1 //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Perform peephole optimizations on the machine code: 11 // 12 // - Optimize Extensions 13 // 14 // Optimization of sign / zero extension instructions. It may be extended to 15 // handle other instructions with similar properties. 16 // 17 // On some targets, some instructions, e.g. X86 sign / zero extension, may 18 // leave the source value in the lower part of the result. This optimization 19 // will replace some uses of the pre-extension value with uses of the 20 // sub-register of the results. 21 // 22 // - Optimize Comparisons 23 // 24 // Optimization of comparison instructions. For instance, in this code: 25 // 26 // sub r1, 1 27 // cmp r1, 0 28 // bz L1 29 // 30 // If the "sub" instruction all ready sets (or could be modified to set) the 31 // same flag that the "cmp" instruction sets and that "bz" uses, then we can 32 // eliminate the "cmp" instruction. 33 // 34 // Another instance, in this code: 35 // 36 // sub r1, r3 | sub r1, imm 37 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm 38 // bge L1 39 // 40 // If the branch instruction can use flag from "sub", then we can replace 41 // "sub" with "subs" and eliminate the "cmp" instruction. 42 // 43 // - Optimize Loads: 44 // 45 // Loads that can be folded into a later instruction. A load is foldable 46 // if it loads to virtual registers and the virtual register defined has 47 // a single use. 48 // 49 // - Optimize Copies and Bitcast (more generally, target specific copies): 50 // 51 // Rewrite copies and bitcasts to avoid cross register bank copies 52 // when possible. 53 // E.g., Consider the following example, where capital and lower 54 // letters denote different register file: 55 // b = copy A <-- cross-bank copy 56 // C = copy b <-- cross-bank copy 57 // => 58 // b = copy A <-- cross-bank copy 59 // C = copy A <-- same-bank copy 60 // 61 // E.g., for bitcast: 62 // b = bitcast A <-- cross-bank copy 63 // C = bitcast b <-- cross-bank copy 64 // => 65 // b = bitcast A <-- cross-bank copy 66 // C = copy A <-- same-bank copy 67 //===----------------------------------------------------------------------===// 68 69 #include "llvm/CodeGen/Passes.h" 70 #include "llvm/ADT/DenseMap.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallSet.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/CodeGen/MachineDominators.h" 75 #include "llvm/CodeGen/MachineInstrBuilder.h" 76 #include "llvm/CodeGen/MachineRegisterInfo.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Target/TargetInstrInfo.h" 81 #include "llvm/Target/TargetRegisterInfo.h" 82 #include "llvm/Target/TargetSubtargetInfo.h" 83 #include <utility> 84 using namespace llvm; 85 86 #define DEBUG_TYPE "peephole-opt" 87 88 // Optimize Extensions 89 static cl::opt<bool> 90 Aggressive("aggressive-ext-opt", cl::Hidden, 91 cl::desc("Aggressive extension optimization")); 92 93 static cl::opt<bool> 94 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), 95 cl::desc("Disable the peephole optimizer")); 96 97 static cl::opt<bool> 98 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), 99 cl::desc("Disable advanced copy optimization")); 100 101 // Limit the number of PHI instructions to process 102 // in PeepholeOptimizer::getNextSource. 103 static cl::opt<unsigned> RewritePHILimit( 104 "rewrite-phi-limit", cl::Hidden, cl::init(10), 105 cl::desc("Limit the length of PHI chains to lookup")); 106 107 STATISTIC(NumReuse, "Number of extension results reused"); 108 STATISTIC(NumCmps, "Number of compares eliminated"); 109 STATISTIC(NumImmFold, "Number of move immediate folded"); 110 STATISTIC(NumLoadFold, "Number of loads folded"); 111 STATISTIC(NumSelects, "Number of selects optimized"); 112 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized"); 113 STATISTIC(NumRewrittenCopies, "Number of copies rewritten"); 114 115 namespace { 116 class ValueTrackerResult; 117 118 class PeepholeOptimizer : public MachineFunctionPass { 119 const TargetInstrInfo *TII; 120 const TargetRegisterInfo *TRI; 121 MachineRegisterInfo *MRI; 122 MachineDominatorTree *DT; // Machine dominator tree 123 124 public: 125 static char ID; // Pass identification 126 PeepholeOptimizer() : MachineFunctionPass(ID) { 127 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); 128 } 129 130 bool runOnMachineFunction(MachineFunction &MF) override; 131 132 void getAnalysisUsage(AnalysisUsage &AU) const override { 133 AU.setPreservesCFG(); 134 MachineFunctionPass::getAnalysisUsage(AU); 135 if (Aggressive) { 136 AU.addRequired<MachineDominatorTree>(); 137 AU.addPreserved<MachineDominatorTree>(); 138 } 139 } 140 141 /// \brief Track Def -> Use info used for rewriting copies. 142 typedef SmallDenseMap<TargetInstrInfo::RegSubRegPair, ValueTrackerResult> 143 RewriteMapTy; 144 145 private: 146 bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB); 147 bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, 148 SmallPtrSetImpl<MachineInstr*> &LocalMIs); 149 bool optimizeSelect(MachineInstr *MI, 150 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 151 bool optimizeCondBranch(MachineInstr *MI); 152 bool optimizeCoalescableCopy(MachineInstr *MI); 153 bool optimizeUncoalescableCopy(MachineInstr *MI, 154 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 155 bool findNextSource(unsigned Reg, unsigned SubReg, 156 RewriteMapTy &RewriteMap); 157 bool isMoveImmediate(MachineInstr *MI, 158 SmallSet<unsigned, 4> &ImmDefRegs, 159 DenseMap<unsigned, MachineInstr*> &ImmDefMIs); 160 bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB, 161 SmallSet<unsigned, 4> &ImmDefRegs, 162 DenseMap<unsigned, MachineInstr*> &ImmDefMIs); 163 164 /// \brief If copy instruction \p MI is a virtual register copy, track it in 165 /// the set \p CopiedFromRegs and \p CopyMIs. If this virtual register was 166 /// previously seen as a copy, replace the uses of this copy with the 167 /// previously seen copy's destination register. 168 bool foldRedundantCopy(MachineInstr *MI, 169 SmallSet<unsigned, 4> &CopiedFromRegs, 170 DenseMap<unsigned, MachineInstr*> &CopyMIs); 171 172 bool isLoadFoldable(MachineInstr *MI, 173 SmallSet<unsigned, 16> &FoldAsLoadDefCandidates); 174 175 /// \brief Check whether \p MI is understood by the register coalescer 176 /// but may require some rewriting. 177 bool isCoalescableCopy(const MachineInstr &MI) { 178 // SubregToRegs are not interesting, because they are already register 179 // coalescer friendly. 180 return MI.isCopy() || (!DisableAdvCopyOpt && 181 (MI.isRegSequence() || MI.isInsertSubreg() || 182 MI.isExtractSubreg())); 183 } 184 185 /// \brief Check whether \p MI is a copy like instruction that is 186 /// not recognized by the register coalescer. 187 bool isUncoalescableCopy(const MachineInstr &MI) { 188 return MI.isBitcast() || 189 (!DisableAdvCopyOpt && 190 (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 191 MI.isExtractSubregLike())); 192 } 193 }; 194 195 /// \brief Helper class to hold a reply for ValueTracker queries. Contains the 196 /// returned sources for a given search and the instructions where the sources 197 /// were tracked from. 198 class ValueTrackerResult { 199 private: 200 /// Track all sources found by one ValueTracker query. 201 SmallVector<TargetInstrInfo::RegSubRegPair, 2> RegSrcs; 202 203 /// Instruction using the sources in 'RegSrcs'. 204 const MachineInstr *Inst; 205 206 public: 207 ValueTrackerResult() : Inst(nullptr) {} 208 ValueTrackerResult(unsigned Reg, unsigned SubReg) : Inst(nullptr) { 209 addSource(Reg, SubReg); 210 } 211 212 bool isValid() const { return getNumSources() > 0; } 213 214 void setInst(const MachineInstr *I) { Inst = I; } 215 const MachineInstr *getInst() const { return Inst; } 216 217 void clear() { 218 RegSrcs.clear(); 219 Inst = nullptr; 220 } 221 222 void addSource(unsigned SrcReg, unsigned SrcSubReg) { 223 RegSrcs.push_back(TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg)); 224 } 225 226 void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) { 227 assert(Idx < getNumSources() && "Reg pair source out of index"); 228 RegSrcs[Idx] = TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg); 229 } 230 231 int getNumSources() const { return RegSrcs.size(); } 232 233 unsigned getSrcReg(int Idx) const { 234 assert(Idx < getNumSources() && "Reg source out of index"); 235 return RegSrcs[Idx].Reg; 236 } 237 238 unsigned getSrcSubReg(int Idx) const { 239 assert(Idx < getNumSources() && "SubReg source out of index"); 240 return RegSrcs[Idx].SubReg; 241 } 242 243 bool operator==(const ValueTrackerResult &Other) { 244 if (Other.getInst() != getInst()) 245 return false; 246 247 if (Other.getNumSources() != getNumSources()) 248 return false; 249 250 for (int i = 0, e = Other.getNumSources(); i != e; ++i) 251 if (Other.getSrcReg(i) != getSrcReg(i) || 252 Other.getSrcSubReg(i) != getSrcSubReg(i)) 253 return false; 254 return true; 255 } 256 }; 257 258 /// \brief Helper class to track the possible sources of a value defined by 259 /// a (chain of) copy related instructions. 260 /// Given a definition (instruction and definition index), this class 261 /// follows the use-def chain to find successive suitable sources. 262 /// The given source can be used to rewrite the definition into 263 /// def = COPY src. 264 /// 265 /// For instance, let us consider the following snippet: 266 /// v0 = 267 /// v2 = INSERT_SUBREG v1, v0, sub0 268 /// def = COPY v2.sub0 269 /// 270 /// Using a ValueTracker for def = COPY v2.sub0 will give the following 271 /// suitable sources: 272 /// v2.sub0 and v0. 273 /// Then, def can be rewritten into def = COPY v0. 274 class ValueTracker { 275 private: 276 /// The current point into the use-def chain. 277 const MachineInstr *Def; 278 /// The index of the definition in Def. 279 unsigned DefIdx; 280 /// The sub register index of the definition. 281 unsigned DefSubReg; 282 /// The register where the value can be found. 283 unsigned Reg; 284 /// Specifiy whether or not the value tracking looks through 285 /// complex instructions. When this is false, the value tracker 286 /// bails on everything that is not a copy or a bitcast. 287 /// 288 /// Note: This could have been implemented as a specialized version of 289 /// the ValueTracker class but that would have complicated the code of 290 /// the users of this class. 291 bool UseAdvancedTracking; 292 /// MachineRegisterInfo used to perform tracking. 293 const MachineRegisterInfo &MRI; 294 /// Optional TargetInstrInfo used to perform some complex 295 /// tracking. 296 const TargetInstrInfo *TII; 297 298 /// \brief Dispatcher to the right underlying implementation of 299 /// getNextSource. 300 ValueTrackerResult getNextSourceImpl(); 301 /// \brief Specialized version of getNextSource for Copy instructions. 302 ValueTrackerResult getNextSourceFromCopy(); 303 /// \brief Specialized version of getNextSource for Bitcast instructions. 304 ValueTrackerResult getNextSourceFromBitcast(); 305 /// \brief Specialized version of getNextSource for RegSequence 306 /// instructions. 307 ValueTrackerResult getNextSourceFromRegSequence(); 308 /// \brief Specialized version of getNextSource for InsertSubreg 309 /// instructions. 310 ValueTrackerResult getNextSourceFromInsertSubreg(); 311 /// \brief Specialized version of getNextSource for ExtractSubreg 312 /// instructions. 313 ValueTrackerResult getNextSourceFromExtractSubreg(); 314 /// \brief Specialized version of getNextSource for SubregToReg 315 /// instructions. 316 ValueTrackerResult getNextSourceFromSubregToReg(); 317 /// \brief Specialized version of getNextSource for PHI instructions. 318 ValueTrackerResult getNextSourceFromPHI(); 319 320 public: 321 /// \brief Create a ValueTracker instance for the value defined by \p Reg. 322 /// \p DefSubReg represents the sub register index the value tracker will 323 /// track. It does not need to match the sub register index used in the 324 /// definition of \p Reg. 325 /// \p UseAdvancedTracking specifies whether or not the value tracker looks 326 /// through complex instructions. By default (false), it handles only copy 327 /// and bitcast instructions. 328 /// If \p Reg is a physical register, a value tracker constructed with 329 /// this constructor will not find any alternative source. 330 /// Indeed, when \p Reg is a physical register that constructor does not 331 /// know which definition of \p Reg it should track. 332 /// Use the next constructor to track a physical register. 333 ValueTracker(unsigned Reg, unsigned DefSubReg, 334 const MachineRegisterInfo &MRI, 335 bool UseAdvancedTracking = false, 336 const TargetInstrInfo *TII = nullptr) 337 : Def(nullptr), DefIdx(0), DefSubReg(DefSubReg), Reg(Reg), 338 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) { 339 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) { 340 Def = MRI.getVRegDef(Reg); 341 DefIdx = MRI.def_begin(Reg).getOperandNo(); 342 } 343 } 344 345 /// \brief Create a ValueTracker instance for the value defined by 346 /// the pair \p MI, \p DefIdx. 347 /// Unlike the other constructor, the value tracker produced by this one 348 /// may be able to find a new source when the definition is a physical 349 /// register. 350 /// This could be useful to rewrite target specific instructions into 351 /// generic copy instructions. 352 ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg, 353 const MachineRegisterInfo &MRI, 354 bool UseAdvancedTracking = false, 355 const TargetInstrInfo *TII = nullptr) 356 : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg), 357 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) { 358 assert(DefIdx < Def->getDesc().getNumDefs() && 359 Def->getOperand(DefIdx).isReg() && "Invalid definition"); 360 Reg = Def->getOperand(DefIdx).getReg(); 361 } 362 363 /// \brief Following the use-def chain, get the next available source 364 /// for the tracked value. 365 /// \return A ValueTrackerResult containing a set of registers 366 /// and sub registers with tracked values. A ValueTrackerResult with 367 /// an empty set of registers means no source was found. 368 ValueTrackerResult getNextSource(); 369 370 /// \brief Get the last register where the initial value can be found. 371 /// Initially this is the register of the definition. 372 /// Then, after each successful call to getNextSource, this is the 373 /// register of the last source. 374 unsigned getReg() const { return Reg; } 375 }; 376 } 377 378 char PeepholeOptimizer::ID = 0; 379 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; 380 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts", 381 "Peephole Optimizations", false, false) 382 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 383 INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts", 384 "Peephole Optimizations", false, false) 385 386 /// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads 387 /// a single register and writes a single register and it does not modify the 388 /// source, and if the source value is preserved as a sub-register of the 389 /// result, then replace all reachable uses of the source with the subreg of the 390 /// result. 391 /// 392 /// Do not generate an EXTRACT that is used only in a debug use, as this changes 393 /// the code. Since this code does not currently share EXTRACTs, just ignore all 394 /// debug uses. 395 bool PeepholeOptimizer:: 396 optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, 397 SmallPtrSetImpl<MachineInstr*> &LocalMIs) { 398 unsigned SrcReg, DstReg, SubIdx; 399 if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx)) 400 return false; 401 402 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 403 TargetRegisterInfo::isPhysicalRegister(SrcReg)) 404 return false; 405 406 if (MRI->hasOneNonDBGUse(SrcReg)) 407 // No other uses. 408 return false; 409 410 // Ensure DstReg can get a register class that actually supports 411 // sub-registers. Don't change the class until we commit. 412 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 413 DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); 414 if (!DstRC) 415 return false; 416 417 // The ext instr may be operating on a sub-register of SrcReg as well. 418 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit 419 // register. 420 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of 421 // SrcReg:SubIdx should be replaced. 422 bool UseSrcSubIdx = 423 TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; 424 425 // The source has other uses. See if we can replace the other uses with use of 426 // the result of the extension. 427 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs; 428 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 429 ReachedBBs.insert(UI.getParent()); 430 431 // Uses that are in the same BB of uses of the result of the instruction. 432 SmallVector<MachineOperand*, 8> Uses; 433 434 // Uses that the result of the instruction can reach. 435 SmallVector<MachineOperand*, 8> ExtendedUses; 436 437 bool ExtendLife = true; 438 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 439 MachineInstr *UseMI = UseMO.getParent(); 440 if (UseMI == MI) 441 continue; 442 443 if (UseMI->isPHI()) { 444 ExtendLife = false; 445 continue; 446 } 447 448 // Only accept uses of SrcReg:SubIdx. 449 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) 450 continue; 451 452 // It's an error to translate this: 453 // 454 // %reg1025 = <sext> %reg1024 455 // ... 456 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 457 // 458 // into this: 459 // 460 // %reg1025 = <sext> %reg1024 461 // ... 462 // %reg1027 = COPY %reg1025:4 463 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 464 // 465 // The problem here is that SUBREG_TO_REG is there to assert that an 466 // implicit zext occurs. It doesn't insert a zext instruction. If we allow 467 // the COPY here, it will give us the value after the <sext>, not the 468 // original value of %reg1024 before <sext>. 469 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) 470 continue; 471 472 MachineBasicBlock *UseMBB = UseMI->getParent(); 473 if (UseMBB == MBB) { 474 // Local uses that come after the extension. 475 if (!LocalMIs.count(UseMI)) 476 Uses.push_back(&UseMO); 477 } else if (ReachedBBs.count(UseMBB)) { 478 // Non-local uses where the result of the extension is used. Always 479 // replace these unless it's a PHI. 480 Uses.push_back(&UseMO); 481 } else if (Aggressive && DT->dominates(MBB, UseMBB)) { 482 // We may want to extend the live range of the extension result in order 483 // to replace these uses. 484 ExtendedUses.push_back(&UseMO); 485 } else { 486 // Both will be live out of the def MBB anyway. Don't extend live range of 487 // the extension result. 488 ExtendLife = false; 489 break; 490 } 491 } 492 493 if (ExtendLife && !ExtendedUses.empty()) 494 // Extend the liveness of the extension result. 495 Uses.append(ExtendedUses.begin(), ExtendedUses.end()); 496 497 // Now replace all uses. 498 bool Changed = false; 499 if (!Uses.empty()) { 500 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs; 501 502 // Look for PHI uses of the extended result, we don't want to extend the 503 // liveness of a PHI input. It breaks all kinds of assumptions down 504 // stream. A PHI use is expected to be the kill of its source values. 505 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 506 if (UI.isPHI()) 507 PHIBBs.insert(UI.getParent()); 508 509 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 510 for (unsigned i = 0, e = Uses.size(); i != e; ++i) { 511 MachineOperand *UseMO = Uses[i]; 512 MachineInstr *UseMI = UseMO->getParent(); 513 MachineBasicBlock *UseMBB = UseMI->getParent(); 514 if (PHIBBs.count(UseMBB)) 515 continue; 516 517 // About to add uses of DstReg, clear DstReg's kill flags. 518 if (!Changed) { 519 MRI->clearKillFlags(DstReg); 520 MRI->constrainRegClass(DstReg, DstRC); 521 } 522 523 unsigned NewVR = MRI->createVirtualRegister(RC); 524 MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), 525 TII->get(TargetOpcode::COPY), NewVR) 526 .addReg(DstReg, 0, SubIdx); 527 // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set. 528 if (UseSrcSubIdx) { 529 Copy->getOperand(0).setSubReg(SubIdx); 530 Copy->getOperand(0).setIsUndef(); 531 } 532 UseMO->setReg(NewVR); 533 ++NumReuse; 534 Changed = true; 535 } 536 } 537 538 return Changed; 539 } 540 541 /// optimizeCmpInstr - If the instruction is a compare and the previous 542 /// instruction it's comparing against all ready sets (or could be modified to 543 /// set) the same flag as the compare, then we can remove the comparison and use 544 /// the flag from the previous instruction. 545 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI, 546 MachineBasicBlock *MBB) { 547 // If this instruction is a comparison against zero and isn't comparing a 548 // physical register, we can try to optimize it. 549 unsigned SrcReg, SrcReg2; 550 int CmpMask, CmpValue; 551 if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) || 552 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 553 (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2))) 554 return false; 555 556 // Attempt to optimize the comparison instruction. 557 if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { 558 ++NumCmps; 559 return true; 560 } 561 562 return false; 563 } 564 565 /// Optimize a select instruction. 566 bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI, 567 SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 568 unsigned TrueOp = 0; 569 unsigned FalseOp = 0; 570 bool Optimizable = false; 571 SmallVector<MachineOperand, 4> Cond; 572 if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) 573 return false; 574 if (!Optimizable) 575 return false; 576 if (!TII->optimizeSelect(MI, LocalMIs)) 577 return false; 578 MI->eraseFromParent(); 579 ++NumSelects; 580 return true; 581 } 582 583 /// \brief Check if a simpler conditional branch can be 584 // generated 585 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) { 586 return TII->optimizeCondBranch(MI); 587 } 588 589 /// \brief Try to find the next source that share the same register file 590 /// for the value defined by \p Reg and \p SubReg. 591 /// When true is returned, the \p RewriteMap can be used by the client to 592 /// retrieve all Def -> Use along the way up to the next source. Any found 593 /// Use that is not itself a key for another entry, is the next source to 594 /// use. During the search for the next source, multiple sources can be found 595 /// given multiple incoming sources of a PHI instruction. In this case, we 596 /// look in each PHI source for the next source; all found next sources must 597 /// share the same register file as \p Reg and \p SubReg. The client should 598 /// then be capable to rewrite all intermediate PHIs to get the next source. 599 /// \return False if no alternative sources are available. True otherwise. 600 bool PeepholeOptimizer::findNextSource(unsigned Reg, unsigned SubReg, 601 RewriteMapTy &RewriteMap) { 602 // Do not try to find a new source for a physical register. 603 // So far we do not have any motivating example for doing that. 604 // Thus, instead of maintaining untested code, we will revisit that if 605 // that changes at some point. 606 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 607 return false; 608 const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); 609 610 SmallVector<TargetInstrInfo::RegSubRegPair, 4> SrcToLook; 611 TargetInstrInfo::RegSubRegPair CurSrcPair(Reg, SubReg); 612 SrcToLook.push_back(CurSrcPair); 613 614 unsigned PHICount = 0; 615 while (!SrcToLook.empty() && PHICount < RewritePHILimit) { 616 TargetInstrInfo::RegSubRegPair Pair = SrcToLook.pop_back_val(); 617 // As explained above, do not handle physical registers 618 if (TargetRegisterInfo::isPhysicalRegister(Pair.Reg)) 619 return false; 620 621 CurSrcPair = Pair; 622 ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, 623 !DisableAdvCopyOpt, TII); 624 ValueTrackerResult Res; 625 bool ShouldRewrite = false; 626 627 do { 628 // Follow the chain of copies until we reach the top of the use-def chain 629 // or find a more suitable source. 630 Res = ValTracker.getNextSource(); 631 if (!Res.isValid()) 632 break; 633 634 // Insert the Def -> Use entry for the recently found source. 635 ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); 636 if (CurSrcRes.isValid()) { 637 assert(CurSrcRes == Res && "ValueTrackerResult found must match"); 638 // An existent entry with multiple sources is a PHI cycle we must avoid. 639 // Otherwise it's an entry with a valid next source we already found. 640 if (CurSrcRes.getNumSources() > 1) { 641 DEBUG(dbgs() << "findNextSource: found PHI cycle, aborting...\n"); 642 return false; 643 } 644 break; 645 } 646 RewriteMap.insert(std::make_pair(CurSrcPair, Res)); 647 648 // ValueTrackerResult usually have one source unless it's the result from 649 // a PHI instruction. Add the found PHI edges to be looked up further. 650 unsigned NumSrcs = Res.getNumSources(); 651 if (NumSrcs > 1) { 652 PHICount++; 653 for (unsigned i = 0; i < NumSrcs; ++i) 654 SrcToLook.push_back(TargetInstrInfo::RegSubRegPair( 655 Res.getSrcReg(i), Res.getSrcSubReg(i))); 656 break; 657 } 658 659 CurSrcPair.Reg = Res.getSrcReg(0); 660 CurSrcPair.SubReg = Res.getSrcSubReg(0); 661 // Do not extend the live-ranges of physical registers as they add 662 // constraints to the register allocator. Moreover, if we want to extend 663 // the live-range of a physical register, unlike SSA virtual register, 664 // we will have to check that they aren't redefine before the related use. 665 if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg)) 666 return false; 667 668 const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); 669 ShouldRewrite = TRI->shouldRewriteCopySrc(DefRC, SubReg, SrcRC, 670 CurSrcPair.SubReg); 671 } while (!ShouldRewrite); 672 673 // Continue looking for new sources... 674 if (Res.isValid()) 675 continue; 676 677 // Do not continue searching for a new source if the there's at least 678 // one use-def which cannot be rewritten. 679 if (!ShouldRewrite) 680 return false; 681 } 682 683 if (PHICount >= RewritePHILimit) { 684 DEBUG(dbgs() << "findNextSource: PHI limit reached\n"); 685 return false; 686 } 687 688 // If we did not find a more suitable source, there is nothing to optimize. 689 if (CurSrcPair.Reg == Reg) 690 return false; 691 692 return true; 693 } 694 695 /// \brief Insert a PHI instruction with incoming edges \p SrcRegs that are 696 /// guaranteed to have the same register class. This is necessary whenever we 697 /// successfully traverse a PHI instruction and find suitable sources coming 698 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def 699 /// suitable to be used in a new COPY instruction. 700 static MachineInstr * 701 insertPHI(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 702 const SmallVectorImpl<TargetInstrInfo::RegSubRegPair> &SrcRegs, 703 MachineInstr *OrigPHI) { 704 assert(!SrcRegs.empty() && "No sources to create a PHI instruction?"); 705 706 const TargetRegisterClass *NewRC = MRI->getRegClass(SrcRegs[0].Reg); 707 unsigned NewVR = MRI->createVirtualRegister(NewRC); 708 MachineBasicBlock *MBB = OrigPHI->getParent(); 709 MachineInstrBuilder MIB = BuildMI(*MBB, OrigPHI, OrigPHI->getDebugLoc(), 710 TII->get(TargetOpcode::PHI), NewVR); 711 712 unsigned MBBOpIdx = 2; 713 for (auto RegPair : SrcRegs) { 714 MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); 715 MIB.addMBB(OrigPHI->getOperand(MBBOpIdx).getMBB()); 716 // Since we're extended the lifetime of RegPair.Reg, clear the 717 // kill flags to account for that and make RegPair.Reg reaches 718 // the new PHI. 719 MRI->clearKillFlags(RegPair.Reg); 720 MBBOpIdx += 2; 721 } 722 723 return MIB; 724 } 725 726 namespace { 727 /// \brief Helper class to rewrite the arguments of a copy-like instruction. 728 class CopyRewriter { 729 protected: 730 /// The copy-like instruction. 731 MachineInstr &CopyLike; 732 /// The index of the source being rewritten. 733 unsigned CurrentSrcIdx; 734 735 public: 736 CopyRewriter(MachineInstr &MI) : CopyLike(MI), CurrentSrcIdx(0) {} 737 738 virtual ~CopyRewriter() {} 739 740 /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and 741 /// the related value that it affects (TrackReg, TrackSubReg). 742 /// A source is considered rewritable if its register class and the 743 /// register class of the related TrackReg may not be register 744 /// coalescer friendly. In other words, given a copy-like instruction 745 /// not all the arguments may be returned at rewritable source, since 746 /// some arguments are none to be register coalescer friendly. 747 /// 748 /// Each call of this method moves the current source to the next 749 /// rewritable source. 750 /// For instance, let CopyLike be the instruction to rewrite. 751 /// CopyLike has one definition and one source: 752 /// dst.dstSubIdx = CopyLike src.srcSubIdx. 753 /// 754 /// The first call will give the first rewritable source, i.e., 755 /// the only source this instruction has: 756 /// (SrcReg, SrcSubReg) = (src, srcSubIdx). 757 /// This source defines the whole definition, i.e., 758 /// (TrackReg, TrackSubReg) = (dst, dstSubIdx). 759 /// 760 /// The second and subsequent calls will return false, as there is only one 761 /// rewritable source. 762 /// 763 /// \return True if a rewritable source has been found, false otherwise. 764 /// The output arguments are valid if and only if true is returned. 765 virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 766 unsigned &TrackReg, 767 unsigned &TrackSubReg) { 768 // If CurrentSrcIdx == 1, this means this function has already been called 769 // once. CopyLike has one definition and one argument, thus, there is 770 // nothing else to rewrite. 771 if (!CopyLike.isCopy() || CurrentSrcIdx == 1) 772 return false; 773 // This is the first call to getNextRewritableSource. 774 // Move the CurrentSrcIdx to remember that we made that call. 775 CurrentSrcIdx = 1; 776 // The rewritable source is the argument. 777 const MachineOperand &MOSrc = CopyLike.getOperand(1); 778 SrcReg = MOSrc.getReg(); 779 SrcSubReg = MOSrc.getSubReg(); 780 // What we track are the alternative sources of the definition. 781 const MachineOperand &MODef = CopyLike.getOperand(0); 782 TrackReg = MODef.getReg(); 783 TrackSubReg = MODef.getSubReg(); 784 return true; 785 } 786 787 /// \brief Rewrite the current source with \p NewReg and \p NewSubReg 788 /// if possible. 789 /// \return True if the rewriting was possible, false otherwise. 790 virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) { 791 if (!CopyLike.isCopy() || CurrentSrcIdx != 1) 792 return false; 793 MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); 794 MOSrc.setReg(NewReg); 795 MOSrc.setSubReg(NewSubReg); 796 return true; 797 } 798 799 /// \brief Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find 800 /// the new source to use for rewrite. If \p HandleMultipleSources is true and 801 /// multiple sources for a given \p Def are found along the way, we found a 802 /// PHI instructions that needs to be rewritten. 803 /// TODO: HandleMultipleSources should be removed once we test PHI handling 804 /// with coalescable copies. 805 TargetInstrInfo::RegSubRegPair 806 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 807 TargetInstrInfo::RegSubRegPair Def, 808 PeepholeOptimizer::RewriteMapTy &RewriteMap, 809 bool HandleMultipleSources = true) { 810 811 TargetInstrInfo::RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); 812 do { 813 ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); 814 // If there are no entries on the map, LookupSrc is the new source. 815 if (!Res.isValid()) 816 return LookupSrc; 817 818 // There's only one source for this definition, keep searching... 819 unsigned NumSrcs = Res.getNumSources(); 820 if (NumSrcs == 1) { 821 LookupSrc.Reg = Res.getSrcReg(0); 822 LookupSrc.SubReg = Res.getSrcSubReg(0); 823 continue; 824 } 825 826 // TODO: Remove once multiple srcs w/ coalescable copies are supported. 827 if (!HandleMultipleSources) 828 break; 829 830 // Multiple sources, recurse into each source to find a new source 831 // for it. Then, rewrite the PHI accordingly to its new edges. 832 SmallVector<TargetInstrInfo::RegSubRegPair, 4> NewPHISrcs; 833 for (unsigned i = 0; i < NumSrcs; ++i) { 834 TargetInstrInfo::RegSubRegPair PHISrc(Res.getSrcReg(i), 835 Res.getSrcSubReg(i)); 836 NewPHISrcs.push_back( 837 getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); 838 } 839 840 // Build the new PHI node and return its def register as the new source. 841 MachineInstr *OrigPHI = const_cast<MachineInstr *>(Res.getInst()); 842 MachineInstr *NewPHI = insertPHI(MRI, TII, NewPHISrcs, OrigPHI); 843 DEBUG(dbgs() << "-- getNewSource\n"); 844 DEBUG(dbgs() << " Replacing: " << *OrigPHI); 845 DEBUG(dbgs() << " With: " << *NewPHI); 846 const MachineOperand &MODef = NewPHI->getOperand(0); 847 return TargetInstrInfo::RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 848 849 } while (1); 850 851 return TargetInstrInfo::RegSubRegPair(0, 0); 852 } 853 854 /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap 855 /// and create a new COPY instruction. More info about RewriteMap in 856 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 857 /// Uncoalescable copies, since they are copy like instructions that aren't 858 /// recognized by the register allocator. 859 virtual MachineInstr * 860 RewriteSource(TargetInstrInfo::RegSubRegPair Def, 861 PeepholeOptimizer::RewriteMapTy &RewriteMap) { 862 return nullptr; 863 } 864 }; 865 866 /// \brief Helper class to rewrite uncoalescable copy like instructions 867 /// into new COPY (coalescable friendly) instructions. 868 class UncoalescableRewriter : public CopyRewriter { 869 protected: 870 const TargetInstrInfo &TII; 871 MachineRegisterInfo &MRI; 872 /// The number of defs in the bitcast 873 unsigned NumDefs; 874 875 public: 876 UncoalescableRewriter(MachineInstr &MI, const TargetInstrInfo &TII, 877 MachineRegisterInfo &MRI) 878 : CopyRewriter(MI), TII(TII), MRI(MRI) { 879 NumDefs = MI.getDesc().getNumDefs(); 880 } 881 882 /// \brief Get the next rewritable def source (TrackReg, TrackSubReg) 883 /// All such sources need to be considered rewritable in order to 884 /// rewrite a uncoalescable copy-like instruction. This method return 885 /// each definition that must be checked if rewritable. 886 /// 887 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 888 unsigned &TrackReg, 889 unsigned &TrackSubReg) override { 890 // Find the next non-dead definition and continue from there. 891 if (CurrentSrcIdx == NumDefs) 892 return false; 893 894 while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { 895 ++CurrentSrcIdx; 896 if (CurrentSrcIdx == NumDefs) 897 return false; 898 } 899 900 // What we track are the alternative sources of the definition. 901 const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); 902 TrackReg = MODef.getReg(); 903 TrackSubReg = MODef.getSubReg(); 904 905 CurrentSrcIdx++; 906 return true; 907 } 908 909 /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap 910 /// and create a new COPY instruction. More info about RewriteMap in 911 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 912 /// Uncoalescable copies, since they are copy like instructions that aren't 913 /// recognized by the register allocator. 914 MachineInstr * 915 RewriteSource(TargetInstrInfo::RegSubRegPair Def, 916 PeepholeOptimizer::RewriteMapTy &RewriteMap) override { 917 assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) && 918 "We do not rewrite physical registers"); 919 920 // Find the new source to use in the COPY rewrite. 921 TargetInstrInfo::RegSubRegPair NewSrc = 922 getNewSource(&MRI, &TII, Def, RewriteMap); 923 924 // Insert the COPY. 925 const TargetRegisterClass *DefRC = MRI.getRegClass(Def.Reg); 926 unsigned NewVR = MRI.createVirtualRegister(DefRC); 927 928 MachineInstr *NewCopy = 929 BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), 930 TII.get(TargetOpcode::COPY), NewVR) 931 .addReg(NewSrc.Reg, 0, NewSrc.SubReg); 932 933 NewCopy->getOperand(0).setSubReg(Def.SubReg); 934 if (Def.SubReg) 935 NewCopy->getOperand(0).setIsUndef(); 936 937 DEBUG(dbgs() << "-- RewriteSource\n"); 938 DEBUG(dbgs() << " Replacing: " << CopyLike); 939 DEBUG(dbgs() << " With: " << *NewCopy); 940 MRI.replaceRegWith(Def.Reg, NewVR); 941 MRI.clearKillFlags(NewVR); 942 943 // We extended the lifetime of NewSrc.Reg, clear the kill flags to 944 // account for that. 945 MRI.clearKillFlags(NewSrc.Reg); 946 947 return NewCopy; 948 } 949 }; 950 951 /// \brief Specialized rewriter for INSERT_SUBREG instruction. 952 class InsertSubregRewriter : public CopyRewriter { 953 public: 954 InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) { 955 assert(MI.isInsertSubreg() && "Invalid instruction"); 956 } 957 958 /// \brief See CopyRewriter::getNextRewritableSource. 959 /// Here CopyLike has the following form: 960 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. 961 /// Src1 has the same register class has dst, hence, there is 962 /// nothing to rewrite. 963 /// Src2.src2SubIdx, may not be register coalescer friendly. 964 /// Therefore, the first call to this method returns: 965 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 966 /// (TrackReg, TrackSubReg) = (dst, subIdx). 967 /// 968 /// Subsequence calls will return false. 969 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 970 unsigned &TrackReg, 971 unsigned &TrackSubReg) override { 972 // If we already get the only source we can rewrite, return false. 973 if (CurrentSrcIdx == 2) 974 return false; 975 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. 976 CurrentSrcIdx = 2; 977 const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); 978 SrcReg = MOInsertedReg.getReg(); 979 SrcSubReg = MOInsertedReg.getSubReg(); 980 const MachineOperand &MODef = CopyLike.getOperand(0); 981 982 // We want to track something that is compatible with the 983 // partial definition. 984 TrackReg = MODef.getReg(); 985 if (MODef.getSubReg()) 986 // Bail if we have to compose sub-register indices. 987 return false; 988 TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm(); 989 return true; 990 } 991 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 992 if (CurrentSrcIdx != 2) 993 return false; 994 // We are rewriting the inserted reg. 995 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 996 MO.setReg(NewReg); 997 MO.setSubReg(NewSubReg); 998 return true; 999 } 1000 }; 1001 1002 /// \brief Specialized rewriter for EXTRACT_SUBREG instruction. 1003 class ExtractSubregRewriter : public CopyRewriter { 1004 const TargetInstrInfo &TII; 1005 1006 public: 1007 ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) 1008 : CopyRewriter(MI), TII(TII) { 1009 assert(MI.isExtractSubreg() && "Invalid instruction"); 1010 } 1011 1012 /// \brief See CopyRewriter::getNextRewritableSource. 1013 /// Here CopyLike has the following form: 1014 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. 1015 /// There is only one rewritable source: Src.subIdx, 1016 /// which defines dst.dstSubIdx. 1017 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 1018 unsigned &TrackReg, 1019 unsigned &TrackSubReg) override { 1020 // If we already get the only source we can rewrite, return false. 1021 if (CurrentSrcIdx == 1) 1022 return false; 1023 // We are looking at v1 = EXTRACT_SUBREG v0, sub0. 1024 CurrentSrcIdx = 1; 1025 const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); 1026 SrcReg = MOExtractedReg.getReg(); 1027 // If we have to compose sub-register indices, bail out. 1028 if (MOExtractedReg.getSubReg()) 1029 return false; 1030 1031 SrcSubReg = CopyLike.getOperand(2).getImm(); 1032 1033 // We want to track something that is compatible with the definition. 1034 const MachineOperand &MODef = CopyLike.getOperand(0); 1035 TrackReg = MODef.getReg(); 1036 TrackSubReg = MODef.getSubReg(); 1037 return true; 1038 } 1039 1040 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1041 // The only source we can rewrite is the input register. 1042 if (CurrentSrcIdx != 1) 1043 return false; 1044 1045 CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); 1046 1047 // If we find a source that does not require to extract something, 1048 // rewrite the operation with a copy. 1049 if (!NewSubReg) { 1050 // Move the current index to an invalid position. 1051 // We do not want another call to this method to be able 1052 // to do any change. 1053 CurrentSrcIdx = -1; 1054 // Rewrite the operation as a COPY. 1055 // Get rid of the sub-register index. 1056 CopyLike.RemoveOperand(2); 1057 // Morph the operation into a COPY. 1058 CopyLike.setDesc(TII.get(TargetOpcode::COPY)); 1059 return true; 1060 } 1061 CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); 1062 return true; 1063 } 1064 }; 1065 1066 /// \brief Specialized rewriter for REG_SEQUENCE instruction. 1067 class RegSequenceRewriter : public CopyRewriter { 1068 public: 1069 RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) { 1070 assert(MI.isRegSequence() && "Invalid instruction"); 1071 } 1072 1073 /// \brief See CopyRewriter::getNextRewritableSource. 1074 /// Here CopyLike has the following form: 1075 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. 1076 /// Each call will return a different source, walking all the available 1077 /// source. 1078 /// 1079 /// The first call returns: 1080 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). 1081 /// (TrackReg, TrackSubReg) = (dst, subIdx1). 1082 /// 1083 /// The second call returns: 1084 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 1085 /// (TrackReg, TrackSubReg) = (dst, subIdx2). 1086 /// 1087 /// And so on, until all the sources have been traversed, then 1088 /// it returns false. 1089 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 1090 unsigned &TrackReg, 1091 unsigned &TrackSubReg) override { 1092 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. 1093 1094 // If this is the first call, move to the first argument. 1095 if (CurrentSrcIdx == 0) { 1096 CurrentSrcIdx = 1; 1097 } else { 1098 // Otherwise, move to the next argument and check that it is valid. 1099 CurrentSrcIdx += 2; 1100 if (CurrentSrcIdx >= CopyLike.getNumOperands()) 1101 return false; 1102 } 1103 const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); 1104 SrcReg = MOInsertedReg.getReg(); 1105 // If we have to compose sub-register indices, bail out. 1106 if ((SrcSubReg = MOInsertedReg.getSubReg())) 1107 return false; 1108 1109 // We want to track something that is compatible with the related 1110 // partial definition. 1111 TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); 1112 1113 const MachineOperand &MODef = CopyLike.getOperand(0); 1114 TrackReg = MODef.getReg(); 1115 // If we have to compose sub-registers, bail. 1116 return MODef.getSubReg() == 0; 1117 } 1118 1119 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1120 // We cannot rewrite out of bound operands. 1121 // Moreover, rewritable sources are at odd positions. 1122 if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) 1123 return false; 1124 1125 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 1126 MO.setReg(NewReg); 1127 MO.setSubReg(NewSubReg); 1128 return true; 1129 } 1130 }; 1131 } // End namespace. 1132 1133 /// \brief Get the appropriated CopyRewriter for \p MI. 1134 /// \return A pointer to a dynamically allocated CopyRewriter or nullptr 1135 /// if no rewriter works for \p MI. 1136 static CopyRewriter *getCopyRewriter(MachineInstr &MI, 1137 const TargetInstrInfo &TII, 1138 MachineRegisterInfo &MRI) { 1139 // Handle uncoalescable copy-like instructions. 1140 if (MI.isBitcast() || (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 1141 MI.isExtractSubregLike())) 1142 return new UncoalescableRewriter(MI, TII, MRI); 1143 1144 switch (MI.getOpcode()) { 1145 default: 1146 return nullptr; 1147 case TargetOpcode::COPY: 1148 return new CopyRewriter(MI); 1149 case TargetOpcode::INSERT_SUBREG: 1150 return new InsertSubregRewriter(MI); 1151 case TargetOpcode::EXTRACT_SUBREG: 1152 return new ExtractSubregRewriter(MI, TII); 1153 case TargetOpcode::REG_SEQUENCE: 1154 return new RegSequenceRewriter(MI); 1155 } 1156 llvm_unreachable(nullptr); 1157 } 1158 1159 /// \brief Optimize generic copy instructions to avoid cross 1160 /// register bank copy. The optimization looks through a chain of 1161 /// copies and tries to find a source that has a compatible register 1162 /// class. 1163 /// Two register classes are considered to be compatible if they share 1164 /// the same register bank. 1165 /// New copies issued by this optimization are register allocator 1166 /// friendly. This optimization does not remove any copy as it may 1167 /// overconstrain the register allocator, but replaces some operands 1168 /// when possible. 1169 /// \pre isCoalescableCopy(*MI) is true. 1170 /// \return True, when \p MI has been rewritten. False otherwise. 1171 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) { 1172 assert(MI && isCoalescableCopy(*MI) && "Invalid argument"); 1173 assert(MI->getDesc().getNumDefs() == 1 && 1174 "Coalescer can understand multiple defs?!"); 1175 const MachineOperand &MODef = MI->getOperand(0); 1176 // Do not rewrite physical definitions. 1177 if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg())) 1178 return false; 1179 1180 bool Changed = false; 1181 // Get the right rewriter for the current copy. 1182 std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI)); 1183 // If none exists, bail out. 1184 if (!CpyRewriter) 1185 return false; 1186 // Rewrite each rewritable source. 1187 unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg; 1188 while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg, 1189 TrackSubReg)) { 1190 // Keep track of PHI nodes and its incoming edges when looking for sources. 1191 RewriteMapTy RewriteMap; 1192 // Try to find a more suitable source. If we failed to do so, or get the 1193 // actual source, move to the next source. 1194 if (!findNextSource(TrackReg, TrackSubReg, RewriteMap)) 1195 continue; 1196 1197 // Get the new source to rewrite. TODO: Only enable handling of multiple 1198 // sources (PHIs) once we have a motivating example and testcases for it. 1199 TargetInstrInfo::RegSubRegPair TrackPair(TrackReg, TrackSubReg); 1200 TargetInstrInfo::RegSubRegPair NewSrc = CpyRewriter->getNewSource( 1201 MRI, TII, TrackPair, RewriteMap, false /* multiple sources */); 1202 if (SrcReg == NewSrc.Reg || NewSrc.Reg == 0) 1203 continue; 1204 1205 // Rewrite source. 1206 if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { 1207 // We may have extended the live-range of NewSrc, account for that. 1208 MRI->clearKillFlags(NewSrc.Reg); 1209 Changed = true; 1210 } 1211 } 1212 // TODO: We could have a clean-up method to tidy the instruction. 1213 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 1214 // => v0 = COPY v1 1215 // Currently we haven't seen motivating example for that and we 1216 // want to avoid untested code. 1217 NumRewrittenCopies += Changed; 1218 return Changed; 1219 } 1220 1221 /// \brief Optimize copy-like instructions to create 1222 /// register coalescer friendly instruction. 1223 /// The optimization tries to kill-off the \p MI by looking 1224 /// through a chain of copies to find a source that has a compatible 1225 /// register class. 1226 /// If such a source is found, it replace \p MI by a generic COPY 1227 /// operation. 1228 /// \pre isUncoalescableCopy(*MI) is true. 1229 /// \return True, when \p MI has been optimized. In that case, \p MI has 1230 /// been removed from its parent. 1231 /// All COPY instructions created, are inserted in \p LocalMIs. 1232 bool PeepholeOptimizer::optimizeUncoalescableCopy( 1233 MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 1234 assert(MI && isUncoalescableCopy(*MI) && "Invalid argument"); 1235 1236 // Check if we can rewrite all the values defined by this instruction. 1237 SmallVector<TargetInstrInfo::RegSubRegPair, 4> RewritePairs; 1238 // Get the right rewriter for the current copy. 1239 std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI)); 1240 // If none exists, bail out. 1241 if (!CpyRewriter) 1242 return false; 1243 1244 // Rewrite each rewritable source by generating new COPYs. This works 1245 // differently from optimizeCoalescableCopy since it first makes sure that all 1246 // definitions can be rewritten. 1247 RewriteMapTy RewriteMap; 1248 unsigned Reg, SubReg, CopyDefReg, CopyDefSubReg; 1249 while (CpyRewriter->getNextRewritableSource(Reg, SubReg, CopyDefReg, 1250 CopyDefSubReg)) { 1251 // If a physical register is here, this is probably for a good reason. 1252 // Do not rewrite that. 1253 if (TargetRegisterInfo::isPhysicalRegister(CopyDefReg)) 1254 return false; 1255 1256 // If we do not know how to rewrite this definition, there is no point 1257 // in trying to kill this instruction. 1258 TargetInstrInfo::RegSubRegPair Def(CopyDefReg, CopyDefSubReg); 1259 if (!findNextSource(Def.Reg, Def.SubReg, RewriteMap)) 1260 return false; 1261 1262 RewritePairs.push_back(Def); 1263 } 1264 1265 // The change is possible for all defs, do it. 1266 for (const auto &Def : RewritePairs) { 1267 // Rewrite the "copy" in a way the register coalescer understands. 1268 MachineInstr *NewCopy = CpyRewriter->RewriteSource(Def, RewriteMap); 1269 assert(NewCopy && "Should be able to always generate a new copy"); 1270 LocalMIs.insert(NewCopy); 1271 } 1272 1273 // MI is now dead. 1274 MI->eraseFromParent(); 1275 ++NumUncoalescableCopies; 1276 return true; 1277 } 1278 1279 /// isLoadFoldable - Check whether MI is a candidate for folding into a later 1280 /// instruction. We only fold loads to virtual registers and the virtual 1281 /// register defined has a single use. 1282 bool PeepholeOptimizer::isLoadFoldable( 1283 MachineInstr *MI, 1284 SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) { 1285 if (!MI->canFoldAsLoad() || !MI->mayLoad()) 1286 return false; 1287 const MCInstrDesc &MCID = MI->getDesc(); 1288 if (MCID.getNumDefs() != 1) 1289 return false; 1290 1291 unsigned Reg = MI->getOperand(0).getReg(); 1292 // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting 1293 // loads. It should be checked when processing uses of the load, since 1294 // uses can be removed during peephole. 1295 if (!MI->getOperand(0).getSubReg() && 1296 TargetRegisterInfo::isVirtualRegister(Reg) && 1297 MRI->hasOneNonDBGUse(Reg)) { 1298 FoldAsLoadDefCandidates.insert(Reg); 1299 return true; 1300 } 1301 return false; 1302 } 1303 1304 bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI, 1305 SmallSet<unsigned, 4> &ImmDefRegs, 1306 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) { 1307 const MCInstrDesc &MCID = MI->getDesc(); 1308 if (!MI->isMoveImmediate()) 1309 return false; 1310 if (MCID.getNumDefs() != 1) 1311 return false; 1312 unsigned Reg = MI->getOperand(0).getReg(); 1313 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1314 ImmDefMIs.insert(std::make_pair(Reg, MI)); 1315 ImmDefRegs.insert(Reg); 1316 return true; 1317 } 1318 1319 return false; 1320 } 1321 1322 /// foldImmediate - Try folding register operands that are defined by move 1323 /// immediate instructions, i.e. a trivial constant folding optimization, if 1324 /// and only if the def and use are in the same BB. 1325 bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB, 1326 SmallSet<unsigned, 4> &ImmDefRegs, 1327 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) { 1328 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 1329 MachineOperand &MO = MI->getOperand(i); 1330 if (!MO.isReg() || MO.isDef()) 1331 continue; 1332 unsigned Reg = MO.getReg(); 1333 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1334 continue; 1335 if (ImmDefRegs.count(Reg) == 0) 1336 continue; 1337 DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg); 1338 assert(II != ImmDefMIs.end()); 1339 if (TII->FoldImmediate(MI, II->second, Reg, MRI)) { 1340 ++NumImmFold; 1341 return true; 1342 } 1343 } 1344 return false; 1345 } 1346 1347 // FIXME: This is very simple and misses some cases which should be handled when 1348 // motivating examples are found. 1349 // 1350 // The copy rewriting logic should look at uses as well as defs and be able to 1351 // eliminate copies across blocks. 1352 // 1353 // Later copies that are subregister extracts will also not be eliminated since 1354 // only the first copy is considered. 1355 // 1356 // e.g. 1357 // %vreg1 = COPY %vreg0 1358 // %vreg2 = COPY %vreg0:sub1 1359 // 1360 // Should replace %vreg2 uses with %vreg1:sub1 1361 bool PeepholeOptimizer::foldRedundantCopy( 1362 MachineInstr *MI, 1363 SmallSet<unsigned, 4> &CopySrcRegs, 1364 DenseMap<unsigned, MachineInstr *> &CopyMIs) { 1365 assert(MI->isCopy()); 1366 1367 unsigned SrcReg = MI->getOperand(1).getReg(); 1368 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1369 return false; 1370 1371 unsigned DstReg = MI->getOperand(0).getReg(); 1372 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1373 return false; 1374 1375 if (CopySrcRegs.insert(SrcReg).second) { 1376 // First copy of this reg seen. 1377 CopyMIs.insert(std::make_pair(SrcReg, MI)); 1378 return false; 1379 } 1380 1381 MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second; 1382 1383 unsigned SrcSubReg = MI->getOperand(1).getSubReg(); 1384 unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg(); 1385 1386 // Can't replace different subregister extracts. 1387 if (SrcSubReg != PrevSrcSubReg) 1388 return false; 1389 1390 unsigned PrevDstReg = PrevCopy->getOperand(0).getReg(); 1391 1392 // Only replace if the copy register class is the same. 1393 // 1394 // TODO: If we have multiple copies to different register classes, we may want 1395 // to track multiple copies of the same source register. 1396 if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg)) 1397 return false; 1398 1399 MRI->replaceRegWith(DstReg, PrevDstReg); 1400 1401 // Lifetime of the previous copy has been extended. 1402 MRI->clearKillFlags(PrevDstReg); 1403 return true; 1404 } 1405 1406 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { 1407 if (skipOptnoneFunction(*MF.getFunction())) 1408 return false; 1409 1410 DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); 1411 DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); 1412 1413 if (DisablePeephole) 1414 return false; 1415 1416 TII = MF.getSubtarget().getInstrInfo(); 1417 TRI = MF.getSubtarget().getRegisterInfo(); 1418 MRI = &MF.getRegInfo(); 1419 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr; 1420 1421 bool Changed = false; 1422 1423 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { 1424 MachineBasicBlock *MBB = &*I; 1425 1426 bool SeenMoveImm = false; 1427 1428 // During this forward scan, at some point it needs to answer the question 1429 // "given a pointer to an MI in the current BB, is it located before or 1430 // after the current instruction". 1431 // To perform this, the following set keeps track of the MIs already seen 1432 // during the scan, if a MI is not in the set, it is assumed to be located 1433 // after. Newly created MIs have to be inserted in the set as well. 1434 SmallPtrSet<MachineInstr*, 16> LocalMIs; 1435 SmallSet<unsigned, 4> ImmDefRegs; 1436 DenseMap<unsigned, MachineInstr*> ImmDefMIs; 1437 SmallSet<unsigned, 16> FoldAsLoadDefCandidates; 1438 1439 // Set of virtual registers that are copied from. 1440 SmallSet<unsigned, 4> CopySrcRegs; 1441 DenseMap<unsigned, MachineInstr *> CopySrcMIs; 1442 1443 for (MachineBasicBlock::iterator 1444 MII = I->begin(), MIE = I->end(); MII != MIE; ) { 1445 MachineInstr *MI = &*MII; 1446 // We may be erasing MI below, increment MII now. 1447 ++MII; 1448 LocalMIs.insert(MI); 1449 1450 // Skip debug values. They should not affect this peephole optimization. 1451 if (MI->isDebugValue()) 1452 continue; 1453 1454 // If we run into an instruction we can't fold across, discard 1455 // the load candidates. 1456 if (MI->isLoadFoldBarrier()) 1457 FoldAsLoadDefCandidates.clear(); 1458 1459 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || 1460 MI->isKill() || MI->isInlineAsm() || 1461 MI->hasUnmodeledSideEffects()) 1462 continue; 1463 1464 if ((isUncoalescableCopy(*MI) && 1465 optimizeUncoalescableCopy(MI, LocalMIs)) || 1466 (MI->isCompare() && optimizeCmpInstr(MI, MBB)) || 1467 (MI->isSelect() && optimizeSelect(MI, LocalMIs))) { 1468 // MI is deleted. 1469 LocalMIs.erase(MI); 1470 Changed = true; 1471 continue; 1472 } 1473 1474 if (MI->isConditionalBranch() && optimizeCondBranch(MI)) { 1475 Changed = true; 1476 continue; 1477 } 1478 1479 if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) { 1480 // MI is just rewritten. 1481 Changed = true; 1482 continue; 1483 } 1484 1485 if (MI->isCopy() && foldRedundantCopy(MI, CopySrcRegs, CopySrcMIs)) { 1486 LocalMIs.erase(MI); 1487 MI->eraseFromParent(); 1488 Changed = true; 1489 continue; 1490 } 1491 1492 if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) { 1493 SeenMoveImm = true; 1494 } else { 1495 Changed |= optimizeExtInstr(MI, MBB, LocalMIs); 1496 // optimizeExtInstr might have created new instructions after MI 1497 // and before the already incremented MII. Adjust MII so that the 1498 // next iteration sees the new instructions. 1499 MII = MI; 1500 ++MII; 1501 if (SeenMoveImm) 1502 Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs); 1503 } 1504 1505 // Check whether MI is a load candidate for folding into a later 1506 // instruction. If MI is not a candidate, check whether we can fold an 1507 // earlier load into MI. 1508 if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) && 1509 !FoldAsLoadDefCandidates.empty()) { 1510 const MCInstrDesc &MIDesc = MI->getDesc(); 1511 for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands(); 1512 ++i) { 1513 const MachineOperand &MOp = MI->getOperand(i); 1514 if (!MOp.isReg()) 1515 continue; 1516 unsigned FoldAsLoadDefReg = MOp.getReg(); 1517 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { 1518 // We need to fold load after optimizeCmpInstr, since 1519 // optimizeCmpInstr can enable folding by converting SUB to CMP. 1520 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and 1521 // we need it for markUsesInDebugValueAsUndef(). 1522 unsigned FoldedReg = FoldAsLoadDefReg; 1523 MachineInstr *DefMI = nullptr; 1524 MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI, 1525 FoldAsLoadDefReg, 1526 DefMI); 1527 if (FoldMI) { 1528 // Update LocalMIs since we replaced MI with FoldMI and deleted 1529 // DefMI. 1530 DEBUG(dbgs() << "Replacing: " << *MI); 1531 DEBUG(dbgs() << " With: " << *FoldMI); 1532 LocalMIs.erase(MI); 1533 LocalMIs.erase(DefMI); 1534 LocalMIs.insert(FoldMI); 1535 MI->eraseFromParent(); 1536 DefMI->eraseFromParent(); 1537 MRI->markUsesInDebugValueAsUndef(FoldedReg); 1538 FoldAsLoadDefCandidates.erase(FoldedReg); 1539 ++NumLoadFold; 1540 // MI is replaced with FoldMI. 1541 Changed = true; 1542 break; 1543 } 1544 } 1545 } 1546 } 1547 } 1548 } 1549 1550 return Changed; 1551 } 1552 1553 ValueTrackerResult ValueTracker::getNextSourceFromCopy() { 1554 assert(Def->isCopy() && "Invalid definition"); 1555 // Copy instruction are supposed to be: Def = Src. 1556 // If someone breaks this assumption, bad things will happen everywhere. 1557 assert(Def->getNumOperands() == 2 && "Invalid number of operands"); 1558 1559 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) 1560 // If we look for a different subreg, it means we want a subreg of src. 1561 // Bails as we do not support composing subregs yet. 1562 return ValueTrackerResult(); 1563 // Otherwise, we want the whole source. 1564 const MachineOperand &Src = Def->getOperand(1); 1565 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1566 } 1567 1568 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { 1569 assert(Def->isBitcast() && "Invalid definition"); 1570 1571 // Bail if there are effects that a plain copy will not expose. 1572 if (Def->hasUnmodeledSideEffects()) 1573 return ValueTrackerResult(); 1574 1575 // Bitcasts with more than one def are not supported. 1576 if (Def->getDesc().getNumDefs() != 1) 1577 return ValueTrackerResult(); 1578 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) 1579 // If we look for a different subreg, it means we want a subreg of the src. 1580 // Bails as we do not support composing subregs yet. 1581 return ValueTrackerResult(); 1582 1583 unsigned SrcIdx = Def->getNumOperands(); 1584 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; 1585 ++OpIdx) { 1586 const MachineOperand &MO = Def->getOperand(OpIdx); 1587 if (!MO.isReg() || !MO.getReg()) 1588 continue; 1589 assert(!MO.isDef() && "We should have skipped all the definitions by now"); 1590 if (SrcIdx != EndOpIdx) 1591 // Multiple sources? 1592 return ValueTrackerResult(); 1593 SrcIdx = OpIdx; 1594 } 1595 const MachineOperand &Src = Def->getOperand(SrcIdx); 1596 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1597 } 1598 1599 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { 1600 assert((Def->isRegSequence() || Def->isRegSequenceLike()) && 1601 "Invalid definition"); 1602 1603 if (Def->getOperand(DefIdx).getSubReg()) 1604 // If we are composing subregs, bail out. 1605 // The case we are checking is Def.<subreg> = REG_SEQUENCE. 1606 // This should almost never happen as the SSA property is tracked at 1607 // the register level (as opposed to the subreg level). 1608 // I.e., 1609 // Def.sub0 = 1610 // Def.sub1 = 1611 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for 1612 // Def. Thus, it must not be generated. 1613 // However, some code could theoretically generates a single 1614 // Def.sub0 (i.e, not defining the other subregs) and we would 1615 // have this case. 1616 // If we can ascertain (or force) that this never happens, we could 1617 // turn that into an assertion. 1618 return ValueTrackerResult(); 1619 1620 if (!TII) 1621 // We could handle the REG_SEQUENCE here, but we do not want to 1622 // duplicate the code from the generic TII. 1623 return ValueTrackerResult(); 1624 1625 SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs; 1626 if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) 1627 return ValueTrackerResult(); 1628 1629 // We are looking at: 1630 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1631 // Check if one of the operand defines the subreg we are interested in. 1632 for (auto &RegSeqInput : RegSeqInputRegs) { 1633 if (RegSeqInput.SubIdx == DefSubReg) { 1634 if (RegSeqInput.SubReg) 1635 // Bail if we have to compose sub registers. 1636 return ValueTrackerResult(); 1637 1638 return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); 1639 } 1640 } 1641 1642 // If the subreg we are tracking is super-defined by another subreg, 1643 // we could follow this value. However, this would require to compose 1644 // the subreg and we do not do that for now. 1645 return ValueTrackerResult(); 1646 } 1647 1648 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { 1649 assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && 1650 "Invalid definition"); 1651 1652 if (Def->getOperand(DefIdx).getSubReg()) 1653 // If we are composing subreg, bail out. 1654 // Same remark as getNextSourceFromRegSequence. 1655 // I.e., this may be turned into an assert. 1656 return ValueTrackerResult(); 1657 1658 if (!TII) 1659 // We could handle the REG_SEQUENCE here, but we do not want to 1660 // duplicate the code from the generic TII. 1661 return ValueTrackerResult(); 1662 1663 TargetInstrInfo::RegSubRegPair BaseReg; 1664 TargetInstrInfo::RegSubRegPairAndIdx InsertedReg; 1665 if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) 1666 return ValueTrackerResult(); 1667 1668 // We are looking at: 1669 // Def = INSERT_SUBREG v0, v1, sub1 1670 // There are two cases: 1671 // 1. DefSubReg == sub1, get v1. 1672 // 2. DefSubReg != sub1, the value may be available through v0. 1673 1674 // #1 Check if the inserted register matches the required sub index. 1675 if (InsertedReg.SubIdx == DefSubReg) { 1676 return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); 1677 } 1678 // #2 Otherwise, if the sub register we are looking for is not partial 1679 // defined by the inserted element, we can look through the main 1680 // register (v0). 1681 const MachineOperand &MODef = Def->getOperand(DefIdx); 1682 // If the result register (Def) and the base register (v0) do not 1683 // have the same register class or if we have to compose 1684 // subregisters, bail out. 1685 if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || 1686 BaseReg.SubReg) 1687 return ValueTrackerResult(); 1688 1689 // Get the TRI and check if the inserted sub-register overlaps with the 1690 // sub-register we are tracking. 1691 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 1692 if (!TRI || 1693 (TRI->getSubRegIndexLaneMask(DefSubReg) & 1694 TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0) 1695 return ValueTrackerResult(); 1696 // At this point, the value is available in v0 via the same subreg 1697 // we used for Def. 1698 return ValueTrackerResult(BaseReg.Reg, DefSubReg); 1699 } 1700 1701 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { 1702 assert((Def->isExtractSubreg() || 1703 Def->isExtractSubregLike()) && "Invalid definition"); 1704 // We are looking at: 1705 // Def = EXTRACT_SUBREG v0, sub0 1706 1707 // Bail if we have to compose sub registers. 1708 // Indeed, if DefSubReg != 0, we would have to compose it with sub0. 1709 if (DefSubReg) 1710 return ValueTrackerResult(); 1711 1712 if (!TII) 1713 // We could handle the EXTRACT_SUBREG here, but we do not want to 1714 // duplicate the code from the generic TII. 1715 return ValueTrackerResult(); 1716 1717 TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg; 1718 if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) 1719 return ValueTrackerResult(); 1720 1721 // Bail if we have to compose sub registers. 1722 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. 1723 if (ExtractSubregInputReg.SubReg) 1724 return ValueTrackerResult(); 1725 // Otherwise, the value is available in the v0.sub0. 1726 return ValueTrackerResult(ExtractSubregInputReg.Reg, ExtractSubregInputReg.SubIdx); 1727 } 1728 1729 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { 1730 assert(Def->isSubregToReg() && "Invalid definition"); 1731 // We are looking at: 1732 // Def = SUBREG_TO_REG Imm, v0, sub0 1733 1734 // Bail if we have to compose sub registers. 1735 // If DefSubReg != sub0, we would have to check that all the bits 1736 // we track are included in sub0 and if yes, we would have to 1737 // determine the right subreg in v0. 1738 if (DefSubReg != Def->getOperand(3).getImm()) 1739 return ValueTrackerResult(); 1740 // Bail if we have to compose sub registers. 1741 // Likewise, if v0.subreg != 0, we would have to compose it with sub0. 1742 if (Def->getOperand(2).getSubReg()) 1743 return ValueTrackerResult(); 1744 1745 return ValueTrackerResult(Def->getOperand(2).getReg(), 1746 Def->getOperand(3).getImm()); 1747 } 1748 1749 /// \brief Explore each PHI incoming operand and return its sources 1750 ValueTrackerResult ValueTracker::getNextSourceFromPHI() { 1751 assert(Def->isPHI() && "Invalid definition"); 1752 ValueTrackerResult Res; 1753 1754 // If we look for a different subreg, bail as we do not support composing 1755 // subregs yet. 1756 if (Def->getOperand(0).getSubReg() != DefSubReg) 1757 return ValueTrackerResult(); 1758 1759 // Return all register sources for PHI instructions. 1760 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { 1761 auto &MO = Def->getOperand(i); 1762 assert(MO.isReg() && "Invalid PHI instruction"); 1763 Res.addSource(MO.getReg(), MO.getSubReg()); 1764 } 1765 1766 return Res; 1767 } 1768 1769 ValueTrackerResult ValueTracker::getNextSourceImpl() { 1770 assert(Def && "This method needs a valid definition"); 1771 1772 assert( 1773 (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic()) && 1774 Def->getOperand(DefIdx).isDef() && "Invalid DefIdx"); 1775 if (Def->isCopy()) 1776 return getNextSourceFromCopy(); 1777 if (Def->isBitcast()) 1778 return getNextSourceFromBitcast(); 1779 // All the remaining cases involve "complex" instructions. 1780 // Bail if we did not ask for the advanced tracking. 1781 if (!UseAdvancedTracking) 1782 return ValueTrackerResult(); 1783 if (Def->isRegSequence() || Def->isRegSequenceLike()) 1784 return getNextSourceFromRegSequence(); 1785 if (Def->isInsertSubreg() || Def->isInsertSubregLike()) 1786 return getNextSourceFromInsertSubreg(); 1787 if (Def->isExtractSubreg() || Def->isExtractSubregLike()) 1788 return getNextSourceFromExtractSubreg(); 1789 if (Def->isSubregToReg()) 1790 return getNextSourceFromSubregToReg(); 1791 if (Def->isPHI()) 1792 return getNextSourceFromPHI(); 1793 return ValueTrackerResult(); 1794 } 1795 1796 ValueTrackerResult ValueTracker::getNextSource() { 1797 // If we reach a point where we cannot move up in the use-def chain, 1798 // there is nothing we can get. 1799 if (!Def) 1800 return ValueTrackerResult(); 1801 1802 ValueTrackerResult Res = getNextSourceImpl(); 1803 if (Res.isValid()) { 1804 // Update definition, definition index, and subregister for the 1805 // next call of getNextSource. 1806 // Update the current register. 1807 bool OneRegSrc = Res.getNumSources() == 1; 1808 if (OneRegSrc) 1809 Reg = Res.getSrcReg(0); 1810 // Update the result before moving up in the use-def chain 1811 // with the instruction containing the last found sources. 1812 Res.setInst(Def); 1813 1814 // If we can still move up in the use-def chain, move to the next 1815 // definition. 1816 if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) { 1817 Def = MRI.getVRegDef(Reg); 1818 DefIdx = MRI.def_begin(Reg).getOperandNo(); 1819 DefSubReg = Res.getSrcSubReg(0); 1820 return Res; 1821 } 1822 } 1823 // If we end up here, this means we will not be able to find another source 1824 // for the next iteration. Make sure any new call to getNextSource bails out 1825 // early by cutting the use-def chain. 1826 Def = nullptr; 1827 return Res; 1828 } 1829