1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates machine instruction PHI nodes by inserting copy 11 // instructions. This destroys SSA information, but is the desired input for 12 // some register allocators. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "PHIEliminationUtils.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveVariables.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Compiler.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetSubtargetInfo.h" 34 #include <algorithm> 35 using namespace llvm; 36 37 #define DEBUG_TYPE "phielim" 38 39 static cl::opt<bool> 40 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 41 cl::Hidden, cl::desc("Disable critical edge splitting " 42 "during PHI elimination")); 43 44 static cl::opt<bool> 45 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 46 cl::Hidden, cl::desc("Split all critical edges during " 47 "PHI elimination")); 48 49 namespace { 50 class PHIElimination : public MachineFunctionPass { 51 MachineRegisterInfo *MRI; // Machine register information 52 LiveVariables *LV; 53 LiveIntervals *LIS; 54 55 public: 56 static char ID; // Pass identification, replacement for typeid 57 PHIElimination() : MachineFunctionPass(ID) { 58 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 59 } 60 61 bool runOnMachineFunction(MachineFunction &Fn) override; 62 void getAnalysisUsage(AnalysisUsage &AU) const override; 63 64 private: 65 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 66 /// in predecessor basic blocks. 67 /// 68 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 69 void LowerPHINode(MachineBasicBlock &MBB, 70 MachineBasicBlock::iterator LastPHIIt); 71 72 /// analyzePHINodes - Gather information about the PHI nodes in 73 /// here. In particular, we want to map the number of uses of a virtual 74 /// register which is used in a PHI node. We map that to the BB the 75 /// vreg is coming from. This is used later to determine when the vreg 76 /// is killed in the BB. 77 /// 78 void analyzePHINodes(const MachineFunction& Fn); 79 80 /// Split critical edges where necessary for good coalescer performance. 81 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 82 MachineLoopInfo *MLI); 83 84 // These functions are temporary abstractions around LiveVariables and 85 // LiveIntervals, so they can go away when LiveVariables does. 86 bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB); 87 bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB); 88 89 typedef std::pair<unsigned, unsigned> BBVRegPair; 90 typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse; 91 92 VRegPHIUse VRegPHIUseCount; 93 94 // Defs of PHI sources which are implicit_def. 95 SmallPtrSet<MachineInstr*, 4> ImpDefs; 96 97 // Map reusable lowered PHI node -> incoming join register. 98 typedef DenseMap<MachineInstr*, unsigned, 99 MachineInstrExpressionTrait> LoweredPHIMap; 100 LoweredPHIMap LoweredPHIs; 101 }; 102 } 103 104 STATISTIC(NumLowered, "Number of phis lowered"); 105 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 106 STATISTIC(NumReused, "Number of reused lowered phis"); 107 108 char PHIElimination::ID = 0; 109 char& llvm::PHIEliminationID = PHIElimination::ID; 110 111 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination", 112 "Eliminate PHI nodes for register allocation", 113 false, false) 114 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 115 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination", 116 "Eliminate PHI nodes for register allocation", false, false) 117 118 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 119 AU.addPreserved<LiveVariables>(); 120 AU.addPreserved<SlotIndexes>(); 121 AU.addPreserved<LiveIntervals>(); 122 AU.addPreserved<MachineDominatorTree>(); 123 AU.addPreserved<MachineLoopInfo>(); 124 MachineFunctionPass::getAnalysisUsage(AU); 125 } 126 127 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 128 MRI = &MF.getRegInfo(); 129 LV = getAnalysisIfAvailable<LiveVariables>(); 130 LIS = getAnalysisIfAvailable<LiveIntervals>(); 131 132 bool Changed = false; 133 134 // This pass takes the function out of SSA form. 135 MRI->leaveSSA(); 136 137 // Split critical edges to help the coalescer. This does not yet support 138 // updating LiveIntervals, so we disable it. 139 if (!DisableEdgeSplitting && (LV || LIS)) { 140 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 141 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) 142 Changed |= SplitPHIEdges(MF, *I, MLI); 143 } 144 145 // Populate VRegPHIUseCount 146 analyzePHINodes(MF); 147 148 // Eliminate PHI instructions by inserting copies into predecessor blocks. 149 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) 150 Changed |= EliminatePHINodes(MF, *I); 151 152 // Remove dead IMPLICIT_DEF instructions. 153 for (MachineInstr *DefMI : ImpDefs) { 154 unsigned DefReg = DefMI->getOperand(0).getReg(); 155 if (MRI->use_nodbg_empty(DefReg)) { 156 if (LIS) 157 LIS->RemoveMachineInstrFromMaps(DefMI); 158 DefMI->eraseFromParent(); 159 } 160 } 161 162 // Clean up the lowered PHI instructions. 163 for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end(); 164 I != E; ++I) { 165 if (LIS) 166 LIS->RemoveMachineInstrFromMaps(I->first); 167 MF.DeleteMachineInstr(I->first); 168 } 169 170 LoweredPHIs.clear(); 171 ImpDefs.clear(); 172 VRegPHIUseCount.clear(); 173 174 return Changed; 175 } 176 177 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 178 /// predecessor basic blocks. 179 /// 180 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 181 MachineBasicBlock &MBB) { 182 if (MBB.empty() || !MBB.front().isPHI()) 183 return false; // Quick exit for basic blocks without PHIs. 184 185 // Get an iterator to the first instruction after the last PHI node (this may 186 // also be the end of the basic block). 187 MachineBasicBlock::iterator LastPHIIt = 188 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 189 190 while (MBB.front().isPHI()) 191 LowerPHINode(MBB, LastPHIIt); 192 193 return true; 194 } 195 196 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs. 197 /// This includes registers with no defs. 198 static bool isImplicitlyDefined(unsigned VirtReg, 199 const MachineRegisterInfo *MRI) { 200 for (MachineInstr &DI : MRI->def_instructions(VirtReg)) 201 if (!DI.isImplicitDef()) 202 return false; 203 return true; 204 } 205 206 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node 207 /// are implicit_def's. 208 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, 209 const MachineRegisterInfo *MRI) { 210 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 211 if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI)) 212 return false; 213 return true; 214 } 215 216 217 /// LowerPHINode - Lower the PHI node at the top of the specified block, 218 /// 219 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 220 MachineBasicBlock::iterator LastPHIIt) { 221 ++NumLowered; 222 223 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 224 225 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 226 MachineInstr *MPhi = MBB.remove(MBB.begin()); 227 228 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 229 unsigned DestReg = MPhi->getOperand(0).getReg(); 230 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 231 bool isDead = MPhi->getOperand(0).isDead(); 232 233 // Create a new register for the incoming PHI arguments. 234 MachineFunction &MF = *MBB.getParent(); 235 unsigned IncomingReg = 0; 236 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 237 238 // Insert a register to register copy at the top of the current block (but 239 // after any remaining phi nodes) which copies the new incoming register 240 // into the phi node destination. 241 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 242 if (isSourceDefinedByImplicitDef(MPhi, MRI)) 243 // If all sources of a PHI node are implicit_def, just emit an 244 // implicit_def instead of a copy. 245 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 246 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 247 else { 248 // Can we reuse an earlier PHI node? This only happens for critical edges, 249 // typically those created by tail duplication. 250 unsigned &entry = LoweredPHIs[MPhi]; 251 if (entry) { 252 // An identical PHI node was already lowered. Reuse the incoming register. 253 IncomingReg = entry; 254 reusedIncoming = true; 255 ++NumReused; 256 DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi); 257 } else { 258 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 259 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 260 } 261 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 262 TII->get(TargetOpcode::COPY), DestReg) 263 .addReg(IncomingReg); 264 } 265 266 // Update live variable information if there is any. 267 if (LV) { 268 MachineInstr *PHICopy = std::prev(AfterPHIsIt); 269 270 if (IncomingReg) { 271 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 272 273 // Increment use count of the newly created virtual register. 274 LV->setPHIJoin(IncomingReg); 275 276 // When we are reusing the incoming register, it may already have been 277 // killed in this block. The old kill will also have been inserted at 278 // AfterPHIsIt, so it appears before the current PHICopy. 279 if (reusedIncoming) 280 if (MachineInstr *OldKill = VI.findKill(&MBB)) { 281 DEBUG(dbgs() << "Remove old kill from " << *OldKill); 282 LV->removeVirtualRegisterKilled(IncomingReg, OldKill); 283 DEBUG(MBB.dump()); 284 } 285 286 // Add information to LiveVariables to know that the incoming value is 287 // killed. Note that because the value is defined in several places (once 288 // each for each incoming block), the "def" block and instruction fields 289 // for the VarInfo is not filled in. 290 LV->addVirtualRegisterKilled(IncomingReg, PHICopy); 291 } 292 293 // Since we are going to be deleting the PHI node, if it is the last use of 294 // any registers, or if the value itself is dead, we need to move this 295 // information over to the new copy we just inserted. 296 LV->removeVirtualRegistersKilled(MPhi); 297 298 // If the result is dead, update LV. 299 if (isDead) { 300 LV->addVirtualRegisterDead(DestReg, PHICopy); 301 LV->removeVirtualRegisterDead(DestReg, MPhi); 302 } 303 } 304 305 // Update LiveIntervals for the new copy or implicit def. 306 if (LIS) { 307 MachineInstr *NewInstr = std::prev(AfterPHIsIt); 308 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr); 309 310 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 311 if (IncomingReg) { 312 // Add the region from the beginning of MBB to the copy instruction to 313 // IncomingReg's live interval. 314 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); 315 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 316 if (!IncomingVNI) 317 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 318 LIS->getVNInfoAllocator()); 319 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 320 DestCopyIndex.getRegSlot(), 321 IncomingVNI)); 322 } 323 324 LiveInterval &DestLI = LIS->getInterval(DestReg); 325 assert(DestLI.begin() != DestLI.end() && 326 "PHIs should have nonempty LiveIntervals."); 327 if (DestLI.endIndex().isDead()) { 328 // A dead PHI's live range begins and ends at the start of the MBB, but 329 // the lowered copy, which will still be dead, needs to begin and end at 330 // the copy instruction. 331 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); 332 assert(OrigDestVNI && "PHI destination should be live at block entry."); 333 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); 334 DestLI.createDeadDef(DestCopyIndex.getRegSlot(), 335 LIS->getVNInfoAllocator()); 336 DestLI.removeValNo(OrigDestVNI); 337 } else { 338 // Otherwise, remove the region from the beginning of MBB to the copy 339 // instruction from DestReg's live interval. 340 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); 341 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); 342 assert(DestVNI && "PHI destination should be live at its definition."); 343 DestVNI->def = DestCopyIndex.getRegSlot(); 344 } 345 } 346 347 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 348 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 349 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), 350 MPhi->getOperand(i).getReg())]; 351 352 // Now loop over all of the incoming arguments, changing them to copy into the 353 // IncomingReg register in the corresponding predecessor basic block. 354 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 355 for (int i = NumSrcs - 1; i >= 0; --i) { 356 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); 357 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 358 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 359 isImplicitlyDefined(SrcReg, MRI); 360 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && 361 "Machine PHI Operands must all be virtual registers!"); 362 363 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 364 // path the PHI. 365 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 366 367 // Check to make sure we haven't already emitted the copy for this block. 368 // This can happen because PHI nodes may have multiple entries for the same 369 // basic block. 370 if (!MBBsInsertedInto.insert(&opBlock)) 371 continue; // If the copy has already been emitted, we're done. 372 373 // Find a safe location to insert the copy, this may be the first terminator 374 // in the block (or end()). 375 MachineBasicBlock::iterator InsertPos = 376 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 377 378 // Insert the copy. 379 MachineInstr *NewSrcInstr = nullptr; 380 if (!reusedIncoming && IncomingReg) { 381 if (SrcUndef) { 382 // The source register is undefined, so there is no need for a real 383 // COPY, but we still need to ensure joint dominance by defs. 384 // Insert an IMPLICIT_DEF instruction. 385 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 386 TII->get(TargetOpcode::IMPLICIT_DEF), 387 IncomingReg); 388 389 // Clean up the old implicit-def, if there even was one. 390 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 391 if (DefMI->isImplicitDef()) 392 ImpDefs.insert(DefMI); 393 } else { 394 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 395 TII->get(TargetOpcode::COPY), IncomingReg) 396 .addReg(SrcReg, 0, SrcSubReg); 397 } 398 } 399 400 // We only need to update the LiveVariables kill of SrcReg if this was the 401 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 402 // out of the predecessor. We can also ignore undef sources. 403 if (LV && !SrcUndef && 404 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 405 !LV->isLiveOut(SrcReg, opBlock)) { 406 // We want to be able to insert a kill of the register if this PHI (aka, 407 // the copy we just inserted) is the last use of the source value. Live 408 // variable analysis conservatively handles this by saying that the value 409 // is live until the end of the block the PHI entry lives in. If the value 410 // really is dead at the PHI copy, there will be no successor blocks which 411 // have the value live-in. 412 413 // Okay, if we now know that the value is not live out of the block, we 414 // can add a kill marker in this block saying that it kills the incoming 415 // value! 416 417 // In our final twist, we have to decide which instruction kills the 418 // register. In most cases this is the copy, however, terminator 419 // instructions at the end of the block may also use the value. In this 420 // case, we should mark the last such terminator as being the killing 421 // block, not the copy. 422 MachineBasicBlock::iterator KillInst = opBlock.end(); 423 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 424 for (MachineBasicBlock::iterator Term = FirstTerm; 425 Term != opBlock.end(); ++Term) { 426 if (Term->readsRegister(SrcReg)) 427 KillInst = Term; 428 } 429 430 if (KillInst == opBlock.end()) { 431 // No terminator uses the register. 432 433 if (reusedIncoming || !IncomingReg) { 434 // We may have to rewind a bit if we didn't insert a copy this time. 435 KillInst = FirstTerm; 436 while (KillInst != opBlock.begin()) { 437 --KillInst; 438 if (KillInst->isDebugValue()) 439 continue; 440 if (KillInst->readsRegister(SrcReg)) 441 break; 442 } 443 } else { 444 // We just inserted this copy. 445 KillInst = std::prev(InsertPos); 446 } 447 } 448 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 449 450 // Finally, mark it killed. 451 LV->addVirtualRegisterKilled(SrcReg, KillInst); 452 453 // This vreg no longer lives all of the way through opBlock. 454 unsigned opBlockNum = opBlock.getNumber(); 455 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 456 } 457 458 if (LIS) { 459 if (NewSrcInstr) { 460 LIS->InsertMachineInstrInMaps(NewSrcInstr); 461 LIS->addSegmentToEndOfBlock(IncomingReg, NewSrcInstr); 462 } 463 464 if (!SrcUndef && 465 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 466 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 467 468 bool isLiveOut = false; 469 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), 470 SE = opBlock.succ_end(); SI != SE; ++SI) { 471 SlotIndex startIdx = LIS->getMBBStartIdx(*SI); 472 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 473 474 // Definitions by other PHIs are not truly live-in for our purposes. 475 if (VNI && VNI->def != startIdx) { 476 isLiveOut = true; 477 break; 478 } 479 } 480 481 if (!isLiveOut) { 482 MachineBasicBlock::iterator KillInst = opBlock.end(); 483 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 484 for (MachineBasicBlock::iterator Term = FirstTerm; 485 Term != opBlock.end(); ++Term) { 486 if (Term->readsRegister(SrcReg)) 487 KillInst = Term; 488 } 489 490 if (KillInst == opBlock.end()) { 491 // No terminator uses the register. 492 493 if (reusedIncoming || !IncomingReg) { 494 // We may have to rewind a bit if we didn't just insert a copy. 495 KillInst = FirstTerm; 496 while (KillInst != opBlock.begin()) { 497 --KillInst; 498 if (KillInst->isDebugValue()) 499 continue; 500 if (KillInst->readsRegister(SrcReg)) 501 break; 502 } 503 } else { 504 // We just inserted this copy. 505 KillInst = std::prev(InsertPos); 506 } 507 } 508 assert(KillInst->readsRegister(SrcReg) && 509 "Cannot find kill instruction"); 510 511 SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst); 512 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 513 LIS->getMBBEndIdx(&opBlock)); 514 } 515 } 516 } 517 } 518 519 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 520 if (reusedIncoming || !IncomingReg) { 521 if (LIS) 522 LIS->RemoveMachineInstrFromMaps(MPhi); 523 MF.DeleteMachineInstr(MPhi); 524 } 525 } 526 527 /// analyzePHINodes - Gather information about the PHI nodes in here. In 528 /// particular, we want to map the number of uses of a virtual register which is 529 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 530 /// used later to determine when the vreg is killed in the BB. 531 /// 532 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 533 for (const auto &MBB : MF) 534 for (const auto &BBI : MBB) { 535 if (!BBI.isPHI()) 536 break; 537 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) 538 ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(), 539 BBI.getOperand(i).getReg())]; 540 } 541 } 542 543 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 544 MachineBasicBlock &MBB, 545 MachineLoopInfo *MLI) { 546 if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad()) 547 return false; // Quick exit for basic blocks without PHIs. 548 549 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 550 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 551 552 bool Changed = false; 553 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 554 BBI != BBE && BBI->isPHI(); ++BBI) { 555 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 556 unsigned Reg = BBI->getOperand(i).getReg(); 557 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 558 // Is there a critical edge from PreMBB to MBB? 559 if (PreMBB->succ_size() == 1) 560 continue; 561 562 // Avoid splitting backedges of loops. It would introduce small 563 // out-of-line blocks into the loop which is very bad for code placement. 564 if (PreMBB == &MBB && !SplitAllCriticalEdges) 565 continue; 566 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 567 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 568 continue; 569 570 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 571 // when the source register is live-out for some other reason than a phi 572 // use. That means the copy we will insert in PreMBB won't be a kill, and 573 // there is a risk it may not be coalesced away. 574 // 575 // If the copy would be a kill, there is no need to split the edge. 576 if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges) 577 continue; 578 579 DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#" 580 << PreMBB->getNumber() << " -> BB#" << MBB.getNumber() 581 << ": " << *BBI); 582 583 // If Reg is not live-in to MBB, it means it must be live-in to some 584 // other PreMBB successor, and we can avoid the interference by splitting 585 // the edge. 586 // 587 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 588 // is likely to be left after coalescing. If we are looking at a loop 589 // exiting edge, split it so we won't insert code in the loop, otherwise 590 // don't bother. 591 bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges; 592 593 // Check for a loop exiting edge. 594 if (!ShouldSplit && CurLoop != PreLoop) { 595 DEBUG({ 596 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 597 if (PreLoop) dbgs() << "PreLoop: " << *PreLoop; 598 if (CurLoop) dbgs() << "CurLoop: " << *CurLoop; 599 }); 600 // This edge could be entering a loop, exiting a loop, or it could be 601 // both: Jumping directly form one loop to the header of a sibling 602 // loop. 603 // Split unless this edge is entering CurLoop from an outer loop. 604 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 605 } 606 if (!ShouldSplit) 607 continue; 608 if (!PreMBB->SplitCriticalEdge(&MBB, this)) { 609 DEBUG(dbgs() << "Failed to split critical edge.\n"); 610 continue; 611 } 612 Changed = true; 613 ++NumCriticalEdgesSplit; 614 } 615 } 616 return Changed; 617 } 618 619 bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) { 620 assert((LV || LIS) && 621 "isLiveIn() requires either LiveVariables or LiveIntervals"); 622 if (LIS) 623 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 624 else 625 return LV->isLiveIn(Reg, *MBB); 626 } 627 628 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) { 629 assert((LV || LIS) && 630 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 631 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 632 // so that a register used only in a PHI is not live out of the block. In 633 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 634 // in the predecessor basic block, so that a register used only in a PHI is live 635 // out of the block. 636 if (LIS) { 637 const LiveInterval &LI = LIS->getInterval(Reg); 638 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 639 SE = MBB->succ_end(); SI != SE; ++SI) { 640 if (LI.liveAt(LIS->getMBBStartIdx(*SI))) 641 return true; 642 } 643 return false; 644 } else { 645 return LV->isLiveOut(Reg, *MBB); 646 } 647 } 648