1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates machine instruction PHI nodes by inserting copy 10 // instructions. This destroys SSA information, but is the desired input for 11 // some register allocators. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PHIEliminationUtils.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/CodeGen/LiveInterval.h" 21 #include "llvm/CodeGen/LiveIntervals.h" 22 #include "llvm/CodeGen/LiveVariables.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SlotIndexes.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cassert> 44 #include <iterator> 45 #include <utility> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "phi-node-elimination" 50 51 static cl::opt<bool> 52 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 53 cl::Hidden, cl::desc("Disable critical edge splitting " 54 "during PHI elimination")); 55 56 static cl::opt<bool> 57 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 58 cl::Hidden, cl::desc("Split all critical edges during " 59 "PHI elimination")); 60 61 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 62 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 63 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 64 65 namespace { 66 67 class PHIElimination : public MachineFunctionPass { 68 MachineRegisterInfo *MRI; // Machine register information 69 LiveVariables *LV; 70 LiveIntervals *LIS; 71 72 public: 73 static char ID; // Pass identification, replacement for typeid 74 75 PHIElimination() : MachineFunctionPass(ID) { 76 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 77 } 78 79 bool runOnMachineFunction(MachineFunction &MF) override; 80 void getAnalysisUsage(AnalysisUsage &AU) const override; 81 82 private: 83 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 84 /// in predecessor basic blocks. 85 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 86 87 void LowerPHINode(MachineBasicBlock &MBB, 88 MachineBasicBlock::iterator LastPHIIt); 89 90 /// analyzePHINodes - Gather information about the PHI nodes in 91 /// here. In particular, we want to map the number of uses of a virtual 92 /// register which is used in a PHI node. We map that to the BB the 93 /// vreg is coming from. This is used later to determine when the vreg 94 /// is killed in the BB. 95 void analyzePHINodes(const MachineFunction& MF); 96 97 /// Split critical edges where necessary for good coalescer performance. 98 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 99 MachineLoopInfo *MLI, 100 std::vector<SparseBitVector<>> *LiveInSets); 101 102 // These functions are temporary abstractions around LiveVariables and 103 // LiveIntervals, so they can go away when LiveVariables does. 104 bool isLiveIn(Register Reg, const MachineBasicBlock *MBB); 105 bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB); 106 107 using BBVRegPair = std::pair<unsigned, Register>; 108 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; 109 110 VRegPHIUse VRegPHIUseCount; 111 112 // Defs of PHI sources which are implicit_def. 113 SmallPtrSet<MachineInstr*, 4> ImpDefs; 114 115 // Map reusable lowered PHI node -> incoming join register. 116 using LoweredPHIMap = 117 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>; 118 LoweredPHIMap LoweredPHIs; 119 }; 120 121 } // end anonymous namespace 122 123 STATISTIC(NumLowered, "Number of phis lowered"); 124 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 125 STATISTIC(NumReused, "Number of reused lowered phis"); 126 127 char PHIElimination::ID = 0; 128 129 char& llvm::PHIEliminationID = PHIElimination::ID; 130 131 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, 132 "Eliminate PHI nodes for register allocation", 133 false, false) 134 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 135 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, 136 "Eliminate PHI nodes for register allocation", false, false) 137 138 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 139 AU.addUsedIfAvailable<LiveVariables>(); 140 AU.addPreserved<LiveVariables>(); 141 AU.addPreserved<SlotIndexes>(); 142 AU.addPreserved<LiveIntervals>(); 143 AU.addPreserved<MachineDominatorTree>(); 144 AU.addPreserved<MachineLoopInfo>(); 145 MachineFunctionPass::getAnalysisUsage(AU); 146 } 147 148 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 149 MRI = &MF.getRegInfo(); 150 LV = getAnalysisIfAvailable<LiveVariables>(); 151 LIS = getAnalysisIfAvailable<LiveIntervals>(); 152 153 bool Changed = false; 154 155 // Split critical edges to help the coalescer. 156 if (!DisableEdgeSplitting && (LV || LIS)) { 157 // A set of live-in regs for each MBB which is used to update LV 158 // efficiently also with large functions. 159 std::vector<SparseBitVector<>> LiveInSets; 160 if (LV) { 161 LiveInSets.resize(MF.size()); 162 for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) { 163 // Set the bit for this register for each MBB where it is 164 // live-through or live-in (killed). 165 unsigned VirtReg = Register::index2VirtReg(Index); 166 MachineInstr *DefMI = MRI->getVRegDef(VirtReg); 167 if (!DefMI) 168 continue; 169 LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg); 170 SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin(); 171 SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end(); 172 while (AliveBlockItr != EndItr) { 173 unsigned BlockNum = *(AliveBlockItr++); 174 LiveInSets[BlockNum].set(Index); 175 } 176 // The register is live into an MBB in which it is killed but not 177 // defined. See comment for VarInfo in LiveVariables.h. 178 MachineBasicBlock *DefMBB = DefMI->getParent(); 179 if (VI.Kills.size() > 1 || 180 (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB)) 181 for (auto *MI : VI.Kills) 182 LiveInSets[MI->getParent()->getNumber()].set(Index); 183 } 184 } 185 186 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 187 for (auto &MBB : MF) 188 Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr)); 189 } 190 191 // This pass takes the function out of SSA form. 192 MRI->leaveSSA(); 193 194 // Populate VRegPHIUseCount 195 analyzePHINodes(MF); 196 197 // Eliminate PHI instructions by inserting copies into predecessor blocks. 198 for (auto &MBB : MF) 199 Changed |= EliminatePHINodes(MF, MBB); 200 201 // Remove dead IMPLICIT_DEF instructions. 202 for (MachineInstr *DefMI : ImpDefs) { 203 Register DefReg = DefMI->getOperand(0).getReg(); 204 if (MRI->use_nodbg_empty(DefReg)) { 205 if (LIS) 206 LIS->RemoveMachineInstrFromMaps(*DefMI); 207 DefMI->eraseFromParent(); 208 } 209 } 210 211 // Clean up the lowered PHI instructions. 212 for (auto &I : LoweredPHIs) { 213 if (LIS) 214 LIS->RemoveMachineInstrFromMaps(*I.first); 215 MF.DeleteMachineInstr(I.first); 216 } 217 218 // TODO: we should use the incremental DomTree updater here. 219 if (Changed) 220 if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>()) 221 MDT->getBase().recalculate(MF); 222 223 LoweredPHIs.clear(); 224 ImpDefs.clear(); 225 VRegPHIUseCount.clear(); 226 227 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 228 229 return Changed; 230 } 231 232 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 233 /// predecessor basic blocks. 234 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 235 MachineBasicBlock &MBB) { 236 if (MBB.empty() || !MBB.front().isPHI()) 237 return false; // Quick exit for basic blocks without PHIs. 238 239 // Get an iterator to the last PHI node. 240 MachineBasicBlock::iterator LastPHIIt = 241 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 242 243 while (MBB.front().isPHI()) 244 LowerPHINode(MBB, LastPHIIt); 245 246 return true; 247 } 248 249 /// Return true if all defs of VirtReg are implicit-defs. 250 /// This includes registers with no defs. 251 static bool isImplicitlyDefined(unsigned VirtReg, 252 const MachineRegisterInfo &MRI) { 253 for (MachineInstr &DI : MRI.def_instructions(VirtReg)) 254 if (!DI.isImplicitDef()) 255 return false; 256 return true; 257 } 258 259 /// Return true if all sources of the phi node are implicit_def's, or undef's. 260 static bool allPhiOperandsUndefined(const MachineInstr &MPhi, 261 const MachineRegisterInfo &MRI) { 262 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { 263 const MachineOperand &MO = MPhi.getOperand(I); 264 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef()) 265 return false; 266 } 267 return true; 268 } 269 /// LowerPHINode - Lower the PHI node at the top of the specified block. 270 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 271 MachineBasicBlock::iterator LastPHIIt) { 272 ++NumLowered; 273 274 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 275 276 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 277 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 278 279 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 280 Register DestReg = MPhi->getOperand(0).getReg(); 281 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 282 bool isDead = MPhi->getOperand(0).isDead(); 283 284 // Create a new register for the incoming PHI arguments. 285 MachineFunction &MF = *MBB.getParent(); 286 unsigned IncomingReg = 0; 287 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 288 289 // Insert a register to register copy at the top of the current block (but 290 // after any remaining phi nodes) which copies the new incoming register 291 // into the phi node destination. 292 MachineInstr *PHICopy = nullptr; 293 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 294 if (allPhiOperandsUndefined(*MPhi, *MRI)) 295 // If all sources of a PHI node are implicit_def or undef uses, just emit an 296 // implicit_def instead of a copy. 297 PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 298 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 299 else { 300 // Can we reuse an earlier PHI node? This only happens for critical edges, 301 // typically those created by tail duplication. 302 unsigned &entry = LoweredPHIs[MPhi]; 303 if (entry) { 304 // An identical PHI node was already lowered. Reuse the incoming register. 305 IncomingReg = entry; 306 reusedIncoming = true; 307 ++NumReused; 308 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " 309 << *MPhi); 310 } else { 311 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 312 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 313 } 314 // Give the target possiblity to handle special cases fallthrough otherwise 315 PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 316 IncomingReg, DestReg); 317 } 318 319 // Update live variable information if there is any. 320 if (LV) { 321 if (IncomingReg) { 322 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 323 324 // Increment use count of the newly created virtual register. 325 LV->setPHIJoin(IncomingReg); 326 327 MachineInstr *OldKill = nullptr; 328 bool IsPHICopyAfterOldKill = false; 329 330 if (reusedIncoming && (OldKill = VI.findKill(&MBB))) { 331 // Calculate whether the PHICopy is after the OldKill. 332 // In general, the PHICopy is inserted as the first non-phi instruction 333 // by default, so it's before the OldKill. But some Target hooks for 334 // createPHIDestinationCopy() may modify the default insert position of 335 // PHICopy. 336 for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end(); 337 I != E; ++I) { 338 if (I == PHICopy) 339 break; 340 341 if (I == OldKill) { 342 IsPHICopyAfterOldKill = true; 343 break; 344 } 345 } 346 } 347 348 // When we are reusing the incoming register and it has been marked killed 349 // by OldKill, if the PHICopy is after the OldKill, we should remove the 350 // killed flag from OldKill. 351 if (IsPHICopyAfterOldKill) { 352 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); 353 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 354 LLVM_DEBUG(MBB.dump()); 355 } 356 357 // Add information to LiveVariables to know that the first used incoming 358 // value or the resued incoming value whose PHICopy is after the OldKIll 359 // is killed. Note that because the value is defined in several places 360 // (once each for each incoming block), the "def" block and instruction 361 // fields for the VarInfo is not filled in. 362 if (!OldKill || IsPHICopyAfterOldKill) 363 LV->addVirtualRegisterKilled(IncomingReg, *PHICopy); 364 } 365 366 // Since we are going to be deleting the PHI node, if it is the last use of 367 // any registers, or if the value itself is dead, we need to move this 368 // information over to the new copy we just inserted. 369 LV->removeVirtualRegistersKilled(*MPhi); 370 371 // If the result is dead, update LV. 372 if (isDead) { 373 LV->addVirtualRegisterDead(DestReg, *PHICopy); 374 LV->removeVirtualRegisterDead(DestReg, *MPhi); 375 } 376 } 377 378 // Update LiveIntervals for the new copy or implicit def. 379 if (LIS) { 380 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy); 381 382 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 383 if (IncomingReg) { 384 // Add the region from the beginning of MBB to the copy instruction to 385 // IncomingReg's live interval. 386 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); 387 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 388 if (!IncomingVNI) 389 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 390 LIS->getVNInfoAllocator()); 391 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 392 DestCopyIndex.getRegSlot(), 393 IncomingVNI)); 394 } 395 396 LiveInterval &DestLI = LIS->getInterval(DestReg); 397 assert(DestLI.begin() != DestLI.end() && 398 "PHIs should have nonempty LiveIntervals."); 399 if (DestLI.endIndex().isDead()) { 400 // A dead PHI's live range begins and ends at the start of the MBB, but 401 // the lowered copy, which will still be dead, needs to begin and end at 402 // the copy instruction. 403 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); 404 assert(OrigDestVNI && "PHI destination should be live at block entry."); 405 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); 406 DestLI.createDeadDef(DestCopyIndex.getRegSlot(), 407 LIS->getVNInfoAllocator()); 408 DestLI.removeValNo(OrigDestVNI); 409 } else { 410 // Otherwise, remove the region from the beginning of MBB to the copy 411 // instruction from DestReg's live interval. 412 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); 413 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); 414 assert(DestVNI && "PHI destination should be live at its definition."); 415 DestVNI->def = DestCopyIndex.getRegSlot(); 416 } 417 } 418 419 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 420 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 421 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), 422 MPhi->getOperand(i).getReg())]; 423 424 // Now loop over all of the incoming arguments, changing them to copy into the 425 // IncomingReg register in the corresponding predecessor basic block. 426 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 427 for (int i = NumSrcs - 1; i >= 0; --i) { 428 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg(); 429 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 430 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 431 isImplicitlyDefined(SrcReg, *MRI); 432 assert(Register::isVirtualRegister(SrcReg) && 433 "Machine PHI Operands must all be virtual registers!"); 434 435 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 436 // path the PHI. 437 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 438 439 // Check to make sure we haven't already emitted the copy for this block. 440 // This can happen because PHI nodes may have multiple entries for the same 441 // basic block. 442 if (!MBBsInsertedInto.insert(&opBlock).second) 443 continue; // If the copy has already been emitted, we're done. 444 445 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); 446 if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) { 447 assert(SrcRegDef->getOperand(0).isReg() && 448 SrcRegDef->getOperand(0).isDef() && 449 "Expected operand 0 to be a reg def!"); 450 // Now that the PHI's use has been removed (as the instruction was 451 // removed) there should be no other uses of the SrcReg. 452 assert(MRI->use_empty(SrcReg) && 453 "Expected a single use from UnspillableTerminator"); 454 SrcRegDef->getOperand(0).setReg(IncomingReg); 455 continue; 456 } 457 458 // Find a safe location to insert the copy, this may be the first terminator 459 // in the block (or end()). 460 MachineBasicBlock::iterator InsertPos = 461 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 462 463 // Insert the copy. 464 MachineInstr *NewSrcInstr = nullptr; 465 if (!reusedIncoming && IncomingReg) { 466 if (SrcUndef) { 467 // The source register is undefined, so there is no need for a real 468 // COPY, but we still need to ensure joint dominance by defs. 469 // Insert an IMPLICIT_DEF instruction. 470 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 471 TII->get(TargetOpcode::IMPLICIT_DEF), 472 IncomingReg); 473 474 // Clean up the old implicit-def, if there even was one. 475 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 476 if (DefMI->isImplicitDef()) 477 ImpDefs.insert(DefMI); 478 } else { 479 NewSrcInstr = 480 TII->createPHISourceCopy(opBlock, InsertPos, MPhi->getDebugLoc(), 481 SrcReg, SrcSubReg, IncomingReg); 482 } 483 } 484 485 // We only need to update the LiveVariables kill of SrcReg if this was the 486 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 487 // out of the predecessor. We can also ignore undef sources. 488 if (LV && !SrcUndef && 489 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 490 !LV->isLiveOut(SrcReg, opBlock)) { 491 // We want to be able to insert a kill of the register if this PHI (aka, 492 // the copy we just inserted) is the last use of the source value. Live 493 // variable analysis conservatively handles this by saying that the value 494 // is live until the end of the block the PHI entry lives in. If the value 495 // really is dead at the PHI copy, there will be no successor blocks which 496 // have the value live-in. 497 498 // Okay, if we now know that the value is not live out of the block, we 499 // can add a kill marker in this block saying that it kills the incoming 500 // value! 501 502 // In our final twist, we have to decide which instruction kills the 503 // register. In most cases this is the copy, however, terminator 504 // instructions at the end of the block may also use the value. In this 505 // case, we should mark the last such terminator as being the killing 506 // block, not the copy. 507 MachineBasicBlock::iterator KillInst = opBlock.end(); 508 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 509 for (MachineBasicBlock::iterator Term = FirstTerm; 510 Term != opBlock.end(); ++Term) { 511 if (Term->readsRegister(SrcReg)) 512 KillInst = Term; 513 } 514 515 if (KillInst == opBlock.end()) { 516 // No terminator uses the register. 517 518 if (reusedIncoming || !IncomingReg) { 519 // We may have to rewind a bit if we didn't insert a copy this time. 520 KillInst = FirstTerm; 521 while (KillInst != opBlock.begin()) { 522 --KillInst; 523 if (KillInst->isDebugInstr()) 524 continue; 525 if (KillInst->readsRegister(SrcReg)) 526 break; 527 } 528 } else { 529 // We just inserted this copy. 530 KillInst = NewSrcInstr; 531 } 532 } 533 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 534 535 // Finally, mark it killed. 536 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 537 538 // This vreg no longer lives all of the way through opBlock. 539 unsigned opBlockNum = opBlock.getNumber(); 540 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 541 } 542 543 if (LIS) { 544 if (NewSrcInstr) { 545 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 546 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 547 } 548 549 if (!SrcUndef && 550 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 551 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 552 553 bool isLiveOut = false; 554 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), 555 SE = opBlock.succ_end(); SI != SE; ++SI) { 556 SlotIndex startIdx = LIS->getMBBStartIdx(*SI); 557 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 558 559 // Definitions by other PHIs are not truly live-in for our purposes. 560 if (VNI && VNI->def != startIdx) { 561 isLiveOut = true; 562 break; 563 } 564 } 565 566 if (!isLiveOut) { 567 MachineBasicBlock::iterator KillInst = opBlock.end(); 568 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 569 for (MachineBasicBlock::iterator Term = FirstTerm; 570 Term != opBlock.end(); ++Term) { 571 if (Term->readsRegister(SrcReg)) 572 KillInst = Term; 573 } 574 575 if (KillInst == opBlock.end()) { 576 // No terminator uses the register. 577 578 if (reusedIncoming || !IncomingReg) { 579 // We may have to rewind a bit if we didn't just insert a copy. 580 KillInst = FirstTerm; 581 while (KillInst != opBlock.begin()) { 582 --KillInst; 583 if (KillInst->isDebugInstr()) 584 continue; 585 if (KillInst->readsRegister(SrcReg)) 586 break; 587 } 588 } else { 589 // We just inserted this copy. 590 KillInst = std::prev(InsertPos); 591 } 592 } 593 assert(KillInst->readsRegister(SrcReg) && 594 "Cannot find kill instruction"); 595 596 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 597 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 598 LIS->getMBBEndIdx(&opBlock)); 599 } 600 } 601 } 602 } 603 604 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 605 if (reusedIncoming || !IncomingReg) { 606 if (LIS) 607 LIS->RemoveMachineInstrFromMaps(*MPhi); 608 MF.DeleteMachineInstr(MPhi); 609 } 610 } 611 612 /// analyzePHINodes - Gather information about the PHI nodes in here. In 613 /// particular, we want to map the number of uses of a virtual register which is 614 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 615 /// used later to determine when the vreg is killed in the BB. 616 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 617 for (const auto &MBB : MF) 618 for (const auto &BBI : MBB) { 619 if (!BBI.isPHI()) 620 break; 621 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) 622 ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(), 623 BBI.getOperand(i).getReg())]; 624 } 625 } 626 627 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 628 MachineBasicBlock &MBB, 629 MachineLoopInfo *MLI, 630 std::vector<SparseBitVector<>> *LiveInSets) { 631 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 632 return false; // Quick exit for basic blocks without PHIs. 633 634 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 635 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 636 637 bool Changed = false; 638 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 639 BBI != BBE && BBI->isPHI(); ++BBI) { 640 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 641 Register Reg = BBI->getOperand(i).getReg(); 642 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 643 // Is there a critical edge from PreMBB to MBB? 644 if (PreMBB->succ_size() == 1) 645 continue; 646 647 // Avoid splitting backedges of loops. It would introduce small 648 // out-of-line blocks into the loop which is very bad for code placement. 649 if (PreMBB == &MBB && !SplitAllCriticalEdges) 650 continue; 651 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 652 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 653 continue; 654 655 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 656 // when the source register is live-out for some other reason than a phi 657 // use. That means the copy we will insert in PreMBB won't be a kill, and 658 // there is a risk it may not be coalesced away. 659 // 660 // If the copy would be a kill, there is no need to split the edge. 661 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 662 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 663 continue; 664 if (ShouldSplit) { 665 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " 666 << printMBBReference(*PreMBB) << " -> " 667 << printMBBReference(MBB) << ": " << *BBI); 668 } 669 670 // If Reg is not live-in to MBB, it means it must be live-in to some 671 // other PreMBB successor, and we can avoid the interference by splitting 672 // the edge. 673 // 674 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 675 // is likely to be left after coalescing. If we are looking at a loop 676 // exiting edge, split it so we won't insert code in the loop, otherwise 677 // don't bother. 678 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 679 680 // Check for a loop exiting edge. 681 if (!ShouldSplit && CurLoop != PreLoop) { 682 LLVM_DEBUG({ 683 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 684 if (PreLoop) 685 dbgs() << "PreLoop: " << *PreLoop; 686 if (CurLoop) 687 dbgs() << "CurLoop: " << *CurLoop; 688 }); 689 // This edge could be entering a loop, exiting a loop, or it could be 690 // both: Jumping directly form one loop to the header of a sibling 691 // loop. 692 // Split unless this edge is entering CurLoop from an outer loop. 693 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 694 } 695 if (!ShouldSplit && !SplitAllCriticalEdges) 696 continue; 697 if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) { 698 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n"); 699 continue; 700 } 701 Changed = true; 702 ++NumCriticalEdgesSplit; 703 } 704 } 705 return Changed; 706 } 707 708 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) { 709 assert((LV || LIS) && 710 "isLiveIn() requires either LiveVariables or LiveIntervals"); 711 if (LIS) 712 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 713 else 714 return LV->isLiveIn(Reg, *MBB); 715 } 716 717 bool PHIElimination::isLiveOutPastPHIs(Register Reg, 718 const MachineBasicBlock *MBB) { 719 assert((LV || LIS) && 720 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 721 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 722 // so that a register used only in a PHI is not live out of the block. In 723 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 724 // in the predecessor basic block, so that a register used only in a PHI is live 725 // out of the block. 726 if (LIS) { 727 const LiveInterval &LI = LIS->getInterval(Reg); 728 for (const MachineBasicBlock *SI : MBB->successors()) 729 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 730 return true; 731 return false; 732 } else { 733 return LV->isLiveOut(Reg, *MBB); 734 } 735 } 736