1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Perform peephole optimizations on the machine code: 10 // 11 // - Optimize Extensions 12 // 13 // Optimization of sign / zero extension instructions. It may be extended to 14 // handle other instructions with similar properties. 15 // 16 // On some targets, some instructions, e.g. X86 sign / zero extension, may 17 // leave the source value in the lower part of the result. This optimization 18 // will replace some uses of the pre-extension value with uses of the 19 // sub-register of the results. 20 // 21 // - Optimize Comparisons 22 // 23 // Optimization of comparison instructions. For instance, in this code: 24 // 25 // sub r1, 1 26 // cmp r1, 0 27 // bz L1 28 // 29 // If the "sub" instruction all ready sets (or could be modified to set) the 30 // same flag that the "cmp" instruction sets and that "bz" uses, then we can 31 // eliminate the "cmp" instruction. 32 // 33 // Another instance, in this code: 34 // 35 // sub r1, r3 | sub r1, imm 36 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm 37 // bge L1 38 // 39 // If the branch instruction can use flag from "sub", then we can replace 40 // "sub" with "subs" and eliminate the "cmp" instruction. 41 // 42 // - Optimize Loads: 43 // 44 // Loads that can be folded into a later instruction. A load is foldable 45 // if it loads to virtual registers and the virtual register defined has 46 // a single use. 47 // 48 // - Optimize Copies and Bitcast (more generally, target specific copies): 49 // 50 // Rewrite copies and bitcasts to avoid cross register bank copies 51 // when possible. 52 // E.g., Consider the following example, where capital and lower 53 // letters denote different register file: 54 // b = copy A <-- cross-bank copy 55 // C = copy b <-- cross-bank copy 56 // => 57 // b = copy A <-- cross-bank copy 58 // C = copy A <-- same-bank copy 59 // 60 // E.g., for bitcast: 61 // b = bitcast A <-- cross-bank copy 62 // C = bitcast b <-- cross-bank copy 63 // => 64 // b = bitcast A <-- cross-bank copy 65 // C = copy A <-- same-bank copy 66 //===----------------------------------------------------------------------===// 67 68 #include "llvm/ADT/DenseMap.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/SmallPtrSet.h" 71 #include "llvm/ADT/SmallSet.h" 72 #include "llvm/ADT/SmallVector.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/CodeGen/MachineBasicBlock.h" 75 #include "llvm/CodeGen/MachineDominators.h" 76 #include "llvm/CodeGen/MachineFunction.h" 77 #include "llvm/CodeGen/MachineFunctionPass.h" 78 #include "llvm/CodeGen/MachineInstr.h" 79 #include "llvm/CodeGen/MachineInstrBuilder.h" 80 #include "llvm/CodeGen/MachineLoopInfo.h" 81 #include "llvm/CodeGen/MachineOperand.h" 82 #include "llvm/CodeGen/MachineRegisterInfo.h" 83 #include "llvm/CodeGen/TargetInstrInfo.h" 84 #include "llvm/CodeGen/TargetOpcodes.h" 85 #include "llvm/CodeGen/TargetRegisterInfo.h" 86 #include "llvm/CodeGen/TargetSubtargetInfo.h" 87 #include "llvm/InitializePasses.h" 88 #include "llvm/MC/LaneBitmask.h" 89 #include "llvm/MC/MCInstrDesc.h" 90 #include "llvm/Pass.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/ErrorHandling.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include <cassert> 96 #include <cstdint> 97 #include <memory> 98 #include <utility> 99 100 using namespace llvm; 101 using RegSubRegPair = TargetInstrInfo::RegSubRegPair; 102 using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx; 103 104 #define DEBUG_TYPE "peephole-opt" 105 106 // Optimize Extensions 107 static cl::opt<bool> 108 Aggressive("aggressive-ext-opt", cl::Hidden, 109 cl::desc("Aggressive extension optimization")); 110 111 static cl::opt<bool> 112 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), 113 cl::desc("Disable the peephole optimizer")); 114 115 /// Specifiy whether or not the value tracking looks through 116 /// complex instructions. When this is true, the value tracker 117 /// bails on everything that is not a copy or a bitcast. 118 static cl::opt<bool> 119 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), 120 cl::desc("Disable advanced copy optimization")); 121 122 static cl::opt<bool> DisableNAPhysCopyOpt( 123 "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false), 124 cl::desc("Disable non-allocatable physical register copy optimization")); 125 126 // Limit the number of PHI instructions to process 127 // in PeepholeOptimizer::getNextSource. 128 static cl::opt<unsigned> RewritePHILimit( 129 "rewrite-phi-limit", cl::Hidden, cl::init(10), 130 cl::desc("Limit the length of PHI chains to lookup")); 131 132 // Limit the length of recurrence chain when evaluating the benefit of 133 // commuting operands. 134 static cl::opt<unsigned> MaxRecurrenceChain( 135 "recurrence-chain-limit", cl::Hidden, cl::init(3), 136 cl::desc("Maximum length of recurrence chain when evaluating the benefit " 137 "of commuting operands")); 138 139 140 STATISTIC(NumReuse, "Number of extension results reused"); 141 STATISTIC(NumCmps, "Number of compares eliminated"); 142 STATISTIC(NumImmFold, "Number of move immediate folded"); 143 STATISTIC(NumLoadFold, "Number of loads folded"); 144 STATISTIC(NumSelects, "Number of selects optimized"); 145 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized"); 146 STATISTIC(NumRewrittenCopies, "Number of copies rewritten"); 147 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed"); 148 149 namespace { 150 151 class ValueTrackerResult; 152 class RecurrenceInstr; 153 154 class PeepholeOptimizer : public MachineFunctionPass { 155 const TargetInstrInfo *TII; 156 const TargetRegisterInfo *TRI; 157 MachineRegisterInfo *MRI; 158 MachineDominatorTree *DT; // Machine dominator tree 159 MachineLoopInfo *MLI; 160 161 public: 162 static char ID; // Pass identification 163 164 PeepholeOptimizer() : MachineFunctionPass(ID) { 165 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); 166 } 167 168 bool runOnMachineFunction(MachineFunction &MF) override; 169 170 void getAnalysisUsage(AnalysisUsage &AU) const override { 171 AU.setPreservesCFG(); 172 MachineFunctionPass::getAnalysisUsage(AU); 173 AU.addRequired<MachineLoopInfo>(); 174 AU.addPreserved<MachineLoopInfo>(); 175 if (Aggressive) { 176 AU.addRequired<MachineDominatorTree>(); 177 AU.addPreserved<MachineDominatorTree>(); 178 } 179 } 180 181 /// Track Def -> Use info used for rewriting copies. 182 using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>; 183 184 /// Sequence of instructions that formulate recurrence cycle. 185 using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>; 186 187 private: 188 bool optimizeCmpInstr(MachineInstr &MI); 189 bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, 190 SmallPtrSetImpl<MachineInstr*> &LocalMIs); 191 bool optimizeSelect(MachineInstr &MI, 192 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 193 bool optimizeCondBranch(MachineInstr &MI); 194 bool optimizeCoalescableCopy(MachineInstr &MI); 195 bool optimizeUncoalescableCopy(MachineInstr &MI, 196 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 197 bool optimizeRecurrence(MachineInstr &PHI); 198 bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap); 199 bool isMoveImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, 200 DenseMap<Register, MachineInstr *> &ImmDefMIs); 201 bool foldImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, 202 DenseMap<Register, MachineInstr *> &ImmDefMIs); 203 204 /// Finds recurrence cycles, but only ones that formulated around 205 /// a def operand and a use operand that are tied. If there is a use 206 /// operand commutable with the tied use operand, find recurrence cycle 207 /// along that operand as well. 208 bool findTargetRecurrence(Register Reg, 209 const SmallSet<Register, 2> &TargetReg, 210 RecurrenceCycle &RC); 211 212 /// If copy instruction \p MI is a virtual register copy, track it in 213 /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was 214 /// previously seen as a copy, replace the uses of this copy with the 215 /// previously seen copy's destination register. 216 bool foldRedundantCopy(MachineInstr &MI, SmallSet<Register, 4> &CopySrcRegs, 217 DenseMap<Register, MachineInstr *> &CopyMIs); 218 219 /// Is the register \p Reg a non-allocatable physical register? 220 bool isNAPhysCopy(Register Reg); 221 222 /// If copy instruction \p MI is a non-allocatable virtual<->physical 223 /// register copy, track it in the \p NAPhysToVirtMIs map. If this 224 /// non-allocatable physical register was previously copied to a virtual 225 /// registered and hasn't been clobbered, the virt->phys copy can be 226 /// deleted. 227 bool foldRedundantNAPhysCopy( 228 MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs); 229 230 bool isLoadFoldable(MachineInstr &MI, 231 SmallSet<Register, 16> &FoldAsLoadDefCandidates); 232 233 /// Check whether \p MI is understood by the register coalescer 234 /// but may require some rewriting. 235 bool isCoalescableCopy(const MachineInstr &MI) { 236 // SubregToRegs are not interesting, because they are already register 237 // coalescer friendly. 238 return MI.isCopy() || (!DisableAdvCopyOpt && 239 (MI.isRegSequence() || MI.isInsertSubreg() || 240 MI.isExtractSubreg())); 241 } 242 243 /// Check whether \p MI is a copy like instruction that is 244 /// not recognized by the register coalescer. 245 bool isUncoalescableCopy(const MachineInstr &MI) { 246 return MI.isBitcast() || 247 (!DisableAdvCopyOpt && 248 (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 249 MI.isExtractSubregLike())); 250 } 251 252 MachineInstr &rewriteSource(MachineInstr &CopyLike, 253 RegSubRegPair Def, RewriteMapTy &RewriteMap); 254 }; 255 256 /// Helper class to hold instructions that are inside recurrence cycles. 257 /// The recurrence cycle is formulated around 1) a def operand and its 258 /// tied use operand, or 2) a def operand and a use operand that is commutable 259 /// with another use operand which is tied to the def operand. In the latter 260 /// case, index of the tied use operand and the commutable use operand are 261 /// maintained with CommutePair. 262 class RecurrenceInstr { 263 public: 264 using IndexPair = std::pair<unsigned, unsigned>; 265 266 RecurrenceInstr(MachineInstr *MI) : MI(MI) {} 267 RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2) 268 : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {} 269 270 MachineInstr *getMI() const { return MI; } 271 Optional<IndexPair> getCommutePair() const { return CommutePair; } 272 273 private: 274 MachineInstr *MI; 275 Optional<IndexPair> CommutePair; 276 }; 277 278 /// Helper class to hold a reply for ValueTracker queries. 279 /// Contains the returned sources for a given search and the instructions 280 /// where the sources were tracked from. 281 class ValueTrackerResult { 282 private: 283 /// Track all sources found by one ValueTracker query. 284 SmallVector<RegSubRegPair, 2> RegSrcs; 285 286 /// Instruction using the sources in 'RegSrcs'. 287 const MachineInstr *Inst = nullptr; 288 289 public: 290 ValueTrackerResult() = default; 291 292 ValueTrackerResult(Register Reg, unsigned SubReg) { 293 addSource(Reg, SubReg); 294 } 295 296 bool isValid() const { return getNumSources() > 0; } 297 298 void setInst(const MachineInstr *I) { Inst = I; } 299 const MachineInstr *getInst() const { return Inst; } 300 301 void clear() { 302 RegSrcs.clear(); 303 Inst = nullptr; 304 } 305 306 void addSource(Register SrcReg, unsigned SrcSubReg) { 307 RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg)); 308 } 309 310 void setSource(int Idx, Register SrcReg, unsigned SrcSubReg) { 311 assert(Idx < getNumSources() && "Reg pair source out of index"); 312 RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg); 313 } 314 315 int getNumSources() const { return RegSrcs.size(); } 316 317 RegSubRegPair getSrc(int Idx) const { 318 return RegSrcs[Idx]; 319 } 320 321 Register getSrcReg(int Idx) const { 322 assert(Idx < getNumSources() && "Reg source out of index"); 323 return RegSrcs[Idx].Reg; 324 } 325 326 unsigned getSrcSubReg(int Idx) const { 327 assert(Idx < getNumSources() && "SubReg source out of index"); 328 return RegSrcs[Idx].SubReg; 329 } 330 331 bool operator==(const ValueTrackerResult &Other) { 332 if (Other.getInst() != getInst()) 333 return false; 334 335 if (Other.getNumSources() != getNumSources()) 336 return false; 337 338 for (int i = 0, e = Other.getNumSources(); i != e; ++i) 339 if (Other.getSrcReg(i) != getSrcReg(i) || 340 Other.getSrcSubReg(i) != getSrcSubReg(i)) 341 return false; 342 return true; 343 } 344 }; 345 346 /// Helper class to track the possible sources of a value defined by 347 /// a (chain of) copy related instructions. 348 /// Given a definition (instruction and definition index), this class 349 /// follows the use-def chain to find successive suitable sources. 350 /// The given source can be used to rewrite the definition into 351 /// def = COPY src. 352 /// 353 /// For instance, let us consider the following snippet: 354 /// v0 = 355 /// v2 = INSERT_SUBREG v1, v0, sub0 356 /// def = COPY v2.sub0 357 /// 358 /// Using a ValueTracker for def = COPY v2.sub0 will give the following 359 /// suitable sources: 360 /// v2.sub0 and v0. 361 /// Then, def can be rewritten into def = COPY v0. 362 class ValueTracker { 363 private: 364 /// The current point into the use-def chain. 365 const MachineInstr *Def = nullptr; 366 367 /// The index of the definition in Def. 368 unsigned DefIdx = 0; 369 370 /// The sub register index of the definition. 371 unsigned DefSubReg; 372 373 /// The register where the value can be found. 374 Register Reg; 375 376 /// MachineRegisterInfo used to perform tracking. 377 const MachineRegisterInfo &MRI; 378 379 /// Optional TargetInstrInfo used to perform some complex tracking. 380 const TargetInstrInfo *TII; 381 382 /// Dispatcher to the right underlying implementation of getNextSource. 383 ValueTrackerResult getNextSourceImpl(); 384 385 /// Specialized version of getNextSource for Copy instructions. 386 ValueTrackerResult getNextSourceFromCopy(); 387 388 /// Specialized version of getNextSource for Bitcast instructions. 389 ValueTrackerResult getNextSourceFromBitcast(); 390 391 /// Specialized version of getNextSource for RegSequence instructions. 392 ValueTrackerResult getNextSourceFromRegSequence(); 393 394 /// Specialized version of getNextSource for InsertSubreg instructions. 395 ValueTrackerResult getNextSourceFromInsertSubreg(); 396 397 /// Specialized version of getNextSource for ExtractSubreg instructions. 398 ValueTrackerResult getNextSourceFromExtractSubreg(); 399 400 /// Specialized version of getNextSource for SubregToReg instructions. 401 ValueTrackerResult getNextSourceFromSubregToReg(); 402 403 /// Specialized version of getNextSource for PHI instructions. 404 ValueTrackerResult getNextSourceFromPHI(); 405 406 public: 407 /// Create a ValueTracker instance for the value defined by \p Reg. 408 /// \p DefSubReg represents the sub register index the value tracker will 409 /// track. It does not need to match the sub register index used in the 410 /// definition of \p Reg. 411 /// If \p Reg is a physical register, a value tracker constructed with 412 /// this constructor will not find any alternative source. 413 /// Indeed, when \p Reg is a physical register that constructor does not 414 /// know which definition of \p Reg it should track. 415 /// Use the next constructor to track a physical register. 416 ValueTracker(Register Reg, unsigned DefSubReg, 417 const MachineRegisterInfo &MRI, 418 const TargetInstrInfo *TII = nullptr) 419 : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) { 420 if (!Reg.isPhysical()) { 421 Def = MRI.getVRegDef(Reg); 422 DefIdx = MRI.def_begin(Reg).getOperandNo(); 423 } 424 } 425 426 /// Following the use-def chain, get the next available source 427 /// for the tracked value. 428 /// \return A ValueTrackerResult containing a set of registers 429 /// and sub registers with tracked values. A ValueTrackerResult with 430 /// an empty set of registers means no source was found. 431 ValueTrackerResult getNextSource(); 432 }; 433 434 } // end anonymous namespace 435 436 char PeepholeOptimizer::ID = 0; 437 438 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; 439 440 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE, 441 "Peephole Optimizations", false, false) 442 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 443 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 444 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE, 445 "Peephole Optimizations", false, false) 446 447 /// If instruction is a copy-like instruction, i.e. it reads a single register 448 /// and writes a single register and it does not modify the source, and if the 449 /// source value is preserved as a sub-register of the result, then replace all 450 /// reachable uses of the source with the subreg of the result. 451 /// 452 /// Do not generate an EXTRACT that is used only in a debug use, as this changes 453 /// the code. Since this code does not currently share EXTRACTs, just ignore all 454 /// debug uses. 455 bool PeepholeOptimizer:: 456 optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, 457 SmallPtrSetImpl<MachineInstr*> &LocalMIs) { 458 Register SrcReg, DstReg; 459 unsigned SubIdx; 460 if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx)) 461 return false; 462 463 if (DstReg.isPhysical() || SrcReg.isPhysical()) 464 return false; 465 466 if (MRI->hasOneNonDBGUse(SrcReg)) 467 // No other uses. 468 return false; 469 470 // Ensure DstReg can get a register class that actually supports 471 // sub-registers. Don't change the class until we commit. 472 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 473 DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); 474 if (!DstRC) 475 return false; 476 477 // The ext instr may be operating on a sub-register of SrcReg as well. 478 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit 479 // register. 480 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of 481 // SrcReg:SubIdx should be replaced. 482 bool UseSrcSubIdx = 483 TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; 484 485 // The source has other uses. See if we can replace the other uses with use of 486 // the result of the extension. 487 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs; 488 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 489 ReachedBBs.insert(UI.getParent()); 490 491 // Uses that are in the same BB of uses of the result of the instruction. 492 SmallVector<MachineOperand*, 8> Uses; 493 494 // Uses that the result of the instruction can reach. 495 SmallVector<MachineOperand*, 8> ExtendedUses; 496 497 bool ExtendLife = true; 498 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 499 MachineInstr *UseMI = UseMO.getParent(); 500 if (UseMI == &MI) 501 continue; 502 503 if (UseMI->isPHI()) { 504 ExtendLife = false; 505 continue; 506 } 507 508 // Only accept uses of SrcReg:SubIdx. 509 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) 510 continue; 511 512 // It's an error to translate this: 513 // 514 // %reg1025 = <sext> %reg1024 515 // ... 516 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 517 // 518 // into this: 519 // 520 // %reg1025 = <sext> %reg1024 521 // ... 522 // %reg1027 = COPY %reg1025:4 523 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 524 // 525 // The problem here is that SUBREG_TO_REG is there to assert that an 526 // implicit zext occurs. It doesn't insert a zext instruction. If we allow 527 // the COPY here, it will give us the value after the <sext>, not the 528 // original value of %reg1024 before <sext>. 529 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) 530 continue; 531 532 MachineBasicBlock *UseMBB = UseMI->getParent(); 533 if (UseMBB == &MBB) { 534 // Local uses that come after the extension. 535 if (!LocalMIs.count(UseMI)) 536 Uses.push_back(&UseMO); 537 } else if (ReachedBBs.count(UseMBB)) { 538 // Non-local uses where the result of the extension is used. Always 539 // replace these unless it's a PHI. 540 Uses.push_back(&UseMO); 541 } else if (Aggressive && DT->dominates(&MBB, UseMBB)) { 542 // We may want to extend the live range of the extension result in order 543 // to replace these uses. 544 ExtendedUses.push_back(&UseMO); 545 } else { 546 // Both will be live out of the def MBB anyway. Don't extend live range of 547 // the extension result. 548 ExtendLife = false; 549 break; 550 } 551 } 552 553 if (ExtendLife && !ExtendedUses.empty()) 554 // Extend the liveness of the extension result. 555 Uses.append(ExtendedUses.begin(), ExtendedUses.end()); 556 557 // Now replace all uses. 558 bool Changed = false; 559 if (!Uses.empty()) { 560 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs; 561 562 // Look for PHI uses of the extended result, we don't want to extend the 563 // liveness of a PHI input. It breaks all kinds of assumptions down 564 // stream. A PHI use is expected to be the kill of its source values. 565 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 566 if (UI.isPHI()) 567 PHIBBs.insert(UI.getParent()); 568 569 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 570 for (unsigned i = 0, e = Uses.size(); i != e; ++i) { 571 MachineOperand *UseMO = Uses[i]; 572 MachineInstr *UseMI = UseMO->getParent(); 573 MachineBasicBlock *UseMBB = UseMI->getParent(); 574 if (PHIBBs.count(UseMBB)) 575 continue; 576 577 // About to add uses of DstReg, clear DstReg's kill flags. 578 if (!Changed) { 579 MRI->clearKillFlags(DstReg); 580 MRI->constrainRegClass(DstReg, DstRC); 581 } 582 583 Register NewVR = MRI->createVirtualRegister(RC); 584 MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), 585 TII->get(TargetOpcode::COPY), NewVR) 586 .addReg(DstReg, 0, SubIdx); 587 // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set. 588 if (UseSrcSubIdx) { 589 Copy->getOperand(0).setSubReg(SubIdx); 590 Copy->getOperand(0).setIsUndef(); 591 } 592 UseMO->setReg(NewVR); 593 ++NumReuse; 594 Changed = true; 595 } 596 } 597 598 return Changed; 599 } 600 601 /// If the instruction is a compare and the previous instruction it's comparing 602 /// against already sets (or could be modified to set) the same flag as the 603 /// compare, then we can remove the comparison and use the flag from the 604 /// previous instruction. 605 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) { 606 // If this instruction is a comparison against zero and isn't comparing a 607 // physical register, we can try to optimize it. 608 Register SrcReg, SrcReg2; 609 int CmpMask, CmpValue; 610 if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) || 611 SrcReg.isPhysical() || SrcReg2.isPhysical()) 612 return false; 613 614 // Attempt to optimize the comparison instruction. 615 LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI); 616 if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { 617 LLVM_DEBUG(dbgs() << " -> Successfully optimized compare!\n"); 618 ++NumCmps; 619 return true; 620 } 621 622 return false; 623 } 624 625 /// Optimize a select instruction. 626 bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI, 627 SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 628 unsigned TrueOp = 0; 629 unsigned FalseOp = 0; 630 bool Optimizable = false; 631 SmallVector<MachineOperand, 4> Cond; 632 if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) 633 return false; 634 if (!Optimizable) 635 return false; 636 if (!TII->optimizeSelect(MI, LocalMIs)) 637 return false; 638 LLVM_DEBUG(dbgs() << "Deleting select: " << MI); 639 MI.eraseFromParent(); 640 ++NumSelects; 641 return true; 642 } 643 644 /// Check if a simpler conditional branch can be generated. 645 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) { 646 return TII->optimizeCondBranch(MI); 647 } 648 649 /// Try to find the next source that share the same register file 650 /// for the value defined by \p Reg and \p SubReg. 651 /// When true is returned, the \p RewriteMap can be used by the client to 652 /// retrieve all Def -> Use along the way up to the next source. Any found 653 /// Use that is not itself a key for another entry, is the next source to 654 /// use. During the search for the next source, multiple sources can be found 655 /// given multiple incoming sources of a PHI instruction. In this case, we 656 /// look in each PHI source for the next source; all found next sources must 657 /// share the same register file as \p Reg and \p SubReg. The client should 658 /// then be capable to rewrite all intermediate PHIs to get the next source. 659 /// \return False if no alternative sources are available. True otherwise. 660 bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg, 661 RewriteMapTy &RewriteMap) { 662 // Do not try to find a new source for a physical register. 663 // So far we do not have any motivating example for doing that. 664 // Thus, instead of maintaining untested code, we will revisit that if 665 // that changes at some point. 666 Register Reg = RegSubReg.Reg; 667 if (Reg.isPhysical()) 668 return false; 669 const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); 670 671 SmallVector<RegSubRegPair, 4> SrcToLook; 672 RegSubRegPair CurSrcPair = RegSubReg; 673 SrcToLook.push_back(CurSrcPair); 674 675 unsigned PHICount = 0; 676 do { 677 CurSrcPair = SrcToLook.pop_back_val(); 678 // As explained above, do not handle physical registers 679 if (Register::isPhysicalRegister(CurSrcPair.Reg)) 680 return false; 681 682 ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII); 683 684 // Follow the chain of copies until we find a more suitable source, a phi 685 // or have to abort. 686 while (true) { 687 ValueTrackerResult Res = ValTracker.getNextSource(); 688 // Abort at the end of a chain (without finding a suitable source). 689 if (!Res.isValid()) 690 return false; 691 692 // Insert the Def -> Use entry for the recently found source. 693 ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); 694 if (CurSrcRes.isValid()) { 695 assert(CurSrcRes == Res && "ValueTrackerResult found must match"); 696 // An existent entry with multiple sources is a PHI cycle we must avoid. 697 // Otherwise it's an entry with a valid next source we already found. 698 if (CurSrcRes.getNumSources() > 1) { 699 LLVM_DEBUG(dbgs() 700 << "findNextSource: found PHI cycle, aborting...\n"); 701 return false; 702 } 703 break; 704 } 705 RewriteMap.insert(std::make_pair(CurSrcPair, Res)); 706 707 // ValueTrackerResult usually have one source unless it's the result from 708 // a PHI instruction. Add the found PHI edges to be looked up further. 709 unsigned NumSrcs = Res.getNumSources(); 710 if (NumSrcs > 1) { 711 PHICount++; 712 if (PHICount >= RewritePHILimit) { 713 LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n"); 714 return false; 715 } 716 717 for (unsigned i = 0; i < NumSrcs; ++i) 718 SrcToLook.push_back(Res.getSrc(i)); 719 break; 720 } 721 722 CurSrcPair = Res.getSrc(0); 723 // Do not extend the live-ranges of physical registers as they add 724 // constraints to the register allocator. Moreover, if we want to extend 725 // the live-range of a physical register, unlike SSA virtual register, 726 // we will have to check that they aren't redefine before the related use. 727 if (Register::isPhysicalRegister(CurSrcPair.Reg)) 728 return false; 729 730 // Keep following the chain if the value isn't any better yet. 731 const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); 732 if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC, 733 CurSrcPair.SubReg)) 734 continue; 735 736 // We currently cannot deal with subreg operands on PHI instructions 737 // (see insertPHI()). 738 if (PHICount > 0 && CurSrcPair.SubReg != 0) 739 continue; 740 741 // We found a suitable source, and are done with this chain. 742 break; 743 } 744 } while (!SrcToLook.empty()); 745 746 // If we did not find a more suitable source, there is nothing to optimize. 747 return CurSrcPair.Reg != Reg; 748 } 749 750 /// Insert a PHI instruction with incoming edges \p SrcRegs that are 751 /// guaranteed to have the same register class. This is necessary whenever we 752 /// successfully traverse a PHI instruction and find suitable sources coming 753 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def 754 /// suitable to be used in a new COPY instruction. 755 static MachineInstr & 756 insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 757 const SmallVectorImpl<RegSubRegPair> &SrcRegs, 758 MachineInstr &OrigPHI) { 759 assert(!SrcRegs.empty() && "No sources to create a PHI instruction?"); 760 761 const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg); 762 // NewRC is only correct if no subregisters are involved. findNextSource() 763 // should have rejected those cases already. 764 assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand"); 765 Register NewVR = MRI.createVirtualRegister(NewRC); 766 MachineBasicBlock *MBB = OrigPHI.getParent(); 767 MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(), 768 TII.get(TargetOpcode::PHI), NewVR); 769 770 unsigned MBBOpIdx = 2; 771 for (const RegSubRegPair &RegPair : SrcRegs) { 772 MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); 773 MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB()); 774 // Since we're extended the lifetime of RegPair.Reg, clear the 775 // kill flags to account for that and make RegPair.Reg reaches 776 // the new PHI. 777 MRI.clearKillFlags(RegPair.Reg); 778 MBBOpIdx += 2; 779 } 780 781 return *MIB; 782 } 783 784 namespace { 785 786 /// Interface to query instructions amenable to copy rewriting. 787 class Rewriter { 788 protected: 789 MachineInstr &CopyLike; 790 unsigned CurrentSrcIdx = 0; ///< The index of the source being rewritten. 791 public: 792 Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {} 793 virtual ~Rewriter() {} 794 795 /// Get the next rewritable source (SrcReg, SrcSubReg) and 796 /// the related value that it affects (DstReg, DstSubReg). 797 /// A source is considered rewritable if its register class and the 798 /// register class of the related DstReg may not be register 799 /// coalescer friendly. In other words, given a copy-like instruction 800 /// not all the arguments may be returned at rewritable source, since 801 /// some arguments are none to be register coalescer friendly. 802 /// 803 /// Each call of this method moves the current source to the next 804 /// rewritable source. 805 /// For instance, let CopyLike be the instruction to rewrite. 806 /// CopyLike has one definition and one source: 807 /// dst.dstSubIdx = CopyLike src.srcSubIdx. 808 /// 809 /// The first call will give the first rewritable source, i.e., 810 /// the only source this instruction has: 811 /// (SrcReg, SrcSubReg) = (src, srcSubIdx). 812 /// This source defines the whole definition, i.e., 813 /// (DstReg, DstSubReg) = (dst, dstSubIdx). 814 /// 815 /// The second and subsequent calls will return false, as there is only one 816 /// rewritable source. 817 /// 818 /// \return True if a rewritable source has been found, false otherwise. 819 /// The output arguments are valid if and only if true is returned. 820 virtual bool getNextRewritableSource(RegSubRegPair &Src, 821 RegSubRegPair &Dst) = 0; 822 823 /// Rewrite the current source with \p NewReg and \p NewSubReg if possible. 824 /// \return True if the rewriting was possible, false otherwise. 825 virtual bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) = 0; 826 }; 827 828 /// Rewriter for COPY instructions. 829 class CopyRewriter : public Rewriter { 830 public: 831 CopyRewriter(MachineInstr &MI) : Rewriter(MI) { 832 assert(MI.isCopy() && "Expected copy instruction"); 833 } 834 virtual ~CopyRewriter() = default; 835 836 bool getNextRewritableSource(RegSubRegPair &Src, 837 RegSubRegPair &Dst) override { 838 // CurrentSrcIdx > 0 means this function has already been called. 839 if (CurrentSrcIdx > 0) 840 return false; 841 // This is the first call to getNextRewritableSource. 842 // Move the CurrentSrcIdx to remember that we made that call. 843 CurrentSrcIdx = 1; 844 // The rewritable source is the argument. 845 const MachineOperand &MOSrc = CopyLike.getOperand(1); 846 Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg()); 847 // What we track are the alternative sources of the definition. 848 const MachineOperand &MODef = CopyLike.getOperand(0); 849 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 850 return true; 851 } 852 853 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { 854 if (CurrentSrcIdx != 1) 855 return false; 856 MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); 857 MOSrc.setReg(NewReg); 858 MOSrc.setSubReg(NewSubReg); 859 return true; 860 } 861 }; 862 863 /// Helper class to rewrite uncoalescable copy like instructions 864 /// into new COPY (coalescable friendly) instructions. 865 class UncoalescableRewriter : public Rewriter { 866 unsigned NumDefs; ///< Number of defs in the bitcast. 867 868 public: 869 UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) { 870 NumDefs = MI.getDesc().getNumDefs(); 871 } 872 873 /// \see See Rewriter::getNextRewritableSource() 874 /// All such sources need to be considered rewritable in order to 875 /// rewrite a uncoalescable copy-like instruction. This method return 876 /// each definition that must be checked if rewritable. 877 bool getNextRewritableSource(RegSubRegPair &Src, 878 RegSubRegPair &Dst) override { 879 // Find the next non-dead definition and continue from there. 880 if (CurrentSrcIdx == NumDefs) 881 return false; 882 883 while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { 884 ++CurrentSrcIdx; 885 if (CurrentSrcIdx == NumDefs) 886 return false; 887 } 888 889 // What we track are the alternative sources of the definition. 890 Src = RegSubRegPair(0, 0); 891 const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); 892 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 893 894 CurrentSrcIdx++; 895 return true; 896 } 897 898 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { 899 return false; 900 } 901 }; 902 903 /// Specialized rewriter for INSERT_SUBREG instruction. 904 class InsertSubregRewriter : public Rewriter { 905 public: 906 InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) { 907 assert(MI.isInsertSubreg() && "Invalid instruction"); 908 } 909 910 /// \see See Rewriter::getNextRewritableSource() 911 /// Here CopyLike has the following form: 912 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. 913 /// Src1 has the same register class has dst, hence, there is 914 /// nothing to rewrite. 915 /// Src2.src2SubIdx, may not be register coalescer friendly. 916 /// Therefore, the first call to this method returns: 917 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 918 /// (DstReg, DstSubReg) = (dst, subIdx). 919 /// 920 /// Subsequence calls will return false. 921 bool getNextRewritableSource(RegSubRegPair &Src, 922 RegSubRegPair &Dst) override { 923 // If we already get the only source we can rewrite, return false. 924 if (CurrentSrcIdx == 2) 925 return false; 926 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. 927 CurrentSrcIdx = 2; 928 const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); 929 Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg()); 930 const MachineOperand &MODef = CopyLike.getOperand(0); 931 932 // We want to track something that is compatible with the 933 // partial definition. 934 if (MODef.getSubReg()) 935 // Bail if we have to compose sub-register indices. 936 return false; 937 Dst = RegSubRegPair(MODef.getReg(), 938 (unsigned)CopyLike.getOperand(3).getImm()); 939 return true; 940 } 941 942 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { 943 if (CurrentSrcIdx != 2) 944 return false; 945 // We are rewriting the inserted reg. 946 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 947 MO.setReg(NewReg); 948 MO.setSubReg(NewSubReg); 949 return true; 950 } 951 }; 952 953 /// Specialized rewriter for EXTRACT_SUBREG instruction. 954 class ExtractSubregRewriter : public Rewriter { 955 const TargetInstrInfo &TII; 956 957 public: 958 ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) 959 : Rewriter(MI), TII(TII) { 960 assert(MI.isExtractSubreg() && "Invalid instruction"); 961 } 962 963 /// \see Rewriter::getNextRewritableSource() 964 /// Here CopyLike has the following form: 965 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. 966 /// There is only one rewritable source: Src.subIdx, 967 /// which defines dst.dstSubIdx. 968 bool getNextRewritableSource(RegSubRegPair &Src, 969 RegSubRegPair &Dst) override { 970 // If we already get the only source we can rewrite, return false. 971 if (CurrentSrcIdx == 1) 972 return false; 973 // We are looking at v1 = EXTRACT_SUBREG v0, sub0. 974 CurrentSrcIdx = 1; 975 const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); 976 // If we have to compose sub-register indices, bail out. 977 if (MOExtractedReg.getSubReg()) 978 return false; 979 980 Src = RegSubRegPair(MOExtractedReg.getReg(), 981 CopyLike.getOperand(2).getImm()); 982 983 // We want to track something that is compatible with the definition. 984 const MachineOperand &MODef = CopyLike.getOperand(0); 985 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 986 return true; 987 } 988 989 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { 990 // The only source we can rewrite is the input register. 991 if (CurrentSrcIdx != 1) 992 return false; 993 994 CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); 995 996 // If we find a source that does not require to extract something, 997 // rewrite the operation with a copy. 998 if (!NewSubReg) { 999 // Move the current index to an invalid position. 1000 // We do not want another call to this method to be able 1001 // to do any change. 1002 CurrentSrcIdx = -1; 1003 // Rewrite the operation as a COPY. 1004 // Get rid of the sub-register index. 1005 CopyLike.RemoveOperand(2); 1006 // Morph the operation into a COPY. 1007 CopyLike.setDesc(TII.get(TargetOpcode::COPY)); 1008 return true; 1009 } 1010 CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); 1011 return true; 1012 } 1013 }; 1014 1015 /// Specialized rewriter for REG_SEQUENCE instruction. 1016 class RegSequenceRewriter : public Rewriter { 1017 public: 1018 RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) { 1019 assert(MI.isRegSequence() && "Invalid instruction"); 1020 } 1021 1022 /// \see Rewriter::getNextRewritableSource() 1023 /// Here CopyLike has the following form: 1024 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. 1025 /// Each call will return a different source, walking all the available 1026 /// source. 1027 /// 1028 /// The first call returns: 1029 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). 1030 /// (DstReg, DstSubReg) = (dst, subIdx1). 1031 /// 1032 /// The second call returns: 1033 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 1034 /// (DstReg, DstSubReg) = (dst, subIdx2). 1035 /// 1036 /// And so on, until all the sources have been traversed, then 1037 /// it returns false. 1038 bool getNextRewritableSource(RegSubRegPair &Src, 1039 RegSubRegPair &Dst) override { 1040 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. 1041 1042 // If this is the first call, move to the first argument. 1043 if (CurrentSrcIdx == 0) { 1044 CurrentSrcIdx = 1; 1045 } else { 1046 // Otherwise, move to the next argument and check that it is valid. 1047 CurrentSrcIdx += 2; 1048 if (CurrentSrcIdx >= CopyLike.getNumOperands()) 1049 return false; 1050 } 1051 const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); 1052 Src.Reg = MOInsertedReg.getReg(); 1053 // If we have to compose sub-register indices, bail out. 1054 if ((Src.SubReg = MOInsertedReg.getSubReg())) 1055 return false; 1056 1057 // We want to track something that is compatible with the related 1058 // partial definition. 1059 Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); 1060 1061 const MachineOperand &MODef = CopyLike.getOperand(0); 1062 Dst.Reg = MODef.getReg(); 1063 // If we have to compose sub-registers, bail. 1064 return MODef.getSubReg() == 0; 1065 } 1066 1067 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { 1068 // We cannot rewrite out of bound operands. 1069 // Moreover, rewritable sources are at odd positions. 1070 if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) 1071 return false; 1072 1073 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 1074 MO.setReg(NewReg); 1075 MO.setSubReg(NewSubReg); 1076 return true; 1077 } 1078 }; 1079 1080 } // end anonymous namespace 1081 1082 /// Get the appropriated Rewriter for \p MI. 1083 /// \return A pointer to a dynamically allocated Rewriter or nullptr if no 1084 /// rewriter works for \p MI. 1085 static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) { 1086 // Handle uncoalescable copy-like instructions. 1087 if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() || 1088 MI.isExtractSubregLike()) 1089 return new UncoalescableRewriter(MI); 1090 1091 switch (MI.getOpcode()) { 1092 default: 1093 return nullptr; 1094 case TargetOpcode::COPY: 1095 return new CopyRewriter(MI); 1096 case TargetOpcode::INSERT_SUBREG: 1097 return new InsertSubregRewriter(MI); 1098 case TargetOpcode::EXTRACT_SUBREG: 1099 return new ExtractSubregRewriter(MI, TII); 1100 case TargetOpcode::REG_SEQUENCE: 1101 return new RegSequenceRewriter(MI); 1102 } 1103 } 1104 1105 /// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find 1106 /// the new source to use for rewrite. If \p HandleMultipleSources is true and 1107 /// multiple sources for a given \p Def are found along the way, we found a 1108 /// PHI instructions that needs to be rewritten. 1109 /// TODO: HandleMultipleSources should be removed once we test PHI handling 1110 /// with coalescable copies. 1111 static RegSubRegPair 1112 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 1113 RegSubRegPair Def, 1114 const PeepholeOptimizer::RewriteMapTy &RewriteMap, 1115 bool HandleMultipleSources = true) { 1116 RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); 1117 while (true) { 1118 ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); 1119 // If there are no entries on the map, LookupSrc is the new source. 1120 if (!Res.isValid()) 1121 return LookupSrc; 1122 1123 // There's only one source for this definition, keep searching... 1124 unsigned NumSrcs = Res.getNumSources(); 1125 if (NumSrcs == 1) { 1126 LookupSrc.Reg = Res.getSrcReg(0); 1127 LookupSrc.SubReg = Res.getSrcSubReg(0); 1128 continue; 1129 } 1130 1131 // TODO: Remove once multiple srcs w/ coalescable copies are supported. 1132 if (!HandleMultipleSources) 1133 break; 1134 1135 // Multiple sources, recurse into each source to find a new source 1136 // for it. Then, rewrite the PHI accordingly to its new edges. 1137 SmallVector<RegSubRegPair, 4> NewPHISrcs; 1138 for (unsigned i = 0; i < NumSrcs; ++i) { 1139 RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i)); 1140 NewPHISrcs.push_back( 1141 getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); 1142 } 1143 1144 // Build the new PHI node and return its def register as the new source. 1145 MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst()); 1146 MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI); 1147 LLVM_DEBUG(dbgs() << "-- getNewSource\n"); 1148 LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI); 1149 LLVM_DEBUG(dbgs() << " With: " << NewPHI); 1150 const MachineOperand &MODef = NewPHI.getOperand(0); 1151 return RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 1152 } 1153 1154 return RegSubRegPair(0, 0); 1155 } 1156 1157 /// Optimize generic copy instructions to avoid cross register bank copy. 1158 /// The optimization looks through a chain of copies and tries to find a source 1159 /// that has a compatible register class. 1160 /// Two register classes are considered to be compatible if they share the same 1161 /// register bank. 1162 /// New copies issued by this optimization are register allocator 1163 /// friendly. This optimization does not remove any copy as it may 1164 /// overconstrain the register allocator, but replaces some operands 1165 /// when possible. 1166 /// \pre isCoalescableCopy(*MI) is true. 1167 /// \return True, when \p MI has been rewritten. False otherwise. 1168 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) { 1169 assert(isCoalescableCopy(MI) && "Invalid argument"); 1170 assert(MI.getDesc().getNumDefs() == 1 && 1171 "Coalescer can understand multiple defs?!"); 1172 const MachineOperand &MODef = MI.getOperand(0); 1173 // Do not rewrite physical definitions. 1174 if (Register::isPhysicalRegister(MODef.getReg())) 1175 return false; 1176 1177 bool Changed = false; 1178 // Get the right rewriter for the current copy. 1179 std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII)); 1180 // If none exists, bail out. 1181 if (!CpyRewriter) 1182 return false; 1183 // Rewrite each rewritable source. 1184 RegSubRegPair Src; 1185 RegSubRegPair TrackPair; 1186 while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) { 1187 // Keep track of PHI nodes and its incoming edges when looking for sources. 1188 RewriteMapTy RewriteMap; 1189 // Try to find a more suitable source. If we failed to do so, or get the 1190 // actual source, move to the next source. 1191 if (!findNextSource(TrackPair, RewriteMap)) 1192 continue; 1193 1194 // Get the new source to rewrite. TODO: Only enable handling of multiple 1195 // sources (PHIs) once we have a motivating example and testcases for it. 1196 RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap, 1197 /*HandleMultipleSources=*/false); 1198 if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0) 1199 continue; 1200 1201 // Rewrite source. 1202 if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { 1203 // We may have extended the live-range of NewSrc, account for that. 1204 MRI->clearKillFlags(NewSrc.Reg); 1205 Changed = true; 1206 } 1207 } 1208 // TODO: We could have a clean-up method to tidy the instruction. 1209 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 1210 // => v0 = COPY v1 1211 // Currently we haven't seen motivating example for that and we 1212 // want to avoid untested code. 1213 NumRewrittenCopies += Changed; 1214 return Changed; 1215 } 1216 1217 /// Rewrite the source found through \p Def, by using the \p RewriteMap 1218 /// and create a new COPY instruction. More info about RewriteMap in 1219 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 1220 /// Uncoalescable copies, since they are copy like instructions that aren't 1221 /// recognized by the register allocator. 1222 MachineInstr & 1223 PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike, 1224 RegSubRegPair Def, RewriteMapTy &RewriteMap) { 1225 assert(!Register::isPhysicalRegister(Def.Reg) && 1226 "We do not rewrite physical registers"); 1227 1228 // Find the new source to use in the COPY rewrite. 1229 RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap); 1230 1231 // Insert the COPY. 1232 const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg); 1233 Register NewVReg = MRI->createVirtualRegister(DefRC); 1234 1235 MachineInstr *NewCopy = 1236 BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), 1237 TII->get(TargetOpcode::COPY), NewVReg) 1238 .addReg(NewSrc.Reg, 0, NewSrc.SubReg); 1239 1240 if (Def.SubReg) { 1241 NewCopy->getOperand(0).setSubReg(Def.SubReg); 1242 NewCopy->getOperand(0).setIsUndef(); 1243 } 1244 1245 LLVM_DEBUG(dbgs() << "-- RewriteSource\n"); 1246 LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike); 1247 LLVM_DEBUG(dbgs() << " With: " << *NewCopy); 1248 MRI->replaceRegWith(Def.Reg, NewVReg); 1249 MRI->clearKillFlags(NewVReg); 1250 1251 // We extended the lifetime of NewSrc.Reg, clear the kill flags to 1252 // account for that. 1253 MRI->clearKillFlags(NewSrc.Reg); 1254 1255 return *NewCopy; 1256 } 1257 1258 /// Optimize copy-like instructions to create 1259 /// register coalescer friendly instruction. 1260 /// The optimization tries to kill-off the \p MI by looking 1261 /// through a chain of copies to find a source that has a compatible 1262 /// register class. 1263 /// If such a source is found, it replace \p MI by a generic COPY 1264 /// operation. 1265 /// \pre isUncoalescableCopy(*MI) is true. 1266 /// \return True, when \p MI has been optimized. In that case, \p MI has 1267 /// been removed from its parent. 1268 /// All COPY instructions created, are inserted in \p LocalMIs. 1269 bool PeepholeOptimizer::optimizeUncoalescableCopy( 1270 MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 1271 assert(isUncoalescableCopy(MI) && "Invalid argument"); 1272 UncoalescableRewriter CpyRewriter(MI); 1273 1274 // Rewrite each rewritable source by generating new COPYs. This works 1275 // differently from optimizeCoalescableCopy since it first makes sure that all 1276 // definitions can be rewritten. 1277 RewriteMapTy RewriteMap; 1278 RegSubRegPair Src; 1279 RegSubRegPair Def; 1280 SmallVector<RegSubRegPair, 4> RewritePairs; 1281 while (CpyRewriter.getNextRewritableSource(Src, Def)) { 1282 // If a physical register is here, this is probably for a good reason. 1283 // Do not rewrite that. 1284 if (Register::isPhysicalRegister(Def.Reg)) 1285 return false; 1286 1287 // If we do not know how to rewrite this definition, there is no point 1288 // in trying to kill this instruction. 1289 if (!findNextSource(Def, RewriteMap)) 1290 return false; 1291 1292 RewritePairs.push_back(Def); 1293 } 1294 1295 // The change is possible for all defs, do it. 1296 for (const RegSubRegPair &Def : RewritePairs) { 1297 // Rewrite the "copy" in a way the register coalescer understands. 1298 MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap); 1299 LocalMIs.insert(&NewCopy); 1300 } 1301 1302 // MI is now dead. 1303 LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI); 1304 MI.eraseFromParent(); 1305 ++NumUncoalescableCopies; 1306 return true; 1307 } 1308 1309 /// Check whether MI is a candidate for folding into a later instruction. 1310 /// We only fold loads to virtual registers and the virtual register defined 1311 /// has a single user. 1312 bool PeepholeOptimizer::isLoadFoldable( 1313 MachineInstr &MI, SmallSet<Register, 16> &FoldAsLoadDefCandidates) { 1314 if (!MI.canFoldAsLoad() || !MI.mayLoad()) 1315 return false; 1316 const MCInstrDesc &MCID = MI.getDesc(); 1317 if (MCID.getNumDefs() != 1) 1318 return false; 1319 1320 Register Reg = MI.getOperand(0).getReg(); 1321 // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting 1322 // loads. It should be checked when processing uses of the load, since 1323 // uses can be removed during peephole. 1324 if (Reg.isVirtual() && !MI.getOperand(0).getSubReg() && 1325 MRI->hasOneNonDBGUser(Reg)) { 1326 FoldAsLoadDefCandidates.insert(Reg); 1327 return true; 1328 } 1329 return false; 1330 } 1331 1332 bool PeepholeOptimizer::isMoveImmediate( 1333 MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, 1334 DenseMap<Register, MachineInstr *> &ImmDefMIs) { 1335 const MCInstrDesc &MCID = MI.getDesc(); 1336 if (!MI.isMoveImmediate()) 1337 return false; 1338 if (MCID.getNumDefs() != 1) 1339 return false; 1340 Register Reg = MI.getOperand(0).getReg(); 1341 if (Reg.isVirtual()) { 1342 ImmDefMIs.insert(std::make_pair(Reg, &MI)); 1343 ImmDefRegs.insert(Reg); 1344 return true; 1345 } 1346 1347 return false; 1348 } 1349 1350 /// Try folding register operands that are defined by move immediate 1351 /// instructions, i.e. a trivial constant folding optimization, if 1352 /// and only if the def and use are in the same BB. 1353 bool PeepholeOptimizer::foldImmediate( 1354 MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, 1355 DenseMap<Register, MachineInstr *> &ImmDefMIs) { 1356 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1357 MachineOperand &MO = MI.getOperand(i); 1358 if (!MO.isReg() || MO.isDef()) 1359 continue; 1360 // Ignore dead implicit defs. 1361 if (MO.isImplicit() && MO.isDead()) 1362 continue; 1363 Register Reg = MO.getReg(); 1364 if (!Reg.isVirtual()) 1365 continue; 1366 if (ImmDefRegs.count(Reg) == 0) 1367 continue; 1368 DenseMap<Register, MachineInstr *>::iterator II = ImmDefMIs.find(Reg); 1369 assert(II != ImmDefMIs.end() && "couldn't find immediate definition"); 1370 if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) { 1371 ++NumImmFold; 1372 return true; 1373 } 1374 } 1375 return false; 1376 } 1377 1378 // FIXME: This is very simple and misses some cases which should be handled when 1379 // motivating examples are found. 1380 // 1381 // The copy rewriting logic should look at uses as well as defs and be able to 1382 // eliminate copies across blocks. 1383 // 1384 // Later copies that are subregister extracts will also not be eliminated since 1385 // only the first copy is considered. 1386 // 1387 // e.g. 1388 // %1 = COPY %0 1389 // %2 = COPY %0:sub1 1390 // 1391 // Should replace %2 uses with %1:sub1 1392 bool PeepholeOptimizer::foldRedundantCopy( 1393 MachineInstr &MI, SmallSet<Register, 4> &CopySrcRegs, 1394 DenseMap<Register, MachineInstr *> &CopyMIs) { 1395 assert(MI.isCopy() && "expected a COPY machine instruction"); 1396 1397 Register SrcReg = MI.getOperand(1).getReg(); 1398 if (!SrcReg.isVirtual()) 1399 return false; 1400 1401 Register DstReg = MI.getOperand(0).getReg(); 1402 if (!DstReg.isVirtual()) 1403 return false; 1404 1405 if (CopySrcRegs.insert(SrcReg).second) { 1406 // First copy of this reg seen. 1407 CopyMIs.insert(std::make_pair(SrcReg, &MI)); 1408 return false; 1409 } 1410 1411 MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second; 1412 1413 unsigned SrcSubReg = MI.getOperand(1).getSubReg(); 1414 unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg(); 1415 1416 // Can't replace different subregister extracts. 1417 if (SrcSubReg != PrevSrcSubReg) 1418 return false; 1419 1420 Register PrevDstReg = PrevCopy->getOperand(0).getReg(); 1421 1422 // Only replace if the copy register class is the same. 1423 // 1424 // TODO: If we have multiple copies to different register classes, we may want 1425 // to track multiple copies of the same source register. 1426 if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg)) 1427 return false; 1428 1429 MRI->replaceRegWith(DstReg, PrevDstReg); 1430 1431 // Lifetime of the previous copy has been extended. 1432 MRI->clearKillFlags(PrevDstReg); 1433 return true; 1434 } 1435 1436 bool PeepholeOptimizer::isNAPhysCopy(Register Reg) { 1437 return Reg.isPhysical() && !MRI->isAllocatable(Reg); 1438 } 1439 1440 bool PeepholeOptimizer::foldRedundantNAPhysCopy( 1441 MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs) { 1442 assert(MI.isCopy() && "expected a COPY machine instruction"); 1443 1444 if (DisableNAPhysCopyOpt) 1445 return false; 1446 1447 Register DstReg = MI.getOperand(0).getReg(); 1448 Register SrcReg = MI.getOperand(1).getReg(); 1449 if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) { 1450 // %vreg = COPY $physreg 1451 // Avoid using a datastructure which can track multiple live non-allocatable 1452 // phys->virt copies since LLVM doesn't seem to do this. 1453 NAPhysToVirtMIs.insert({SrcReg, &MI}); 1454 return false; 1455 } 1456 1457 if (!(SrcReg.isVirtual() && isNAPhysCopy(DstReg))) 1458 return false; 1459 1460 // $physreg = COPY %vreg 1461 auto PrevCopy = NAPhysToVirtMIs.find(DstReg); 1462 if (PrevCopy == NAPhysToVirtMIs.end()) { 1463 // We can't remove the copy: there was an intervening clobber of the 1464 // non-allocatable physical register after the copy to virtual. 1465 LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " 1466 << MI); 1467 return false; 1468 } 1469 1470 Register PrevDstReg = PrevCopy->second->getOperand(0).getReg(); 1471 if (PrevDstReg == SrcReg) { 1472 // Remove the virt->phys copy: we saw the virtual register definition, and 1473 // the non-allocatable physical register's state hasn't changed since then. 1474 LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI); 1475 ++NumNAPhysCopies; 1476 return true; 1477 } 1478 1479 // Potential missed optimization opportunity: we saw a different virtual 1480 // register get a copy of the non-allocatable physical register, and we only 1481 // track one such copy. Avoid getting confused by this new non-allocatable 1482 // physical register definition, and remove it from the tracked copies. 1483 LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI); 1484 NAPhysToVirtMIs.erase(PrevCopy); 1485 return false; 1486 } 1487 1488 /// \bried Returns true if \p MO is a virtual register operand. 1489 static bool isVirtualRegisterOperand(MachineOperand &MO) { 1490 return MO.isReg() && MO.getReg().isVirtual(); 1491 } 1492 1493 bool PeepholeOptimizer::findTargetRecurrence( 1494 Register Reg, const SmallSet<Register, 2> &TargetRegs, 1495 RecurrenceCycle &RC) { 1496 // Recurrence found if Reg is in TargetRegs. 1497 if (TargetRegs.count(Reg)) 1498 return true; 1499 1500 // TODO: Curerntly, we only allow the last instruction of the recurrence 1501 // cycle (the instruction that feeds the PHI instruction) to have more than 1502 // one uses to guarantee that commuting operands does not tie registers 1503 // with overlapping live range. Once we have actual live range info of 1504 // each register, this constraint can be relaxed. 1505 if (!MRI->hasOneNonDBGUse(Reg)) 1506 return false; 1507 1508 // Give up if the reccurrence chain length is longer than the limit. 1509 if (RC.size() >= MaxRecurrenceChain) 1510 return false; 1511 1512 MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg)); 1513 unsigned Idx = MI.findRegisterUseOperandIdx(Reg); 1514 1515 // Only interested in recurrences whose instructions have only one def, which 1516 // is a virtual register. 1517 if (MI.getDesc().getNumDefs() != 1) 1518 return false; 1519 1520 MachineOperand &DefOp = MI.getOperand(0); 1521 if (!isVirtualRegisterOperand(DefOp)) 1522 return false; 1523 1524 // Check if def operand of MI is tied to any use operand. We are only 1525 // interested in the case that all the instructions in the recurrence chain 1526 // have there def operand tied with one of the use operand. 1527 unsigned TiedUseIdx; 1528 if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx)) 1529 return false; 1530 1531 if (Idx == TiedUseIdx) { 1532 RC.push_back(RecurrenceInstr(&MI)); 1533 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); 1534 } else { 1535 // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx. 1536 unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex; 1537 if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) { 1538 RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx)); 1539 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); 1540 } 1541 } 1542 1543 return false; 1544 } 1545 1546 /// Phi instructions will eventually be lowered to copy instructions. 1547 /// If phi is in a loop header, a recurrence may formulated around the source 1548 /// and destination of the phi. For such case commuting operands of the 1549 /// instructions in the recurrence may enable coalescing of the copy instruction 1550 /// generated from the phi. For example, if there is a recurrence of 1551 /// 1552 /// LoopHeader: 1553 /// %1 = phi(%0, %100) 1554 /// LoopLatch: 1555 /// %0<def, tied1> = ADD %2<def, tied0>, %1 1556 /// 1557 /// , the fact that %0 and %2 are in the same tied operands set makes 1558 /// the coalescing of copy instruction generated from the phi in 1559 /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and 1560 /// %2 have overlapping live range. This introduces additional move 1561 /// instruction to the final assembly. However, if we commute %2 and 1562 /// %1 of ADD instruction, the redundant move instruction can be 1563 /// avoided. 1564 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) { 1565 SmallSet<Register, 2> TargetRegs; 1566 for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) { 1567 MachineOperand &MO = PHI.getOperand(Idx); 1568 assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction"); 1569 TargetRegs.insert(MO.getReg()); 1570 } 1571 1572 bool Changed = false; 1573 RecurrenceCycle RC; 1574 if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) { 1575 // Commutes operands of instructions in RC if necessary so that the copy to 1576 // be generated from PHI can be coalesced. 1577 LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI); 1578 for (auto &RI : RC) { 1579 LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI())); 1580 auto CP = RI.getCommutePair(); 1581 if (CP) { 1582 Changed = true; 1583 TII->commuteInstruction(*(RI.getMI()), false, (*CP).first, 1584 (*CP).second); 1585 LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI())); 1586 } 1587 } 1588 } 1589 1590 return Changed; 1591 } 1592 1593 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { 1594 if (skipFunction(MF.getFunction())) 1595 return false; 1596 1597 LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); 1598 LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); 1599 1600 if (DisablePeephole) 1601 return false; 1602 1603 TII = MF.getSubtarget().getInstrInfo(); 1604 TRI = MF.getSubtarget().getRegisterInfo(); 1605 MRI = &MF.getRegInfo(); 1606 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr; 1607 MLI = &getAnalysis<MachineLoopInfo>(); 1608 1609 bool Changed = false; 1610 1611 for (MachineBasicBlock &MBB : MF) { 1612 bool SeenMoveImm = false; 1613 1614 // During this forward scan, at some point it needs to answer the question 1615 // "given a pointer to an MI in the current BB, is it located before or 1616 // after the current instruction". 1617 // To perform this, the following set keeps track of the MIs already seen 1618 // during the scan, if a MI is not in the set, it is assumed to be located 1619 // after. Newly created MIs have to be inserted in the set as well. 1620 SmallPtrSet<MachineInstr*, 16> LocalMIs; 1621 SmallSet<Register, 4> ImmDefRegs; 1622 DenseMap<Register, MachineInstr *> ImmDefMIs; 1623 SmallSet<Register, 16> FoldAsLoadDefCandidates; 1624 1625 // Track when a non-allocatable physical register is copied to a virtual 1626 // register so that useless moves can be removed. 1627 // 1628 // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg` 1629 // without any intervening re-definition of $physreg. 1630 DenseMap<Register, MachineInstr *> NAPhysToVirtMIs; 1631 1632 // Set of virtual registers that are copied from. 1633 SmallSet<Register, 4> CopySrcRegs; 1634 DenseMap<Register, MachineInstr *> CopySrcMIs; 1635 1636 bool IsLoopHeader = MLI->isLoopHeader(&MBB); 1637 1638 for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end(); 1639 MII != MIE; ) { 1640 MachineInstr *MI = &*MII; 1641 // We may be erasing MI below, increment MII now. 1642 ++MII; 1643 LocalMIs.insert(MI); 1644 1645 // Skip debug instructions. They should not affect this peephole optimization. 1646 if (MI->isDebugInstr()) 1647 continue; 1648 1649 if (MI->isPosition()) 1650 continue; 1651 1652 if (IsLoopHeader && MI->isPHI()) { 1653 if (optimizeRecurrence(*MI)) { 1654 Changed = true; 1655 continue; 1656 } 1657 } 1658 1659 if (!MI->isCopy()) { 1660 for (const MachineOperand &MO : MI->operands()) { 1661 // Visit all operands: definitions can be implicit or explicit. 1662 if (MO.isReg()) { 1663 Register Reg = MO.getReg(); 1664 if (MO.isDef() && isNAPhysCopy(Reg)) { 1665 const auto &Def = NAPhysToVirtMIs.find(Reg); 1666 if (Def != NAPhysToVirtMIs.end()) { 1667 // A new definition of the non-allocatable physical register 1668 // invalidates previous copies. 1669 LLVM_DEBUG(dbgs() 1670 << "NAPhysCopy: invalidating because of " << *MI); 1671 NAPhysToVirtMIs.erase(Def); 1672 } 1673 } 1674 } else if (MO.isRegMask()) { 1675 const uint32_t *RegMask = MO.getRegMask(); 1676 for (auto &RegMI : NAPhysToVirtMIs) { 1677 Register Def = RegMI.first; 1678 if (MachineOperand::clobbersPhysReg(RegMask, Def)) { 1679 LLVM_DEBUG(dbgs() 1680 << "NAPhysCopy: invalidating because of " << *MI); 1681 NAPhysToVirtMIs.erase(Def); 1682 } 1683 } 1684 } 1685 } 1686 } 1687 1688 if (MI->isImplicitDef() || MI->isKill()) 1689 continue; 1690 1691 if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { 1692 // Blow away all non-allocatable physical registers knowledge since we 1693 // don't know what's correct anymore. 1694 // 1695 // FIXME: handle explicit asm clobbers. 1696 LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " 1697 << *MI); 1698 NAPhysToVirtMIs.clear(); 1699 } 1700 1701 if ((isUncoalescableCopy(*MI) && 1702 optimizeUncoalescableCopy(*MI, LocalMIs)) || 1703 (MI->isCompare() && optimizeCmpInstr(*MI)) || 1704 (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) { 1705 // MI is deleted. 1706 LocalMIs.erase(MI); 1707 Changed = true; 1708 continue; 1709 } 1710 1711 if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) { 1712 Changed = true; 1713 continue; 1714 } 1715 1716 if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) { 1717 // MI is just rewritten. 1718 Changed = true; 1719 continue; 1720 } 1721 1722 if (MI->isCopy() && 1723 (foldRedundantCopy(*MI, CopySrcRegs, CopySrcMIs) || 1724 foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) { 1725 LocalMIs.erase(MI); 1726 LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n"); 1727 MI->eraseFromParent(); 1728 Changed = true; 1729 continue; 1730 } 1731 1732 if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) { 1733 SeenMoveImm = true; 1734 } else { 1735 Changed |= optimizeExtInstr(*MI, MBB, LocalMIs); 1736 // optimizeExtInstr might have created new instructions after MI 1737 // and before the already incremented MII. Adjust MII so that the 1738 // next iteration sees the new instructions. 1739 MII = MI; 1740 ++MII; 1741 if (SeenMoveImm) 1742 Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs); 1743 } 1744 1745 // Check whether MI is a load candidate for folding into a later 1746 // instruction. If MI is not a candidate, check whether we can fold an 1747 // earlier load into MI. 1748 if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) && 1749 !FoldAsLoadDefCandidates.empty()) { 1750 1751 // We visit each operand even after successfully folding a previous 1752 // one. This allows us to fold multiple loads into a single 1753 // instruction. We do assume that optimizeLoadInstr doesn't insert 1754 // foldable uses earlier in the argument list. Since we don't restart 1755 // iteration, we'd miss such cases. 1756 const MCInstrDesc &MIDesc = MI->getDesc(); 1757 for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands(); 1758 ++i) { 1759 const MachineOperand &MOp = MI->getOperand(i); 1760 if (!MOp.isReg()) 1761 continue; 1762 Register FoldAsLoadDefReg = MOp.getReg(); 1763 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { 1764 // We need to fold load after optimizeCmpInstr, since 1765 // optimizeCmpInstr can enable folding by converting SUB to CMP. 1766 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and 1767 // we need it for markUsesInDebugValueAsUndef(). 1768 Register FoldedReg = FoldAsLoadDefReg; 1769 MachineInstr *DefMI = nullptr; 1770 if (MachineInstr *FoldMI = 1771 TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) { 1772 // Update LocalMIs since we replaced MI with FoldMI and deleted 1773 // DefMI. 1774 LLVM_DEBUG(dbgs() << "Replacing: " << *MI); 1775 LLVM_DEBUG(dbgs() << " With: " << *FoldMI); 1776 LocalMIs.erase(MI); 1777 LocalMIs.erase(DefMI); 1778 LocalMIs.insert(FoldMI); 1779 // Update the call site info. 1780 if (MI->shouldUpdateCallSiteInfo()) 1781 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 1782 MI->eraseFromParent(); 1783 DefMI->eraseFromParent(); 1784 MRI->markUsesInDebugValueAsUndef(FoldedReg); 1785 FoldAsLoadDefCandidates.erase(FoldedReg); 1786 ++NumLoadFold; 1787 1788 // MI is replaced with FoldMI so we can continue trying to fold 1789 Changed = true; 1790 MI = FoldMI; 1791 } 1792 } 1793 } 1794 } 1795 1796 // If we run into an instruction we can't fold across, discard 1797 // the load candidates. Note: We might be able to fold *into* this 1798 // instruction, so this needs to be after the folding logic. 1799 if (MI->isLoadFoldBarrier()) { 1800 LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI); 1801 FoldAsLoadDefCandidates.clear(); 1802 } 1803 } 1804 } 1805 1806 return Changed; 1807 } 1808 1809 ValueTrackerResult ValueTracker::getNextSourceFromCopy() { 1810 assert(Def->isCopy() && "Invalid definition"); 1811 // Copy instruction are supposed to be: Def = Src. 1812 // If someone breaks this assumption, bad things will happen everywhere. 1813 // There may be implicit uses preventing the copy to be moved across 1814 // some target specific register definitions 1815 assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 && 1816 "Invalid number of operands"); 1817 assert(!Def->hasImplicitDef() && "Only implicit uses are allowed"); 1818 1819 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) 1820 // If we look for a different subreg, it means we want a subreg of src. 1821 // Bails as we do not support composing subregs yet. 1822 return ValueTrackerResult(); 1823 // Otherwise, we want the whole source. 1824 const MachineOperand &Src = Def->getOperand(1); 1825 if (Src.isUndef()) 1826 return ValueTrackerResult(); 1827 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1828 } 1829 1830 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { 1831 assert(Def->isBitcast() && "Invalid definition"); 1832 1833 // Bail if there are effects that a plain copy will not expose. 1834 if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects()) 1835 return ValueTrackerResult(); 1836 1837 // Bitcasts with more than one def are not supported. 1838 if (Def->getDesc().getNumDefs() != 1) 1839 return ValueTrackerResult(); 1840 const MachineOperand DefOp = Def->getOperand(DefIdx); 1841 if (DefOp.getSubReg() != DefSubReg) 1842 // If we look for a different subreg, it means we want a subreg of the src. 1843 // Bails as we do not support composing subregs yet. 1844 return ValueTrackerResult(); 1845 1846 unsigned SrcIdx = Def->getNumOperands(); 1847 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; 1848 ++OpIdx) { 1849 const MachineOperand &MO = Def->getOperand(OpIdx); 1850 if (!MO.isReg() || !MO.getReg()) 1851 continue; 1852 // Ignore dead implicit defs. 1853 if (MO.isImplicit() && MO.isDead()) 1854 continue; 1855 assert(!MO.isDef() && "We should have skipped all the definitions by now"); 1856 if (SrcIdx != EndOpIdx) 1857 // Multiple sources? 1858 return ValueTrackerResult(); 1859 SrcIdx = OpIdx; 1860 } 1861 1862 // In some rare case, Def has no input, SrcIdx is out of bound, 1863 // getOperand(SrcIdx) will fail below. 1864 if (SrcIdx >= Def->getNumOperands()) 1865 return ValueTrackerResult(); 1866 1867 // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY 1868 // will break the assumed guarantees for the upper bits. 1869 for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) { 1870 if (UseMI.isSubregToReg()) 1871 return ValueTrackerResult(); 1872 } 1873 1874 const MachineOperand &Src = Def->getOperand(SrcIdx); 1875 if (Src.isUndef()) 1876 return ValueTrackerResult(); 1877 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1878 } 1879 1880 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { 1881 assert((Def->isRegSequence() || Def->isRegSequenceLike()) && 1882 "Invalid definition"); 1883 1884 if (Def->getOperand(DefIdx).getSubReg()) 1885 // If we are composing subregs, bail out. 1886 // The case we are checking is Def.<subreg> = REG_SEQUENCE. 1887 // This should almost never happen as the SSA property is tracked at 1888 // the register level (as opposed to the subreg level). 1889 // I.e., 1890 // Def.sub0 = 1891 // Def.sub1 = 1892 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for 1893 // Def. Thus, it must not be generated. 1894 // However, some code could theoretically generates a single 1895 // Def.sub0 (i.e, not defining the other subregs) and we would 1896 // have this case. 1897 // If we can ascertain (or force) that this never happens, we could 1898 // turn that into an assertion. 1899 return ValueTrackerResult(); 1900 1901 if (!TII) 1902 // We could handle the REG_SEQUENCE here, but we do not want to 1903 // duplicate the code from the generic TII. 1904 return ValueTrackerResult(); 1905 1906 SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs; 1907 if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) 1908 return ValueTrackerResult(); 1909 1910 // We are looking at: 1911 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1912 // Check if one of the operand defines the subreg we are interested in. 1913 for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) { 1914 if (RegSeqInput.SubIdx == DefSubReg) 1915 return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); 1916 } 1917 1918 // If the subreg we are tracking is super-defined by another subreg, 1919 // we could follow this value. However, this would require to compose 1920 // the subreg and we do not do that for now. 1921 return ValueTrackerResult(); 1922 } 1923 1924 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { 1925 assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && 1926 "Invalid definition"); 1927 1928 if (Def->getOperand(DefIdx).getSubReg()) 1929 // If we are composing subreg, bail out. 1930 // Same remark as getNextSourceFromRegSequence. 1931 // I.e., this may be turned into an assert. 1932 return ValueTrackerResult(); 1933 1934 if (!TII) 1935 // We could handle the REG_SEQUENCE here, but we do not want to 1936 // duplicate the code from the generic TII. 1937 return ValueTrackerResult(); 1938 1939 RegSubRegPair BaseReg; 1940 RegSubRegPairAndIdx InsertedReg; 1941 if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) 1942 return ValueTrackerResult(); 1943 1944 // We are looking at: 1945 // Def = INSERT_SUBREG v0, v1, sub1 1946 // There are two cases: 1947 // 1. DefSubReg == sub1, get v1. 1948 // 2. DefSubReg != sub1, the value may be available through v0. 1949 1950 // #1 Check if the inserted register matches the required sub index. 1951 if (InsertedReg.SubIdx == DefSubReg) { 1952 return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); 1953 } 1954 // #2 Otherwise, if the sub register we are looking for is not partial 1955 // defined by the inserted element, we can look through the main 1956 // register (v0). 1957 const MachineOperand &MODef = Def->getOperand(DefIdx); 1958 // If the result register (Def) and the base register (v0) do not 1959 // have the same register class or if we have to compose 1960 // subregisters, bail out. 1961 if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || 1962 BaseReg.SubReg) 1963 return ValueTrackerResult(); 1964 1965 // Get the TRI and check if the inserted sub-register overlaps with the 1966 // sub-register we are tracking. 1967 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 1968 if (!TRI || 1969 !(TRI->getSubRegIndexLaneMask(DefSubReg) & 1970 TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none()) 1971 return ValueTrackerResult(); 1972 // At this point, the value is available in v0 via the same subreg 1973 // we used for Def. 1974 return ValueTrackerResult(BaseReg.Reg, DefSubReg); 1975 } 1976 1977 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { 1978 assert((Def->isExtractSubreg() || 1979 Def->isExtractSubregLike()) && "Invalid definition"); 1980 // We are looking at: 1981 // Def = EXTRACT_SUBREG v0, sub0 1982 1983 // Bail if we have to compose sub registers. 1984 // Indeed, if DefSubReg != 0, we would have to compose it with sub0. 1985 if (DefSubReg) 1986 return ValueTrackerResult(); 1987 1988 if (!TII) 1989 // We could handle the EXTRACT_SUBREG here, but we do not want to 1990 // duplicate the code from the generic TII. 1991 return ValueTrackerResult(); 1992 1993 RegSubRegPairAndIdx ExtractSubregInputReg; 1994 if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) 1995 return ValueTrackerResult(); 1996 1997 // Bail if we have to compose sub registers. 1998 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. 1999 if (ExtractSubregInputReg.SubReg) 2000 return ValueTrackerResult(); 2001 // Otherwise, the value is available in the v0.sub0. 2002 return ValueTrackerResult(ExtractSubregInputReg.Reg, 2003 ExtractSubregInputReg.SubIdx); 2004 } 2005 2006 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { 2007 assert(Def->isSubregToReg() && "Invalid definition"); 2008 // We are looking at: 2009 // Def = SUBREG_TO_REG Imm, v0, sub0 2010 2011 // Bail if we have to compose sub registers. 2012 // If DefSubReg != sub0, we would have to check that all the bits 2013 // we track are included in sub0 and if yes, we would have to 2014 // determine the right subreg in v0. 2015 if (DefSubReg != Def->getOperand(3).getImm()) 2016 return ValueTrackerResult(); 2017 // Bail if we have to compose sub registers. 2018 // Likewise, if v0.subreg != 0, we would have to compose it with sub0. 2019 if (Def->getOperand(2).getSubReg()) 2020 return ValueTrackerResult(); 2021 2022 return ValueTrackerResult(Def->getOperand(2).getReg(), 2023 Def->getOperand(3).getImm()); 2024 } 2025 2026 /// Explore each PHI incoming operand and return its sources. 2027 ValueTrackerResult ValueTracker::getNextSourceFromPHI() { 2028 assert(Def->isPHI() && "Invalid definition"); 2029 ValueTrackerResult Res; 2030 2031 // If we look for a different subreg, bail as we do not support composing 2032 // subregs yet. 2033 if (Def->getOperand(0).getSubReg() != DefSubReg) 2034 return ValueTrackerResult(); 2035 2036 // Return all register sources for PHI instructions. 2037 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { 2038 const MachineOperand &MO = Def->getOperand(i); 2039 assert(MO.isReg() && "Invalid PHI instruction"); 2040 // We have no code to deal with undef operands. They shouldn't happen in 2041 // normal programs anyway. 2042 if (MO.isUndef()) 2043 return ValueTrackerResult(); 2044 Res.addSource(MO.getReg(), MO.getSubReg()); 2045 } 2046 2047 return Res; 2048 } 2049 2050 ValueTrackerResult ValueTracker::getNextSourceImpl() { 2051 assert(Def && "This method needs a valid definition"); 2052 2053 assert(((Def->getOperand(DefIdx).isDef() && 2054 (DefIdx < Def->getDesc().getNumDefs() || 2055 Def->getDesc().isVariadic())) || 2056 Def->getOperand(DefIdx).isImplicit()) && 2057 "Invalid DefIdx"); 2058 if (Def->isCopy()) 2059 return getNextSourceFromCopy(); 2060 if (Def->isBitcast()) 2061 return getNextSourceFromBitcast(); 2062 // All the remaining cases involve "complex" instructions. 2063 // Bail if we did not ask for the advanced tracking. 2064 if (DisableAdvCopyOpt) 2065 return ValueTrackerResult(); 2066 if (Def->isRegSequence() || Def->isRegSequenceLike()) 2067 return getNextSourceFromRegSequence(); 2068 if (Def->isInsertSubreg() || Def->isInsertSubregLike()) 2069 return getNextSourceFromInsertSubreg(); 2070 if (Def->isExtractSubreg() || Def->isExtractSubregLike()) 2071 return getNextSourceFromExtractSubreg(); 2072 if (Def->isSubregToReg()) 2073 return getNextSourceFromSubregToReg(); 2074 if (Def->isPHI()) 2075 return getNextSourceFromPHI(); 2076 return ValueTrackerResult(); 2077 } 2078 2079 ValueTrackerResult ValueTracker::getNextSource() { 2080 // If we reach a point where we cannot move up in the use-def chain, 2081 // there is nothing we can get. 2082 if (!Def) 2083 return ValueTrackerResult(); 2084 2085 ValueTrackerResult Res = getNextSourceImpl(); 2086 if (Res.isValid()) { 2087 // Update definition, definition index, and subregister for the 2088 // next call of getNextSource. 2089 // Update the current register. 2090 bool OneRegSrc = Res.getNumSources() == 1; 2091 if (OneRegSrc) 2092 Reg = Res.getSrcReg(0); 2093 // Update the result before moving up in the use-def chain 2094 // with the instruction containing the last found sources. 2095 Res.setInst(Def); 2096 2097 // If we can still move up in the use-def chain, move to the next 2098 // definition. 2099 if (!Register::isPhysicalRegister(Reg) && OneRegSrc) { 2100 MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg); 2101 if (DI != MRI.def_end()) { 2102 Def = DI->getParent(); 2103 DefIdx = DI.getOperandNo(); 2104 DefSubReg = Res.getSrcSubReg(0); 2105 } else { 2106 Def = nullptr; 2107 } 2108 return Res; 2109 } 2110 } 2111 // If we end up here, this means we will not be able to find another source 2112 // for the next iteration. Make sure any new call to getNextSource bails out 2113 // early by cutting the use-def chain. 2114 Def = nullptr; 2115 return Res; 2116 } 2117