1 //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Perform peephole optimizations on the machine code: 11 // 12 // - Optimize Extensions 13 // 14 // Optimization of sign / zero extension instructions. It may be extended to 15 // handle other instructions with similar properties. 16 // 17 // On some targets, some instructions, e.g. X86 sign / zero extension, may 18 // leave the source value in the lower part of the result. This optimization 19 // will replace some uses of the pre-extension value with uses of the 20 // sub-register of the results. 21 // 22 // - Optimize Comparisons 23 // 24 // Optimization of comparison instructions. For instance, in this code: 25 // 26 // sub r1, 1 27 // cmp r1, 0 28 // bz L1 29 // 30 // If the "sub" instruction all ready sets (or could be modified to set) the 31 // same flag that the "cmp" instruction sets and that "bz" uses, then we can 32 // eliminate the "cmp" instruction. 33 // 34 // Another instance, in this code: 35 // 36 // sub r1, r3 | sub r1, imm 37 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm 38 // bge L1 39 // 40 // If the branch instruction can use flag from "sub", then we can replace 41 // "sub" with "subs" and eliminate the "cmp" instruction. 42 // 43 // - Optimize Loads: 44 // 45 // Loads that can be folded into a later instruction. A load is foldable 46 // if it loads to virtual registers and the virtual register defined has 47 // a single use. 48 // 49 // - Optimize Copies and Bitcast (more generally, target specific copies): 50 // 51 // Rewrite copies and bitcasts to avoid cross register bank copies 52 // when possible. 53 // E.g., Consider the following example, where capital and lower 54 // letters denote different register file: 55 // b = copy A <-- cross-bank copy 56 // C = copy b <-- cross-bank copy 57 // => 58 // b = copy A <-- cross-bank copy 59 // C = copy A <-- same-bank copy 60 // 61 // E.g., for bitcast: 62 // b = bitcast A <-- cross-bank copy 63 // C = bitcast b <-- cross-bank copy 64 // => 65 // b = bitcast A <-- cross-bank copy 66 // C = copy A <-- same-bank copy 67 //===----------------------------------------------------------------------===// 68 69 #include "llvm/CodeGen/Passes.h" 70 #include "llvm/ADT/DenseMap.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallSet.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/CodeGen/MachineDominators.h" 75 #include "llvm/CodeGen/MachineInstrBuilder.h" 76 #include "llvm/CodeGen/MachineRegisterInfo.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Target/TargetInstrInfo.h" 81 #include "llvm/Target/TargetRegisterInfo.h" 82 #include "llvm/Target/TargetSubtargetInfo.h" 83 #include <utility> 84 using namespace llvm; 85 86 #define DEBUG_TYPE "peephole-opt" 87 88 // Optimize Extensions 89 static cl::opt<bool> 90 Aggressive("aggressive-ext-opt", cl::Hidden, 91 cl::desc("Aggressive extension optimization")); 92 93 static cl::opt<bool> 94 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), 95 cl::desc("Disable the peephole optimizer")); 96 97 static cl::opt<bool> 98 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), 99 cl::desc("Disable advanced copy optimization")); 100 101 // Limit the number of PHI instructions to process 102 // in PeepholeOptimizer::getNextSource. 103 static cl::opt<unsigned> RewritePHILimit( 104 "rewrite-phi-limit", cl::Hidden, cl::init(10), 105 cl::desc("Limit the length of PHI chains to lookup")); 106 107 STATISTIC(NumReuse, "Number of extension results reused"); 108 STATISTIC(NumCmps, "Number of compares eliminated"); 109 STATISTIC(NumImmFold, "Number of move immediate folded"); 110 STATISTIC(NumLoadFold, "Number of loads folded"); 111 STATISTIC(NumSelects, "Number of selects optimized"); 112 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized"); 113 STATISTIC(NumRewrittenCopies, "Number of copies rewritten"); 114 115 namespace { 116 class ValueTrackerResult; 117 118 class PeepholeOptimizer : public MachineFunctionPass { 119 const TargetInstrInfo *TII; 120 const TargetRegisterInfo *TRI; 121 MachineRegisterInfo *MRI; 122 MachineDominatorTree *DT; // Machine dominator tree 123 124 public: 125 static char ID; // Pass identification 126 PeepholeOptimizer() : MachineFunctionPass(ID) { 127 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); 128 } 129 130 bool runOnMachineFunction(MachineFunction &MF) override; 131 132 void getAnalysisUsage(AnalysisUsage &AU) const override { 133 AU.setPreservesCFG(); 134 MachineFunctionPass::getAnalysisUsage(AU); 135 if (Aggressive) { 136 AU.addRequired<MachineDominatorTree>(); 137 AU.addPreserved<MachineDominatorTree>(); 138 } 139 } 140 141 /// \brief Track Def -> Use info used for rewriting copies. 142 typedef SmallDenseMap<TargetInstrInfo::RegSubRegPair, ValueTrackerResult> 143 RewriteMapTy; 144 145 private: 146 bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB); 147 bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, 148 SmallPtrSetImpl<MachineInstr*> &LocalMIs); 149 bool optimizeSelect(MachineInstr *MI, 150 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 151 bool optimizeCondBranch(MachineInstr *MI); 152 bool optimizeCopyOrBitcast(MachineInstr *MI); 153 bool optimizeCoalescableCopy(MachineInstr *MI); 154 bool optimizeUncoalescableCopy(MachineInstr *MI, 155 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 156 bool findNextSource(unsigned Reg, unsigned SubReg, 157 RewriteMapTy &RewriteMap); 158 bool isMoveImmediate(MachineInstr *MI, 159 SmallSet<unsigned, 4> &ImmDefRegs, 160 DenseMap<unsigned, MachineInstr*> &ImmDefMIs); 161 bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB, 162 SmallSet<unsigned, 4> &ImmDefRegs, 163 DenseMap<unsigned, MachineInstr*> &ImmDefMIs); 164 bool isLoadFoldable(MachineInstr *MI, 165 SmallSet<unsigned, 16> &FoldAsLoadDefCandidates); 166 167 /// \brief Check whether \p MI is understood by the register coalescer 168 /// but may require some rewriting. 169 bool isCoalescableCopy(const MachineInstr &MI) { 170 // SubregToRegs are not interesting, because they are already register 171 // coalescer friendly. 172 return MI.isCopy() || (!DisableAdvCopyOpt && 173 (MI.isRegSequence() || MI.isInsertSubreg() || 174 MI.isExtractSubreg())); 175 } 176 177 /// \brief Check whether \p MI is a copy like instruction that is 178 /// not recognized by the register coalescer. 179 bool isUncoalescableCopy(const MachineInstr &MI) { 180 return MI.isBitcast() || 181 (!DisableAdvCopyOpt && 182 (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 183 MI.isExtractSubregLike())); 184 } 185 }; 186 187 /// \brief Helper class to hold a reply for ValueTracker queries. Contains the 188 /// returned sources for a given search and the instructions where the sources 189 /// were tracked from. 190 class ValueTrackerResult { 191 private: 192 /// Track all sources found by one ValueTracker query. 193 SmallVector<TargetInstrInfo::RegSubRegPair, 2> RegSrcs; 194 195 /// Instruction using the sources in 'RegSrcs'. 196 const MachineInstr *Inst; 197 198 public: 199 ValueTrackerResult() : Inst(nullptr) {} 200 ValueTrackerResult(unsigned Reg, unsigned SubReg) : Inst(nullptr) { 201 addSource(Reg, SubReg); 202 } 203 204 bool isValid() const { return getNumSources() > 0; } 205 206 void setInst(const MachineInstr *I) { Inst = I; } 207 const MachineInstr *getInst() const { return Inst; } 208 209 void clear() { 210 RegSrcs.clear(); 211 Inst = nullptr; 212 } 213 214 void addSource(unsigned SrcReg, unsigned SrcSubReg) { 215 RegSrcs.push_back(TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg)); 216 } 217 218 void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) { 219 assert(Idx < getNumSources() && "Reg pair source out of index"); 220 RegSrcs[Idx] = TargetInstrInfo::RegSubRegPair(SrcReg, SrcSubReg); 221 } 222 223 int getNumSources() const { return RegSrcs.size(); } 224 225 unsigned getSrcReg(int Idx) const { 226 assert(Idx < getNumSources() && "Reg source out of index"); 227 return RegSrcs[Idx].Reg; 228 } 229 230 unsigned getSrcSubReg(int Idx) const { 231 assert(Idx < getNumSources() && "SubReg source out of index"); 232 return RegSrcs[Idx].SubReg; 233 } 234 235 bool operator==(const ValueTrackerResult &Other) { 236 if (Other.getInst() != getInst()) 237 return false; 238 239 if (Other.getNumSources() != getNumSources()) 240 return false; 241 242 for (int i = 0, e = Other.getNumSources(); i != e; ++i) 243 if (Other.getSrcReg(i) != getSrcReg(i) || 244 Other.getSrcSubReg(i) != getSrcSubReg(i)) 245 return false; 246 return true; 247 } 248 }; 249 250 /// \brief Helper class to track the possible sources of a value defined by 251 /// a (chain of) copy related instructions. 252 /// Given a definition (instruction and definition index), this class 253 /// follows the use-def chain to find successive suitable sources. 254 /// The given source can be used to rewrite the definition into 255 /// def = COPY src. 256 /// 257 /// For instance, let us consider the following snippet: 258 /// v0 = 259 /// v2 = INSERT_SUBREG v1, v0, sub0 260 /// def = COPY v2.sub0 261 /// 262 /// Using a ValueTracker for def = COPY v2.sub0 will give the following 263 /// suitable sources: 264 /// v2.sub0 and v0. 265 /// Then, def can be rewritten into def = COPY v0. 266 class ValueTracker { 267 private: 268 /// The current point into the use-def chain. 269 const MachineInstr *Def; 270 /// The index of the definition in Def. 271 unsigned DefIdx; 272 /// The sub register index of the definition. 273 unsigned DefSubReg; 274 /// The register where the value can be found. 275 unsigned Reg; 276 /// Specifiy whether or not the value tracking looks through 277 /// complex instructions. When this is false, the value tracker 278 /// bails on everything that is not a copy or a bitcast. 279 /// 280 /// Note: This could have been implemented as a specialized version of 281 /// the ValueTracker class but that would have complicated the code of 282 /// the users of this class. 283 bool UseAdvancedTracking; 284 /// MachineRegisterInfo used to perform tracking. 285 const MachineRegisterInfo &MRI; 286 /// Optional TargetInstrInfo used to perform some complex 287 /// tracking. 288 const TargetInstrInfo *TII; 289 290 /// \brief Dispatcher to the right underlying implementation of 291 /// getNextSource. 292 ValueTrackerResult getNextSourceImpl(); 293 /// \brief Specialized version of getNextSource for Copy instructions. 294 ValueTrackerResult getNextSourceFromCopy(); 295 /// \brief Specialized version of getNextSource for Bitcast instructions. 296 ValueTrackerResult getNextSourceFromBitcast(); 297 /// \brief Specialized version of getNextSource for RegSequence 298 /// instructions. 299 ValueTrackerResult getNextSourceFromRegSequence(); 300 /// \brief Specialized version of getNextSource for InsertSubreg 301 /// instructions. 302 ValueTrackerResult getNextSourceFromInsertSubreg(); 303 /// \brief Specialized version of getNextSource for ExtractSubreg 304 /// instructions. 305 ValueTrackerResult getNextSourceFromExtractSubreg(); 306 /// \brief Specialized version of getNextSource for SubregToReg 307 /// instructions. 308 ValueTrackerResult getNextSourceFromSubregToReg(); 309 /// \brief Specialized version of getNextSource for PHI instructions. 310 ValueTrackerResult getNextSourceFromPHI(); 311 312 public: 313 /// \brief Create a ValueTracker instance for the value defined by \p Reg. 314 /// \p DefSubReg represents the sub register index the value tracker will 315 /// track. It does not need to match the sub register index used in the 316 /// definition of \p Reg. 317 /// \p UseAdvancedTracking specifies whether or not the value tracker looks 318 /// through complex instructions. By default (false), it handles only copy 319 /// and bitcast instructions. 320 /// If \p Reg is a physical register, a value tracker constructed with 321 /// this constructor will not find any alternative source. 322 /// Indeed, when \p Reg is a physical register that constructor does not 323 /// know which definition of \p Reg it should track. 324 /// Use the next constructor to track a physical register. 325 ValueTracker(unsigned Reg, unsigned DefSubReg, 326 const MachineRegisterInfo &MRI, 327 bool UseAdvancedTracking = false, 328 const TargetInstrInfo *TII = nullptr) 329 : Def(nullptr), DefIdx(0), DefSubReg(DefSubReg), Reg(Reg), 330 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) { 331 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) { 332 Def = MRI.getVRegDef(Reg); 333 DefIdx = MRI.def_begin(Reg).getOperandNo(); 334 } 335 } 336 337 /// \brief Create a ValueTracker instance for the value defined by 338 /// the pair \p MI, \p DefIdx. 339 /// Unlike the other constructor, the value tracker produced by this one 340 /// may be able to find a new source when the definition is a physical 341 /// register. 342 /// This could be useful to rewrite target specific instructions into 343 /// generic copy instructions. 344 ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg, 345 const MachineRegisterInfo &MRI, 346 bool UseAdvancedTracking = false, 347 const TargetInstrInfo *TII = nullptr) 348 : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg), 349 UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) { 350 assert(DefIdx < Def->getDesc().getNumDefs() && 351 Def->getOperand(DefIdx).isReg() && "Invalid definition"); 352 Reg = Def->getOperand(DefIdx).getReg(); 353 } 354 355 /// \brief Following the use-def chain, get the next available source 356 /// for the tracked value. 357 /// \return A ValueTrackerResult containing a set of registers 358 /// and sub registers with tracked values. A ValueTrackerResult with 359 /// an empty set of registers means no source was found. 360 ValueTrackerResult getNextSource(); 361 362 /// \brief Get the last register where the initial value can be found. 363 /// Initially this is the register of the definition. 364 /// Then, after each successful call to getNextSource, this is the 365 /// register of the last source. 366 unsigned getReg() const { return Reg; } 367 }; 368 } 369 370 char PeepholeOptimizer::ID = 0; 371 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; 372 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts", 373 "Peephole Optimizations", false, false) 374 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 375 INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts", 376 "Peephole Optimizations", false, false) 377 378 /// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads 379 /// a single register and writes a single register and it does not modify the 380 /// source, and if the source value is preserved as a sub-register of the 381 /// result, then replace all reachable uses of the source with the subreg of the 382 /// result. 383 /// 384 /// Do not generate an EXTRACT that is used only in a debug use, as this changes 385 /// the code. Since this code does not currently share EXTRACTs, just ignore all 386 /// debug uses. 387 bool PeepholeOptimizer:: 388 optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB, 389 SmallPtrSetImpl<MachineInstr*> &LocalMIs) { 390 unsigned SrcReg, DstReg, SubIdx; 391 if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx)) 392 return false; 393 394 if (TargetRegisterInfo::isPhysicalRegister(DstReg) || 395 TargetRegisterInfo::isPhysicalRegister(SrcReg)) 396 return false; 397 398 if (MRI->hasOneNonDBGUse(SrcReg)) 399 // No other uses. 400 return false; 401 402 // Ensure DstReg can get a register class that actually supports 403 // sub-registers. Don't change the class until we commit. 404 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 405 DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); 406 if (!DstRC) 407 return false; 408 409 // The ext instr may be operating on a sub-register of SrcReg as well. 410 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit 411 // register. 412 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of 413 // SrcReg:SubIdx should be replaced. 414 bool UseSrcSubIdx = 415 TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; 416 417 // The source has other uses. See if we can replace the other uses with use of 418 // the result of the extension. 419 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs; 420 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 421 ReachedBBs.insert(UI.getParent()); 422 423 // Uses that are in the same BB of uses of the result of the instruction. 424 SmallVector<MachineOperand*, 8> Uses; 425 426 // Uses that the result of the instruction can reach. 427 SmallVector<MachineOperand*, 8> ExtendedUses; 428 429 bool ExtendLife = true; 430 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 431 MachineInstr *UseMI = UseMO.getParent(); 432 if (UseMI == MI) 433 continue; 434 435 if (UseMI->isPHI()) { 436 ExtendLife = false; 437 continue; 438 } 439 440 // Only accept uses of SrcReg:SubIdx. 441 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) 442 continue; 443 444 // It's an error to translate this: 445 // 446 // %reg1025 = <sext> %reg1024 447 // ... 448 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 449 // 450 // into this: 451 // 452 // %reg1025 = <sext> %reg1024 453 // ... 454 // %reg1027 = COPY %reg1025:4 455 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 456 // 457 // The problem here is that SUBREG_TO_REG is there to assert that an 458 // implicit zext occurs. It doesn't insert a zext instruction. If we allow 459 // the COPY here, it will give us the value after the <sext>, not the 460 // original value of %reg1024 before <sext>. 461 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) 462 continue; 463 464 MachineBasicBlock *UseMBB = UseMI->getParent(); 465 if (UseMBB == MBB) { 466 // Local uses that come after the extension. 467 if (!LocalMIs.count(UseMI)) 468 Uses.push_back(&UseMO); 469 } else if (ReachedBBs.count(UseMBB)) { 470 // Non-local uses where the result of the extension is used. Always 471 // replace these unless it's a PHI. 472 Uses.push_back(&UseMO); 473 } else if (Aggressive && DT->dominates(MBB, UseMBB)) { 474 // We may want to extend the live range of the extension result in order 475 // to replace these uses. 476 ExtendedUses.push_back(&UseMO); 477 } else { 478 // Both will be live out of the def MBB anyway. Don't extend live range of 479 // the extension result. 480 ExtendLife = false; 481 break; 482 } 483 } 484 485 if (ExtendLife && !ExtendedUses.empty()) 486 // Extend the liveness of the extension result. 487 Uses.append(ExtendedUses.begin(), ExtendedUses.end()); 488 489 // Now replace all uses. 490 bool Changed = false; 491 if (!Uses.empty()) { 492 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs; 493 494 // Look for PHI uses of the extended result, we don't want to extend the 495 // liveness of a PHI input. It breaks all kinds of assumptions down 496 // stream. A PHI use is expected to be the kill of its source values. 497 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 498 if (UI.isPHI()) 499 PHIBBs.insert(UI.getParent()); 500 501 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 502 for (unsigned i = 0, e = Uses.size(); i != e; ++i) { 503 MachineOperand *UseMO = Uses[i]; 504 MachineInstr *UseMI = UseMO->getParent(); 505 MachineBasicBlock *UseMBB = UseMI->getParent(); 506 if (PHIBBs.count(UseMBB)) 507 continue; 508 509 // About to add uses of DstReg, clear DstReg's kill flags. 510 if (!Changed) { 511 MRI->clearKillFlags(DstReg); 512 MRI->constrainRegClass(DstReg, DstRC); 513 } 514 515 unsigned NewVR = MRI->createVirtualRegister(RC); 516 MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), 517 TII->get(TargetOpcode::COPY), NewVR) 518 .addReg(DstReg, 0, SubIdx); 519 // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set. 520 if (UseSrcSubIdx) { 521 Copy->getOperand(0).setSubReg(SubIdx); 522 Copy->getOperand(0).setIsUndef(); 523 } 524 UseMO->setReg(NewVR); 525 ++NumReuse; 526 Changed = true; 527 } 528 } 529 530 return Changed; 531 } 532 533 /// optimizeCmpInstr - If the instruction is a compare and the previous 534 /// instruction it's comparing against all ready sets (or could be modified to 535 /// set) the same flag as the compare, then we can remove the comparison and use 536 /// the flag from the previous instruction. 537 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI, 538 MachineBasicBlock *MBB) { 539 // If this instruction is a comparison against zero and isn't comparing a 540 // physical register, we can try to optimize it. 541 unsigned SrcReg, SrcReg2; 542 int CmpMask, CmpValue; 543 if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) || 544 TargetRegisterInfo::isPhysicalRegister(SrcReg) || 545 (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2))) 546 return false; 547 548 // Attempt to optimize the comparison instruction. 549 if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { 550 ++NumCmps; 551 return true; 552 } 553 554 return false; 555 } 556 557 /// Optimize a select instruction. 558 bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI, 559 SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 560 unsigned TrueOp = 0; 561 unsigned FalseOp = 0; 562 bool Optimizable = false; 563 SmallVector<MachineOperand, 4> Cond; 564 if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) 565 return false; 566 if (!Optimizable) 567 return false; 568 if (!TII->optimizeSelect(MI, LocalMIs)) 569 return false; 570 MI->eraseFromParent(); 571 ++NumSelects; 572 return true; 573 } 574 575 /// \brief Check if a simpler conditional branch can be 576 // generated 577 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) { 578 return TII->optimizeCondBranch(MI); 579 } 580 581 /// \brief Check if the registers defined by the pair (RegisterClass, SubReg) 582 /// share the same register file. 583 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI, 584 const TargetRegisterClass *DefRC, 585 unsigned DefSubReg, 586 const TargetRegisterClass *SrcRC, 587 unsigned SrcSubReg) { 588 // Same register class. 589 if (DefRC == SrcRC) 590 return true; 591 592 // Both operands are sub registers. Check if they share a register class. 593 unsigned SrcIdx, DefIdx; 594 if (SrcSubReg && DefSubReg) 595 return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg, 596 SrcIdx, DefIdx) != nullptr; 597 // At most one of the register is a sub register, make it Src to avoid 598 // duplicating the test. 599 if (!SrcSubReg) { 600 std::swap(DefSubReg, SrcSubReg); 601 std::swap(DefRC, SrcRC); 602 } 603 604 // One of the register is a sub register, check if we can get a superclass. 605 if (SrcSubReg) 606 return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr; 607 // Plain copy. 608 return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr; 609 } 610 611 /// \brief Try to find the next source that share the same register file 612 /// for the value defined by \p Reg and \p SubReg. 613 /// When true is returned, the \p RewriteMap can be used by the client to 614 /// retrieve all Def -> Use along the way up to the next source. Any found 615 /// Use that is not itself a key for another entry, is the next source to 616 /// use. During the search for the next source, multiple sources can be found 617 /// given multiple incoming sources of a PHI instruction. In this case, we 618 /// look in each PHI source for the next source; all found next sources must 619 /// share the same register file as \p Reg and \p SubReg. The client should 620 /// then be capable to rewrite all intermediate PHIs to get the next source. 621 /// \return False if no alternative sources are available. True otherwise. 622 bool PeepholeOptimizer::findNextSource(unsigned Reg, unsigned SubReg, 623 RewriteMapTy &RewriteMap) { 624 // Do not try to find a new source for a physical register. 625 // So far we do not have any motivating example for doing that. 626 // Thus, instead of maintaining untested code, we will revisit that if 627 // that changes at some point. 628 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 629 return false; 630 const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); 631 632 SmallVector<TargetInstrInfo::RegSubRegPair, 4> SrcToLook; 633 TargetInstrInfo::RegSubRegPair CurSrcPair(Reg, SubReg); 634 SrcToLook.push_back(CurSrcPair); 635 636 unsigned PHICount = 0; 637 while (!SrcToLook.empty() && PHICount < RewritePHILimit) { 638 TargetInstrInfo::RegSubRegPair Pair = SrcToLook.pop_back_val(); 639 // As explained above, do not handle physical registers 640 if (TargetRegisterInfo::isPhysicalRegister(Pair.Reg)) 641 return false; 642 643 CurSrcPair = Pair; 644 ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, 645 !DisableAdvCopyOpt, TII); 646 ValueTrackerResult Res; 647 bool ShouldRewrite = false; 648 649 do { 650 // Follow the chain of copies until we reach the top of the use-def chain 651 // or find a more suitable source. 652 Res = ValTracker.getNextSource(); 653 if (!Res.isValid()) 654 break; 655 656 // Insert the Def -> Use entry for the recently found source. 657 ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); 658 if (CurSrcRes.isValid()) { 659 assert(CurSrcRes == Res && "ValueTrackerResult found must match"); 660 // An existent entry with multiple sources is a PHI cycle we must avoid. 661 // Otherwise it's an entry with a valid next source we already found. 662 if (CurSrcRes.getNumSources() > 1) { 663 DEBUG(dbgs() << "findNextSource: found PHI cycle, aborting...\n"); 664 return false; 665 } 666 break; 667 } 668 RewriteMap.insert(std::make_pair(CurSrcPair, Res)); 669 670 // ValueTrackerResult usually have one source unless it's the result from 671 // a PHI instruction. Add the found PHI edges to be looked up further. 672 unsigned NumSrcs = Res.getNumSources(); 673 if (NumSrcs > 1) { 674 PHICount++; 675 for (unsigned i = 0; i < NumSrcs; ++i) 676 SrcToLook.push_back(TargetInstrInfo::RegSubRegPair( 677 Res.getSrcReg(i), Res.getSrcSubReg(i))); 678 break; 679 } 680 681 CurSrcPair.Reg = Res.getSrcReg(0); 682 CurSrcPair.SubReg = Res.getSrcSubReg(0); 683 // Do not extend the live-ranges of physical registers as they add 684 // constraints to the register allocator. Moreover, if we want to extend 685 // the live-range of a physical register, unlike SSA virtual register, 686 // we will have to check that they aren't redefine before the related use. 687 if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg)) 688 return false; 689 690 const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); 691 692 // If this source does not incur a cross register bank copy, use it. 693 ShouldRewrite = shareSameRegisterFile(*TRI, DefRC, SubReg, SrcRC, 694 CurSrcPair.SubReg); 695 } while (!ShouldRewrite); 696 697 // Continue looking for new sources... 698 if (Res.isValid()) 699 continue; 700 701 // Do not continue searching for a new source if the there's at least 702 // one use-def which cannot be rewritten. 703 if (!ShouldRewrite) 704 return false; 705 } 706 707 if (PHICount >= RewritePHILimit) { 708 DEBUG(dbgs() << "findNextSource: PHI limit reached\n"); 709 return false; 710 } 711 712 // If we did not find a more suitable source, there is nothing to optimize. 713 if (CurSrcPair.Reg == Reg) 714 return false; 715 716 return true; 717 } 718 719 /// \brief Insert a PHI instruction with incoming edges \p SrcRegs that are 720 /// guaranteed to have the same register class. This is necessary whenever we 721 /// successfully traverse a PHI instruction and find suitable sources coming 722 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def 723 /// suitable to be used in a new COPY instruction. 724 static MachineInstr * 725 insertPHI(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 726 const SmallVectorImpl<TargetInstrInfo::RegSubRegPair> &SrcRegs, 727 MachineInstr *OrigPHI) { 728 assert(!SrcRegs.empty() && "No sources to create a PHI instruction?"); 729 730 const TargetRegisterClass *NewRC = MRI->getRegClass(SrcRegs[0].Reg); 731 unsigned NewVR = MRI->createVirtualRegister(NewRC); 732 MachineBasicBlock *MBB = OrigPHI->getParent(); 733 MachineInstrBuilder MIB = BuildMI(*MBB, OrigPHI, OrigPHI->getDebugLoc(), 734 TII->get(TargetOpcode::PHI), NewVR); 735 736 unsigned MBBOpIdx = 2; 737 for (auto RegPair : SrcRegs) { 738 MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); 739 MIB.addMBB(OrigPHI->getOperand(MBBOpIdx).getMBB()); 740 // Since we're extended the lifetime of RegPair.Reg, clear the 741 // kill flags to account for that and make RegPair.Reg reaches 742 // the new PHI. 743 MRI->clearKillFlags(RegPair.Reg); 744 MBBOpIdx += 2; 745 } 746 747 return MIB; 748 } 749 750 namespace { 751 /// \brief Helper class to rewrite the arguments of a copy-like instruction. 752 class CopyRewriter { 753 protected: 754 /// The copy-like instruction. 755 MachineInstr &CopyLike; 756 /// The index of the source being rewritten. 757 unsigned CurrentSrcIdx; 758 759 public: 760 CopyRewriter(MachineInstr &MI) : CopyLike(MI), CurrentSrcIdx(0) {} 761 762 virtual ~CopyRewriter() {} 763 764 /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and 765 /// the related value that it affects (TrackReg, TrackSubReg). 766 /// A source is considered rewritable if its register class and the 767 /// register class of the related TrackReg may not be register 768 /// coalescer friendly. In other words, given a copy-like instruction 769 /// not all the arguments may be returned at rewritable source, since 770 /// some arguments are none to be register coalescer friendly. 771 /// 772 /// Each call of this method moves the current source to the next 773 /// rewritable source. 774 /// For instance, let CopyLike be the instruction to rewrite. 775 /// CopyLike has one definition and one source: 776 /// dst.dstSubIdx = CopyLike src.srcSubIdx. 777 /// 778 /// The first call will give the first rewritable source, i.e., 779 /// the only source this instruction has: 780 /// (SrcReg, SrcSubReg) = (src, srcSubIdx). 781 /// This source defines the whole definition, i.e., 782 /// (TrackReg, TrackSubReg) = (dst, dstSubIdx). 783 /// 784 /// The second and subsequent calls will return false, as there is only one 785 /// rewritable source. 786 /// 787 /// \return True if a rewritable source has been found, false otherwise. 788 /// The output arguments are valid if and only if true is returned. 789 virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 790 unsigned &TrackReg, 791 unsigned &TrackSubReg) { 792 // If CurrentSrcIdx == 1, this means this function has already been called 793 // once. CopyLike has one definition and one argument, thus, there is 794 // nothing else to rewrite. 795 if (!CopyLike.isCopy() || CurrentSrcIdx == 1) 796 return false; 797 // This is the first call to getNextRewritableSource. 798 // Move the CurrentSrcIdx to remember that we made that call. 799 CurrentSrcIdx = 1; 800 // The rewritable source is the argument. 801 const MachineOperand &MOSrc = CopyLike.getOperand(1); 802 SrcReg = MOSrc.getReg(); 803 SrcSubReg = MOSrc.getSubReg(); 804 // What we track are the alternative sources of the definition. 805 const MachineOperand &MODef = CopyLike.getOperand(0); 806 TrackReg = MODef.getReg(); 807 TrackSubReg = MODef.getSubReg(); 808 return true; 809 } 810 811 /// \brief Rewrite the current source with \p NewReg and \p NewSubReg 812 /// if possible. 813 /// \return True if the rewriting was possible, false otherwise. 814 virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) { 815 if (!CopyLike.isCopy() || CurrentSrcIdx != 1) 816 return false; 817 MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); 818 MOSrc.setReg(NewReg); 819 MOSrc.setSubReg(NewSubReg); 820 return true; 821 } 822 823 /// \brief Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find 824 /// the new source to use for rewrite. If \p HandleMultipleSources is true and 825 /// multiple sources for a given \p Def are found along the way, we found a 826 /// PHI instructions that needs to be rewritten. 827 /// TODO: HandleMultipleSources should be removed once we test PHI handling 828 /// with coalescable copies. 829 TargetInstrInfo::RegSubRegPair 830 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 831 TargetInstrInfo::RegSubRegPair Def, 832 PeepholeOptimizer::RewriteMapTy &RewriteMap, 833 bool HandleMultipleSources = true) { 834 835 TargetInstrInfo::RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); 836 do { 837 ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); 838 // If there are no entries on the map, LookupSrc is the new source. 839 if (!Res.isValid()) 840 return LookupSrc; 841 842 // There's only one source for this definition, keep searching... 843 unsigned NumSrcs = Res.getNumSources(); 844 if (NumSrcs == 1) { 845 LookupSrc.Reg = Res.getSrcReg(0); 846 LookupSrc.SubReg = Res.getSrcSubReg(0); 847 continue; 848 } 849 850 // TODO: Remove once multiple srcs w/ coalescable copies are supported. 851 if (!HandleMultipleSources) 852 break; 853 854 // Multiple sources, recurse into each source to find a new source 855 // for it. Then, rewrite the PHI accordingly to its new edges. 856 SmallVector<TargetInstrInfo::RegSubRegPair, 4> NewPHISrcs; 857 for (unsigned i = 0; i < NumSrcs; ++i) { 858 TargetInstrInfo::RegSubRegPair PHISrc(Res.getSrcReg(i), 859 Res.getSrcSubReg(i)); 860 NewPHISrcs.push_back( 861 getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); 862 } 863 864 // Build the new PHI node and return its def register as the new source. 865 MachineInstr *OrigPHI = const_cast<MachineInstr *>(Res.getInst()); 866 MachineInstr *NewPHI = insertPHI(MRI, TII, NewPHISrcs, OrigPHI); 867 DEBUG(dbgs() << "-- getNewSource\n"); 868 DEBUG(dbgs() << " Replacing: " << *OrigPHI); 869 DEBUG(dbgs() << " With: " << *NewPHI); 870 const MachineOperand &MODef = NewPHI->getOperand(0); 871 return TargetInstrInfo::RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 872 873 } while (1); 874 875 return TargetInstrInfo::RegSubRegPair(0, 0); 876 } 877 878 /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap 879 /// and create a new COPY instruction. More info about RewriteMap in 880 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 881 /// Uncoalescable copies, since they are copy like instructions that aren't 882 /// recognized by the register allocator. 883 virtual MachineInstr * 884 RewriteSource(TargetInstrInfo::RegSubRegPair Def, 885 PeepholeOptimizer::RewriteMapTy &RewriteMap) { 886 return nullptr; 887 } 888 }; 889 890 /// \brief Helper class to rewrite uncoalescable copy like instructions 891 /// into new COPY (coalescable friendly) instructions. 892 class UncoalescableRewriter : public CopyRewriter { 893 protected: 894 const TargetInstrInfo &TII; 895 MachineRegisterInfo &MRI; 896 /// The number of defs in the bitcast 897 unsigned NumDefs; 898 899 public: 900 UncoalescableRewriter(MachineInstr &MI, const TargetInstrInfo &TII, 901 MachineRegisterInfo &MRI) 902 : CopyRewriter(MI), TII(TII), MRI(MRI) { 903 NumDefs = MI.getDesc().getNumDefs(); 904 } 905 906 /// \brief Get the next rewritable def source (TrackReg, TrackSubReg) 907 /// All such sources need to be considered rewritable in order to 908 /// rewrite a uncoalescable copy-like instruction. This method return 909 /// each definition that must be checked if rewritable. 910 /// 911 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 912 unsigned &TrackReg, 913 unsigned &TrackSubReg) override { 914 // Find the next non-dead definition and continue from there. 915 if (CurrentSrcIdx == NumDefs) 916 return false; 917 918 while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { 919 ++CurrentSrcIdx; 920 if (CurrentSrcIdx == NumDefs) 921 return false; 922 } 923 924 // What we track are the alternative sources of the definition. 925 const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); 926 TrackReg = MODef.getReg(); 927 TrackSubReg = MODef.getSubReg(); 928 929 CurrentSrcIdx++; 930 return true; 931 } 932 933 /// \brief Rewrite the source found through \p Def, by using the \p RewriteMap 934 /// and create a new COPY instruction. More info about RewriteMap in 935 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 936 /// Uncoalescable copies, since they are copy like instructions that aren't 937 /// recognized by the register allocator. 938 MachineInstr * 939 RewriteSource(TargetInstrInfo::RegSubRegPair Def, 940 PeepholeOptimizer::RewriteMapTy &RewriteMap) override { 941 assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) && 942 "We do not rewrite physical registers"); 943 944 // Find the new source to use in the COPY rewrite. 945 TargetInstrInfo::RegSubRegPair NewSrc = 946 getNewSource(&MRI, &TII, Def, RewriteMap); 947 948 // Insert the COPY. 949 const TargetRegisterClass *DefRC = MRI.getRegClass(Def.Reg); 950 unsigned NewVR = MRI.createVirtualRegister(DefRC); 951 952 MachineInstr *NewCopy = 953 BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), 954 TII.get(TargetOpcode::COPY), NewVR) 955 .addReg(NewSrc.Reg, 0, NewSrc.SubReg); 956 957 NewCopy->getOperand(0).setSubReg(Def.SubReg); 958 if (Def.SubReg) 959 NewCopy->getOperand(0).setIsUndef(); 960 961 DEBUG(dbgs() << "-- RewriteSource\n"); 962 DEBUG(dbgs() << " Replacing: " << CopyLike); 963 DEBUG(dbgs() << " With: " << *NewCopy); 964 MRI.replaceRegWith(Def.Reg, NewVR); 965 MRI.clearKillFlags(NewVR); 966 967 // We extended the lifetime of NewSrc.Reg, clear the kill flags to 968 // account for that. 969 MRI.clearKillFlags(NewSrc.Reg); 970 971 return NewCopy; 972 } 973 }; 974 975 /// \brief Specialized rewriter for INSERT_SUBREG instruction. 976 class InsertSubregRewriter : public CopyRewriter { 977 public: 978 InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) { 979 assert(MI.isInsertSubreg() && "Invalid instruction"); 980 } 981 982 /// \brief See CopyRewriter::getNextRewritableSource. 983 /// Here CopyLike has the following form: 984 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. 985 /// Src1 has the same register class has dst, hence, there is 986 /// nothing to rewrite. 987 /// Src2.src2SubIdx, may not be register coalescer friendly. 988 /// Therefore, the first call to this method returns: 989 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 990 /// (TrackReg, TrackSubReg) = (dst, subIdx). 991 /// 992 /// Subsequence calls will return false. 993 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 994 unsigned &TrackReg, 995 unsigned &TrackSubReg) override { 996 // If we already get the only source we can rewrite, return false. 997 if (CurrentSrcIdx == 2) 998 return false; 999 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. 1000 CurrentSrcIdx = 2; 1001 const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); 1002 SrcReg = MOInsertedReg.getReg(); 1003 SrcSubReg = MOInsertedReg.getSubReg(); 1004 const MachineOperand &MODef = CopyLike.getOperand(0); 1005 1006 // We want to track something that is compatible with the 1007 // partial definition. 1008 TrackReg = MODef.getReg(); 1009 if (MODef.getSubReg()) 1010 // Bail if we have to compose sub-register indices. 1011 return false; 1012 TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm(); 1013 return true; 1014 } 1015 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1016 if (CurrentSrcIdx != 2) 1017 return false; 1018 // We are rewriting the inserted reg. 1019 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 1020 MO.setReg(NewReg); 1021 MO.setSubReg(NewSubReg); 1022 return true; 1023 } 1024 }; 1025 1026 /// \brief Specialized rewriter for EXTRACT_SUBREG instruction. 1027 class ExtractSubregRewriter : public CopyRewriter { 1028 const TargetInstrInfo &TII; 1029 1030 public: 1031 ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) 1032 : CopyRewriter(MI), TII(TII) { 1033 assert(MI.isExtractSubreg() && "Invalid instruction"); 1034 } 1035 1036 /// \brief See CopyRewriter::getNextRewritableSource. 1037 /// Here CopyLike has the following form: 1038 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. 1039 /// There is only one rewritable source: Src.subIdx, 1040 /// which defines dst.dstSubIdx. 1041 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 1042 unsigned &TrackReg, 1043 unsigned &TrackSubReg) override { 1044 // If we already get the only source we can rewrite, return false. 1045 if (CurrentSrcIdx == 1) 1046 return false; 1047 // We are looking at v1 = EXTRACT_SUBREG v0, sub0. 1048 CurrentSrcIdx = 1; 1049 const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); 1050 SrcReg = MOExtractedReg.getReg(); 1051 // If we have to compose sub-register indices, bail out. 1052 if (MOExtractedReg.getSubReg()) 1053 return false; 1054 1055 SrcSubReg = CopyLike.getOperand(2).getImm(); 1056 1057 // We want to track something that is compatible with the definition. 1058 const MachineOperand &MODef = CopyLike.getOperand(0); 1059 TrackReg = MODef.getReg(); 1060 TrackSubReg = MODef.getSubReg(); 1061 return true; 1062 } 1063 1064 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1065 // The only source we can rewrite is the input register. 1066 if (CurrentSrcIdx != 1) 1067 return false; 1068 1069 CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); 1070 1071 // If we find a source that does not require to extract something, 1072 // rewrite the operation with a copy. 1073 if (!NewSubReg) { 1074 // Move the current index to an invalid position. 1075 // We do not want another call to this method to be able 1076 // to do any change. 1077 CurrentSrcIdx = -1; 1078 // Rewrite the operation as a COPY. 1079 // Get rid of the sub-register index. 1080 CopyLike.RemoveOperand(2); 1081 // Morph the operation into a COPY. 1082 CopyLike.setDesc(TII.get(TargetOpcode::COPY)); 1083 return true; 1084 } 1085 CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); 1086 return true; 1087 } 1088 }; 1089 1090 /// \brief Specialized rewriter for REG_SEQUENCE instruction. 1091 class RegSequenceRewriter : public CopyRewriter { 1092 public: 1093 RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) { 1094 assert(MI.isRegSequence() && "Invalid instruction"); 1095 } 1096 1097 /// \brief See CopyRewriter::getNextRewritableSource. 1098 /// Here CopyLike has the following form: 1099 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. 1100 /// Each call will return a different source, walking all the available 1101 /// source. 1102 /// 1103 /// The first call returns: 1104 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). 1105 /// (TrackReg, TrackSubReg) = (dst, subIdx1). 1106 /// 1107 /// The second call returns: 1108 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 1109 /// (TrackReg, TrackSubReg) = (dst, subIdx2). 1110 /// 1111 /// And so on, until all the sources have been traversed, then 1112 /// it returns false. 1113 bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg, 1114 unsigned &TrackReg, 1115 unsigned &TrackSubReg) override { 1116 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. 1117 1118 // If this is the first call, move to the first argument. 1119 if (CurrentSrcIdx == 0) { 1120 CurrentSrcIdx = 1; 1121 } else { 1122 // Otherwise, move to the next argument and check that it is valid. 1123 CurrentSrcIdx += 2; 1124 if (CurrentSrcIdx >= CopyLike.getNumOperands()) 1125 return false; 1126 } 1127 const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); 1128 SrcReg = MOInsertedReg.getReg(); 1129 // If we have to compose sub-register indices, bail out. 1130 if ((SrcSubReg = MOInsertedReg.getSubReg())) 1131 return false; 1132 1133 // We want to track something that is compatible with the related 1134 // partial definition. 1135 TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); 1136 1137 const MachineOperand &MODef = CopyLike.getOperand(0); 1138 TrackReg = MODef.getReg(); 1139 // If we have to compose sub-registers, bail. 1140 return MODef.getSubReg() == 0; 1141 } 1142 1143 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1144 // We cannot rewrite out of bound operands. 1145 // Moreover, rewritable sources are at odd positions. 1146 if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) 1147 return false; 1148 1149 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 1150 MO.setReg(NewReg); 1151 MO.setSubReg(NewSubReg); 1152 return true; 1153 } 1154 }; 1155 } // End namespace. 1156 1157 /// \brief Get the appropriated CopyRewriter for \p MI. 1158 /// \return A pointer to a dynamically allocated CopyRewriter or nullptr 1159 /// if no rewriter works for \p MI. 1160 static CopyRewriter *getCopyRewriter(MachineInstr &MI, 1161 const TargetInstrInfo &TII, 1162 MachineRegisterInfo &MRI) { 1163 // Handle uncoalescable copy-like instructions. 1164 if (MI.isBitcast() || (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 1165 MI.isExtractSubregLike())) 1166 return new UncoalescableRewriter(MI, TII, MRI); 1167 1168 switch (MI.getOpcode()) { 1169 default: 1170 return nullptr; 1171 case TargetOpcode::COPY: 1172 return new CopyRewriter(MI); 1173 case TargetOpcode::INSERT_SUBREG: 1174 return new InsertSubregRewriter(MI); 1175 case TargetOpcode::EXTRACT_SUBREG: 1176 return new ExtractSubregRewriter(MI, TII); 1177 case TargetOpcode::REG_SEQUENCE: 1178 return new RegSequenceRewriter(MI); 1179 } 1180 llvm_unreachable(nullptr); 1181 } 1182 1183 /// \brief Optimize generic copy instructions to avoid cross 1184 /// register bank copy. The optimization looks through a chain of 1185 /// copies and tries to find a source that has a compatible register 1186 /// class. 1187 /// Two register classes are considered to be compatible if they share 1188 /// the same register bank. 1189 /// New copies issued by this optimization are register allocator 1190 /// friendly. This optimization does not remove any copy as it may 1191 /// overconstrain the register allocator, but replaces some operands 1192 /// when possible. 1193 /// \pre isCoalescableCopy(*MI) is true. 1194 /// \return True, when \p MI has been rewritten. False otherwise. 1195 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) { 1196 assert(MI && isCoalescableCopy(*MI) && "Invalid argument"); 1197 assert(MI->getDesc().getNumDefs() == 1 && 1198 "Coalescer can understand multiple defs?!"); 1199 const MachineOperand &MODef = MI->getOperand(0); 1200 // Do not rewrite physical definitions. 1201 if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg())) 1202 return false; 1203 1204 bool Changed = false; 1205 // Get the right rewriter for the current copy. 1206 std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI)); 1207 // If none exists, bail out. 1208 if (!CpyRewriter) 1209 return false; 1210 // Rewrite each rewritable source. 1211 unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg; 1212 while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg, 1213 TrackSubReg)) { 1214 // Keep track of PHI nodes and its incoming edges when looking for sources. 1215 RewriteMapTy RewriteMap; 1216 // Try to find a more suitable source. If we failed to do so, or get the 1217 // actual source, move to the next source. 1218 if (!findNextSource(TrackReg, TrackSubReg, RewriteMap)) 1219 continue; 1220 1221 // Get the new source to rewrite. TODO: Only enable handling of multiple 1222 // sources (PHIs) once we have a motivating example and testcases for it. 1223 TargetInstrInfo::RegSubRegPair TrackPair(TrackReg, TrackSubReg); 1224 TargetInstrInfo::RegSubRegPair NewSrc = CpyRewriter->getNewSource( 1225 MRI, TII, TrackPair, RewriteMap, false /* multiple sources */); 1226 if (SrcReg == NewSrc.Reg || NewSrc.Reg == 0) 1227 continue; 1228 1229 // Rewrite source. 1230 if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { 1231 // We may have extended the live-range of NewSrc, account for that. 1232 MRI->clearKillFlags(NewSrc.Reg); 1233 Changed = true; 1234 } 1235 } 1236 // TODO: We could have a clean-up method to tidy the instruction. 1237 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 1238 // => v0 = COPY v1 1239 // Currently we haven't seen motivating example for that and we 1240 // want to avoid untested code. 1241 NumRewrittenCopies += Changed; 1242 return Changed; 1243 } 1244 1245 /// \brief Optimize copy-like instructions to create 1246 /// register coalescer friendly instruction. 1247 /// The optimization tries to kill-off the \p MI by looking 1248 /// through a chain of copies to find a source that has a compatible 1249 /// register class. 1250 /// If such a source is found, it replace \p MI by a generic COPY 1251 /// operation. 1252 /// \pre isUncoalescableCopy(*MI) is true. 1253 /// \return True, when \p MI has been optimized. In that case, \p MI has 1254 /// been removed from its parent. 1255 /// All COPY instructions created, are inserted in \p LocalMIs. 1256 bool PeepholeOptimizer::optimizeUncoalescableCopy( 1257 MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 1258 assert(MI && isUncoalescableCopy(*MI) && "Invalid argument"); 1259 1260 // Check if we can rewrite all the values defined by this instruction. 1261 SmallVector<TargetInstrInfo::RegSubRegPair, 4> RewritePairs; 1262 // Get the right rewriter for the current copy. 1263 std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII, *MRI)); 1264 // If none exists, bail out. 1265 if (!CpyRewriter) 1266 return false; 1267 1268 // Rewrite each rewritable source by generating new COPYs. This works 1269 // differently from optimizeCoalescableCopy since it first makes sure that all 1270 // definitions can be rewritten. 1271 RewriteMapTy RewriteMap; 1272 unsigned Reg, SubReg, CopyDefReg, CopyDefSubReg; 1273 while (CpyRewriter->getNextRewritableSource(Reg, SubReg, CopyDefReg, 1274 CopyDefSubReg)) { 1275 // If a physical register is here, this is probably for a good reason. 1276 // Do not rewrite that. 1277 if (TargetRegisterInfo::isPhysicalRegister(CopyDefReg)) 1278 return false; 1279 1280 // If we do not know how to rewrite this definition, there is no point 1281 // in trying to kill this instruction. 1282 TargetInstrInfo::RegSubRegPair Def(CopyDefReg, CopyDefSubReg); 1283 if (!findNextSource(Def.Reg, Def.SubReg, RewriteMap)) 1284 return false; 1285 1286 RewritePairs.push_back(Def); 1287 } 1288 1289 // The change is possible for all defs, do it. 1290 for (const auto &Def : RewritePairs) { 1291 // Rewrite the "copy" in a way the register coalescer understands. 1292 MachineInstr *NewCopy = CpyRewriter->RewriteSource(Def, RewriteMap); 1293 assert(NewCopy && "Should be able to always generate a new copy"); 1294 LocalMIs.insert(NewCopy); 1295 } 1296 1297 // MI is now dead. 1298 MI->eraseFromParent(); 1299 ++NumUncoalescableCopies; 1300 return true; 1301 } 1302 1303 /// isLoadFoldable - Check whether MI is a candidate for folding into a later 1304 /// instruction. We only fold loads to virtual registers and the virtual 1305 /// register defined has a single use. 1306 bool PeepholeOptimizer::isLoadFoldable( 1307 MachineInstr *MI, 1308 SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) { 1309 if (!MI->canFoldAsLoad() || !MI->mayLoad()) 1310 return false; 1311 const MCInstrDesc &MCID = MI->getDesc(); 1312 if (MCID.getNumDefs() != 1) 1313 return false; 1314 1315 unsigned Reg = MI->getOperand(0).getReg(); 1316 // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting 1317 // loads. It should be checked when processing uses of the load, since 1318 // uses can be removed during peephole. 1319 if (!MI->getOperand(0).getSubReg() && 1320 TargetRegisterInfo::isVirtualRegister(Reg) && 1321 MRI->hasOneNonDBGUse(Reg)) { 1322 FoldAsLoadDefCandidates.insert(Reg); 1323 return true; 1324 } 1325 return false; 1326 } 1327 1328 bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI, 1329 SmallSet<unsigned, 4> &ImmDefRegs, 1330 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) { 1331 const MCInstrDesc &MCID = MI->getDesc(); 1332 if (!MI->isMoveImmediate()) 1333 return false; 1334 if (MCID.getNumDefs() != 1) 1335 return false; 1336 unsigned Reg = MI->getOperand(0).getReg(); 1337 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1338 ImmDefMIs.insert(std::make_pair(Reg, MI)); 1339 ImmDefRegs.insert(Reg); 1340 return true; 1341 } 1342 1343 return false; 1344 } 1345 1346 /// foldImmediate - Try folding register operands that are defined by move 1347 /// immediate instructions, i.e. a trivial constant folding optimization, if 1348 /// and only if the def and use are in the same BB. 1349 bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB, 1350 SmallSet<unsigned, 4> &ImmDefRegs, 1351 DenseMap<unsigned, MachineInstr*> &ImmDefMIs) { 1352 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 1353 MachineOperand &MO = MI->getOperand(i); 1354 if (!MO.isReg() || MO.isDef()) 1355 continue; 1356 unsigned Reg = MO.getReg(); 1357 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1358 continue; 1359 if (ImmDefRegs.count(Reg) == 0) 1360 continue; 1361 DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg); 1362 assert(II != ImmDefMIs.end()); 1363 if (TII->FoldImmediate(MI, II->second, Reg, MRI)) { 1364 ++NumImmFold; 1365 return true; 1366 } 1367 } 1368 return false; 1369 } 1370 1371 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { 1372 if (skipOptnoneFunction(*MF.getFunction())) 1373 return false; 1374 1375 DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); 1376 DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); 1377 1378 if (DisablePeephole) 1379 return false; 1380 1381 TII = MF.getSubtarget().getInstrInfo(); 1382 TRI = MF.getSubtarget().getRegisterInfo(); 1383 MRI = &MF.getRegInfo(); 1384 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr; 1385 1386 bool Changed = false; 1387 1388 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { 1389 MachineBasicBlock *MBB = &*I; 1390 1391 bool SeenMoveImm = false; 1392 1393 // During this forward scan, at some point it needs to answer the question 1394 // "given a pointer to an MI in the current BB, is it located before or 1395 // after the current instruction". 1396 // To perform this, the following set keeps track of the MIs already seen 1397 // during the scan, if a MI is not in the set, it is assumed to be located 1398 // after. Newly created MIs have to be inserted in the set as well. 1399 SmallPtrSet<MachineInstr*, 16> LocalMIs; 1400 SmallSet<unsigned, 4> ImmDefRegs; 1401 DenseMap<unsigned, MachineInstr*> ImmDefMIs; 1402 SmallSet<unsigned, 16> FoldAsLoadDefCandidates; 1403 1404 for (MachineBasicBlock::iterator 1405 MII = I->begin(), MIE = I->end(); MII != MIE; ) { 1406 MachineInstr *MI = &*MII; 1407 // We may be erasing MI below, increment MII now. 1408 ++MII; 1409 LocalMIs.insert(MI); 1410 1411 // Skip debug values. They should not affect this peephole optimization. 1412 if (MI->isDebugValue()) 1413 continue; 1414 1415 // If we run into an instruction we can't fold across, discard 1416 // the load candidates. 1417 if (MI->isLoadFoldBarrier()) 1418 FoldAsLoadDefCandidates.clear(); 1419 1420 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || 1421 MI->isKill() || MI->isInlineAsm() || 1422 MI->hasUnmodeledSideEffects()) 1423 continue; 1424 1425 if ((isUncoalescableCopy(*MI) && 1426 optimizeUncoalescableCopy(MI, LocalMIs)) || 1427 (MI->isCompare() && optimizeCmpInstr(MI, MBB)) || 1428 (MI->isSelect() && optimizeSelect(MI, LocalMIs))) { 1429 // MI is deleted. 1430 LocalMIs.erase(MI); 1431 Changed = true; 1432 continue; 1433 } 1434 1435 if (MI->isConditionalBranch() && optimizeCondBranch(MI)) { 1436 Changed = true; 1437 continue; 1438 } 1439 1440 if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) { 1441 // MI is just rewritten. 1442 Changed = true; 1443 continue; 1444 } 1445 1446 if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) { 1447 SeenMoveImm = true; 1448 } else { 1449 Changed |= optimizeExtInstr(MI, MBB, LocalMIs); 1450 // optimizeExtInstr might have created new instructions after MI 1451 // and before the already incremented MII. Adjust MII so that the 1452 // next iteration sees the new instructions. 1453 MII = MI; 1454 ++MII; 1455 if (SeenMoveImm) 1456 Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs); 1457 } 1458 1459 // Check whether MI is a load candidate for folding into a later 1460 // instruction. If MI is not a candidate, check whether we can fold an 1461 // earlier load into MI. 1462 if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) && 1463 !FoldAsLoadDefCandidates.empty()) { 1464 const MCInstrDesc &MIDesc = MI->getDesc(); 1465 for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands(); 1466 ++i) { 1467 const MachineOperand &MOp = MI->getOperand(i); 1468 if (!MOp.isReg()) 1469 continue; 1470 unsigned FoldAsLoadDefReg = MOp.getReg(); 1471 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { 1472 // We need to fold load after optimizeCmpInstr, since 1473 // optimizeCmpInstr can enable folding by converting SUB to CMP. 1474 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and 1475 // we need it for markUsesInDebugValueAsUndef(). 1476 unsigned FoldedReg = FoldAsLoadDefReg; 1477 MachineInstr *DefMI = nullptr; 1478 MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI, 1479 FoldAsLoadDefReg, 1480 DefMI); 1481 if (FoldMI) { 1482 // Update LocalMIs since we replaced MI with FoldMI and deleted 1483 // DefMI. 1484 DEBUG(dbgs() << "Replacing: " << *MI); 1485 DEBUG(dbgs() << " With: " << *FoldMI); 1486 LocalMIs.erase(MI); 1487 LocalMIs.erase(DefMI); 1488 LocalMIs.insert(FoldMI); 1489 MI->eraseFromParent(); 1490 DefMI->eraseFromParent(); 1491 MRI->markUsesInDebugValueAsUndef(FoldedReg); 1492 FoldAsLoadDefCandidates.erase(FoldedReg); 1493 ++NumLoadFold; 1494 // MI is replaced with FoldMI. 1495 Changed = true; 1496 break; 1497 } 1498 } 1499 } 1500 } 1501 } 1502 } 1503 1504 return Changed; 1505 } 1506 1507 ValueTrackerResult ValueTracker::getNextSourceFromCopy() { 1508 assert(Def->isCopy() && "Invalid definition"); 1509 // Copy instruction are supposed to be: Def = Src. 1510 // If someone breaks this assumption, bad things will happen everywhere. 1511 assert(Def->getNumOperands() == 2 && "Invalid number of operands"); 1512 1513 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) 1514 // If we look for a different subreg, it means we want a subreg of src. 1515 // Bails as we do not support composing subregs yet. 1516 return ValueTrackerResult(); 1517 // Otherwise, we want the whole source. 1518 const MachineOperand &Src = Def->getOperand(1); 1519 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1520 } 1521 1522 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { 1523 assert(Def->isBitcast() && "Invalid definition"); 1524 1525 // Bail if there are effects that a plain copy will not expose. 1526 if (Def->hasUnmodeledSideEffects()) 1527 return ValueTrackerResult(); 1528 1529 // Bitcasts with more than one def are not supported. 1530 if (Def->getDesc().getNumDefs() != 1) 1531 return ValueTrackerResult(); 1532 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) 1533 // If we look for a different subreg, it means we want a subreg of the src. 1534 // Bails as we do not support composing subregs yet. 1535 return ValueTrackerResult(); 1536 1537 unsigned SrcIdx = Def->getNumOperands(); 1538 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; 1539 ++OpIdx) { 1540 const MachineOperand &MO = Def->getOperand(OpIdx); 1541 if (!MO.isReg() || !MO.getReg()) 1542 continue; 1543 assert(!MO.isDef() && "We should have skipped all the definitions by now"); 1544 if (SrcIdx != EndOpIdx) 1545 // Multiple sources? 1546 return ValueTrackerResult(); 1547 SrcIdx = OpIdx; 1548 } 1549 const MachineOperand &Src = Def->getOperand(SrcIdx); 1550 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1551 } 1552 1553 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { 1554 assert((Def->isRegSequence() || Def->isRegSequenceLike()) && 1555 "Invalid definition"); 1556 1557 if (Def->getOperand(DefIdx).getSubReg()) 1558 // If we are composing subregs, bail out. 1559 // The case we are checking is Def.<subreg> = REG_SEQUENCE. 1560 // This should almost never happen as the SSA property is tracked at 1561 // the register level (as opposed to the subreg level). 1562 // I.e., 1563 // Def.sub0 = 1564 // Def.sub1 = 1565 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for 1566 // Def. Thus, it must not be generated. 1567 // However, some code could theoretically generates a single 1568 // Def.sub0 (i.e, not defining the other subregs) and we would 1569 // have this case. 1570 // If we can ascertain (or force) that this never happens, we could 1571 // turn that into an assertion. 1572 return ValueTrackerResult(); 1573 1574 if (!TII) 1575 // We could handle the REG_SEQUENCE here, but we do not want to 1576 // duplicate the code from the generic TII. 1577 return ValueTrackerResult(); 1578 1579 SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs; 1580 if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) 1581 return ValueTrackerResult(); 1582 1583 // We are looking at: 1584 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1585 // Check if one of the operand defines the subreg we are interested in. 1586 for (auto &RegSeqInput : RegSeqInputRegs) { 1587 if (RegSeqInput.SubIdx == DefSubReg) { 1588 if (RegSeqInput.SubReg) 1589 // Bail if we have to compose sub registers. 1590 return ValueTrackerResult(); 1591 1592 return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); 1593 } 1594 } 1595 1596 // If the subreg we are tracking is super-defined by another subreg, 1597 // we could follow this value. However, this would require to compose 1598 // the subreg and we do not do that for now. 1599 return ValueTrackerResult(); 1600 } 1601 1602 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { 1603 assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && 1604 "Invalid definition"); 1605 1606 if (Def->getOperand(DefIdx).getSubReg()) 1607 // If we are composing subreg, bail out. 1608 // Same remark as getNextSourceFromRegSequence. 1609 // I.e., this may be turned into an assert. 1610 return ValueTrackerResult(); 1611 1612 if (!TII) 1613 // We could handle the REG_SEQUENCE here, but we do not want to 1614 // duplicate the code from the generic TII. 1615 return ValueTrackerResult(); 1616 1617 TargetInstrInfo::RegSubRegPair BaseReg; 1618 TargetInstrInfo::RegSubRegPairAndIdx InsertedReg; 1619 if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) 1620 return ValueTrackerResult(); 1621 1622 // We are looking at: 1623 // Def = INSERT_SUBREG v0, v1, sub1 1624 // There are two cases: 1625 // 1. DefSubReg == sub1, get v1. 1626 // 2. DefSubReg != sub1, the value may be available through v0. 1627 1628 // #1 Check if the inserted register matches the required sub index. 1629 if (InsertedReg.SubIdx == DefSubReg) { 1630 return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); 1631 } 1632 // #2 Otherwise, if the sub register we are looking for is not partial 1633 // defined by the inserted element, we can look through the main 1634 // register (v0). 1635 const MachineOperand &MODef = Def->getOperand(DefIdx); 1636 // If the result register (Def) and the base register (v0) do not 1637 // have the same register class or if we have to compose 1638 // subregisters, bail out. 1639 if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || 1640 BaseReg.SubReg) 1641 return ValueTrackerResult(); 1642 1643 // Get the TRI and check if the inserted sub-register overlaps with the 1644 // sub-register we are tracking. 1645 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 1646 if (!TRI || 1647 (TRI->getSubRegIndexLaneMask(DefSubReg) & 1648 TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0) 1649 return ValueTrackerResult(); 1650 // At this point, the value is available in v0 via the same subreg 1651 // we used for Def. 1652 return ValueTrackerResult(BaseReg.Reg, DefSubReg); 1653 } 1654 1655 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { 1656 assert((Def->isExtractSubreg() || 1657 Def->isExtractSubregLike()) && "Invalid definition"); 1658 // We are looking at: 1659 // Def = EXTRACT_SUBREG v0, sub0 1660 1661 // Bail if we have to compose sub registers. 1662 // Indeed, if DefSubReg != 0, we would have to compose it with sub0. 1663 if (DefSubReg) 1664 return ValueTrackerResult(); 1665 1666 if (!TII) 1667 // We could handle the EXTRACT_SUBREG here, but we do not want to 1668 // duplicate the code from the generic TII. 1669 return ValueTrackerResult(); 1670 1671 TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg; 1672 if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) 1673 return ValueTrackerResult(); 1674 1675 // Bail if we have to compose sub registers. 1676 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. 1677 if (ExtractSubregInputReg.SubReg) 1678 return ValueTrackerResult(); 1679 // Otherwise, the value is available in the v0.sub0. 1680 return ValueTrackerResult(ExtractSubregInputReg.Reg, ExtractSubregInputReg.SubIdx); 1681 } 1682 1683 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { 1684 assert(Def->isSubregToReg() && "Invalid definition"); 1685 // We are looking at: 1686 // Def = SUBREG_TO_REG Imm, v0, sub0 1687 1688 // Bail if we have to compose sub registers. 1689 // If DefSubReg != sub0, we would have to check that all the bits 1690 // we track are included in sub0 and if yes, we would have to 1691 // determine the right subreg in v0. 1692 if (DefSubReg != Def->getOperand(3).getImm()) 1693 return ValueTrackerResult(); 1694 // Bail if we have to compose sub registers. 1695 // Likewise, if v0.subreg != 0, we would have to compose it with sub0. 1696 if (Def->getOperand(2).getSubReg()) 1697 return ValueTrackerResult(); 1698 1699 return ValueTrackerResult(Def->getOperand(2).getReg(), 1700 Def->getOperand(3).getImm()); 1701 } 1702 1703 /// \brief Explore each PHI incoming operand and return its sources 1704 ValueTrackerResult ValueTracker::getNextSourceFromPHI() { 1705 assert(Def->isPHI() && "Invalid definition"); 1706 ValueTrackerResult Res; 1707 1708 // If we look for a different subreg, bail as we do not support composing 1709 // subregs yet. 1710 if (Def->getOperand(0).getSubReg() != DefSubReg) 1711 return ValueTrackerResult(); 1712 1713 // Return all register sources for PHI instructions. 1714 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { 1715 auto &MO = Def->getOperand(i); 1716 assert(MO.isReg() && "Invalid PHI instruction"); 1717 Res.addSource(MO.getReg(), MO.getSubReg()); 1718 } 1719 1720 return Res; 1721 } 1722 1723 ValueTrackerResult ValueTracker::getNextSourceImpl() { 1724 assert(Def && "This method needs a valid definition"); 1725 1726 assert( 1727 (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic()) && 1728 Def->getOperand(DefIdx).isDef() && "Invalid DefIdx"); 1729 if (Def->isCopy()) 1730 return getNextSourceFromCopy(); 1731 if (Def->isBitcast()) 1732 return getNextSourceFromBitcast(); 1733 // All the remaining cases involve "complex" instructions. 1734 // Bail if we did not ask for the advanced tracking. 1735 if (!UseAdvancedTracking) 1736 return ValueTrackerResult(); 1737 if (Def->isRegSequence() || Def->isRegSequenceLike()) 1738 return getNextSourceFromRegSequence(); 1739 if (Def->isInsertSubreg() || Def->isInsertSubregLike()) 1740 return getNextSourceFromInsertSubreg(); 1741 if (Def->isExtractSubreg() || Def->isExtractSubregLike()) 1742 return getNextSourceFromExtractSubreg(); 1743 if (Def->isSubregToReg()) 1744 return getNextSourceFromSubregToReg(); 1745 if (Def->isPHI()) 1746 return getNextSourceFromPHI(); 1747 return ValueTrackerResult(); 1748 } 1749 1750 ValueTrackerResult ValueTracker::getNextSource() { 1751 // If we reach a point where we cannot move up in the use-def chain, 1752 // there is nothing we can get. 1753 if (!Def) 1754 return ValueTrackerResult(); 1755 1756 ValueTrackerResult Res = getNextSourceImpl(); 1757 if (Res.isValid()) { 1758 // Update definition, definition index, and subregister for the 1759 // next call of getNextSource. 1760 // Update the current register. 1761 bool OneRegSrc = Res.getNumSources() == 1; 1762 if (OneRegSrc) 1763 Reg = Res.getSrcReg(0); 1764 // Update the result before moving up in the use-def chain 1765 // with the instruction containing the last found sources. 1766 Res.setInst(Def); 1767 1768 // If we can still move up in the use-def chain, move to the next 1769 // definition. 1770 if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) { 1771 Def = MRI.getVRegDef(Reg); 1772 DefIdx = MRI.def_begin(Reg).getOperandNo(); 1773 DefSubReg = Res.getSrcSubReg(0); 1774 return Res; 1775 } 1776 } 1777 // If we end up here, this means we will not be able to find another source 1778 // for the next iteration. Make sure any new call to getNextSource bails out 1779 // early by cutting the use-def chain. 1780 Def = nullptr; 1781 return Res; 1782 } 1783