1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates machine instruction PHI nodes by inserting copy 11 // instructions. This destroys SSA information, but is the desired input for 12 // some register allocators. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "PHIEliminationUtils.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/CodeGen/LiveInterval.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/LiveVariables.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/SlotIndexes.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cassert> 43 #include <iterator> 44 #include <utility> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "phi-node-elimination" 49 50 static cl::opt<bool> 51 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 52 cl::Hidden, cl::desc("Disable critical edge splitting " 53 "during PHI elimination")); 54 55 static cl::opt<bool> 56 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 57 cl::Hidden, cl::desc("Split all critical edges during " 58 "PHI elimination")); 59 60 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 61 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 62 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 63 64 namespace { 65 66 class PHIElimination : public MachineFunctionPass { 67 MachineRegisterInfo *MRI; // Machine register information 68 LiveVariables *LV; 69 LiveIntervals *LIS; 70 71 public: 72 static char ID; // Pass identification, replacement for typeid 73 74 PHIElimination() : MachineFunctionPass(ID) { 75 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 76 } 77 78 bool runOnMachineFunction(MachineFunction &MF) override; 79 void getAnalysisUsage(AnalysisUsage &AU) const override; 80 81 private: 82 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 83 /// in predecessor basic blocks. 84 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 85 86 void LowerPHINode(MachineBasicBlock &MBB, 87 MachineBasicBlock::iterator LastPHIIt); 88 89 /// analyzePHINodes - Gather information about the PHI nodes in 90 /// here. In particular, we want to map the number of uses of a virtual 91 /// register which is used in a PHI node. We map that to the BB the 92 /// vreg is coming from. This is used later to determine when the vreg 93 /// is killed in the BB. 94 void analyzePHINodes(const MachineFunction& MF); 95 96 /// Split critical edges where necessary for good coalescer performance. 97 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 98 MachineLoopInfo *MLI); 99 100 // These functions are temporary abstractions around LiveVariables and 101 // LiveIntervals, so they can go away when LiveVariables does. 102 bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB); 103 bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB); 104 105 using BBVRegPair = std::pair<unsigned, unsigned>; 106 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; 107 108 VRegPHIUse VRegPHIUseCount; 109 110 // Defs of PHI sources which are implicit_def. 111 SmallPtrSet<MachineInstr*, 4> ImpDefs; 112 113 // Map reusable lowered PHI node -> incoming join register. 114 using LoweredPHIMap = 115 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>; 116 LoweredPHIMap LoweredPHIs; 117 }; 118 119 } // end anonymous namespace 120 121 STATISTIC(NumLowered, "Number of phis lowered"); 122 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 123 STATISTIC(NumReused, "Number of reused lowered phis"); 124 125 char PHIElimination::ID = 0; 126 127 char& llvm::PHIEliminationID = PHIElimination::ID; 128 129 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, 130 "Eliminate PHI nodes for register allocation", 131 false, false) 132 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 133 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, 134 "Eliminate PHI nodes for register allocation", false, false) 135 136 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 137 AU.addUsedIfAvailable<LiveVariables>(); 138 AU.addPreserved<LiveVariables>(); 139 AU.addPreserved<SlotIndexes>(); 140 AU.addPreserved<LiveIntervals>(); 141 AU.addPreserved<MachineDominatorTree>(); 142 AU.addPreserved<MachineLoopInfo>(); 143 MachineFunctionPass::getAnalysisUsage(AU); 144 } 145 146 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 147 MRI = &MF.getRegInfo(); 148 LV = getAnalysisIfAvailable<LiveVariables>(); 149 LIS = getAnalysisIfAvailable<LiveIntervals>(); 150 151 bool Changed = false; 152 153 // This pass takes the function out of SSA form. 154 MRI->leaveSSA(); 155 156 // Split critical edges to help the coalescer. This does not yet support 157 // updating LiveIntervals, so we disable it. 158 if (!DisableEdgeSplitting && (LV || LIS)) { 159 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 160 for (auto &MBB : MF) 161 Changed |= SplitPHIEdges(MF, MBB, MLI); 162 } 163 164 // Populate VRegPHIUseCount 165 analyzePHINodes(MF); 166 167 // Eliminate PHI instructions by inserting copies into predecessor blocks. 168 for (auto &MBB : MF) 169 Changed |= EliminatePHINodes(MF, MBB); 170 171 // Remove dead IMPLICIT_DEF instructions. 172 for (MachineInstr *DefMI : ImpDefs) { 173 unsigned DefReg = DefMI->getOperand(0).getReg(); 174 if (MRI->use_nodbg_empty(DefReg)) { 175 if (LIS) 176 LIS->RemoveMachineInstrFromMaps(*DefMI); 177 DefMI->eraseFromParent(); 178 } 179 } 180 181 // Clean up the lowered PHI instructions. 182 for (auto &I : LoweredPHIs) { 183 if (LIS) 184 LIS->RemoveMachineInstrFromMaps(*I.first); 185 MF.DeleteMachineInstr(I.first); 186 } 187 188 LoweredPHIs.clear(); 189 ImpDefs.clear(); 190 VRegPHIUseCount.clear(); 191 192 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 193 194 return Changed; 195 } 196 197 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 198 /// predecessor basic blocks. 199 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 200 MachineBasicBlock &MBB) { 201 if (MBB.empty() || !MBB.front().isPHI()) 202 return false; // Quick exit for basic blocks without PHIs. 203 204 // Get an iterator to the first instruction after the last PHI node (this may 205 // also be the end of the basic block). 206 MachineBasicBlock::iterator LastPHIIt = 207 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 208 209 while (MBB.front().isPHI()) 210 LowerPHINode(MBB, LastPHIIt); 211 212 return true; 213 } 214 215 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs. 216 /// This includes registers with no defs. 217 static bool isImplicitlyDefined(unsigned VirtReg, 218 const MachineRegisterInfo *MRI) { 219 for (MachineInstr &DI : MRI->def_instructions(VirtReg)) 220 if (!DI.isImplicitDef()) 221 return false; 222 return true; 223 } 224 225 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node 226 /// are implicit_def's. 227 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, 228 const MachineRegisterInfo *MRI) { 229 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 230 if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI)) 231 return false; 232 return true; 233 } 234 235 /// LowerPHINode - Lower the PHI node at the top of the specified block. 236 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 237 MachineBasicBlock::iterator LastPHIIt) { 238 ++NumLowered; 239 240 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 241 242 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 243 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 244 245 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 246 unsigned DestReg = MPhi->getOperand(0).getReg(); 247 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 248 bool isDead = MPhi->getOperand(0).isDead(); 249 250 // Create a new register for the incoming PHI arguments. 251 MachineFunction &MF = *MBB.getParent(); 252 unsigned IncomingReg = 0; 253 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 254 255 // Insert a register to register copy at the top of the current block (but 256 // after any remaining phi nodes) which copies the new incoming register 257 // into the phi node destination. 258 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 259 if (isSourceDefinedByImplicitDef(MPhi, MRI)) 260 // If all sources of a PHI node are implicit_def, just emit an 261 // implicit_def instead of a copy. 262 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 263 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 264 else { 265 // Can we reuse an earlier PHI node? This only happens for critical edges, 266 // typically those created by tail duplication. 267 unsigned &entry = LoweredPHIs[MPhi]; 268 if (entry) { 269 // An identical PHI node was already lowered. Reuse the incoming register. 270 IncomingReg = entry; 271 reusedIncoming = true; 272 ++NumReused; 273 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " 274 << *MPhi); 275 } else { 276 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 277 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 278 } 279 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 280 TII->get(TargetOpcode::COPY), DestReg) 281 .addReg(IncomingReg); 282 } 283 284 // Update live variable information if there is any. 285 if (LV) { 286 MachineInstr &PHICopy = *std::prev(AfterPHIsIt); 287 288 if (IncomingReg) { 289 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 290 291 // Increment use count of the newly created virtual register. 292 LV->setPHIJoin(IncomingReg); 293 294 // When we are reusing the incoming register, it may already have been 295 // killed in this block. The old kill will also have been inserted at 296 // AfterPHIsIt, so it appears before the current PHICopy. 297 if (reusedIncoming) 298 if (MachineInstr *OldKill = VI.findKill(&MBB)) { 299 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); 300 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 301 LLVM_DEBUG(MBB.dump()); 302 } 303 304 // Add information to LiveVariables to know that the incoming value is 305 // killed. Note that because the value is defined in several places (once 306 // each for each incoming block), the "def" block and instruction fields 307 // for the VarInfo is not filled in. 308 LV->addVirtualRegisterKilled(IncomingReg, PHICopy); 309 } 310 311 // Since we are going to be deleting the PHI node, if it is the last use of 312 // any registers, or if the value itself is dead, we need to move this 313 // information over to the new copy we just inserted. 314 LV->removeVirtualRegistersKilled(*MPhi); 315 316 // If the result is dead, update LV. 317 if (isDead) { 318 LV->addVirtualRegisterDead(DestReg, PHICopy); 319 LV->removeVirtualRegisterDead(DestReg, *MPhi); 320 } 321 } 322 323 // Update LiveIntervals for the new copy or implicit def. 324 if (LIS) { 325 SlotIndex DestCopyIndex = 326 LIS->InsertMachineInstrInMaps(*std::prev(AfterPHIsIt)); 327 328 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 329 if (IncomingReg) { 330 // Add the region from the beginning of MBB to the copy instruction to 331 // IncomingReg's live interval. 332 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); 333 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 334 if (!IncomingVNI) 335 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 336 LIS->getVNInfoAllocator()); 337 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 338 DestCopyIndex.getRegSlot(), 339 IncomingVNI)); 340 } 341 342 LiveInterval &DestLI = LIS->getInterval(DestReg); 343 assert(DestLI.begin() != DestLI.end() && 344 "PHIs should have nonempty LiveIntervals."); 345 if (DestLI.endIndex().isDead()) { 346 // A dead PHI's live range begins and ends at the start of the MBB, but 347 // the lowered copy, which will still be dead, needs to begin and end at 348 // the copy instruction. 349 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); 350 assert(OrigDestVNI && "PHI destination should be live at block entry."); 351 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); 352 DestLI.createDeadDef(DestCopyIndex.getRegSlot(), 353 LIS->getVNInfoAllocator()); 354 DestLI.removeValNo(OrigDestVNI); 355 } else { 356 // Otherwise, remove the region from the beginning of MBB to the copy 357 // instruction from DestReg's live interval. 358 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); 359 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); 360 assert(DestVNI && "PHI destination should be live at its definition."); 361 DestVNI->def = DestCopyIndex.getRegSlot(); 362 } 363 } 364 365 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 366 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 367 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), 368 MPhi->getOperand(i).getReg())]; 369 370 // Now loop over all of the incoming arguments, changing them to copy into the 371 // IncomingReg register in the corresponding predecessor basic block. 372 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 373 for (int i = NumSrcs - 1; i >= 0; --i) { 374 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); 375 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 376 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 377 isImplicitlyDefined(SrcReg, MRI); 378 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && 379 "Machine PHI Operands must all be virtual registers!"); 380 381 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 382 // path the PHI. 383 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 384 385 // Check to make sure we haven't already emitted the copy for this block. 386 // This can happen because PHI nodes may have multiple entries for the same 387 // basic block. 388 if (!MBBsInsertedInto.insert(&opBlock).second) 389 continue; // If the copy has already been emitted, we're done. 390 391 // Find a safe location to insert the copy, this may be the first terminator 392 // in the block (or end()). 393 MachineBasicBlock::iterator InsertPos = 394 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 395 396 // Insert the copy. 397 MachineInstr *NewSrcInstr = nullptr; 398 if (!reusedIncoming && IncomingReg) { 399 if (SrcUndef) { 400 // The source register is undefined, so there is no need for a real 401 // COPY, but we still need to ensure joint dominance by defs. 402 // Insert an IMPLICIT_DEF instruction. 403 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 404 TII->get(TargetOpcode::IMPLICIT_DEF), 405 IncomingReg); 406 407 // Clean up the old implicit-def, if there even was one. 408 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 409 if (DefMI->isImplicitDef()) 410 ImpDefs.insert(DefMI); 411 } else { 412 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 413 TII->get(TargetOpcode::COPY), IncomingReg) 414 .addReg(SrcReg, 0, SrcSubReg); 415 } 416 } 417 418 // We only need to update the LiveVariables kill of SrcReg if this was the 419 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 420 // out of the predecessor. We can also ignore undef sources. 421 if (LV && !SrcUndef && 422 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 423 !LV->isLiveOut(SrcReg, opBlock)) { 424 // We want to be able to insert a kill of the register if this PHI (aka, 425 // the copy we just inserted) is the last use of the source value. Live 426 // variable analysis conservatively handles this by saying that the value 427 // is live until the end of the block the PHI entry lives in. If the value 428 // really is dead at the PHI copy, there will be no successor blocks which 429 // have the value live-in. 430 431 // Okay, if we now know that the value is not live out of the block, we 432 // can add a kill marker in this block saying that it kills the incoming 433 // value! 434 435 // In our final twist, we have to decide which instruction kills the 436 // register. In most cases this is the copy, however, terminator 437 // instructions at the end of the block may also use the value. In this 438 // case, we should mark the last such terminator as being the killing 439 // block, not the copy. 440 MachineBasicBlock::iterator KillInst = opBlock.end(); 441 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 442 for (MachineBasicBlock::iterator Term = FirstTerm; 443 Term != opBlock.end(); ++Term) { 444 if (Term->readsRegister(SrcReg)) 445 KillInst = Term; 446 } 447 448 if (KillInst == opBlock.end()) { 449 // No terminator uses the register. 450 451 if (reusedIncoming || !IncomingReg) { 452 // We may have to rewind a bit if we didn't insert a copy this time. 453 KillInst = FirstTerm; 454 while (KillInst != opBlock.begin()) { 455 --KillInst; 456 if (KillInst->isDebugInstr()) 457 continue; 458 if (KillInst->readsRegister(SrcReg)) 459 break; 460 } 461 } else { 462 // We just inserted this copy. 463 KillInst = std::prev(InsertPos); 464 } 465 } 466 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 467 468 // Finally, mark it killed. 469 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 470 471 // This vreg no longer lives all of the way through opBlock. 472 unsigned opBlockNum = opBlock.getNumber(); 473 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 474 } 475 476 if (LIS) { 477 if (NewSrcInstr) { 478 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 479 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 480 } 481 482 if (!SrcUndef && 483 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 484 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 485 486 bool isLiveOut = false; 487 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), 488 SE = opBlock.succ_end(); SI != SE; ++SI) { 489 SlotIndex startIdx = LIS->getMBBStartIdx(*SI); 490 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 491 492 // Definitions by other PHIs are not truly live-in for our purposes. 493 if (VNI && VNI->def != startIdx) { 494 isLiveOut = true; 495 break; 496 } 497 } 498 499 if (!isLiveOut) { 500 MachineBasicBlock::iterator KillInst = opBlock.end(); 501 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 502 for (MachineBasicBlock::iterator Term = FirstTerm; 503 Term != opBlock.end(); ++Term) { 504 if (Term->readsRegister(SrcReg)) 505 KillInst = Term; 506 } 507 508 if (KillInst == opBlock.end()) { 509 // No terminator uses the register. 510 511 if (reusedIncoming || !IncomingReg) { 512 // We may have to rewind a bit if we didn't just insert a copy. 513 KillInst = FirstTerm; 514 while (KillInst != opBlock.begin()) { 515 --KillInst; 516 if (KillInst->isDebugInstr()) 517 continue; 518 if (KillInst->readsRegister(SrcReg)) 519 break; 520 } 521 } else { 522 // We just inserted this copy. 523 KillInst = std::prev(InsertPos); 524 } 525 } 526 assert(KillInst->readsRegister(SrcReg) && 527 "Cannot find kill instruction"); 528 529 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 530 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 531 LIS->getMBBEndIdx(&opBlock)); 532 } 533 } 534 } 535 } 536 537 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 538 if (reusedIncoming || !IncomingReg) { 539 if (LIS) 540 LIS->RemoveMachineInstrFromMaps(*MPhi); 541 MF.DeleteMachineInstr(MPhi); 542 } 543 } 544 545 /// analyzePHINodes - Gather information about the PHI nodes in here. In 546 /// particular, we want to map the number of uses of a virtual register which is 547 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 548 /// used later to determine when the vreg is killed in the BB. 549 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 550 for (const auto &MBB : MF) 551 for (const auto &BBI : MBB) { 552 if (!BBI.isPHI()) 553 break; 554 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) 555 ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(), 556 BBI.getOperand(i).getReg())]; 557 } 558 } 559 560 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 561 MachineBasicBlock &MBB, 562 MachineLoopInfo *MLI) { 563 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 564 return false; // Quick exit for basic blocks without PHIs. 565 566 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 567 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 568 569 bool Changed = false; 570 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 571 BBI != BBE && BBI->isPHI(); ++BBI) { 572 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 573 unsigned Reg = BBI->getOperand(i).getReg(); 574 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 575 // Is there a critical edge from PreMBB to MBB? 576 if (PreMBB->succ_size() == 1) 577 continue; 578 579 // Avoid splitting backedges of loops. It would introduce small 580 // out-of-line blocks into the loop which is very bad for code placement. 581 if (PreMBB == &MBB && !SplitAllCriticalEdges) 582 continue; 583 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 584 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 585 continue; 586 587 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 588 // when the source register is live-out for some other reason than a phi 589 // use. That means the copy we will insert in PreMBB won't be a kill, and 590 // there is a risk it may not be coalesced away. 591 // 592 // If the copy would be a kill, there is no need to split the edge. 593 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 594 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 595 continue; 596 if (ShouldSplit) { 597 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " 598 << printMBBReference(*PreMBB) << " -> " 599 << printMBBReference(MBB) << ": " << *BBI); 600 } 601 602 // If Reg is not live-in to MBB, it means it must be live-in to some 603 // other PreMBB successor, and we can avoid the interference by splitting 604 // the edge. 605 // 606 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 607 // is likely to be left after coalescing. If we are looking at a loop 608 // exiting edge, split it so we won't insert code in the loop, otherwise 609 // don't bother. 610 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 611 612 // Check for a loop exiting edge. 613 if (!ShouldSplit && CurLoop != PreLoop) { 614 LLVM_DEBUG({ 615 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 616 if (PreLoop) 617 dbgs() << "PreLoop: " << *PreLoop; 618 if (CurLoop) 619 dbgs() << "CurLoop: " << *CurLoop; 620 }); 621 // This edge could be entering a loop, exiting a loop, or it could be 622 // both: Jumping directly form one loop to the header of a sibling 623 // loop. 624 // Split unless this edge is entering CurLoop from an outer loop. 625 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 626 } 627 if (!ShouldSplit && !SplitAllCriticalEdges) 628 continue; 629 if (!PreMBB->SplitCriticalEdge(&MBB, *this)) { 630 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n"); 631 continue; 632 } 633 Changed = true; 634 ++NumCriticalEdgesSplit; 635 } 636 } 637 return Changed; 638 } 639 640 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) { 641 assert((LV || LIS) && 642 "isLiveIn() requires either LiveVariables or LiveIntervals"); 643 if (LIS) 644 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 645 else 646 return LV->isLiveIn(Reg, *MBB); 647 } 648 649 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, 650 const MachineBasicBlock *MBB) { 651 assert((LV || LIS) && 652 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 653 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 654 // so that a register used only in a PHI is not live out of the block. In 655 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 656 // in the predecessor basic block, so that a register used only in a PHI is live 657 // out of the block. 658 if (LIS) { 659 const LiveInterval &LI = LIS->getInterval(Reg); 660 for (const MachineBasicBlock *SI : MBB->successors()) 661 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 662 return true; 663 return false; 664 } else { 665 return LV->isLiveOut(Reg, *MBB); 666 } 667 } 668