1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates machine instruction PHI nodes by inserting copy 11 // instructions. This destroys SSA information, but is the desired input for 12 // some register allocators. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "PHIEliminationUtils.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/CodeGen/LiveInterval.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/LiveVariables.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/SlotIndexes.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cassert> 43 #include <iterator> 44 #include <utility> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "phi-node-elimination" 49 50 static cl::opt<bool> 51 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 52 cl::Hidden, cl::desc("Disable critical edge splitting " 53 "during PHI elimination")); 54 55 static cl::opt<bool> 56 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 57 cl::Hidden, cl::desc("Split all critical edges during " 58 "PHI elimination")); 59 60 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 61 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 62 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 63 64 namespace { 65 66 class PHIElimination : public MachineFunctionPass { 67 MachineRegisterInfo *MRI; // Machine register information 68 LiveVariables *LV; 69 LiveIntervals *LIS; 70 71 public: 72 static char ID; // Pass identification, replacement for typeid 73 74 PHIElimination() : MachineFunctionPass(ID) { 75 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 76 } 77 78 bool runOnMachineFunction(MachineFunction &Fn) override; 79 void getAnalysisUsage(AnalysisUsage &AU) const override; 80 81 private: 82 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 83 /// in predecessor basic blocks. 84 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 85 86 void LowerPHINode(MachineBasicBlock &MBB, 87 MachineBasicBlock::iterator LastPHIIt); 88 89 /// analyzePHINodes - Gather information about the PHI nodes in 90 /// here. In particular, we want to map the number of uses of a virtual 91 /// register which is used in a PHI node. We map that to the BB the 92 /// vreg is coming from. This is used later to determine when the vreg 93 /// is killed in the BB. 94 void analyzePHINodes(const MachineFunction& Fn); 95 96 /// Split critical edges where necessary for good coalescer performance. 97 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 98 MachineLoopInfo *MLI); 99 100 // These functions are temporary abstractions around LiveVariables and 101 // LiveIntervals, so they can go away when LiveVariables does. 102 bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB); 103 bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB); 104 105 using BBVRegPair = std::pair<unsigned, unsigned>; 106 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; 107 108 VRegPHIUse VRegPHIUseCount; 109 110 // Defs of PHI sources which are implicit_def. 111 SmallPtrSet<MachineInstr*, 4> ImpDefs; 112 113 // Map reusable lowered PHI node -> incoming join register. 114 using LoweredPHIMap = 115 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>; 116 LoweredPHIMap LoweredPHIs; 117 }; 118 119 } // end anonymous namespace 120 121 STATISTIC(NumLowered, "Number of phis lowered"); 122 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 123 STATISTIC(NumReused, "Number of reused lowered phis"); 124 125 char PHIElimination::ID = 0; 126 127 char& llvm::PHIEliminationID = PHIElimination::ID; 128 129 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, 130 "Eliminate PHI nodes for register allocation", 131 false, false) 132 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 133 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, 134 "Eliminate PHI nodes for register allocation", false, false) 135 136 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 137 AU.addUsedIfAvailable<LiveVariables>(); 138 AU.addPreserved<LiveVariables>(); 139 AU.addPreserved<SlotIndexes>(); 140 AU.addPreserved<LiveIntervals>(); 141 AU.addPreserved<MachineDominatorTree>(); 142 AU.addPreserved<MachineLoopInfo>(); 143 MachineFunctionPass::getAnalysisUsage(AU); 144 } 145 146 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 147 MRI = &MF.getRegInfo(); 148 LV = getAnalysisIfAvailable<LiveVariables>(); 149 LIS = getAnalysisIfAvailable<LiveIntervals>(); 150 151 bool Changed = false; 152 153 // This pass takes the function out of SSA form. 154 MRI->leaveSSA(); 155 156 // Split critical edges to help the coalescer. This does not yet support 157 // updating LiveIntervals, so we disable it. 158 if (!DisableEdgeSplitting && (LV || LIS)) { 159 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 160 for (auto &MBB : MF) 161 Changed |= SplitPHIEdges(MF, MBB, MLI); 162 } 163 164 // Populate VRegPHIUseCount 165 analyzePHINodes(MF); 166 167 // Eliminate PHI instructions by inserting copies into predecessor blocks. 168 for (auto &MBB : MF) 169 Changed |= EliminatePHINodes(MF, MBB); 170 171 // Remove dead IMPLICIT_DEF instructions. 172 for (MachineInstr *DefMI : ImpDefs) { 173 unsigned DefReg = DefMI->getOperand(0).getReg(); 174 if (MRI->use_nodbg_empty(DefReg)) { 175 if (LIS) 176 LIS->RemoveMachineInstrFromMaps(*DefMI); 177 DefMI->eraseFromParent(); 178 } 179 } 180 181 // Clean up the lowered PHI instructions. 182 for (auto &I : LoweredPHIs) { 183 if (LIS) 184 LIS->RemoveMachineInstrFromMaps(*I.first); 185 MF.DeleteMachineInstr(I.first); 186 } 187 188 LoweredPHIs.clear(); 189 ImpDefs.clear(); 190 VRegPHIUseCount.clear(); 191 192 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 193 194 return Changed; 195 } 196 197 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 198 /// predecessor basic blocks. 199 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 200 MachineBasicBlock &MBB) { 201 if (MBB.empty() || !MBB.front().isPHI()) 202 return false; // Quick exit for basic blocks without PHIs. 203 204 // Get an iterator to the first instruction after the last PHI node (this may 205 // also be the end of the basic block). 206 MachineBasicBlock::iterator LastPHIIt = 207 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 208 209 while (MBB.front().isPHI()) 210 LowerPHINode(MBB, LastPHIIt); 211 212 return true; 213 } 214 215 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs. 216 /// This includes registers with no defs. 217 static bool isImplicitlyDefined(unsigned VirtReg, 218 const MachineRegisterInfo *MRI) { 219 for (MachineInstr &DI : MRI->def_instructions(VirtReg)) 220 if (!DI.isImplicitDef()) 221 return false; 222 return true; 223 } 224 225 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node 226 /// are implicit_def's. 227 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, 228 const MachineRegisterInfo *MRI) { 229 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 230 if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI)) 231 return false; 232 return true; 233 } 234 235 /// LowerPHINode - Lower the PHI node at the top of the specified block. 236 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 237 MachineBasicBlock::iterator LastPHIIt) { 238 ++NumLowered; 239 240 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 241 242 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 243 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 244 245 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 246 unsigned DestReg = MPhi->getOperand(0).getReg(); 247 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 248 bool isDead = MPhi->getOperand(0).isDead(); 249 250 // Create a new register for the incoming PHI arguments. 251 MachineFunction &MF = *MBB.getParent(); 252 unsigned IncomingReg = 0; 253 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 254 255 // Insert a register to register copy at the top of the current block (but 256 // after any remaining phi nodes) which copies the new incoming register 257 // into the phi node destination. 258 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 259 if (isSourceDefinedByImplicitDef(MPhi, MRI)) 260 // If all sources of a PHI node are implicit_def, just emit an 261 // implicit_def instead of a copy. 262 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 263 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 264 else { 265 // Can we reuse an earlier PHI node? This only happens for critical edges, 266 // typically those created by tail duplication. 267 unsigned &entry = LoweredPHIs[MPhi]; 268 if (entry) { 269 // An identical PHI node was already lowered. Reuse the incoming register. 270 IncomingReg = entry; 271 reusedIncoming = true; 272 ++NumReused; 273 DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " << *MPhi); 274 } else { 275 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 276 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 277 } 278 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 279 TII->get(TargetOpcode::COPY), DestReg) 280 .addReg(IncomingReg); 281 } 282 283 // Update live variable information if there is any. 284 if (LV) { 285 MachineInstr &PHICopy = *std::prev(AfterPHIsIt); 286 287 if (IncomingReg) { 288 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 289 290 // Increment use count of the newly created virtual register. 291 LV->setPHIJoin(IncomingReg); 292 293 // When we are reusing the incoming register, it may already have been 294 // killed in this block. The old kill will also have been inserted at 295 // AfterPHIsIt, so it appears before the current PHICopy. 296 if (reusedIncoming) 297 if (MachineInstr *OldKill = VI.findKill(&MBB)) { 298 DEBUG(dbgs() << "Remove old kill from " << *OldKill); 299 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 300 DEBUG(MBB.dump()); 301 } 302 303 // Add information to LiveVariables to know that the incoming value is 304 // killed. Note that because the value is defined in several places (once 305 // each for each incoming block), the "def" block and instruction fields 306 // for the VarInfo is not filled in. 307 LV->addVirtualRegisterKilled(IncomingReg, PHICopy); 308 } 309 310 // Since we are going to be deleting the PHI node, if it is the last use of 311 // any registers, or if the value itself is dead, we need to move this 312 // information over to the new copy we just inserted. 313 LV->removeVirtualRegistersKilled(*MPhi); 314 315 // If the result is dead, update LV. 316 if (isDead) { 317 LV->addVirtualRegisterDead(DestReg, PHICopy); 318 LV->removeVirtualRegisterDead(DestReg, *MPhi); 319 } 320 } 321 322 // Update LiveIntervals for the new copy or implicit def. 323 if (LIS) { 324 SlotIndex DestCopyIndex = 325 LIS->InsertMachineInstrInMaps(*std::prev(AfterPHIsIt)); 326 327 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 328 if (IncomingReg) { 329 // Add the region from the beginning of MBB to the copy instruction to 330 // IncomingReg's live interval. 331 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); 332 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 333 if (!IncomingVNI) 334 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 335 LIS->getVNInfoAllocator()); 336 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 337 DestCopyIndex.getRegSlot(), 338 IncomingVNI)); 339 } 340 341 LiveInterval &DestLI = LIS->getInterval(DestReg); 342 assert(DestLI.begin() != DestLI.end() && 343 "PHIs should have nonempty LiveIntervals."); 344 if (DestLI.endIndex().isDead()) { 345 // A dead PHI's live range begins and ends at the start of the MBB, but 346 // the lowered copy, which will still be dead, needs to begin and end at 347 // the copy instruction. 348 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); 349 assert(OrigDestVNI && "PHI destination should be live at block entry."); 350 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); 351 DestLI.createDeadDef(DestCopyIndex.getRegSlot(), 352 LIS->getVNInfoAllocator()); 353 DestLI.removeValNo(OrigDestVNI); 354 } else { 355 // Otherwise, remove the region from the beginning of MBB to the copy 356 // instruction from DestReg's live interval. 357 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); 358 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); 359 assert(DestVNI && "PHI destination should be live at its definition."); 360 DestVNI->def = DestCopyIndex.getRegSlot(); 361 } 362 } 363 364 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 365 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 366 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), 367 MPhi->getOperand(i).getReg())]; 368 369 // Now loop over all of the incoming arguments, changing them to copy into the 370 // IncomingReg register in the corresponding predecessor basic block. 371 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 372 for (int i = NumSrcs - 1; i >= 0; --i) { 373 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); 374 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 375 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 376 isImplicitlyDefined(SrcReg, MRI); 377 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && 378 "Machine PHI Operands must all be virtual registers!"); 379 380 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 381 // path the PHI. 382 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 383 384 // Check to make sure we haven't already emitted the copy for this block. 385 // This can happen because PHI nodes may have multiple entries for the same 386 // basic block. 387 if (!MBBsInsertedInto.insert(&opBlock).second) 388 continue; // If the copy has already been emitted, we're done. 389 390 // Find a safe location to insert the copy, this may be the first terminator 391 // in the block (or end()). 392 MachineBasicBlock::iterator InsertPos = 393 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 394 395 // Insert the copy. 396 MachineInstr *NewSrcInstr = nullptr; 397 if (!reusedIncoming && IncomingReg) { 398 if (SrcUndef) { 399 // The source register is undefined, so there is no need for a real 400 // COPY, but we still need to ensure joint dominance by defs. 401 // Insert an IMPLICIT_DEF instruction. 402 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 403 TII->get(TargetOpcode::IMPLICIT_DEF), 404 IncomingReg); 405 406 // Clean up the old implicit-def, if there even was one. 407 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 408 if (DefMI->isImplicitDef()) 409 ImpDefs.insert(DefMI); 410 } else { 411 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 412 TII->get(TargetOpcode::COPY), IncomingReg) 413 .addReg(SrcReg, 0, SrcSubReg); 414 } 415 } 416 417 // We only need to update the LiveVariables kill of SrcReg if this was the 418 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 419 // out of the predecessor. We can also ignore undef sources. 420 if (LV && !SrcUndef && 421 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 422 !LV->isLiveOut(SrcReg, opBlock)) { 423 // We want to be able to insert a kill of the register if this PHI (aka, 424 // the copy we just inserted) is the last use of the source value. Live 425 // variable analysis conservatively handles this by saying that the value 426 // is live until the end of the block the PHI entry lives in. If the value 427 // really is dead at the PHI copy, there will be no successor blocks which 428 // have the value live-in. 429 430 // Okay, if we now know that the value is not live out of the block, we 431 // can add a kill marker in this block saying that it kills the incoming 432 // value! 433 434 // In our final twist, we have to decide which instruction kills the 435 // register. In most cases this is the copy, however, terminator 436 // instructions at the end of the block may also use the value. In this 437 // case, we should mark the last such terminator as being the killing 438 // block, not the copy. 439 MachineBasicBlock::iterator KillInst = opBlock.end(); 440 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 441 for (MachineBasicBlock::iterator Term = FirstTerm; 442 Term != opBlock.end(); ++Term) { 443 if (Term->readsRegister(SrcReg)) 444 KillInst = Term; 445 } 446 447 if (KillInst == opBlock.end()) { 448 // No terminator uses the register. 449 450 if (reusedIncoming || !IncomingReg) { 451 // We may have to rewind a bit if we didn't insert a copy this time. 452 KillInst = FirstTerm; 453 while (KillInst != opBlock.begin()) { 454 --KillInst; 455 if (KillInst->isDebugValue()) 456 continue; 457 if (KillInst->readsRegister(SrcReg)) 458 break; 459 } 460 } else { 461 // We just inserted this copy. 462 KillInst = std::prev(InsertPos); 463 } 464 } 465 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 466 467 // Finally, mark it killed. 468 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 469 470 // This vreg no longer lives all of the way through opBlock. 471 unsigned opBlockNum = opBlock.getNumber(); 472 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 473 } 474 475 if (LIS) { 476 if (NewSrcInstr) { 477 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 478 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 479 } 480 481 if (!SrcUndef && 482 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 483 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 484 485 bool isLiveOut = false; 486 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), 487 SE = opBlock.succ_end(); SI != SE; ++SI) { 488 SlotIndex startIdx = LIS->getMBBStartIdx(*SI); 489 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 490 491 // Definitions by other PHIs are not truly live-in for our purposes. 492 if (VNI && VNI->def != startIdx) { 493 isLiveOut = true; 494 break; 495 } 496 } 497 498 if (!isLiveOut) { 499 MachineBasicBlock::iterator KillInst = opBlock.end(); 500 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 501 for (MachineBasicBlock::iterator Term = FirstTerm; 502 Term != opBlock.end(); ++Term) { 503 if (Term->readsRegister(SrcReg)) 504 KillInst = Term; 505 } 506 507 if (KillInst == opBlock.end()) { 508 // No terminator uses the register. 509 510 if (reusedIncoming || !IncomingReg) { 511 // We may have to rewind a bit if we didn't just insert a copy. 512 KillInst = FirstTerm; 513 while (KillInst != opBlock.begin()) { 514 --KillInst; 515 if (KillInst->isDebugValue()) 516 continue; 517 if (KillInst->readsRegister(SrcReg)) 518 break; 519 } 520 } else { 521 // We just inserted this copy. 522 KillInst = std::prev(InsertPos); 523 } 524 } 525 assert(KillInst->readsRegister(SrcReg) && 526 "Cannot find kill instruction"); 527 528 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 529 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 530 LIS->getMBBEndIdx(&opBlock)); 531 } 532 } 533 } 534 } 535 536 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 537 if (reusedIncoming || !IncomingReg) { 538 if (LIS) 539 LIS->RemoveMachineInstrFromMaps(*MPhi); 540 MF.DeleteMachineInstr(MPhi); 541 } 542 } 543 544 /// analyzePHINodes - Gather information about the PHI nodes in here. In 545 /// particular, we want to map the number of uses of a virtual register which is 546 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 547 /// used later to determine when the vreg is killed in the BB. 548 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 549 for (const auto &MBB : MF) 550 for (const auto &BBI : MBB) { 551 if (!BBI.isPHI()) 552 break; 553 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) 554 ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(), 555 BBI.getOperand(i).getReg())]; 556 } 557 } 558 559 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 560 MachineBasicBlock &MBB, 561 MachineLoopInfo *MLI) { 562 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 563 return false; // Quick exit for basic blocks without PHIs. 564 565 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 566 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 567 568 bool Changed = false; 569 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 570 BBI != BBE && BBI->isPHI(); ++BBI) { 571 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 572 unsigned Reg = BBI->getOperand(i).getReg(); 573 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 574 // Is there a critical edge from PreMBB to MBB? 575 if (PreMBB->succ_size() == 1) 576 continue; 577 578 // Avoid splitting backedges of loops. It would introduce small 579 // out-of-line blocks into the loop which is very bad for code placement. 580 if (PreMBB == &MBB && !SplitAllCriticalEdges) 581 continue; 582 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 583 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 584 continue; 585 586 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 587 // when the source register is live-out for some other reason than a phi 588 // use. That means the copy we will insert in PreMBB won't be a kill, and 589 // there is a risk it may not be coalesced away. 590 // 591 // If the copy would be a kill, there is no need to split the edge. 592 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 593 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 594 continue; 595 if (ShouldSplit) { 596 DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " 597 << printMBBReference(*PreMBB) << " -> " 598 << printMBBReference(MBB) << ": " << *BBI); 599 } 600 601 // If Reg is not live-in to MBB, it means it must be live-in to some 602 // other PreMBB successor, and we can avoid the interference by splitting 603 // the edge. 604 // 605 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 606 // is likely to be left after coalescing. If we are looking at a loop 607 // exiting edge, split it so we won't insert code in the loop, otherwise 608 // don't bother. 609 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 610 611 // Check for a loop exiting edge. 612 if (!ShouldSplit && CurLoop != PreLoop) { 613 DEBUG({ 614 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 615 if (PreLoop) dbgs() << "PreLoop: " << *PreLoop; 616 if (CurLoop) dbgs() << "CurLoop: " << *CurLoop; 617 }); 618 // This edge could be entering a loop, exiting a loop, or it could be 619 // both: Jumping directly form one loop to the header of a sibling 620 // loop. 621 // Split unless this edge is entering CurLoop from an outer loop. 622 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 623 } 624 if (!ShouldSplit && !SplitAllCriticalEdges) 625 continue; 626 if (!PreMBB->SplitCriticalEdge(&MBB, *this)) { 627 DEBUG(dbgs() << "Failed to split critical edge.\n"); 628 continue; 629 } 630 Changed = true; 631 ++NumCriticalEdgesSplit; 632 } 633 } 634 return Changed; 635 } 636 637 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) { 638 assert((LV || LIS) && 639 "isLiveIn() requires either LiveVariables or LiveIntervals"); 640 if (LIS) 641 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 642 else 643 return LV->isLiveIn(Reg, *MBB); 644 } 645 646 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, 647 const MachineBasicBlock *MBB) { 648 assert((LV || LIS) && 649 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 650 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 651 // so that a register used only in a PHI is not live out of the block. In 652 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 653 // in the predecessor basic block, so that a register used only in a PHI is live 654 // out of the block. 655 if (LIS) { 656 const LiveInterval &LI = LIS->getInterval(Reg); 657 for (const MachineBasicBlock *SI : MBB->successors()) 658 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 659 return true; 660 return false; 661 } else { 662 return LV->isLiveOut(Reg, *MBB); 663 } 664 } 665