1 //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Perform peephole optimizations on the machine code: 11 // 12 // - Optimize Extensions 13 // 14 // Optimization of sign / zero extension instructions. It may be extended to 15 // handle other instructions with similar properties. 16 // 17 // On some targets, some instructions, e.g. X86 sign / zero extension, may 18 // leave the source value in the lower part of the result. This optimization 19 // will replace some uses of the pre-extension value with uses of the 20 // sub-register of the results. 21 // 22 // - Optimize Comparisons 23 // 24 // Optimization of comparison instructions. For instance, in this code: 25 // 26 // sub r1, 1 27 // cmp r1, 0 28 // bz L1 29 // 30 // If the "sub" instruction all ready sets (or could be modified to set) the 31 // same flag that the "cmp" instruction sets and that "bz" uses, then we can 32 // eliminate the "cmp" instruction. 33 // 34 // Another instance, in this code: 35 // 36 // sub r1, r3 | sub r1, imm 37 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm 38 // bge L1 39 // 40 // If the branch instruction can use flag from "sub", then we can replace 41 // "sub" with "subs" and eliminate the "cmp" instruction. 42 // 43 // - Optimize Loads: 44 // 45 // Loads that can be folded into a later instruction. A load is foldable 46 // if it loads to virtual registers and the virtual register defined has 47 // a single use. 48 // 49 // - Optimize Copies and Bitcast (more generally, target specific copies): 50 // 51 // Rewrite copies and bitcasts to avoid cross register bank copies 52 // when possible. 53 // E.g., Consider the following example, where capital and lower 54 // letters denote different register file: 55 // b = copy A <-- cross-bank copy 56 // C = copy b <-- cross-bank copy 57 // => 58 // b = copy A <-- cross-bank copy 59 // C = copy A <-- same-bank copy 60 // 61 // E.g., for bitcast: 62 // b = bitcast A <-- cross-bank copy 63 // C = bitcast b <-- cross-bank copy 64 // => 65 // b = bitcast A <-- cross-bank copy 66 // C = copy A <-- same-bank copy 67 //===----------------------------------------------------------------------===// 68 69 #include "llvm/CodeGen/Passes.h" 70 #include "llvm/ADT/DenseMap.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/CodeGen/MachineBasicBlock.h" 76 #include "llvm/CodeGen/MachineDominators.h" 77 #include "llvm/CodeGen/MachineFunction.h" 78 #include "llvm/CodeGen/MachineInstr.h" 79 #include "llvm/CodeGen/MachineInstrBuilder.h" 80 #include "llvm/CodeGen/MachineOperand.h" 81 #include "llvm/CodeGen/MachineRegisterInfo.h" 82 #include "llvm/MC/MCInstrDesc.h" 83 #include "llvm/Support/CommandLine.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetInstrInfo.h" 88 #include "llvm/Target/TargetRegisterInfo.h" 89 #include "llvm/Target/TargetSubtargetInfo.h" 90 #include <cassert> 91 #include <cstdint> 92 #include <memory> 93 #include <utility> 94 95 using namespace llvm; 96 97 #define DEBUG_TYPE "peephole-opt" 98 99 // Optimize Extensions 100 static cl::opt<bool> 101 Aggressive("aggressive-ext-opt", cl::Hidden, 102 cl::desc("Aggressive extension optimization")); 103 104 static cl::opt<bool> 105 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), 106 cl::desc("Disable the peephole optimizer")); 107 108 static cl::opt<bool> 109 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), 110 cl::desc("Disable advanced copy optimization")); 111 112 static cl::opt<bool> DisableNAPhysCopyOpt( 113 "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false), 114 cl::desc("Disable non-allocatable physical register copy optimization")); 115 116 // Limit the number of PHI instructions to process 117 // in PeepholeOptimizer::getNextSource. 118 static cl::opt<unsigned> RewritePHILimit( 119 "rewrite-phi-limit", cl::Hidden, cl::init(10), 120 cl::desc("Limit the length of PHI chains to lookup")); 121 122 STATISTIC(NumReuse, "Number of extension results reused"); 123 STATISTIC(NumCmps, "Number of compares eliminated"); 124 STATISTIC(NumImmFold, "Number of move immediate folded"); 125 STATISTIC(NumLoadFold, "Number of loads folded"); 126 STATISTIC(NumSelects, "Number of selects optimized"); 127 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized"); 128 STATISTIC(NumRewrittenCopies, "Number of copies rewritten"); 129 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed"); 130 131 namespace { 132 133 class ValueTrackerResult; 134 135 class PeepholeOptimizer : public MachineFunctionPass { 136 const TargetInstrInfo *TII; 137 const TargetRegisterInfo *TRI; 138 MachineRegisterInfo *MRI; 139 MachineDominatorTree *DT; // Machine dominator tree 140 141 public: 142 static char ID; // Pass identification 143 144 PeepholeOptimizer() : MachineFunctionPass(ID) { 145 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); 146 } 147 148 bool runOnMachineFunction(MachineFunction &MF) override; 149 150 void getAnalysisUsage(AnalysisUsage &AU) const override { 151 AU.setPreservesCFG(); 152 MachineFunctionPass::getAnalysisUsage(AU); 153 if (Aggressive) { 154 AU.addRequired<MachineDominatorTree>(); 155 AU.addPreserved<MachineDominatorTree>(); 156 } 157 } 158 159 /// \brief Track Def -> Use info used for rewriting copies. 160 typedef SmallDenseMap<TargetInstrInfo::RegSubRegPair, ValueTrackerResult> 161 RewriteMapTy; 162 163 private: 164 bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB); 165 bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, 166 SmallPtrSetImpl<MachineInstr*> &LocalMIs); 167 bool optimizeSelect(MachineInstr *MI, 168 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 169 bool optimizeCondBranch(MachineInstr *MI); 170 bool optimizeCoalescableCopy(MachineInstr *MI); 171 bool optimizeUncoalescableCopy(MachineInstr *MI, 172 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 173 bool findNextSource(unsigned Reg, unsigned SubReg, 174 RewriteMapTy &RewriteMap); 175 bool isMoveImmediate(MachineInstr *MI, 176 SmallSet<unsigned, 4> &ImmDefRegs, 177 DenseMap<unsigned, MachineInstr*> &ImmDefMIs); 178 bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB, 179 SmallSet<unsigned, 4> &ImmDefRegs, 180 DenseMap<unsigned, MachineInstr*> &ImmDefMIs); 181 182 /// \brief If copy instruction \p MI is a virtual register copy, track it in 183 /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was 184 /// previously seen as a copy, replace the uses of this copy with the 185 /// previously seen copy's destination register. 186 bool foldRedundantCopy(MachineInstr *MI, 187 SmallSet<unsigned, 4> &CopySrcRegs, 188 DenseMap<unsigned, MachineInstr *> &CopyMIs); 189 190 /// \brief Is the register \p Reg a non-allocatable physical register? 191 bool isNAPhysCopy(unsigned Reg); 192 193 /// \brief If copy instruction \p MI is a non-allocatable virtual<->physical 194 /// register copy, track it in the \p NAPhysToVirtMIs map. If this 195 /// non-allocatable physical register was previously copied to a virtual 196 /// registered and hasn't been clobbered, the virt->phys copy can be 197 /// deleted. 198 bool foldRedundantNAPhysCopy( 199 MachineInstr *MI, 200 DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs); 201 202 bool isLoadFoldable(MachineInstr *MI, 203 SmallSet<unsigned, 16> &FoldAsLoadDefCandidates); 204 205 /// \brief Check whether \p MI is understood by the register coalescer 206 /// but may require some rewriting. 207 bool isCoalescableCopy(const MachineInstr &MI) { 208 // SubregToRegs are not interesting, because they are already register 209 // coalescer friendly. 210 return MI.isCopy() || (!DisableAdvCopyOpt && 211 (MI.isRegSequence() || MI.isInsertSubreg() || 212 MI.isExtractSubreg())); 213 } 214 215 /// \brief Check whether \p MI is a copy like instruction that is 216 /// not recognized by the register coalescer. 217 bool isUncoalescableCopy(const MachineInstr &MI) { 218 return MI.isBitcast() || 219 (!DisableAdvCopyOpt && 220 (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 221 MI.isExtractSubregLike())); 222 } 223 }; 224 225 /// \brief Helper class to hold a reply for ValueTracker queries. Contains the 226 /// returned sources for a given search and the instructions where the sources 227 /// were tracked from. 228 class ValueTrackerResult { 229 private: 230 /// Track all sources found by one ValueTracker query. 231 SmallVector<TargetInstrInfo::RegSubRegPair, 2> RegSrcs; 232 233 /// Instruction using the sources in 'RegSrcs'. 234 const MachineInstr *Inst; 235 236 public: 237 ValueTrackerResult() : Inst(nullptr) {} 238 ValueTrackerResult(unsigned Reg, unsigned SubReg) : Inst(nullptr) { 239 addSource(Reg, SubReg); 240 } 241 242 bool isValid() const { return getNumSources() > 0; } 243 244 void setInst(const MachineInstr *I) { Inst = I; } 245 const MachineInstr *getInst() const { return Inst; } 246 247 void clear() { 248 RegSrcs.clear(); 249 Inst = nullptr; 250 } 251 252 void addSource(unsigned SrcReg, unsigned SrcSubReg) { 253 RegSrcs.push_back(TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg)); 254 } 255 256 void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) { 257 assert(Idx < getNumSources() && "Reg pair source out of index"); 258 RegSrcs[Idx] = TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg); 259 } 260 261 int getNumSources() const { return RegSrcs.size(); } 262 263 unsigned getSrcReg(int Idx) const { 264 assert(Idx < getNumSources() && "Reg source out of index"); 265 return RegSrcs[Idx].Reg; 266 } 267 268 unsigned getSrcSubReg(int Idx) const { 269 assert(Idx < getNumSources() && "SubReg source out of index"); 270 return RegSrcs[Idx].SubReg; 271 } 272 273 bool operator==(const ValueTrackerResult &Other) { 274 if (Other.getInst() != getInst()) 275 return false; 276 277 if (Other.getNumSources() != getNumSources()) 278 return false; 279 280 for (int i = 0, e = Other.getNumSources(); i != e; ++i) 281 if (Other.getSrcReg(i) != getSrcReg(i) || 282 Other.getSrcSubReg(i) != getSrcSubReg(i)) 283 return false; 284 return true; 285 } 286 }; 287 288 /// \brief Helper class to track the possible sources of a value defined by 289 /// a (chain of) copy related instructions. 290 /// Given a definition (instruction and definition index), this class 291 /// follows the use-def chain to find successive suitable sources. 292 /// The given source can be used to rewrite the definition into 293 /// def = COPY src. 294 /// 295 /// For instance, let us consider the following snippet: 296 /// v0 = 297 /// v2 = INSERT_SUBREG v1, v0, sub0 298 /// def = COPY v2.sub0 299 /// 300 /// Using a ValueTracker for def = COPY v2.sub0 will give the following 301 /// suitable sources: 302 /// v2.sub0 and v0. 303 /// Then, def can be rewritten into def = COPY v0. 304 class ValueTracker { 305 private: 306 /// The current point into the use-def chain. 307 const MachineInstr *Def; 308 /// The index of the definition in Def. 309 unsigned DefIdx; 310 /// The sub register index of the definition. 311 unsigned DefSubReg; 312 /// The register where the value can be found. 313 unsigned Reg; 314 /// Specifiy whether or not the value tracking looks through 315 /// complex instructions. When this is false, the value tracker 316 /// bails on everything that is not a copy or a bitcast. 317 /// 318 /// Note: This could have been implemented as a specialized version of 319 /// the ValueTracker class but that would have complicated the code of 320 /// the users of this class. 321 bool UseAdvancedTracking; 322 /// MachineRegisterInfo used to perform tracking. 323 const MachineRegisterInfo &MRI; 324 /// Optional TargetInstrInfo used to perform some complex 325 /// tracking. 326 const TargetInstrInfo *TII; 327 328 /// \brief Dispatcher to the right underlying implementation of 329 /// getNextSource. 330 ValueTrackerResult getNextSourceImpl(); 331 /// \brief Specialized version of getNextSource for Copy instructions. 332 ValueTrackerResult getNextSourceFromCopy(); 333 /// \brief Specialized version of getNextSource for Bitcast instructions. 334 ValueTrackerResult getNextSourceFromBitcast(); 335 /// \brief Specialized version of getNextSource for RegSequence 336 /// instructions. 337 ValueTrackerResult getNextSourceFromRegSequence(); 338 /// \brief Specialized version of getNextSource for InsertSubreg 339 /// instructions. 340 ValueTrackerResult getNextSourceFromInsertSubreg(); 341 /// \brief Specialized version of getNextSource for ExtractSubreg 342 /// instructions. 343 ValueTrackerResult getNextSourceFromExtractSubreg(); 344 /// \brief Specialized version of getNextSource for SubregToReg 345 /// instructions. 346 ValueTrackerResult getNextSourceFromSubregToReg(); 347 /// \brief Specialized version of getNextSource for PHI instructions. 348 ValueTrackerResult getNextSourceFromPHI(); 349 350 public: 351 /// \brief Create a ValueTracker instance for the value defined by \p Reg. 352 /// \p DefSubReg represents the sub register index the value tracker will 353 /// track. It does not need to match the sub register index used in the 354 /// definition of \p Reg. 355 /// \p UseAdvancedTracking specifies whether or not the value tracker looks 356 /// through complex instructions. By default (false), it handles only copy 357 /// and bitcast instructions. 358 /// If \p Reg is a physical register, a value tracker constructed with 359 /// this constructor will not find any alternative source. 360 /// Indeed, when \p Reg is a physical register that constructor does not 361 /// know which definition of \p Reg it should track. 362 /// Use the next constructor to track a physical register. 363 ValueTracker(unsigned Reg, unsigned DefSubReg, 364 const MachineRegisterInfo &MRI, 365 bool UseAdvancedTracking = false, 366 const TargetInstrInfo *TII = nullptr) 367 : Def(nullptr), DefIdx(0), DefSubReg(DefSubReg), Reg(Reg), 368 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) { 369 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) { 370 Def = MRI.getVRegDef(Reg); 371 DefIdx = MRI.def_begin(Reg).getOperandNo(); 372 } 373 } 374 375 /// \brief Create a ValueTracker instance for the value defined by 376 /// the pair \p MI, \p DefIdx. 377 /// Unlike the other constructor, the value tracker produced by this one 378 /// may be able to find a new source when the definition is a physical 379 /// register. 380 /// This could be useful to rewrite target specific instructions into 381 /// generic copy instructions. 382 ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg, 383 const MachineRegisterInfo &MRI, 384 bool UseAdvancedTracking = false, 385 const TargetInstrInfo *TII = nullptr) 386 : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg), 387 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) { 388 assert(DefIdx < Def->getDesc().getNumDefs() && 389 Def->getOperand(DefIdx).isReg() && "Invalid definition"); 390 Reg = Def->getOperand(DefIdx).getReg(); 391 } 392 393 /// \brief Following the use-def chain, get the next available source 394 /// for the tracked value. 395 /// \return A ValueTrackerResult containing a set of registers 396 /// and sub registers with tracked values. A ValueTrackerResult with 397 /// an empty set of registers means no source was found. 398 ValueTrackerResult getNextSource(); 399 400 /// \brief Get the last register where the initial value can be found. 401 /// Initially this is the register of the definition. 402 /// Then, after each successful call to getNextSource, this is the 403 /// register of the last source. 404 unsigned getReg() const { return Reg; } 405 }; 406 407 } // end anonymous namespace 408 409 char PeepholeOptimizer::ID = 0; 410 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; 411 412 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE, 413 "Peephole Optimizations", false, false) 414 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 415 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE, 416 "Peephole Optimizations", false, false) 417 418 /// If instruction is a copy-like instruction, i.e. it reads a single register 419 /// and writes a single register and it does not modify the source, and if the 420 /// source value is preserved as a sub-register of the result, then replace all 421 /// reachable uses of the source with the subreg of the result. 422 /// 423 /// Do not generate an EXTRACT that is used only in a debug use, as this changes 424 /// the code. Since this code does not currently share EXTRACTs, just ignore all 425 /// debug uses. 426 bool PeepholeOptimizer:: 427 optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, 428 SmallPtrSetImpl<MachineInstr*> &LocalMIs) { 429 unsigned SrcReg, DstReg, SubIdx; 430 if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx)) 431 return false; 432 433 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 434 TargetRegisterInfo::isPhysicalRegister(SrcReg)) 435 return false; 436 437 if (MRI->hasOneNonDBGUse(SrcReg)) 438 // No other uses. 439 return false; 440 441 // Ensure DstReg can get a register class that actually supports 442 // sub-registers. Don't change the class until we commit. 443 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 444 DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); 445 if (!DstRC) 446 return false; 447 448 // The ext instr may be operating on a sub-register of SrcReg as well. 449 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit 450 // register. 451 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of 452 // SrcReg:SubIdx should be replaced. 453 bool UseSrcSubIdx = 454 TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; 455 456 // The source has other uses. See if we can replace the other uses with use of 457 // the result of the extension. 458 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs; 459 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 460 ReachedBBs.insert(UI.getParent()); 461 462 // Uses that are in the same BB of uses of the result of the instruction. 463 SmallVector<MachineOperand*, 8> Uses; 464 465 // Uses that the result of the instruction can reach. 466 SmallVector<MachineOperand*, 8> ExtendedUses; 467 468 bool ExtendLife = true; 469 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 470 MachineInstr *UseMI = UseMO.getParent(); 471 if (UseMI == MI) 472 continue; 473 474 if (UseMI->isPHI()) { 475 ExtendLife = false; 476 continue; 477 } 478 479 // Only accept uses of SrcReg:SubIdx. 480 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) 481 continue; 482 483 // It's an error to translate this: 484 // 485 // %reg1025 = <sext> %reg1024 486 // ... 487 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 488 // 489 // into this: 490 // 491 // %reg1025 = <sext> %reg1024 492 // ... 493 // %reg1027 = COPY %reg1025:4 494 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 495 // 496 // The problem here is that SUBREG_TO_REG is there to assert that an 497 // implicit zext occurs. It doesn't insert a zext instruction. If we allow 498 // the COPY here, it will give us the value after the <sext>, not the 499 // original value of %reg1024 before <sext>. 500 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) 501 continue; 502 503 MachineBasicBlock *UseMBB = UseMI->getParent(); 504 if (UseMBB == MBB) { 505 // Local uses that come after the extension. 506 if (!LocalMIs.count(UseMI)) 507 Uses.push_back(&UseMO); 508 } else if (ReachedBBs.count(UseMBB)) { 509 // Non-local uses where the result of the extension is used. Always 510 // replace these unless it's a PHI. 511 Uses.push_back(&UseMO); 512 } else if (Aggressive && DT->dominates(MBB, UseMBB)) { 513 // We may want to extend the live range of the extension result in order 514 // to replace these uses. 515 ExtendedUses.push_back(&UseMO); 516 } else { 517 // Both will be live out of the def MBB anyway. Don't extend live range of 518 // the extension result. 519 ExtendLife = false; 520 break; 521 } 522 } 523 524 if (ExtendLife && !ExtendedUses.empty()) 525 // Extend the liveness of the extension result. 526 Uses.append(ExtendedUses.begin(), ExtendedUses.end()); 527 528 // Now replace all uses. 529 bool Changed = false; 530 if (!Uses.empty()) { 531 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs; 532 533 // Look for PHI uses of the extended result, we don't want to extend the 534 // liveness of a PHI input. It breaks all kinds of assumptions down 535 // stream. A PHI use is expected to be the kill of its source values. 536 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 537 if (UI.isPHI()) 538 PHIBBs.insert(UI.getParent()); 539 540 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 541 for (unsigned i = 0, e = Uses.size(); i != e; ++i) { 542 MachineOperand *UseMO = Uses[i]; 543 MachineInstr *UseMI = UseMO->getParent(); 544 MachineBasicBlock *UseMBB = UseMI->getParent(); 545 if (PHIBBs.count(UseMBB)) 546 continue; 547 548 // About to add uses of DstReg, clear DstReg's kill flags. 549 if (!Changed) { 550 MRI->clearKillFlags(DstReg); 551 MRI->constrainRegClass(DstReg, DstRC); 552 } 553 554 unsigned NewVR = MRI->createVirtualRegister(RC); 555 MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), 556 TII->get(TargetOpcode::COPY), NewVR) 557 .addReg(DstReg, 0, SubIdx); 558 // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set. 559 if (UseSrcSubIdx) { 560 Copy->getOperand(0).setSubReg(SubIdx); 561 Copy->getOperand(0).setIsUndef(); 562 } 563 UseMO->setReg(NewVR); 564 ++NumReuse; 565 Changed = true; 566 } 567 } 568 569 return Changed; 570 } 571 572 /// If the instruction is a compare and the previous instruction it's comparing 573 /// against already sets (or could be modified to set) the same flag as the 574 /// compare, then we can remove the comparison and use the flag from the 575 /// previous instruction. 576 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI, 577 MachineBasicBlock *MBB) { 578 // If this instruction is a comparison against zero and isn't comparing a 579 // physical register, we can try to optimize it. 580 unsigned SrcReg, SrcReg2; 581 int CmpMask, CmpValue; 582 if (!TII->analyzeCompare(*MI, SrcReg, SrcReg2, CmpMask, CmpValue) || 583 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 584 (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2))) 585 return false; 586 587 // Attempt to optimize the comparison instruction. 588 if (TII->optimizeCompareInstr(*MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { 589 ++NumCmps; 590 return true; 591 } 592 593 return false; 594 } 595 596 /// Optimize a select instruction. 597 bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI, 598 SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 599 unsigned TrueOp = 0; 600 unsigned FalseOp = 0; 601 bool Optimizable = false; 602 SmallVector<MachineOperand, 4> Cond; 603 if (TII->analyzeSelect(*MI, Cond, TrueOp, FalseOp, Optimizable)) 604 return false; 605 if (!Optimizable) 606 return false; 607 if (!TII->optimizeSelect(*MI, LocalMIs)) 608 return false; 609 MI->eraseFromParent(); 610 ++NumSelects; 611 return true; 612 } 613 614 /// \brief Check if a simpler conditional branch can be 615 // generated 616 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) { 617 return TII->optimizeCondBranch(*MI); 618 } 619 620 /// \brief Try to find the next source that share the same register file 621 /// for the value defined by \p Reg and \p SubReg. 622 /// When true is returned, the \p RewriteMap can be used by the client to 623 /// retrieve all Def -> Use along the way up to the next source. Any found 624 /// Use that is not itself a key for another entry, is the next source to 625 /// use. During the search for the next source, multiple sources can be found 626 /// given multiple incoming sources of a PHI instruction. In this case, we 627 /// look in each PHI source for the next source; all found next sources must 628 /// share the same register file as \p Reg and \p SubReg. The client should 629 /// then be capable to rewrite all intermediate PHIs to get the next source. 630 /// \return False if no alternative sources are available. True otherwise. 631 bool PeepholeOptimizer::findNextSource(unsigned Reg, unsigned SubReg, 632 RewriteMapTy &RewriteMap) { 633 // Do not try to find a new source for a physical register. 634 // So far we do not have any motivating example for doing that. 635 // Thus, instead of maintaining untested code, we will revisit that if 636 // that changes at some point. 637 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 638 return false; 639 const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); 640 641 SmallVector<TargetInstrInfo::RegSubRegPair, 4> SrcToLook; 642 TargetInstrInfo::RegSubRegPair CurSrcPair(Reg, SubReg); 643 SrcToLook.push_back(CurSrcPair); 644 645 unsigned PHICount = 0; 646 while (!SrcToLook.empty() && PHICount < RewritePHILimit) { 647 TargetInstrInfo::RegSubRegPair Pair = SrcToLook.pop_back_val(); 648 // As explained above, do not handle physical registers 649 if (TargetRegisterInfo::isPhysicalRegister(Pair.Reg)) 650 return false; 651 652 CurSrcPair = Pair; 653 ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, 654 !DisableAdvCopyOpt, TII); 655 ValueTrackerResult Res; 656 bool ShouldRewrite = false; 657 658 do { 659 // Follow the chain of copies until we reach the top of the use-def chain 660 // or find a more suitable source. 661 Res = ValTracker.getNextSource(); 662 if (!Res.isValid()) 663 break; 664 665 // Insert the Def -> Use entry for the recently found source. 666 ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); 667 if (CurSrcRes.isValid()) { 668 assert(CurSrcRes == Res && "ValueTrackerResult found must match"); 669 // An existent entry with multiple sources is a PHI cycle we must avoid. 670 // Otherwise it's an entry with a valid next source we already found. 671 if (CurSrcRes.getNumSources() > 1) { 672 DEBUG(dbgs() << "findNextSource: found PHI cycle, aborting...\n"); 673 return false; 674 } 675 break; 676 } 677 RewriteMap.insert(std::make_pair(CurSrcPair, Res)); 678 679 // ValueTrackerResult usually have one source unless it's the result from 680 // a PHI instruction. Add the found PHI edges to be looked up further. 681 unsigned NumSrcs = Res.getNumSources(); 682 if (NumSrcs > 1) { 683 PHICount++; 684 for (unsigned i = 0; i < NumSrcs; ++i) 685 SrcToLook.push_back(TargetInstrInfo::RegSubRegPair( 686 Res.getSrcReg(i), Res.getSrcSubReg(i))); 687 break; 688 } 689 690 CurSrcPair.Reg = Res.getSrcReg(0); 691 CurSrcPair.SubReg = Res.getSrcSubReg(0); 692 // Do not extend the live-ranges of physical registers as they add 693 // constraints to the register allocator. Moreover, if we want to extend 694 // the live-range of a physical register, unlike SSA virtual register, 695 // we will have to check that they aren't redefine before the related use. 696 if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg)) 697 return false; 698 699 const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); 700 ShouldRewrite = TRI->shouldRewriteCopySrc(DefRC, SubReg, SrcRC, 701 CurSrcPair.SubReg); 702 } while (!ShouldRewrite); 703 704 // Continue looking for new sources... 705 if (Res.isValid()) 706 continue; 707 708 // Do not continue searching for a new source if the there's at least 709 // one use-def which cannot be rewritten. 710 if (!ShouldRewrite) 711 return false; 712 } 713 714 if (PHICount >= RewritePHILimit) { 715 DEBUG(dbgs() << "findNextSource: PHI limit reached\n"); 716 return false; 717 } 718 719 // If we did not find a more suitable source, there is nothing to optimize. 720 return CurSrcPair.Reg != Reg; 721 } 722 723 /// \brief Insert a PHI instruction with incoming edges \p SrcRegs that are 724 /// guaranteed to have the same register class. This is necessary whenever we 725 /// successfully traverse a PHI instruction and find suitable sources coming 726 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def 727 /// suitable to be used in a new COPY instruction. 728 static MachineInstr * 729 insertPHI(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 730 const SmallVectorImpl<TargetInstrInfo::RegSubRegPair> &SrcRegs, 731 MachineInstr *OrigPHI) { 732 assert(!SrcRegs.empty() && "No sources to create a PHI instruction?"); 733 734 const TargetRegisterClass *NewRC = MRI->getRegClass(SrcRegs[0].Reg); 735 unsigned NewVR = MRI->createVirtualRegister(NewRC); 736 MachineBasicBlock *MBB = OrigPHI->getParent(); 737 MachineInstrBuilder MIB = BuildMI(*MBB, OrigPHI, OrigPHI->getDebugLoc(), 738 TII->get(TargetOpcode::PHI), NewVR); 739 740 unsigned MBBOpIdx = 2; 741 for (auto RegPair : SrcRegs) { 742 MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); 743 MIB.addMBB(OrigPHI->getOperand(MBBOpIdx).getMBB()); 744 // Since we're extended the lifetime of RegPair.Reg, clear the 745 // kill flags to account for that and make RegPair.Reg reaches 746 // the new PHI. 747 MRI->clearKillFlags(RegPair.Reg); 748 MBBOpIdx += 2; 749 } 750 751 return MIB; 752 } 753 754 namespace { 755 756 /// \brief Helper class to rewrite the arguments of a copy-like instruction. 757 class CopyRewriter { 758 protected: 759 /// The copy-like instruction. 760 MachineInstr &CopyLike; 761 /// The index of the source being rewritten. 762 unsigned CurrentSrcIdx; 763 764 public: 765 CopyRewriter(MachineInstr &MI) : CopyLike(MI), CurrentSrcIdx(0) {} 766 767 virtual ~CopyRewriter() {} 768 769 /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and 770 /// the related value that it affects (TrackReg, TrackSubReg). 771 /// A source is considered rewritable if its register class and the 772 /// register class of the related TrackReg may not be register 773 /// coalescer friendly. In other words, given a copy-like instruction 774 /// not all the arguments may be returned at rewritable source, since 775 /// some arguments are none to be register coalescer friendly. 776 /// 777 /// Each call of this method moves the current source to the next 778 /// rewritable source. 779 /// For instance, let CopyLike be the instruction to rewrite. 780 /// CopyLike has one definition and one source: 781 /// dst.dstSubIdx = CopyLike src.srcSubIdx. 782 /// 783 /// The first call will give the first rewritable source, i.e., 784 /// the only source this instruction has: 785 /// (SrcReg, SrcSubReg) = (src, srcSubIdx). 786 /// This source defines the whole definition, i.e., 787 /// (TrackReg, TrackSubReg) = (dst, dstSubIdx). 788 /// 789 /// The second and subsequent calls will return false, as there is only one 790 /// rewritable source. 791 /// 792 /// \return True if a rewritable source has been found, false otherwise. 793 /// The output arguments are valid if and only if true is returned. 794 virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 795 unsigned &TrackReg, 796 unsigned &TrackSubReg) { 797 // If CurrentSrcIdx == 1, this means this function has already been called 798 // once. CopyLike has one definition and one argument, thus, there is 799 // nothing else to rewrite. 800 if (!CopyLike.isCopy() || CurrentSrcIdx == 1) 801 return false; 802 // This is the first call to getNextRewritableSource. 803 // Move the CurrentSrcIdx to remember that we made that call. 804 CurrentSrcIdx = 1; 805 // The rewritable source is the argument. 806 const MachineOperand &MOSrc = CopyLike.getOperand(1); 807 SrcReg = MOSrc.getReg(); 808 SrcSubReg = MOSrc.getSubReg(); 809 // What we track are the alternative sources of the definition. 810 const MachineOperand &MODef = CopyLike.getOperand(0); 811 TrackReg = MODef.getReg(); 812 TrackSubReg = MODef.getSubReg(); 813 return true; 814 } 815 816 /// \brief Rewrite the current source with \p NewReg and \p NewSubReg 817 /// if possible. 818 /// \return True if the rewriting was possible, false otherwise. 819 virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) { 820 if (!CopyLike.isCopy() || CurrentSrcIdx != 1) 821 return false; 822 MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); 823 MOSrc.setReg(NewReg); 824 MOSrc.setSubReg(NewSubReg); 825 return true; 826 } 827 828 /// \brief Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find 829 /// the new source to use for rewrite. If \p HandleMultipleSources is true and 830 /// multiple sources for a given \p Def are found along the way, we found a 831 /// PHI instructions that needs to be rewritten. 832 /// TODO: HandleMultipleSources should be removed once we test PHI handling 833 /// with coalescable copies. 834 TargetInstrInfo::RegSubRegPair 835 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 836 TargetInstrInfo::RegSubRegPair Def, 837 PeepholeOptimizer::RewriteMapTy &RewriteMap, 838 bool HandleMultipleSources = true) { 839 TargetInstrInfo::RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); 840 do { 841 ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); 842 // If there are no entries on the map, LookupSrc is the new source. 843 if (!Res.isValid()) 844 return LookupSrc; 845 846 // There's only one source for this definition, keep searching... 847 unsigned NumSrcs = Res.getNumSources(); 848 if (NumSrcs == 1) { 849 LookupSrc.Reg = Res.getSrcReg(0); 850 LookupSrc.SubReg = Res.getSrcSubReg(0); 851 continue; 852 } 853 854 // TODO: Remove once multiple srcs w/ coalescable copies are supported. 855 if (!HandleMultipleSources) 856 break; 857 858 // Multiple sources, recurse into each source to find a new source 859 // for it. Then, rewrite the PHI accordingly to its new edges. 860 SmallVector<TargetInstrInfo::RegSubRegPair, 4> NewPHISrcs; 861 for (unsigned i = 0; i < NumSrcs; ++i) { 862 TargetInstrInfo::RegSubRegPair PHISrc(Res.getSrcReg(i), 863 Res.getSrcSubReg(i)); 864 NewPHISrcs.push_back( 865 getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); 866 } 867 868 // Build the new PHI node and return its def register as the new source. 869 MachineInstr *OrigPHI = const_cast<MachineInstr *>(Res.getInst()); 870 MachineInstr *NewPHI = insertPHI(MRI, TII, NewPHISrcs, OrigPHI); 871 DEBUG(dbgs() << "-- getNewSource\n"); 872 DEBUG(dbgs() << " Replacing: " << *OrigPHI); 873 DEBUG(dbgs() << " With: " << *NewPHI); 874 const MachineOperand &MODef = NewPHI->getOperand(0); 875 return TargetInstrInfo::RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 876 877 } while (true); 878 879 return TargetInstrInfo::RegSubRegPair(0, 0); 880 } 881 882 /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap 883 /// and create a new COPY instruction. More info about RewriteMap in 884 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 885 /// Uncoalescable copies, since they are copy like instructions that aren't 886 /// recognized by the register allocator. 887 virtual MachineInstr * 888 RewriteSource(TargetInstrInfo::RegSubRegPair Def, 889 PeepholeOptimizer::RewriteMapTy &RewriteMap) { 890 return nullptr; 891 } 892 }; 893 894 /// \brief Helper class to rewrite uncoalescable copy like instructions 895 /// into new COPY (coalescable friendly) instructions. 896 class UncoalescableRewriter : public CopyRewriter { 897 protected: 898 const TargetInstrInfo &TII; 899 MachineRegisterInfo &MRI; 900 /// The number of defs in the bitcast 901 unsigned NumDefs; 902 903 public: 904 UncoalescableRewriter(MachineInstr &MI, const TargetInstrInfo &TII, 905 MachineRegisterInfo &MRI) 906 : CopyRewriter(MI), TII(TII), MRI(MRI) { 907 NumDefs = MI.getDesc().getNumDefs(); 908 } 909 910 /// \brief Get the next rewritable def source (TrackReg, TrackSubReg) 911 /// All such sources need to be considered rewritable in order to 912 /// rewrite a uncoalescable copy-like instruction. This method return 913 /// each definition that must be checked if rewritable. 914 /// 915 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 916 unsigned &TrackReg, 917 unsigned &TrackSubReg) override { 918 // Find the next non-dead definition and continue from there. 919 if (CurrentSrcIdx == NumDefs) 920 return false; 921 922 while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { 923 ++CurrentSrcIdx; 924 if (CurrentSrcIdx == NumDefs) 925 return false; 926 } 927 928 // What we track are the alternative sources of the definition. 929 const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); 930 TrackReg = MODef.getReg(); 931 TrackSubReg = MODef.getSubReg(); 932 933 CurrentSrcIdx++; 934 return true; 935 } 936 937 /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap 938 /// and create a new COPY instruction. More info about RewriteMap in 939 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 940 /// Uncoalescable copies, since they are copy like instructions that aren't 941 /// recognized by the register allocator. 942 MachineInstr * 943 RewriteSource(TargetInstrInfo::RegSubRegPair Def, 944 PeepholeOptimizer::RewriteMapTy &RewriteMap) override { 945 assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) && 946 "We do not rewrite physical registers"); 947 948 // Find the new source to use in the COPY rewrite. 949 TargetInstrInfo::RegSubRegPair NewSrc = 950 getNewSource(&MRI, &TII, Def, RewriteMap); 951 952 // Insert the COPY. 953 const TargetRegisterClass *DefRC = MRI.getRegClass(Def.Reg); 954 unsigned NewVR = MRI.createVirtualRegister(DefRC); 955 956 MachineInstr *NewCopy = 957 BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), 958 TII.get(TargetOpcode::COPY), NewVR) 959 .addReg(NewSrc.Reg, 0, NewSrc.SubReg); 960 961 NewCopy->getOperand(0).setSubReg(Def.SubReg); 962 if (Def.SubReg) 963 NewCopy->getOperand(0).setIsUndef(); 964 965 DEBUG(dbgs() << "-- RewriteSource\n"); 966 DEBUG(dbgs() << " Replacing: " << CopyLike); 967 DEBUG(dbgs() << " With: " << *NewCopy); 968 MRI.replaceRegWith(Def.Reg, NewVR); 969 MRI.clearKillFlags(NewVR); 970 971 // We extended the lifetime of NewSrc.Reg, clear the kill flags to 972 // account for that. 973 MRI.clearKillFlags(NewSrc.Reg); 974 975 return NewCopy; 976 } 977 }; 978 979 /// \brief Specialized rewriter for INSERT_SUBREG instruction. 980 class InsertSubregRewriter : public CopyRewriter { 981 public: 982 InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) { 983 assert(MI.isInsertSubreg() && "Invalid instruction"); 984 } 985 986 /// \brief See CopyRewriter::getNextRewritableSource. 987 /// Here CopyLike has the following form: 988 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. 989 /// Src1 has the same register class has dst, hence, there is 990 /// nothing to rewrite. 991 /// Src2.src2SubIdx, may not be register coalescer friendly. 992 /// Therefore, the first call to this method returns: 993 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 994 /// (TrackReg, TrackSubReg) = (dst, subIdx). 995 /// 996 /// Subsequence calls will return false. 997 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 998 unsigned &TrackReg, 999 unsigned &TrackSubReg) override { 1000 // If we already get the only source we can rewrite, return false. 1001 if (CurrentSrcIdx == 2) 1002 return false; 1003 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. 1004 CurrentSrcIdx = 2; 1005 const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); 1006 SrcReg = MOInsertedReg.getReg(); 1007 SrcSubReg = MOInsertedReg.getSubReg(); 1008 const MachineOperand &MODef = CopyLike.getOperand(0); 1009 1010 // We want to track something that is compatible with the 1011 // partial definition. 1012 TrackReg = MODef.getReg(); 1013 if (MODef.getSubReg()) 1014 // Bail if we have to compose sub-register indices. 1015 return false; 1016 TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm(); 1017 return true; 1018 } 1019 1020 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1021 if (CurrentSrcIdx != 2) 1022 return false; 1023 // We are rewriting the inserted reg. 1024 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 1025 MO.setReg(NewReg); 1026 MO.setSubReg(NewSubReg); 1027 return true; 1028 } 1029 }; 1030 1031 /// \brief Specialized rewriter for EXTRACT_SUBREG instruction. 1032 class ExtractSubregRewriter : public CopyRewriter { 1033 const TargetInstrInfo &TII; 1034 1035 public: 1036 ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) 1037 : CopyRewriter(MI), TII(TII) { 1038 assert(MI.isExtractSubreg() && "Invalid instruction"); 1039 } 1040 1041 /// \brief See CopyRewriter::getNextRewritableSource. 1042 /// Here CopyLike has the following form: 1043 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. 1044 /// There is only one rewritable source: Src.subIdx, 1045 /// which defines dst.dstSubIdx. 1046 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 1047 unsigned &TrackReg, 1048 unsigned &TrackSubReg) override { 1049 // If we already get the only source we can rewrite, return false. 1050 if (CurrentSrcIdx == 1) 1051 return false; 1052 // We are looking at v1 = EXTRACT_SUBREG v0, sub0. 1053 CurrentSrcIdx = 1; 1054 const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); 1055 SrcReg = MOExtractedReg.getReg(); 1056 // If we have to compose sub-register indices, bail out. 1057 if (MOExtractedReg.getSubReg()) 1058 return false; 1059 1060 SrcSubReg = CopyLike.getOperand(2).getImm(); 1061 1062 // We want to track something that is compatible with the definition. 1063 const MachineOperand &MODef = CopyLike.getOperand(0); 1064 TrackReg = MODef.getReg(); 1065 TrackSubReg = MODef.getSubReg(); 1066 return true; 1067 } 1068 1069 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1070 // The only source we can rewrite is the input register. 1071 if (CurrentSrcIdx != 1) 1072 return false; 1073 1074 CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); 1075 1076 // If we find a source that does not require to extract something, 1077 // rewrite the operation with a copy. 1078 if (!NewSubReg) { 1079 // Move the current index to an invalid position. 1080 // We do not want another call to this method to be able 1081 // to do any change. 1082 CurrentSrcIdx = -1; 1083 // Rewrite the operation as a COPY. 1084 // Get rid of the sub-register index. 1085 CopyLike.RemoveOperand(2); 1086 // Morph the operation into a COPY. 1087 CopyLike.setDesc(TII.get(TargetOpcode::COPY)); 1088 return true; 1089 } 1090 CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); 1091 return true; 1092 } 1093 }; 1094 1095 /// \brief Specialized rewriter for REG_SEQUENCE instruction. 1096 class RegSequenceRewriter : public CopyRewriter { 1097 public: 1098 RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) { 1099 assert(MI.isRegSequence() && "Invalid instruction"); 1100 } 1101 1102 /// \brief See CopyRewriter::getNextRewritableSource. 1103 /// Here CopyLike has the following form: 1104 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. 1105 /// Each call will return a different source, walking all the available 1106 /// source. 1107 /// 1108 /// The first call returns: 1109 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). 1110 /// (TrackReg, TrackSubReg) = (dst, subIdx1). 1111 /// 1112 /// The second call returns: 1113 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 1114 /// (TrackReg, TrackSubReg) = (dst, subIdx2). 1115 /// 1116 /// And so on, until all the sources have been traversed, then 1117 /// it returns false. 1118 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 1119 unsigned &TrackReg, 1120 unsigned &TrackSubReg) override { 1121 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. 1122 1123 // If this is the first call, move to the first argument. 1124 if (CurrentSrcIdx == 0) { 1125 CurrentSrcIdx = 1; 1126 } else { 1127 // Otherwise, move to the next argument and check that it is valid. 1128 CurrentSrcIdx += 2; 1129 if (CurrentSrcIdx >= CopyLike.getNumOperands()) 1130 return false; 1131 } 1132 const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); 1133 SrcReg = MOInsertedReg.getReg(); 1134 // If we have to compose sub-register indices, bail out. 1135 if ((SrcSubReg = MOInsertedReg.getSubReg())) 1136 return false; 1137 1138 // We want to track something that is compatible with the related 1139 // partial definition. 1140 TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); 1141 1142 const MachineOperand &MODef = CopyLike.getOperand(0); 1143 TrackReg = MODef.getReg(); 1144 // If we have to compose sub-registers, bail. 1145 return MODef.getSubReg() == 0; 1146 } 1147 1148 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1149 // We cannot rewrite out of bound operands. 1150 // Moreover, rewritable sources are at odd positions. 1151 if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) 1152 return false; 1153 1154 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 1155 MO.setReg(NewReg); 1156 MO.setSubReg(NewSubReg); 1157 return true; 1158 } 1159 }; 1160 1161 } // end anonymous namespace 1162 1163 /// \brief Get the appropriated CopyRewriter for \p MI. 1164 /// \return A pointer to a dynamically allocated CopyRewriter or nullptr 1165 /// if no rewriter works for \p MI. 1166 static CopyRewriter *getCopyRewriter(MachineInstr &MI, 1167 const TargetInstrInfo &TII, 1168 MachineRegisterInfo &MRI) { 1169 // Handle uncoalescable copy-like instructions. 1170 if (MI.isBitcast() || (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 1171 MI.isExtractSubregLike())) 1172 return new UncoalescableRewriter(MI, TII, MRI); 1173 1174 switch (MI.getOpcode()) { 1175 default: 1176 return nullptr; 1177 case TargetOpcode::COPY: 1178 return new CopyRewriter(MI); 1179 case TargetOpcode::INSERT_SUBREG: 1180 return new InsertSubregRewriter(MI); 1181 case TargetOpcode::EXTRACT_SUBREG: 1182 return new ExtractSubregRewriter(MI, TII); 1183 case TargetOpcode::REG_SEQUENCE: 1184 return new RegSequenceRewriter(MI); 1185 } 1186 llvm_unreachable(nullptr); 1187 } 1188 1189 /// \brief Optimize generic copy instructions to avoid cross 1190 /// register bank copy. The optimization looks through a chain of 1191 /// copies and tries to find a source that has a compatible register 1192 /// class. 1193 /// Two register classes are considered to be compatible if they share 1194 /// the same register bank. 1195 /// New copies issued by this optimization are register allocator 1196 /// friendly. This optimization does not remove any copy as it may 1197 /// overconstrain the register allocator, but replaces some operands 1198 /// when possible. 1199 /// \pre isCoalescableCopy(*MI) is true. 1200 /// \return True, when \p MI has been rewritten. False otherwise. 1201 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) { 1202 assert(MI && isCoalescableCopy(*MI) && "Invalid argument"); 1203 assert(MI->getDesc().getNumDefs() == 1 && 1204 "Coalescer can understand multiple defs?!"); 1205 const MachineOperand &MODef = MI->getOperand(0); 1206 // Do not rewrite physical definitions. 1207 if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg())) 1208 return false; 1209 1210 bool Changed = false; 1211 // Get the right rewriter for the current copy. 1212 std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI)); 1213 // If none exists, bail out. 1214 if (!CpyRewriter) 1215 return false; 1216 // Rewrite each rewritable source. 1217 unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg; 1218 while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg, 1219 TrackSubReg)) { 1220 // Keep track of PHI nodes and its incoming edges when looking for sources. 1221 RewriteMapTy RewriteMap; 1222 // Try to find a more suitable source. If we failed to do so, or get the 1223 // actual source, move to the next source. 1224 if (!findNextSource(TrackReg, TrackSubReg, RewriteMap)) 1225 continue; 1226 1227 // Get the new source to rewrite. TODO: Only enable handling of multiple 1228 // sources (PHIs) once we have a motivating example and testcases for it. 1229 TargetInstrInfo::RegSubRegPair TrackPair(TrackReg, TrackSubReg); 1230 TargetInstrInfo::RegSubRegPair NewSrc = CpyRewriter->getNewSource( 1231 MRI, TII, TrackPair, RewriteMap, false /* multiple sources */); 1232 if (SrcReg == NewSrc.Reg || NewSrc.Reg == 0) 1233 continue; 1234 1235 // Rewrite source. 1236 if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { 1237 // We may have extended the live-range of NewSrc, account for that. 1238 MRI->clearKillFlags(NewSrc.Reg); 1239 Changed = true; 1240 } 1241 } 1242 // TODO: We could have a clean-up method to tidy the instruction. 1243 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 1244 // => v0 = COPY v1 1245 // Currently we haven't seen motivating example for that and we 1246 // want to avoid untested code. 1247 NumRewrittenCopies += Changed; 1248 return Changed; 1249 } 1250 1251 /// \brief Optimize copy-like instructions to create 1252 /// register coalescer friendly instruction. 1253 /// The optimization tries to kill-off the \p MI by looking 1254 /// through a chain of copies to find a source that has a compatible 1255 /// register class. 1256 /// If such a source is found, it replace \p MI by a generic COPY 1257 /// operation. 1258 /// \pre isUncoalescableCopy(*MI) is true. 1259 /// \return True, when \p MI has been optimized. In that case, \p MI has 1260 /// been removed from its parent. 1261 /// All COPY instructions created, are inserted in \p LocalMIs. 1262 bool PeepholeOptimizer::optimizeUncoalescableCopy( 1263 MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 1264 assert(MI && isUncoalescableCopy(*MI) && "Invalid argument"); 1265 1266 // Check if we can rewrite all the values defined by this instruction. 1267 SmallVector<TargetInstrInfo::RegSubRegPair, 4> RewritePairs; 1268 // Get the right rewriter for the current copy. 1269 std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI)); 1270 // If none exists, bail out. 1271 if (!CpyRewriter) 1272 return false; 1273 1274 // Rewrite each rewritable source by generating new COPYs. This works 1275 // differently from optimizeCoalescableCopy since it first makes sure that all 1276 // definitions can be rewritten. 1277 RewriteMapTy RewriteMap; 1278 unsigned Reg, SubReg, CopyDefReg, CopyDefSubReg; 1279 while (CpyRewriter->getNextRewritableSource(Reg, SubReg, CopyDefReg, 1280 CopyDefSubReg)) { 1281 // If a physical register is here, this is probably for a good reason. 1282 // Do not rewrite that. 1283 if (TargetRegisterInfo::isPhysicalRegister(CopyDefReg)) 1284 return false; 1285 1286 // If we do not know how to rewrite this definition, there is no point 1287 // in trying to kill this instruction. 1288 TargetInstrInfo::RegSubRegPair Def(CopyDefReg, CopyDefSubReg); 1289 if (!findNextSource(Def.Reg, Def.SubReg, RewriteMap)) 1290 return false; 1291 1292 RewritePairs.push_back(Def); 1293 } 1294 1295 // The change is possible for all defs, do it. 1296 for (const auto &Def : RewritePairs) { 1297 // Rewrite the "copy" in a way the register coalescer understands. 1298 MachineInstr *NewCopy = CpyRewriter->RewriteSource(Def, RewriteMap); 1299 assert(NewCopy && "Should be able to always generate a new copy"); 1300 LocalMIs.insert(NewCopy); 1301 } 1302 1303 // MI is now dead. 1304 MI->eraseFromParent(); 1305 ++NumUncoalescableCopies; 1306 return true; 1307 } 1308 1309 /// Check whether MI is a candidate for folding into a later instruction. 1310 /// We only fold loads to virtual registers and the virtual register defined 1311 /// has a single use. 1312 bool PeepholeOptimizer::isLoadFoldable( 1313 MachineInstr *MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) { 1314 if (!MI->canFoldAsLoad() || !MI->mayLoad()) 1315 return false; 1316 const MCInstrDesc &MCID = MI->getDesc(); 1317 if (MCID.getNumDefs() != 1) 1318 return false; 1319 1320 unsigned Reg = MI->getOperand(0).getReg(); 1321 // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting 1322 // loads. It should be checked when processing uses of the load, since 1323 // uses can be removed during peephole. 1324 if (!MI->getOperand(0).getSubReg() && 1325 TargetRegisterInfo::isVirtualRegister(Reg) && 1326 MRI->hasOneNonDBGUse(Reg)) { 1327 FoldAsLoadDefCandidates.insert(Reg); 1328 return true; 1329 } 1330 return false; 1331 } 1332 1333 bool PeepholeOptimizer::isMoveImmediate( 1334 MachineInstr *MI, SmallSet<unsigned, 4> &ImmDefRegs, 1335 DenseMap<unsigned, MachineInstr *> &ImmDefMIs) { 1336 const MCInstrDesc &MCID = MI->getDesc(); 1337 if (!MI->isMoveImmediate()) 1338 return false; 1339 if (MCID.getNumDefs() != 1) 1340 return false; 1341 unsigned Reg = MI->getOperand(0).getReg(); 1342 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1343 ImmDefMIs.insert(std::make_pair(Reg, MI)); 1344 ImmDefRegs.insert(Reg); 1345 return true; 1346 } 1347 1348 return false; 1349 } 1350 1351 /// Try folding register operands that are defined by move immediate 1352 /// instructions, i.e. a trivial constant folding optimization, if 1353 /// and only if the def and use are in the same BB. 1354 bool PeepholeOptimizer::foldImmediate( 1355 MachineInstr *MI, MachineBasicBlock *MBB, SmallSet<unsigned, 4> &ImmDefRegs, 1356 DenseMap<unsigned, MachineInstr *> &ImmDefMIs) { 1357 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 1358 MachineOperand &MO = MI->getOperand(i); 1359 if (!MO.isReg() || MO.isDef()) 1360 continue; 1361 // Ignore dead implicit defs. 1362 if (MO.isImplicit() && MO.isDead()) 1363 continue; 1364 unsigned Reg = MO.getReg(); 1365 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1366 continue; 1367 if (ImmDefRegs.count(Reg) == 0) 1368 continue; 1369 DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg); 1370 assert(II != ImmDefMIs.end() && "couldn't find immediate definition"); 1371 if (TII->FoldImmediate(*MI, *II->second, Reg, MRI)) { 1372 ++NumImmFold; 1373 return true; 1374 } 1375 } 1376 return false; 1377 } 1378 1379 // FIXME: This is very simple and misses some cases which should be handled when 1380 // motivating examples are found. 1381 // 1382 // The copy rewriting logic should look at uses as well as defs and be able to 1383 // eliminate copies across blocks. 1384 // 1385 // Later copies that are subregister extracts will also not be eliminated since 1386 // only the first copy is considered. 1387 // 1388 // e.g. 1389 // %vreg1 = COPY %vreg0 1390 // %vreg2 = COPY %vreg0:sub1 1391 // 1392 // Should replace %vreg2 uses with %vreg1:sub1 1393 bool PeepholeOptimizer::foldRedundantCopy( 1394 MachineInstr *MI, SmallSet<unsigned, 4> &CopySrcRegs, 1395 DenseMap<unsigned, MachineInstr *> &CopyMIs) { 1396 assert(MI->isCopy() && "expected a COPY machine instruction"); 1397 1398 unsigned SrcReg = MI->getOperand(1).getReg(); 1399 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) 1400 return false; 1401 1402 unsigned DstReg = MI->getOperand(0).getReg(); 1403 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 1404 return false; 1405 1406 if (CopySrcRegs.insert(SrcReg).second) { 1407 // First copy of this reg seen. 1408 CopyMIs.insert(std::make_pair(SrcReg, MI)); 1409 return false; 1410 } 1411 1412 MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second; 1413 1414 unsigned SrcSubReg = MI->getOperand(1).getSubReg(); 1415 unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg(); 1416 1417 // Can't replace different subregister extracts. 1418 if (SrcSubReg != PrevSrcSubReg) 1419 return false; 1420 1421 unsigned PrevDstReg = PrevCopy->getOperand(0).getReg(); 1422 1423 // Only replace if the copy register class is the same. 1424 // 1425 // TODO: If we have multiple copies to different register classes, we may want 1426 // to track multiple copies of the same source register. 1427 if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg)) 1428 return false; 1429 1430 MRI->replaceRegWith(DstReg, PrevDstReg); 1431 1432 // Lifetime of the previous copy has been extended. 1433 MRI->clearKillFlags(PrevDstReg); 1434 return true; 1435 } 1436 1437 bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) { 1438 return TargetRegisterInfo::isPhysicalRegister(Reg) && 1439 !MRI->isAllocatable(Reg); 1440 } 1441 1442 bool PeepholeOptimizer::foldRedundantNAPhysCopy( 1443 MachineInstr *MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) { 1444 assert(MI->isCopy() && "expected a COPY machine instruction"); 1445 1446 if (DisableNAPhysCopyOpt) 1447 return false; 1448 1449 unsigned DstReg = MI->getOperand(0).getReg(); 1450 unsigned SrcReg = MI->getOperand(1).getReg(); 1451 if (isNAPhysCopy(SrcReg) && TargetRegisterInfo::isVirtualRegister(DstReg)) { 1452 // %vreg = COPY %PHYSREG 1453 // Avoid using a datastructure which can track multiple live non-allocatable 1454 // phys->virt copies since LLVM doesn't seem to do this. 1455 NAPhysToVirtMIs.insert({SrcReg, MI}); 1456 return false; 1457 } 1458 1459 if (!(TargetRegisterInfo::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg))) 1460 return false; 1461 1462 // %PHYSREG = COPY %vreg 1463 auto PrevCopy = NAPhysToVirtMIs.find(DstReg); 1464 if (PrevCopy == NAPhysToVirtMIs.end()) { 1465 // We can't remove the copy: there was an intervening clobber of the 1466 // non-allocatable physical register after the copy to virtual. 1467 DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " << *MI 1468 << '\n'); 1469 return false; 1470 } 1471 1472 unsigned PrevDstReg = PrevCopy->second->getOperand(0).getReg(); 1473 if (PrevDstReg == SrcReg) { 1474 // Remove the virt->phys copy: we saw the virtual register definition, and 1475 // the non-allocatable physical register's state hasn't changed since then. 1476 DEBUG(dbgs() << "NAPhysCopy: erasing " << *MI << '\n'); 1477 ++NumNAPhysCopies; 1478 return true; 1479 } 1480 1481 // Potential missed optimization opportunity: we saw a different virtual 1482 // register get a copy of the non-allocatable physical register, and we only 1483 // track one such copy. Avoid getting confused by this new non-allocatable 1484 // physical register definition, and remove it from the tracked copies. 1485 DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << *MI << '\n'); 1486 NAPhysToVirtMIs.erase(PrevCopy); 1487 return false; 1488 } 1489 1490 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { 1491 if (skipFunction(*MF.getFunction())) 1492 return false; 1493 1494 DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); 1495 DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); 1496 1497 if (DisablePeephole) 1498 return false; 1499 1500 TII = MF.getSubtarget().getInstrInfo(); 1501 TRI = MF.getSubtarget().getRegisterInfo(); 1502 MRI = &MF.getRegInfo(); 1503 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr; 1504 1505 bool Changed = false; 1506 1507 for (MachineBasicBlock &MBB : MF) { 1508 bool SeenMoveImm = false; 1509 1510 // During this forward scan, at some point it needs to answer the question 1511 // "given a pointer to an MI in the current BB, is it located before or 1512 // after the current instruction". 1513 // To perform this, the following set keeps track of the MIs already seen 1514 // during the scan, if a MI is not in the set, it is assumed to be located 1515 // after. Newly created MIs have to be inserted in the set as well. 1516 SmallPtrSet<MachineInstr*, 16> LocalMIs; 1517 SmallSet<unsigned, 4> ImmDefRegs; 1518 DenseMap<unsigned, MachineInstr*> ImmDefMIs; 1519 SmallSet<unsigned, 16> FoldAsLoadDefCandidates; 1520 1521 // Track when a non-allocatable physical register is copied to a virtual 1522 // register so that useless moves can be removed. 1523 // 1524 // %PHYSREG is the map index; MI is the last valid `%vreg = COPY %PHYSREG` 1525 // without any intervening re-definition of %PHYSREG. 1526 DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs; 1527 1528 // Set of virtual registers that are copied from. 1529 SmallSet<unsigned, 4> CopySrcRegs; 1530 DenseMap<unsigned, MachineInstr *> CopySrcMIs; 1531 1532 for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end(); 1533 MII != MIE; ) { 1534 MachineInstr *MI = &*MII; 1535 // We may be erasing MI below, increment MII now. 1536 ++MII; 1537 LocalMIs.insert(MI); 1538 1539 // Skip debug values. They should not affect this peephole optimization. 1540 if (MI->isDebugValue()) 1541 continue; 1542 1543 // If we run into an instruction we can't fold across, discard 1544 // the load candidates. 1545 if (MI->isLoadFoldBarrier()) 1546 FoldAsLoadDefCandidates.clear(); 1547 1548 if (MI->isPosition() || MI->isPHI()) 1549 continue; 1550 1551 if (!MI->isCopy()) { 1552 for (const auto &Op : MI->operands()) { 1553 // Visit all operands: definitions can be implicit or explicit. 1554 if (Op.isReg()) { 1555 unsigned Reg = Op.getReg(); 1556 if (Op.isDef() && isNAPhysCopy(Reg)) { 1557 const auto &Def = NAPhysToVirtMIs.find(Reg); 1558 if (Def != NAPhysToVirtMIs.end()) { 1559 // A new definition of the non-allocatable physical register 1560 // invalidates previous copies. 1561 DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI 1562 << '\n'); 1563 NAPhysToVirtMIs.erase(Def); 1564 } 1565 } 1566 } else if (Op.isRegMask()) { 1567 const uint32_t *RegMask = Op.getRegMask(); 1568 for (auto &RegMI : NAPhysToVirtMIs) { 1569 unsigned Def = RegMI.first; 1570 if (MachineOperand::clobbersPhysReg(RegMask, Def)) { 1571 DEBUG(dbgs() << "NAPhysCopy: invalidating because of " << *MI 1572 << '\n'); 1573 NAPhysToVirtMIs.erase(Def); 1574 } 1575 } 1576 } 1577 } 1578 } 1579 1580 if (MI->isImplicitDef() || MI->isKill()) 1581 continue; 1582 1583 if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { 1584 // Blow away all non-allocatable physical registers knowledge since we 1585 // don't know what's correct anymore. 1586 // 1587 // FIXME: handle explicit asm clobbers. 1588 DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " << *MI 1589 << '\n'); 1590 NAPhysToVirtMIs.clear(); 1591 continue; 1592 } 1593 1594 if ((isUncoalescableCopy(*MI) && 1595 optimizeUncoalescableCopy(MI, LocalMIs)) || 1596 (MI->isCompare() && optimizeCmpInstr(MI, &MBB)) || 1597 (MI->isSelect() && optimizeSelect(MI, LocalMIs))) { 1598 // MI is deleted. 1599 LocalMIs.erase(MI); 1600 Changed = true; 1601 continue; 1602 } 1603 1604 if (MI->isConditionalBranch() && optimizeCondBranch(MI)) { 1605 Changed = true; 1606 continue; 1607 } 1608 1609 if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) { 1610 // MI is just rewritten. 1611 Changed = true; 1612 continue; 1613 } 1614 1615 if (MI->isCopy() && 1616 (foldRedundantCopy(MI, CopySrcRegs, CopySrcMIs) || 1617 foldRedundantNAPhysCopy(MI, NAPhysToVirtMIs))) { 1618 LocalMIs.erase(MI); 1619 MI->eraseFromParent(); 1620 Changed = true; 1621 continue; 1622 } 1623 1624 if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) { 1625 SeenMoveImm = true; 1626 } else { 1627 Changed |= optimizeExtInstr(MI, &MBB, LocalMIs); 1628 // optimizeExtInstr might have created new instructions after MI 1629 // and before the already incremented MII. Adjust MII so that the 1630 // next iteration sees the new instructions. 1631 MII = MI; 1632 ++MII; 1633 if (SeenMoveImm) 1634 Changed |= foldImmediate(MI, &MBB, ImmDefRegs, ImmDefMIs); 1635 } 1636 1637 // Check whether MI is a load candidate for folding into a later 1638 // instruction. If MI is not a candidate, check whether we can fold an 1639 // earlier load into MI. 1640 if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) && 1641 !FoldAsLoadDefCandidates.empty()) { 1642 const MCInstrDesc &MIDesc = MI->getDesc(); 1643 for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands(); 1644 ++i) { 1645 const MachineOperand &MOp = MI->getOperand(i); 1646 if (!MOp.isReg()) 1647 continue; 1648 unsigned FoldAsLoadDefReg = MOp.getReg(); 1649 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { 1650 // We need to fold load after optimizeCmpInstr, since 1651 // optimizeCmpInstr can enable folding by converting SUB to CMP. 1652 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and 1653 // we need it for markUsesInDebugValueAsUndef(). 1654 unsigned FoldedReg = FoldAsLoadDefReg; 1655 MachineInstr *DefMI = nullptr; 1656 if (MachineInstr *FoldMI = 1657 TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) { 1658 // Update LocalMIs since we replaced MI with FoldMI and deleted 1659 // DefMI. 1660 DEBUG(dbgs() << "Replacing: " << *MI); 1661 DEBUG(dbgs() << " With: " << *FoldMI); 1662 LocalMIs.erase(MI); 1663 LocalMIs.erase(DefMI); 1664 LocalMIs.insert(FoldMI); 1665 MI->eraseFromParent(); 1666 DefMI->eraseFromParent(); 1667 MRI->markUsesInDebugValueAsUndef(FoldedReg); 1668 FoldAsLoadDefCandidates.erase(FoldedReg); 1669 ++NumLoadFold; 1670 // MI is replaced with FoldMI. 1671 Changed = true; 1672 break; 1673 } 1674 } 1675 } 1676 } 1677 } 1678 } 1679 1680 return Changed; 1681 } 1682 1683 ValueTrackerResult ValueTracker::getNextSourceFromCopy() { 1684 assert(Def->isCopy() && "Invalid definition"); 1685 // Copy instruction are supposed to be: Def = Src. 1686 // If someone breaks this assumption, bad things will happen everywhere. 1687 assert(Def->getNumOperands() == 2 && "Invalid number of operands"); 1688 1689 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) 1690 // If we look for a different subreg, it means we want a subreg of src. 1691 // Bails as we do not support composing subregs yet. 1692 return ValueTrackerResult(); 1693 // Otherwise, we want the whole source. 1694 const MachineOperand &Src = Def->getOperand(1); 1695 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1696 } 1697 1698 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { 1699 assert(Def->isBitcast() && "Invalid definition"); 1700 1701 // Bail if there are effects that a plain copy will not expose. 1702 if (Def->hasUnmodeledSideEffects()) 1703 return ValueTrackerResult(); 1704 1705 // Bitcasts with more than one def are not supported. 1706 if (Def->getDesc().getNumDefs() != 1) 1707 return ValueTrackerResult(); 1708 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) 1709 // If we look for a different subreg, it means we want a subreg of the src. 1710 // Bails as we do not support composing subregs yet. 1711 return ValueTrackerResult(); 1712 1713 unsigned SrcIdx = Def->getNumOperands(); 1714 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; 1715 ++OpIdx) { 1716 const MachineOperand &MO = Def->getOperand(OpIdx); 1717 if (!MO.isReg() || !MO.getReg()) 1718 continue; 1719 // Ignore dead implicit defs. 1720 if (MO.isImplicit() && MO.isDead()) 1721 continue; 1722 assert(!MO.isDef() && "We should have skipped all the definitions by now"); 1723 if (SrcIdx != EndOpIdx) 1724 // Multiple sources? 1725 return ValueTrackerResult(); 1726 SrcIdx = OpIdx; 1727 } 1728 const MachineOperand &Src = Def->getOperand(SrcIdx); 1729 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1730 } 1731 1732 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { 1733 assert((Def->isRegSequence() || Def->isRegSequenceLike()) && 1734 "Invalid definition"); 1735 1736 if (Def->getOperand(DefIdx).getSubReg()) 1737 // If we are composing subregs, bail out. 1738 // The case we are checking is Def.<subreg> = REG_SEQUENCE. 1739 // This should almost never happen as the SSA property is tracked at 1740 // the register level (as opposed to the subreg level). 1741 // I.e., 1742 // Def.sub0 = 1743 // Def.sub1 = 1744 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for 1745 // Def. Thus, it must not be generated. 1746 // However, some code could theoretically generates a single 1747 // Def.sub0 (i.e, not defining the other subregs) and we would 1748 // have this case. 1749 // If we can ascertain (or force) that this never happens, we could 1750 // turn that into an assertion. 1751 return ValueTrackerResult(); 1752 1753 if (!TII) 1754 // We could handle the REG_SEQUENCE here, but we do not want to 1755 // duplicate the code from the generic TII. 1756 return ValueTrackerResult(); 1757 1758 SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs; 1759 if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) 1760 return ValueTrackerResult(); 1761 1762 // We are looking at: 1763 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1764 // Check if one of the operand defines the subreg we are interested in. 1765 for (auto &RegSeqInput : RegSeqInputRegs) { 1766 if (RegSeqInput.SubIdx == DefSubReg) { 1767 if (RegSeqInput.SubReg) 1768 // Bail if we have to compose sub registers. 1769 return ValueTrackerResult(); 1770 1771 return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); 1772 } 1773 } 1774 1775 // If the subreg we are tracking is super-defined by another subreg, 1776 // we could follow this value. However, this would require to compose 1777 // the subreg and we do not do that for now. 1778 return ValueTrackerResult(); 1779 } 1780 1781 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { 1782 assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && 1783 "Invalid definition"); 1784 1785 if (Def->getOperand(DefIdx).getSubReg()) 1786 // If we are composing subreg, bail out. 1787 // Same remark as getNextSourceFromRegSequence. 1788 // I.e., this may be turned into an assert. 1789 return ValueTrackerResult(); 1790 1791 if (!TII) 1792 // We could handle the REG_SEQUENCE here, but we do not want to 1793 // duplicate the code from the generic TII. 1794 return ValueTrackerResult(); 1795 1796 TargetInstrInfo::RegSubRegPair BaseReg; 1797 TargetInstrInfo::RegSubRegPairAndIdx InsertedReg; 1798 if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) 1799 return ValueTrackerResult(); 1800 1801 // We are looking at: 1802 // Def = INSERT_SUBREG v0, v1, sub1 1803 // There are two cases: 1804 // 1. DefSubReg == sub1, get v1. 1805 // 2. DefSubReg != sub1, the value may be available through v0. 1806 1807 // #1 Check if the inserted register matches the required sub index. 1808 if (InsertedReg.SubIdx == DefSubReg) { 1809 return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); 1810 } 1811 // #2 Otherwise, if the sub register we are looking for is not partial 1812 // defined by the inserted element, we can look through the main 1813 // register (v0). 1814 const MachineOperand &MODef = Def->getOperand(DefIdx); 1815 // If the result register (Def) and the base register (v0) do not 1816 // have the same register class or if we have to compose 1817 // subregisters, bail out. 1818 if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || 1819 BaseReg.SubReg) 1820 return ValueTrackerResult(); 1821 1822 // Get the TRI and check if the inserted sub-register overlaps with the 1823 // sub-register we are tracking. 1824 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 1825 if (!TRI || 1826 (TRI->getSubRegIndexLaneMask(DefSubReg) & 1827 TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0) 1828 return ValueTrackerResult(); 1829 // At this point, the value is available in v0 via the same subreg 1830 // we used for Def. 1831 return ValueTrackerResult(BaseReg.Reg, DefSubReg); 1832 } 1833 1834 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { 1835 assert((Def->isExtractSubreg() || 1836 Def->isExtractSubregLike()) && "Invalid definition"); 1837 // We are looking at: 1838 // Def = EXTRACT_SUBREG v0, sub0 1839 1840 // Bail if we have to compose sub registers. 1841 // Indeed, if DefSubReg != 0, we would have to compose it with sub0. 1842 if (DefSubReg) 1843 return ValueTrackerResult(); 1844 1845 if (!TII) 1846 // We could handle the EXTRACT_SUBREG here, but we do not want to 1847 // duplicate the code from the generic TII. 1848 return ValueTrackerResult(); 1849 1850 TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg; 1851 if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) 1852 return ValueTrackerResult(); 1853 1854 // Bail if we have to compose sub registers. 1855 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. 1856 if (ExtractSubregInputReg.SubReg) 1857 return ValueTrackerResult(); 1858 // Otherwise, the value is available in the v0.sub0. 1859 return ValueTrackerResult(ExtractSubregInputReg.Reg, 1860 ExtractSubregInputReg.SubIdx); 1861 } 1862 1863 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { 1864 assert(Def->isSubregToReg() && "Invalid definition"); 1865 // We are looking at: 1866 // Def = SUBREG_TO_REG Imm, v0, sub0 1867 1868 // Bail if we have to compose sub registers. 1869 // If DefSubReg != sub0, we would have to check that all the bits 1870 // we track are included in sub0 and if yes, we would have to 1871 // determine the right subreg in v0. 1872 if (DefSubReg != Def->getOperand(3).getImm()) 1873 return ValueTrackerResult(); 1874 // Bail if we have to compose sub registers. 1875 // Likewise, if v0.subreg != 0, we would have to compose it with sub0. 1876 if (Def->getOperand(2).getSubReg()) 1877 return ValueTrackerResult(); 1878 1879 return ValueTrackerResult(Def->getOperand(2).getReg(), 1880 Def->getOperand(3).getImm()); 1881 } 1882 1883 /// \brief Explore each PHI incoming operand and return its sources 1884 ValueTrackerResult ValueTracker::getNextSourceFromPHI() { 1885 assert(Def->isPHI() && "Invalid definition"); 1886 ValueTrackerResult Res; 1887 1888 // If we look for a different subreg, bail as we do not support composing 1889 // subregs yet. 1890 if (Def->getOperand(0).getSubReg() != DefSubReg) 1891 return ValueTrackerResult(); 1892 1893 // Return all register sources for PHI instructions. 1894 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { 1895 auto &MO = Def->getOperand(i); 1896 assert(MO.isReg() && "Invalid PHI instruction"); 1897 Res.addSource(MO.getReg(), MO.getSubReg()); 1898 } 1899 1900 return Res; 1901 } 1902 1903 ValueTrackerResult ValueTracker::getNextSourceImpl() { 1904 assert(Def && "This method needs a valid definition"); 1905 1906 assert(((Def->getOperand(DefIdx).isDef() && 1907 (DefIdx < Def->getDesc().getNumDefs() || 1908 Def->getDesc().isVariadic())) || 1909 Def->getOperand(DefIdx).isImplicit()) && 1910 "Invalid DefIdx"); 1911 if (Def->isCopy()) 1912 return getNextSourceFromCopy(); 1913 if (Def->isBitcast()) 1914 return getNextSourceFromBitcast(); 1915 // All the remaining cases involve "complex" instructions. 1916 // Bail if we did not ask for the advanced tracking. 1917 if (!UseAdvancedTracking) 1918 return ValueTrackerResult(); 1919 if (Def->isRegSequence() || Def->isRegSequenceLike()) 1920 return getNextSourceFromRegSequence(); 1921 if (Def->isInsertSubreg() || Def->isInsertSubregLike()) 1922 return getNextSourceFromInsertSubreg(); 1923 if (Def->isExtractSubreg() || Def->isExtractSubregLike()) 1924 return getNextSourceFromExtractSubreg(); 1925 if (Def->isSubregToReg()) 1926 return getNextSourceFromSubregToReg(); 1927 if (Def->isPHI()) 1928 return getNextSourceFromPHI(); 1929 return ValueTrackerResult(); 1930 } 1931 1932 ValueTrackerResult ValueTracker::getNextSource() { 1933 // If we reach a point where we cannot move up in the use-def chain, 1934 // there is nothing we can get. 1935 if (!Def) 1936 return ValueTrackerResult(); 1937 1938 ValueTrackerResult Res = getNextSourceImpl(); 1939 if (Res.isValid()) { 1940 // Update definition, definition index, and subregister for the 1941 // next call of getNextSource. 1942 // Update the current register. 1943 bool OneRegSrc = Res.getNumSources() == 1; 1944 if (OneRegSrc) 1945 Reg = Res.getSrcReg(0); 1946 // Update the result before moving up in the use-def chain 1947 // with the instruction containing the last found sources. 1948 Res.setInst(Def); 1949 1950 // If we can still move up in the use-def chain, move to the next 1951 // definition. 1952 if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) { 1953 Def = MRI.getVRegDef(Reg); 1954 DefIdx = MRI.def_begin(Reg).getOperandNo(); 1955 DefSubReg = Res.getSrcSubReg(0); 1956 return Res; 1957 } 1958 } 1959 // If we end up here, this means we will not be able to find another source 1960 // for the next iteration. Make sure any new call to getNextSource bails out 1961 // early by cutting the use-def chain. 1962 Def = nullptr; 1963 return Res; 1964 } 1965