSrcIdx != 1) 1011 return false; 1012 1013 CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); 1014 1015 // If we find a source that does not require to extract something, 1016 // rewrite the operation with a copy. 1017 if (!NewSubReg) { 1018 // Move the current index to an invalid position. 1019 // We do not want another call to this method to be able 1020 // to do any change. 1021 CurrentSrcIdx = -1; 1022 // Rewrite the operation as a COPY. 1023 // Get rid of the sub-register index. 1024 CopyLike.removeOperand(2); 1025 // Morph the operation into a COPY. 1026 CopyLike.setDesc(TII.get(TargetOpcode::COPY)); 1027 return true; 1028 } 1029 CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); 1030 return true; 1031 } 1032 }; 1033 1034 /// Specialized rewriter for REG_SEQUENCE instruction. 1035 class RegSequenceRewriter : public Rewriter { 1036 public: 1037 RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) { 1038 assert(MI.isRegSequence() && "Invalid instruction"); 1039 } 1040 1041 /// \see Rewriter::getNextRewritableSource() 1042 /// Here CopyLike has the following form: 1043 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. 1044 /// Each call will return a different source, walking all the available 1045 /// source. 1046 /// 1047 /// The first call returns: 1048 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). 1049 /// (DstReg, DstSubReg) = (dst, subIdx1). 1050 /// 1051 /// The second call returns: 1052 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 1053 /// (DstReg, DstSubReg) = (dst, subIdx2). 1054 /// 1055 /// And so on, until all the sources have been traversed, then 1056 /// it returns false. 1057 bool getNextRewritableSource(RegSubRegPair &Src, 1058 RegSubRegPair &Dst) override { 1059 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. 1060 1061 // If this is the first call, move to the first argument. 1062 if (CurrentSrcIdx == 0) { 1063 CurrentSrcIdx = 1; 1064 } else { 1065 // Otherwise, move to the next argument and check that it is valid. 1066 CurrentSrcIdx += 2; 1067 if (CurrentSrcIdx >= CopyLike.getNumOperands()) 1068 return false; 1069 } 1070 const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); 1071 Src.Reg = MOInsertedReg.getReg(); 1072 // If we have to compose sub-register indices, bail out. 1073 if ((Src.SubReg = MOInsertedReg.getSubReg())) 1074 return false; 1075 1076 // We want to track something that is compatible with the related 1077 // partial definition. 1078 Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); 1079 1080 const MachineOperand &MODef = CopyLike.getOperand(0); 1081 Dst.Reg = MODef.getReg(); 1082 // If we have to compose sub-registers, bail. 1083 return MODef.getSubReg() == 0; 1084 } 1085 1086 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { 1087 // We cannot rewrite out of bound operands. 1088 // Moreover, rewritable sources are at odd positions. 1089 if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) 1090 return false; 1091 1092 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 1093 MO.setReg(NewReg); 1094 MO.setSubReg(NewSubReg); 1095 return true; 1096 } 1097 }; 1098 1099 } // end anonymous namespace 1100 1101 /// Get the appropriated Rewriter for \p MI. 1102 /// \return A pointer to a dynamically allocated Rewriter or nullptr if no 1103 /// rewriter works for \p MI. 1104 static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) { 1105 // Handle uncoalescable copy-like instructions. 1106 if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() || 1107 MI.isExtractSubregLike()) 1108 return new UncoalescableRewriter(MI); 1109 1110 switch (MI.getOpcode()) { 1111 default: 1112 return nullptr; 1113 case TargetOpcode::COPY: 1114 return new CopyRewriter(MI); 1115 case TargetOpcode::INSERT_SUBREG: 1116 return new InsertSubregRewriter(MI); 1117 case TargetOpcode::EXTRACT_SUBREG: 1118 return new ExtractSubregRewriter(MI, TII); 1119 case TargetOpcode::REG_SEQUENCE: 1120 return new RegSequenceRewriter(MI); 1121 } 1122 } 1123 1124 /// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find 1125 /// the new source to use for rewrite. If \p HandleMultipleSources is true and 1126 /// multiple sources for a given \p Def are found along the way, we found a 1127 /// PHI instructions that needs to be rewritten. 1128 /// TODO: HandleMultipleSources should be removed once we test PHI handling 1129 /// with coalescable copies. 1130 static RegSubRegPair 1131 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 1132 RegSubRegPair Def, 1133 const PeepholeOptimizer::RewriteMapTy &RewriteMap, 1134 bool HandleMultipleSources = true) { 1135 RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); 1136 while (true) { 1137 ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); 1138 // If there are no entries on the map, LookupSrc is the new source. 1139 if (!Res.isValid()) 1140 return LookupSrc; 1141 1142 // There's only one source for this definition, keep searching... 1143 unsigned NumSrcs = Res.getNumSources(); 1144 if (NumSrcs == 1) { 1145 LookupSrc.Reg = Res.getSrcReg(0); 1146 LookupSrc.SubReg = Res.getSrcSubReg(0); 1147 continue; 1148 } 1149 1150 // TODO: Remove once multiple srcs w/ coalescable copies are supported. 1151 if (!HandleMultipleSources) 1152 break; 1153 1154 // Multiple sources, recurse into each source to find a new source 1155 // for it. Then, rewrite the PHI accordingly to its new edges. 1156 SmallVector<RegSubRegPair, 4> NewPHISrcs; 1157 for (unsigned i = 0; i < NumSrcs; ++i) { 1158 RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i)); 1159 NewPHISrcs.push_back( 1160 getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); 1161 } 1162 1163 // Build the new PHI node and return its def register as the new source. 1164 MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst()); 1165 MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI); 1166 LLVM_DEBUG(dbgs() << "-- getNewSource\n"); 1167 LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI); 1168 LLVM_DEBUG(dbgs() << " With: " << NewPHI); 1169 const MachineOperand &MODef = NewPHI.getOperand(0); 1170 return RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 1171 } 1172 1173 return RegSubRegPair(0, 0); 1174 } 1175 1176 /// Optimize generic copy instructions to avoid cross register bank copy. 1177 /// The optimization looks through a chain of copies and tries to find a source 1178 /// that has a compatible register class. 1179 /// Two register classes are considered to be compatible if they share the same 1180 /// register bank. 1181 /// New copies issued by this optimization are register allocator 1182 /// friendly. This optimization does not remove any copy as it may 1183 /// overconstrain the register allocator, but replaces some operands 1184 /// when possible. 1185 /// \pre isCoalescableCopy(*MI) is true. 1186 /// \return True, when \p MI has been rewritten. False otherwise. 1187 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) { 1188 assert(isCoalescableCopy(MI) && "Invalid argument"); 1189 assert(MI.getDesc().getNumDefs() == 1 && 1190 "Coalescer can understand multiple defs?!"); 1191 const MachineOperand &MODef = MI.getOperand(0); 1192 // Do not rewrite physical definitions. 1193 if (Register::isPhysicalRegister(MODef.getReg())) 1194 return false; 1195 1196 bool Changed = false; 1197 // Get the right rewriter for the current copy. 1198 std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII)); 1199 // If none exists, bail out. 1200 if (!CpyRewriter) 1201 return false; 1202 // Rewrite each rewritable source. 1203 RegSubRegPair Src; 1204 RegSubRegPair TrackPair; 1205 while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) { 1206 // Keep track of PHI nodes and its incoming edges when looking for sources. 1207 RewriteMapTy RewriteMap; 1208 // Try to find a more suitable source. If we failed to do so, or get the 1209 // actual source, move to the next source. 1210 if (!findNextSource(TrackPair, RewriteMap)) 1211 continue; 1212 1213 // Get the new source to rewrite. TODO: Only enable handling of multiple 1214 // sources (PHIs) once we have a motivating example and testcases for it. 1215 RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap, 1216 /*HandleMultipleSources=*/false); 1217 if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0) 1218 continue; 1219 1220 // Rewrite source. 1221 if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { 1222 // We may have extended the live-range of NewSrc, account for that. 1223 MRI->clearKillFlags(NewSrc.Reg); 1224 Changed = true; 1225 } 1226 } 1227 // TODO: We could have a clean-up method to tidy the instruction. 1228 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 1229 // => v0 = COPY v1 1230 // Currently we haven't seen motivating example for that and we 1231 // want to avoid untested code. 1232 NumRewrittenCopies += Changed; 1233 return Changed; 1234 } 1235 1236 /// Rewrite the source found through \p Def, by using the \p RewriteMap 1237 /// and create a new COPY instruction. More info about RewriteMap in 1238 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 1239 /// Uncoalescable copies, since they are copy like instructions that aren't 1240 /// recognized by the register allocator. 1241 MachineInstr & 1242 PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike, 1243 RegSubRegPair Def, RewriteMapTy &RewriteMap) { 1244 assert(!Register::isPhysicalRegister(Def.Reg) && 1245 "We do not rewrite physical registers"); 1246 1247 // Find the new source to use in the COPY rewrite. 1248 RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap); 1249 1250 // Insert the COPY. 1251 const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg); 1252 Register NewVReg = MRI->createVirtualRegister(DefRC); 1253 1254 MachineInstr *NewCopy = 1255 BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), 1256 TII->get(TargetOpcode::COPY), NewVReg) 1257 .addReg(NewSrc.Reg, 0, NewSrc.SubReg); 1258 1259 if (Def.SubReg) { 1260 NewCopy->getOperand(0).setSubReg(Def.SubReg); 1261 NewCopy->getOperand(0).setIsUndef(); 1262 } 1263 1264 LLVM_DEBUG(dbgs() << "-- RewriteSource\n"); 1265 LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike); 1266 LLVM_DEBUG(dbgs() << " With: " << *NewCopy); 1267 MRI->replaceRegWith(Def.Reg, NewVReg); 1268 MRI->clearKillFlags(NewVReg); 1269 1270 // We extended the lifetime of NewSrc.Reg, clear the kill flags to 1271 // account for that. 1272 MRI->clearKillFlags(NewSrc.Reg); 1273 1274 return *NewCopy; 1275 } 1276 1277 /// Optimize copy-like instructions to create 1278 /// register coalescer friendly instruction. 1279 /// The optimization tries to kill-off the \p MI by looking 1280 /// through a chain of copies to find a source that has a compatible 1281 /// register class. 1282 /// If such a source is found, it replace \p MI by a generic COPY 1283 /// operation. 1284 /// \pre isUncoalescableCopy(*MI) is true. 1285 /// \return True, when \p MI has been optimized. In that case, \p MI has 1286 /// been removed from its parent. 1287 /// All COPY instructions created, are inserted in \p LocalMIs. 1288 bool PeepholeOptimizer::optimizeUncoalescableCopy( 1289 MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 1290 assert(isUncoalescableCopy(MI) && "Invalid argument"); 1291 UncoalescableRewriter CpyRewriter(MI); 1292 1293 // Rewrite each rewritable source by generating new COPYs. This works 1294 // differently from optimizeCoalescableCopy since it first makes sure that all 1295 // definitions can be rewritten. 1296 RewriteMapTy RewriteMap; 1297 RegSubRegPair Src; 1298 RegSubRegPair Def; 1299 SmallVector<RegSubRegPair, 4> RewritePairs; 1300 while (CpyRewriter.getNextRewritableSource(Src, Def)) { 1301 // If a physical register is here, this is probably for a good reason. 1302 // Do not rewrite that. 1303 if (Register::isPhysicalRegister(Def.Reg)) 1304 return false; 1305 1306 // If we do not know how to rewrite this definition, there is no point 1307 // in trying to kill this instruction. 1308 if (!findNextSource(Def, RewriteMap)) 1309 return false; 1310 1311 RewritePairs.push_back(Def); 1312 } 1313 1314 // The change is possible for all defs, do it. 1315 for (const RegSubRegPair &Def : RewritePairs) { 1316 // Rewrite the "copy" in a way the register coalescer understands. 1317 MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap); 1318 LocalMIs.insert(&NewCopy); 1319 } 1320 1321 // MI is now dead. 1322 LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI); 1323 MI.eraseFromParent(); 1324 ++NumUncoalescableCopies; 1325 return true; 1326 } 1327 1328 /// Check whether MI is a candidate for folding into a later instruction. 1329 /// We only fold loads to virtual registers and the virtual register defined 1330 /// has a single user. 1331 bool PeepholeOptimizer::isLoadFoldable( 1332 MachineInstr &MI, SmallSet<Register, 16> &FoldAsLoadDefCandidates) { 1333 if (!MI.canFoldAsLoad() || !MI.mayLoad()) 1334 return false; 1335 const MCInstrDesc &MCID = MI.getDesc(); 1336 if (MCID.getNumDefs() != 1) 1337 return false; 1338 1339 Register Reg = MI.getOperand(0).getReg(); 1340 // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting 1341 // loads. It should be checked when processing uses of the load, since 1342 // uses can be removed during peephole. 1343 if (Reg.isVirtual() && !MI.getOperand(0).getSubReg() && 1344 MRI->hasOneNonDBGUser(Reg)) { 1345 FoldAsLoadDefCandidates.insert(Reg); 1346 return true; 1347 } 1348 return false; 1349 } 1350 1351 bool PeepholeOptimizer::isMoveImmediate( 1352 MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, 1353 DenseMap<Register, MachineInstr *> &ImmDefMIs) { 1354 const MCInstrDesc &MCID = MI.getDesc(); 1355 if (!MI.isMoveImmediate()) 1356 return false; 1357 if (MCID.getNumDefs() != 1) 1358 return false; 1359 Register Reg = MI.getOperand(0).getReg(); 1360 if (Reg.isVirtual()) { 1361 ImmDefMIs.insert(std::make_pair(Reg, &MI)); 1362 ImmDefRegs.insert(Reg); 1363 return true; 1364 } 1365 1366 return false; 1367 } 1368 1369 /// Try folding register operands that are defined by move immediate 1370 /// instructions, i.e. a trivial constant folding optimization, if 1371 /// and only if the def and use are in the same BB. 1372 bool PeepholeOptimizer::foldImmediate( 1373 MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, 1374 DenseMap<Register, MachineInstr *> &ImmDefMIs) { 1375 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1376 MachineOperand &MO = MI.getOperand(i); 1377 if (!MO.isReg() || MO.isDef()) 1378 continue; 1379 Register Reg = MO.getReg(); 1380 if (!Reg.isVirtual()) 1381 continue; 1382 if (ImmDefRegs.count(Reg) == 0) 1383 continue; 1384 DenseMap<Register, MachineInstr *>::iterator II = ImmDefMIs.find(Reg); 1385 assert(II != ImmDefMIs.end() && "couldn't find immediate definition"); 1386 if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) { 1387 ++NumImmFold; 1388 return true; 1389 } 1390 } 1391 return false; 1392 } 1393 1394 // FIXME: This is very simple and misses some cases which should be handled when 1395 // motivating examples are found. 1396 // 1397 // The copy rewriting logic should look at uses as well as defs and be able to 1398 // eliminate copies across blocks. 1399 // 1400 // Later copies that are subregister extracts will also not be eliminated since 1401 // only the first copy is considered. 1402 // 1403 // e.g. 1404 // %1 = COPY %0 1405 // %2 = COPY %0:sub1 1406 // 1407 // Should replace %2 uses with %1:sub1 1408 bool PeepholeOptimizer::foldRedundantCopy( 1409 MachineInstr &MI, DenseMap<RegSubRegPair, MachineInstr *> &CopyMIs) { 1410 assert(MI.isCopy() && "expected a COPY machine instruction"); 1411 1412 Register SrcReg = MI.getOperand(1).getReg(); 1413 unsigned SrcSubReg = MI.getOperand(1).getSubReg(); 1414 if (!SrcReg.isVirtual()) 1415 return false; 1416 1417 Register DstReg = MI.getOperand(0).getReg(); 1418 if (!DstReg.isVirtual()) 1419 return false; 1420 1421 RegSubRegPair SrcPair(SrcReg, SrcSubReg); 1422 1423 if (CopyMIs.insert(std::make_pair(SrcPair, &MI)).second) { 1424 // First copy of this reg seen. 1425 return false; 1426 } 1427 1428 MachineInstr *PrevCopy = CopyMIs.find(SrcPair)->second; 1429 1430 assert(SrcSubReg == PrevCopy->getOperand(1).getSubReg() && 1431 "Unexpected mismatching subreg!"); 1432 1433 Register PrevDstReg = PrevCopy->getOperand(0).getReg(); 1434 1435 // Only replace if the copy register class is the same. 1436 // 1437 // TODO: If we have multiple copies to different register classes, we may want 1438 // to track multiple copies of the same source register. 1439 if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg)) 1440 return false; 1441 1442 MRI->replaceRegWith(DstReg, PrevDstReg); 1443 1444 // Lifetime of the previous copy has been extended. 1445 MRI->clearKillFlags(PrevDstReg); 1446 return true; 1447 } 1448 1449 bool PeepholeOptimizer::isNAPhysCopy(Register Reg) { 1450 return Reg.isPhysical() && !MRI->isAllocatable(Reg); 1451 } 1452 1453 bool PeepholeOptimizer::foldRedundantNAPhysCopy( 1454 MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs) { 1455 assert(MI.isCopy() && "expected a COPY machine instruction"); 1456 1457 if (DisableNAPhysCopyOpt) 1458 return false; 1459 1460 Register DstReg = MI.getOperand(0).getReg(); 1461 Register SrcReg = MI.getOperand(1).getReg(); 1462 if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) { 1463 // %vreg = COPY $physreg 1464 // Avoid using a datastructure which can track multiple live non-allocatable 1465 // phys->virt copies since LLVM doesn't seem to do this. 1466 NAPhysToVirtMIs.insert({SrcReg, &MI}); 1467 return false; 1468 } 1469 1470 if (!(SrcReg.isVirtual() && isNAPhysCopy(DstReg))) 1471 return false; 1472 1473 // $physreg = COPY %vreg 1474 auto PrevCopy = NAPhysToVirtMIs.find(DstReg); 1475 if (PrevCopy == NAPhysToVirtMIs.end()) { 1476 // We can't remove the copy: there was an intervening clobber of the 1477 // non-allocatable physical register after the copy to virtual. 1478 LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " 1479 << MI); 1480 return false; 1481 } 1482 1483 Register PrevDstReg = PrevCopy->second->getOperand(0).getReg(); 1484 if (PrevDstReg == SrcReg) { 1485 // Remove the virt->phys copy: we saw the virtual register definition, and 1486 // the non-allocatable physical register's state hasn't changed since then. 1487 LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI); 1488 ++NumNAPhysCopies; 1489 return true; 1490 } 1491 1492 // Potential missed optimization opportunity: we saw a different virtual 1493 // register get a copy of the non-allocatable physical register, and we only 1494 // track one such copy. Avoid getting confused by this new non-allocatable 1495 // physical register definition, and remove it from the tracked copies. 1496 LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI); 1497 NAPhysToVirtMIs.erase(PrevCopy); 1498 return false; 1499 } 1500 1501 /// \bried Returns true if \p MO is a virtual register operand. 1502 static bool isVirtualRegisterOperand(MachineOperand &MO) { 1503 return MO.isReg() && MO.getReg().isVirtual(); 1504 } 1505 1506 bool PeepholeOptimizer::findTargetRecurrence( 1507 Register Reg, const SmallSet<Register, 2> &TargetRegs, 1508 RecurrenceCycle &RC) { 1509 // Recurrence found if Reg is in TargetRegs. 1510 if (TargetRegs.count(Reg)) 1511 return true; 1512 1513 // TODO: Curerntly, we only allow the last instruction of the recurrence 1514 // cycle (the instruction that feeds the PHI instruction) to have more than 1515 // one uses to guarantee that commuting operands does not tie registers 1516 // with overlapping live range. Once we have actual live range info of 1517 // each register, this constraint can be relaxed. 1518 if (!MRI->hasOneNonDBGUse(Reg)) 1519 return false; 1520 1521 // Give up if the reccurrence chain length is longer than the limit. 1522 if (RC.size() >= MaxRecurrenceChain) 1523 return false; 1524 1525 MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg)); 1526 unsigned Idx = MI.findRegisterUseOperandIdx(Reg); 1527 1528 // Only interested in recurrences whose instructions have only one def, which 1529 // is a virtual register. 1530 if (MI.getDesc().getNumDefs() != 1) 1531 return false; 1532 1533 MachineOperand &DefOp = MI.getOperand(0); 1534 if (!isVirtualRegisterOperand(DefOp)) 1535 return false; 1536 1537 // Check if def operand of MI is tied to any use operand. We are only 1538 // interested in the case that all the instructions in the recurrence chain 1539 // have there def operand tied with one of the use operand. 1540 unsigned TiedUseIdx; 1541 if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx)) 1542 return false; 1543 1544 if (Idx == TiedUseIdx) { 1545 RC.push_back(RecurrenceInstr(&MI)); 1546 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); 1547 } else { 1548 // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx. 1549 unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex; 1550 if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) { 1551 RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx)); 1552 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); 1553 } 1554 } 1555 1556 return false; 1557 } 1558 1559 /// Phi instructions will eventually be lowered to copy instructions. 1560 /// If phi is in a loop header, a recurrence may formulated around the source 1561 /// and destination of the phi. For such case commuting operands of the 1562 /// instructions in the recurrence may enable coalescing of the copy instruction 1563 /// generated from the phi. For example, if there is a recurrence of 1564 /// 1565 /// LoopHeader: 1566 /// %1 = phi(%0, %100) 1567 /// LoopLatch: 1568 /// %0<def, tied1> = ADD %2<def, tied0>, %1 1569 /// 1570 /// , the fact that %0 and %2 are in the same tied operands set makes 1571 /// the coalescing of copy instruction generated from the phi in 1572 /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and 1573 /// %2 have overlapping live range. This introduces additional move 1574 /// instruction to the final assembly. However, if we commute %2 and 1575 /// %1 of ADD instruction, the redundant move instruction can be 1576 /// avoided. 1577 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) { 1578 SmallSet<Register, 2> TargetRegs; 1579 for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) { 1580 MachineOperand &MO = PHI.getOperand(Idx); 1581 assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction"); 1582 TargetRegs.insert(MO.getReg()); 1583 } 1584 1585 bool Changed = false; 1586 RecurrenceCycle RC; 1587 if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) { 1588 // Commutes operands of instructions in RC if necessary so that the copy to 1589 // be generated from PHI can be coalesced. 1590 LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI); 1591 for (auto &RI : RC) { 1592 LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI())); 1593 auto CP = RI.getCommutePair(); 1594 if (CP) { 1595 Changed = true; 1596 TII->commuteInstruction(*(RI.getMI()), false, (*CP).first, 1597 (*CP).second); 1598 LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI())); 1599 } 1600 } 1601 } 1602 1603 return Changed; 1604 } 1605 1606 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { 1607 if (skipFunction(MF.getFunction())) 1608 return false; 1609 1610 LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); 1611 LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); 1612 1613 if (DisablePeephole) 1614 return false; 1615 1616 TII = MF.getSubtarget().getInstrInfo(); 1617 TRI = MF.getSubtarget().getRegisterInfo(); 1618 MRI = &MF.getRegInfo(); 1619 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr; 1620 MLI = &getAnalysis<MachineLoopInfo>(); 1621 1622 bool Changed = false; 1623 1624 for (MachineBasicBlock &MBB : MF) { 1625 bool SeenMoveImm = false; 1626 1627 // During this forward scan, at some point it needs to answer the question 1628 // "given a pointer to an MI in the current BB, is it located before or 1629 // after the current instruction". 1630 // To perform this, the following set keeps track of the MIs already seen 1631 // during the scan, if a MI is not in the set, it is assumed to be located 1632 // after. Newly created MIs have to be inserted in the set as well. 1633 SmallPtrSet<MachineInstr*, 16> LocalMIs; 1634 SmallSet<Register, 4> ImmDefRegs; 1635 DenseMap<Register, MachineInstr *> ImmDefMIs; 1636 SmallSet<Register, 16> FoldAsLoadDefCandidates; 1637 1638 // Track when a non-allocatable physical register is copied to a virtual 1639 // register so that useless moves can be removed. 1640 // 1641 // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg` 1642 // without any intervening re-definition of $physreg. 1643 DenseMap<Register, MachineInstr *> NAPhysToVirtMIs; 1644 1645 // Set of pairs of virtual registers and their subregs that are copied 1646 // from. 1647 DenseMap<RegSubRegPair, MachineInstr *> CopySrcMIs; 1648 1649 bool IsLoopHeader = MLI->isLoopHeader(&MBB); 1650 1651 for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end(); 1652 MII != MIE; ) { 1653 MachineInstr *MI = &*MII; 1654 // We may be erasing MI below, increment MII now. 1655 ++MII; 1656 LocalMIs.insert(MI); 1657 1658 // Skip debug instructions. They should not affect this peephole 1659 // optimization. 1660 if (MI->isDebugInstr()) 1661 continue; 1662 1663 if (MI->isPosition()) 1664 continue; 1665 1666 if (IsLoopHeader && MI->isPHI()) { 1667 if (optimizeRecurrence(*MI)) { 1668 Changed = true; 1669 continue; 1670 } 1671 } 1672 1673 if (!MI->isCopy()) { 1674 for (const MachineOperand &MO : MI->operands()) { 1675 // Visit all operands: definitions can be implicit or explicit. 1676 if (MO.isReg()) { 1677 Register Reg = MO.getReg(); 1678 if (MO.isDef() && isNAPhysCopy(Reg)) { 1679 const auto &Def = NAPhysToVirtMIs.find(Reg); 1680 if (Def != NAPhysToVirtMIs.end()) { 1681 // A new definition of the non-allocatable physical register 1682 // invalidates previous copies. 1683 LLVM_DEBUG(dbgs() 1684 << "NAPhysCopy: invalidating because of " << *MI); 1685 NAPhysToVirtMIs.erase(Def); 1686 } 1687 } 1688 } else if (MO.isRegMask()) { 1689 const uint32_t *RegMask = MO.getRegMask(); 1690 for (auto &RegMI : NAPhysToVirtMIs) { 1691 Register Def = RegMI.first; 1692 if (MachineOperand::clobbersPhysReg(RegMask, Def)) { 1693 LLVM_DEBUG(dbgs() 1694 << "NAPhysCopy: invalidating because of " << *MI); 1695 NAPhysToVirtMIs.erase(Def); 1696 } 1697 } 1698 } 1699 } 1700 } 1701 1702 if (MI->isImplicitDef() || MI->isKill()) 1703 continue; 1704 1705 if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { 1706 // Blow away all non-allocatable physical registers knowledge since we 1707 // don't know what's correct anymore. 1708 // 1709 // FIXME: handle explicit asm clobbers. 1710 LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " 1711 << *MI); 1712 NAPhysToVirtMIs.clear(); 1713 } 1714 1715 if ((isUncoalescableCopy(*MI) && 1716 optimizeUncoalescableCopy(*MI, LocalMIs)) || 1717 (MI->isCompare() && optimizeCmpInstr(*MI)) || 1718 (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) { 1719 // MI is deleted. 1720 LocalMIs.erase(MI); 1721 Changed = true; 1722 continue; 1723 } 1724 1725 if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) { 1726 Changed = true; 1727 continue; 1728 } 1729 1730 if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) { 1731 // MI is just rewritten. 1732 Changed = true; 1733 continue; 1734 } 1735 1736 if (MI->isCopy() && (foldRedundantCopy(*MI, CopySrcMIs) || 1737 foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) { 1738 LocalMIs.erase(MI); 1739 LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n"); 1740 MI->eraseFromParent(); 1741 Changed = true; 1742 continue; 1743 } 1744 1745 if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) { 1746 SeenMoveImm = true; 1747 } else { 1748 Changed |= optimizeExtInstr(*MI, MBB, LocalMIs); 1749 // optimizeExtInstr might have created new instructions after MI 1750 // and before the already incremented MII. Adjust MII so that the 1751 // next iteration sees the new instructions. 1752 MII = MI; 1753 ++MII; 1754 if (SeenMoveImm) 1755 Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs); 1756 } 1757 1758 // Check whether MI is a load candidate for folding into a later 1759 // instruction. If MI is not a candidate, check whether we can fold an 1760 // earlier load into MI. 1761 if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) && 1762 !FoldAsLoadDefCandidates.empty()) { 1763 1764 // We visit each operand even after successfully folding a previous 1765 // one. This allows us to fold multiple loads into a single 1766 // instruction. We do assume that optimizeLoadInstr doesn't insert 1767 // foldable uses earlier in the argument list. Since we don't restart 1768 // iteration, we'd miss such cases. 1769 const MCInstrDesc &MIDesc = MI->getDesc(); 1770 for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands(); 1771 ++i) { 1772 const MachineOperand &MOp = MI->getOperand(i); 1773 if (!MOp.isReg()) 1774 continue; 1775 Register FoldAsLoadDefReg = MOp.getReg(); 1776 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { 1777 // We need to fold load after optimizeCmpInstr, since 1778 // optimizeCmpInstr can enable folding by converting SUB to CMP. 1779 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and 1780 // we need it for markUsesInDebugValueAsUndef(). 1781 Register FoldedReg = FoldAsLoadDefReg; 1782 MachineInstr *DefMI = nullptr; 1783 if (MachineInstr *FoldMI = 1784 TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) { 1785 // Update LocalMIs since we replaced MI with FoldMI and deleted 1786 // DefMI. 1787 LLVM_DEBUG(dbgs() << "Replacing: " << *MI); 1788 LLVM_DEBUG(dbgs() << " With: " << *FoldMI); 1789 LocalMIs.erase(MI); 1790 LocalMIs.erase(DefMI); 1791 LocalMIs.insert(FoldMI); 1792 // Update the call site info. 1793 if (MI->shouldUpdateCallSiteInfo()) 1794 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 1795 MI->eraseFromParent(); 1796 DefMI->eraseFromParent(); 1797 MRI->markUsesInDebugValueAsUndef(FoldedReg); 1798 FoldAsLoadDefCandidates.erase(FoldedReg); 1799 ++NumLoadFold; 1800 1801 // MI is replaced with FoldMI so we can continue trying to fold 1802 Changed = true; 1803 MI = FoldMI; 1804 } 1805 } 1806 } 1807 } 1808 1809 // If we run into an instruction we can't fold across, discard 1810 // the load candidates. Note: We might be able to fold *into* this 1811 // instruction, so this needs to be after the folding logic. 1812 if (MI->isLoadFoldBarrier()) { 1813 LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI); 1814 FoldAsLoadDefCandidates.clear(); 1815 } 1816 } 1817 } 1818 1819 return Changed; 1820 } 1821 1822 ValueTrackerResult ValueTracker::getNextSourceFromCopy() { 1823 assert(Def->isCopy() && "Invalid definition"); 1824 // Copy instruction are supposed to be: Def = Src. 1825 // If someone breaks this assumption, bad things will happen everywhere. 1826 // There may be implicit uses preventing the copy to be moved across 1827 // some target specific register definitions 1828 assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 && 1829 "Invalid number of operands"); 1830 assert(!Def->hasImplicitDef() && "Only implicit uses are allowed"); 1831 1832 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) 1833 // If we look for a different subreg, it means we want a subreg of src. 1834 // Bails as we do not support composing subregs yet. 1835 return ValueTrackerResult(); 1836 // Otherwise, we want the whole source. 1837 const MachineOperand &Src = Def->getOperand(1); 1838 if (Src.isUndef()) 1839 return ValueTrackerResult(); 1840 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1841 } 1842 1843 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { 1844 assert(Def->isBitcast() && "Invalid definition"); 1845 1846 // Bail if there are effects that a plain copy will not expose. 1847 if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects()) 1848 return ValueTrackerResult(); 1849 1850 // Bitcasts with more than one def are not supported. 1851 if (Def->getDesc().getNumDefs() != 1) 1852 return ValueTrackerResult(); 1853 const MachineOperand DefOp = Def->getOperand(DefIdx); 1854 if (DefOp.getSubReg() != DefSubReg) 1855 // If we look for a different subreg, it means we want a subreg of the src. 1856 // Bails as we do not support composing subregs yet. 1857 return ValueTrackerResult(); 1858 1859 unsigned SrcIdx = Def->getNumOperands(); 1860 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; 1861 ++OpIdx) { 1862 const MachineOperand &MO = Def->getOperand(OpIdx); 1863 if (!MO.isReg() || !MO.getReg()) 1864 continue; 1865 // Ignore dead implicit defs. 1866 if (MO.isImplicit() && MO.isDead()) 1867 continue; 1868 assert(!MO.isDef() && "We should have skipped all the definitions by now"); 1869 if (SrcIdx != EndOpIdx) 1870 // Multiple sources? 1871 return ValueTrackerResult(); 1872 SrcIdx = OpIdx; 1873 } 1874 1875 // In some rare case, Def has no input, SrcIdx is out of bound, 1876 // getOperand(SrcIdx) will fail below. 1877 if (SrcIdx >= Def->getNumOperands()) 1878 return ValueTrackerResult(); 1879 1880 // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY 1881 // will break the assumed guarantees for the upper bits. 1882 for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) { 1883 if (UseMI.isSubregToReg()) 1884 return ValueTrackerResult(); 1885 } 1886 1887 const MachineOperand &Src = Def->getOperand(SrcIdx); 1888 if (Src.isUndef()) 1889 return ValueTrackerResult(); 1890 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1891 } 1892 1893 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { 1894 assert((Def->isRegSequence() || Def->isRegSequenceLike()) && 1895 "Invalid definition"); 1896 1897 if (Def->getOperand(DefIdx).getSubReg()) 1898 // If we are composing subregs, bail out. 1899 // The case we are checking is Def.<subreg> = REG_SEQUENCE. 1900 // This should almost never happen as the SSA property is tracked at 1901 // the register level (as opposed to the subreg level). 1902 // I.e., 1903 // Def.sub0 = 1904 // Def.sub1 = 1905 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for 1906 // Def. Thus, it must not be generated. 1907 // However, some code could theoretically generates a single 1908 // Def.sub0 (i.e, not defining the other subregs) and we would 1909 // have this case. 1910 // If we can ascertain (or force) that this never happens, we could 1911 // turn that into an assertion. 1912 return ValueTrackerResult(); 1913 1914 if (!TII) 1915 // We could handle the REG_SEQUENCE here, but we do not want to 1916 // duplicate the code from the generic TII. 1917 return ValueTrackerResult(); 1918 1919 SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs; 1920 if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) 1921 return ValueTrackerResult(); 1922 1923 // We are looking at: 1924 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1925 // Check if one of the operand defines the subreg we are interested in. 1926 for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) { 1927 if (RegSeqInput.SubIdx == DefSubReg) 1928 return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); 1929 } 1930 1931 // If the subreg we are tracking is super-defined by another subreg, 1932 // we could follow this value. However, this would require to compose 1933 // the subreg and we do not do that for now. 1934 return ValueTrackerResult(); 1935 } 1936 1937 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { 1938 assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && 1939 "Invalid definition"); 1940 1941 if (Def->getOperand(DefIdx).getSubReg()) 1942 // If we are composing subreg, bail out. 1943 // Same remark as getNextSourceFromRegSequence. 1944 // I.e., this may be turned into an assert. 1945 return ValueTrackerResult(); 1946 1947 if (!TII) 1948 // We could handle the REG_SEQUENCE here, but we do not want to 1949 // duplicate the code from the generic TII. 1950 return ValueTrackerResult(); 1951 1952 RegSubRegPair BaseReg; 1953 RegSubRegPairAndIdx InsertedReg; 1954 if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) 1955 return ValueTrackerResult(); 1956 1957 // We are looking at: 1958 // Def = INSERT_SUBREG v0, v1, sub1 1959 // There are two cases: 1960 // 1. DefSubReg == sub1, get v1. 1961 // 2. DefSubReg != sub1, the value may be available through v0. 1962 1963 // #1 Check if the inserted register matches the required sub index. 1964 if (InsertedReg.SubIdx == DefSubReg) { 1965 return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); 1966 } 1967 // #2 Otherwise, if the sub register we are looking for is not partial 1968 // defined by the inserted element, we can look through the main 1969 // register (v0). 1970 const MachineOperand &MODef = Def->getOperand(DefIdx); 1971 // If the result register (Def) and the base register (v0) do not 1972 // have the same register class or if we have to compose 1973 // subregisters, bail out. 1974 if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || 1975 BaseReg.SubReg) 1976 return ValueTrackerResult(); 1977 1978 // Get the TRI and check if the inserted sub-register overlaps with the 1979 // sub-register we are tracking. 1980 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 1981 if (!TRI || 1982 !(TRI->getSubRegIndexLaneMask(DefSubReg) & 1983 TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none()) 1984 return ValueTrackerResult(); 1985 // At this point, the value is available in v0 via the same subreg 1986 // we used for Def. 1987 return ValueTrackerResult(BaseReg.Reg, DefSubReg); 1988 } 1989 1990 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { 1991 assert((Def->isExtractSubreg() || 1992 Def->isExtractSubregLike()) && "Invalid definition"); 1993 // We are looking at: 1994 // Def = EXTRACT_SUBREG v0, sub0 1995 1996 // Bail if we have to compose sub registers. 1997 // Indeed, if DefSubReg != 0, we would have to compose it with sub0. 1998 if (DefSubReg) 1999 return ValueTrackerResult(); 2000 2001 if (!TII) 2002 // We could handle the EXTRACT_SUBREG here, but we do not want to 2003 // duplicate the code from the generic TII. 2004 return ValueTrackerResult(); 2005 2006 RegSubRegPairAndIdx ExtractSubregInputReg; 2007 if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) 2008 return ValueTrackerResult(); 2009 2010 // Bail if we have to compose sub registers. 2011 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. 2012 if (ExtractSubregInputReg.SubReg) 2013 return ValueTrackerResult(); 2014 // Otherwise, the value is available in the v0.sub0. 2015 return ValueTrackerResult(ExtractSubregInputReg.Reg, 2016 ExtractSubregInputReg.SubIdx); 2017 } 2018 2019 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { 2020 assert(Def->isSubregToReg() && "Invalid definition"); 2021 // We are looking at: 2022 // Def = SUBREG_TO_REG Imm, v0, sub0 2023 2024 // Bail if we have to compose sub registers. 2025 // If DefSubReg != sub0, we would have to check that all the bits 2026 // we track are included in sub0 and if yes, we would have to 2027 // determine the right subreg in v0. 2028 if (DefSubReg != Def->getOperand(3).getImm()) 2029 return ValueTrackerResult(); 2030 // Bail if we have to compose sub registers. 2031 // Likewise, if v0.subreg != 0, we would have to compose it with sub0. 2032 if (Def->getOperand(2).getSubReg()) 2033 return ValueTrackerResult(); 2034 2035 return ValueTrackerResult(Def->getOperand(2).getReg(), 2036 Def->getOperand(3).getImm()); 2037 } 2038 2039 /// Explore each PHI incoming operand and return its sources. 2040 ValueTrackerResult ValueTracker::getNextSourceFromPHI() { 2041 assert(Def->isPHI() && "Invalid definition"); 2042 ValueTrackerResult Res; 2043 2044 // If we look for a different subreg, bail as we do not support composing 2045 // subregs yet. 2046 if (Def->getOperand(0).getSubReg() != DefSubReg) 2047 return ValueTrackerResult(); 2048 2049 // Return all register sources for PHI instructions. 2050 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { 2051 const MachineOperand &MO = Def->getOperand(i); 2052 assert(MO.isReg() && "Invalid PHI instruction"); 2053 // We have no code to deal with undef operands. They shouldn't happen in 2054 // normal programs anyway. 2055 if (MO.isUndef()) 2056 return ValueTrackerResult(); 2057 Res.addSource(MO.getReg(), MO.getSubReg()); 2058 } 2059 2060 return Res; 2061 } 2062 2063 ValueTrackerResult ValueTracker::getNextSourceImpl() { 2064 assert(Def && "This method needs a valid definition"); 2065 2066 assert(((Def->getOperand(DefIdx).isDef() && 2067 (DefIdx < Def->getDesc().getNumDefs() || 2068 Def->getDesc().isVariadic())) || 2069 Def->getOperand(DefIdx).isImplicit()) && 2070 "Invalid DefIdx"); 2071 if (Def->isCopy()) 2072 return getNextSourceFromCopy(); 2073 if (Def->isBitcast()) 2074 return getNextSourceFromBitcast(); 2075 // All the remaining cases involve "complex" instructions. 2076 // Bail if we did not ask for the advanced tracking. 2077 if (DisableAdvCopyOpt) 2078 return ValueTrackerResult(); 2079 if (Def->isRegSequence() || Def->isRegSequenceLike()) 2080 return getNextSourceFromRegSequence(); 2081 if (Def->isInsertSubreg() || Def->isInsertSubregLike()) 2082 return getNextSourceFromInsertSubreg(); 2083 if (Def->isExtractSubreg() || Def->isExtractSubregLike()) 2084 return getNextSourceFromExtractSubreg(); 2085 if (Def->isSubregToReg()) 2086 return getNextSourceFromSubregToReg(); 2087 if (Def->isPHI()) 2088 return getNextSourceFromPHI(); 2089 return ValueTrackerResult(); 2090 } 2091 2092 ValueTrackerResult ValueTracker::getNextSource() { 2093 // If we reach a point where we cannot move up in the use-def chain, 2094 // there is nothing we can get. 2095 if (!Def) 2096 return ValueTrackerResult(); 2097 2098 ValueTrackerResult Res = getNextSourceImpl(); 2099 if (Res.isValid()) { 2100 // Update definition, definition index, and subregister for the 2101 // next call of getNextSource. 2102 // Update the current register. 2103 bool OneRegSrc = Res.getNumSources() == 1; 2104 if (OneRegSrc) 2105 Reg = Res.getSrcReg(0); 2106 // Update the result before moving up in the use-def chain 2107 // with the instruction containing the last found sources. 2108 Res.setInst(Def); 2109 2110 // If we can still move up in the use-def chain, move to the next 2111 // definition. 2112 if (!Register::isPhysicalRegister(Reg) && OneRegSrc) { 2113 MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg); 2114 if (DI != MRI.def_end()) { 2115 Def = DI->getParent(); 2116 DefIdx = DI.getOperandNo(); 2117 DefSubReg = Res.getSrcSubReg(0); 2118 } else { 2119 Def = nullptr; 2120 } 2121 return Res; 2122 } 2123 } 2124 // If we end up here, this means we will not be able to find another source 2125 // for the next iteration. Make sure any new call to getNextSource bails out 2126 // early by cutting the use-def chain. 2127 Def = nullptr; 2128 return Res; 2129 } 2130