1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions.  This destroys SSA information, but is the desired input for
11 // some register allocators.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "phi-node-elimination"
50 
51 static cl::opt<bool>
52 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
53                      cl::Hidden, cl::desc("Disable critical edge splitting "
54                                           "during PHI elimination"));
55 
56 static cl::opt<bool>
57 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
58                       cl::Hidden, cl::desc("Split all critical edges during "
59                                            "PHI elimination"));
60 
61 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
62     "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
63     cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
64 
65 namespace {
66 
67   class PHIElimination : public MachineFunctionPass {
68     MachineRegisterInfo *MRI; // Machine register information
69     LiveVariables *LV;
70     LiveIntervals *LIS;
71 
72   public:
73     static char ID; // Pass identification, replacement for typeid
74 
75     PHIElimination() : MachineFunctionPass(ID) {
76       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
77     }
78 
79     bool runOnMachineFunction(MachineFunction &MF) override;
80     void getAnalysisUsage(AnalysisUsage &AU) const override;
81 
82   private:
83     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
84     /// in predecessor basic blocks.
85     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
86 
87     void LowerPHINode(MachineBasicBlock &MBB,
88                       MachineBasicBlock::iterator LastPHIIt);
89 
90     /// analyzePHINodes - Gather information about the PHI nodes in
91     /// here. In particular, we want to map the number of uses of a virtual
92     /// register which is used in a PHI node. We map that to the BB the
93     /// vreg is coming from. This is used later to determine when the vreg
94     /// is killed in the BB.
95     void analyzePHINodes(const MachineFunction& MF);
96 
97     /// Split critical edges where necessary for good coalescer performance.
98     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
99                        MachineLoopInfo *MLI,
100                        std::vector<SparseBitVector<>> *LiveInSets);
101 
102     // These functions are temporary abstractions around LiveVariables and
103     // LiveIntervals, so they can go away when LiveVariables does.
104     bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB);
105     bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB);
106 
107     using BBVRegPair = std::pair<unsigned, unsigned>;
108     using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
109 
110     VRegPHIUse VRegPHIUseCount;
111 
112     // Defs of PHI sources which are implicit_def.
113     SmallPtrSet<MachineInstr*, 4> ImpDefs;
114 
115     // Map reusable lowered PHI node -> incoming join register.
116     using LoweredPHIMap =
117         DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
118     LoweredPHIMap LoweredPHIs;
119   };
120 
121 } // end anonymous namespace
122 
123 STATISTIC(NumLowered, "Number of phis lowered");
124 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
125 STATISTIC(NumReused, "Number of reused lowered phis");
126 
127 char PHIElimination::ID = 0;
128 
129 char& llvm::PHIEliminationID = PHIElimination::ID;
130 
131 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
132                       "Eliminate PHI nodes for register allocation",
133                       false, false)
134 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
135 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
136                     "Eliminate PHI nodes for register allocation", false, false)
137 
138 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
139   AU.addUsedIfAvailable<LiveVariables>();
140   AU.addPreserved<LiveVariables>();
141   AU.addPreserved<SlotIndexes>();
142   AU.addPreserved<LiveIntervals>();
143   AU.addPreserved<MachineDominatorTree>();
144   AU.addPreserved<MachineLoopInfo>();
145   MachineFunctionPass::getAnalysisUsage(AU);
146 }
147 
148 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
149   MRI = &MF.getRegInfo();
150   LV = getAnalysisIfAvailable<LiveVariables>();
151   LIS = getAnalysisIfAvailable<LiveIntervals>();
152 
153   bool Changed = false;
154 
155   // Split critical edges to help the coalescer.
156   if (!DisableEdgeSplitting && (LV || LIS)) {
157     // A set of live-in regs for each MBB which is used to update LV
158     // efficiently also with large functions.
159     std::vector<SparseBitVector<>> LiveInSets;
160     if (LV) {
161       LiveInSets.resize(MF.size());
162       for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
163         // Set the bit for this register for each MBB where it is
164         // live-through or live-in (killed).
165         unsigned VirtReg = Register::index2VirtReg(Index);
166         MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
167         if (!DefMI)
168           continue;
169         LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
170         SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
171         SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
172         while (AliveBlockItr != EndItr) {
173           unsigned BlockNum = *(AliveBlockItr++);
174           LiveInSets[BlockNum].set(Index);
175         }
176         // The register is live into an MBB in which it is killed but not
177         // defined. See comment for VarInfo in LiveVariables.h.
178         MachineBasicBlock *DefMBB = DefMI->getParent();
179         if (VI.Kills.size() > 1 ||
180             (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
181           for (auto *MI : VI.Kills)
182             LiveInSets[MI->getParent()->getNumber()].set(Index);
183       }
184     }
185 
186     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
187     for (auto &MBB : MF)
188       Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
189   }
190 
191   // This pass takes the function out of SSA form.
192   MRI->leaveSSA();
193 
194   // Populate VRegPHIUseCount
195   analyzePHINodes(MF);
196 
197   // Eliminate PHI instructions by inserting copies into predecessor blocks.
198   for (auto &MBB : MF)
199     Changed |= EliminatePHINodes(MF, MBB);
200 
201   // Remove dead IMPLICIT_DEF instructions.
202   for (MachineInstr *DefMI : ImpDefs) {
203     Register DefReg = DefMI->getOperand(0).getReg();
204     if (MRI->use_nodbg_empty(DefReg)) {
205       if (LIS)
206         LIS->RemoveMachineInstrFromMaps(*DefMI);
207       DefMI->eraseFromParent();
208     }
209   }
210 
211   // Clean up the lowered PHI instructions.
212   for (auto &I : LoweredPHIs) {
213     if (LIS)
214       LIS->RemoveMachineInstrFromMaps(*I.first);
215     MF.DeleteMachineInstr(I.first);
216   }
217 
218   // TODO: we should use the incremental DomTree updater here.
219   if (Changed)
220     if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
221       MDT->getBase().recalculate(MF);
222 
223   LoweredPHIs.clear();
224   ImpDefs.clear();
225   VRegPHIUseCount.clear();
226 
227   MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
228 
229   return Changed;
230 }
231 
232 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
233 /// predecessor basic blocks.
234 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
235                                        MachineBasicBlock &MBB) {
236   if (MBB.empty() || !MBB.front().isPHI())
237     return false;   // Quick exit for basic blocks without PHIs.
238 
239   // Get an iterator to the last PHI node.
240   MachineBasicBlock::iterator LastPHIIt =
241     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
242 
243   while (MBB.front().isPHI())
244     LowerPHINode(MBB, LastPHIIt);
245 
246   return true;
247 }
248 
249 /// Return true if all defs of VirtReg are implicit-defs.
250 /// This includes registers with no defs.
251 static bool isImplicitlyDefined(unsigned VirtReg,
252                                 const MachineRegisterInfo &MRI) {
253   for (MachineInstr &DI : MRI.def_instructions(VirtReg))
254     if (!DI.isImplicitDef())
255       return false;
256   return true;
257 }
258 
259 /// Return true if all sources of the phi node are implicit_def's, or undef's.
260 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
261                                     const MachineRegisterInfo &MRI) {
262   for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
263     const MachineOperand &MO = MPhi.getOperand(I);
264     if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
265       return false;
266   }
267   return true;
268 }
269 /// LowerPHINode - Lower the PHI node at the top of the specified block.
270 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
271                                   MachineBasicBlock::iterator LastPHIIt) {
272   ++NumLowered;
273 
274   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
275 
276   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
277   MachineInstr *MPhi = MBB.remove(&*MBB.begin());
278 
279   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
280   Register DestReg = MPhi->getOperand(0).getReg();
281   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
282   bool isDead = MPhi->getOperand(0).isDead();
283 
284   // Create a new register for the incoming PHI arguments.
285   MachineFunction &MF = *MBB.getParent();
286   unsigned IncomingReg = 0;
287   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
288 
289   // Insert a register to register copy at the top of the current block (but
290   // after any remaining phi nodes) which copies the new incoming register
291   // into the phi node destination.
292   MachineInstr *PHICopy = nullptr;
293   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
294   if (allPhiOperandsUndefined(*MPhi, *MRI))
295     // If all sources of a PHI node are implicit_def or undef uses, just emit an
296     // implicit_def instead of a copy.
297     PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
298             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
299   else {
300     // Can we reuse an earlier PHI node? This only happens for critical edges,
301     // typically those created by tail duplication.
302     unsigned &entry = LoweredPHIs[MPhi];
303     if (entry) {
304       // An identical PHI node was already lowered. Reuse the incoming register.
305       IncomingReg = entry;
306       reusedIncoming = true;
307       ++NumReused;
308       LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
309                         << *MPhi);
310     } else {
311       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
312       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
313     }
314     // Give the target possiblity to handle special cases fallthrough otherwise
315     PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
316                                   IncomingReg, DestReg);
317   }
318 
319   // Update live variable information if there is any.
320   if (LV) {
321     if (IncomingReg) {
322       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
323 
324       // Increment use count of the newly created virtual register.
325       LV->setPHIJoin(IncomingReg);
326 
327       MachineInstr *OldKill = nullptr;
328       bool IsPHICopyAfterOldKill = false;
329 
330       if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
331         // Calculate whether the PHICopy is after the OldKill.
332         // In general, the PHICopy is inserted as the first non-phi instruction
333         // by default, so it's before the OldKill. But some Target hooks for
334         // createPHIDestinationCopy() may modify the default insert position of
335         // PHICopy.
336         for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end();
337              I != E; ++I) {
338           if (I == PHICopy)
339             break;
340 
341           if (I == OldKill) {
342             IsPHICopyAfterOldKill = true;
343             break;
344           }
345         }
346       }
347 
348       // When we are reusing the incoming register and it has been marked killed
349       // by OldKill, if the PHICopy is after the OldKill, we should remove the
350       // killed flag from OldKill.
351       if (IsPHICopyAfterOldKill) {
352         LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
353         LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
354         LLVM_DEBUG(MBB.dump());
355       }
356 
357       // Add information to LiveVariables to know that the first used incoming
358       // value or the resued incoming value whose PHICopy is after the OldKIll
359       // is killed. Note that because the value is defined in several places
360       // (once each for each incoming block), the "def" block and instruction
361       // fields for the VarInfo is not filled in.
362       if (!OldKill || IsPHICopyAfterOldKill)
363         LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
364     }
365 
366     // Since we are going to be deleting the PHI node, if it is the last use of
367     // any registers, or if the value itself is dead, we need to move this
368     // information over to the new copy we just inserted.
369     LV->removeVirtualRegistersKilled(*MPhi);
370 
371     // If the result is dead, update LV.
372     if (isDead) {
373       LV->addVirtualRegisterDead(DestReg, *PHICopy);
374       LV->removeVirtualRegisterDead(DestReg, *MPhi);
375     }
376   }
377 
378   // Update LiveIntervals for the new copy or implicit def.
379   if (LIS) {
380     SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
381 
382     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
383     if (IncomingReg) {
384       // Add the region from the beginning of MBB to the copy instruction to
385       // IncomingReg's live interval.
386       LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
387       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
388       if (!IncomingVNI)
389         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
390                                               LIS->getVNInfoAllocator());
391       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
392                                                   DestCopyIndex.getRegSlot(),
393                                                   IncomingVNI));
394     }
395 
396     LiveInterval &DestLI = LIS->getInterval(DestReg);
397     assert(DestLI.begin() != DestLI.end() &&
398            "PHIs should have nonempty LiveIntervals.");
399     if (DestLI.endIndex().isDead()) {
400       // A dead PHI's live range begins and ends at the start of the MBB, but
401       // the lowered copy, which will still be dead, needs to begin and end at
402       // the copy instruction.
403       VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
404       assert(OrigDestVNI && "PHI destination should be live at block entry.");
405       DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
406       DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
407                            LIS->getVNInfoAllocator());
408       DestLI.removeValNo(OrigDestVNI);
409     } else {
410       // Otherwise, remove the region from the beginning of MBB to the copy
411       // instruction from DestReg's live interval.
412       DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
413       VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
414       assert(DestVNI && "PHI destination should be live at its definition.");
415       DestVNI->def = DestCopyIndex.getRegSlot();
416     }
417   }
418 
419   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
420   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
421     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
422                                  MPhi->getOperand(i).getReg())];
423 
424   // Now loop over all of the incoming arguments, changing them to copy into the
425   // IncomingReg register in the corresponding predecessor basic block.
426   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
427   for (int i = NumSrcs - 1; i >= 0; --i) {
428     Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
429     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
430     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
431       isImplicitlyDefined(SrcReg, *MRI);
432     assert(Register::isVirtualRegister(SrcReg) &&
433            "Machine PHI Operands must all be virtual registers!");
434 
435     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
436     // path the PHI.
437     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
438 
439     // Check to make sure we haven't already emitted the copy for this block.
440     // This can happen because PHI nodes may have multiple entries for the same
441     // basic block.
442     if (!MBBsInsertedInto.insert(&opBlock).second)
443       continue;  // If the copy has already been emitted, we're done.
444 
445     // Find a safe location to insert the copy, this may be the first terminator
446     // in the block (or end()).
447     MachineBasicBlock::iterator InsertPos =
448       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
449 
450     // Insert the copy.
451     MachineInstr *NewSrcInstr = nullptr;
452     if (!reusedIncoming && IncomingReg) {
453       if (SrcUndef) {
454         // The source register is undefined, so there is no need for a real
455         // COPY, but we still need to ensure joint dominance by defs.
456         // Insert an IMPLICIT_DEF instruction.
457         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
458                               TII->get(TargetOpcode::IMPLICIT_DEF),
459                               IncomingReg);
460 
461         // Clean up the old implicit-def, if there even was one.
462         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
463           if (DefMI->isImplicitDef())
464             ImpDefs.insert(DefMI);
465       } else {
466         NewSrcInstr =
467             TII->createPHISourceCopy(opBlock, InsertPos, MPhi->getDebugLoc(),
468                                      SrcReg, SrcSubReg, IncomingReg);
469       }
470     }
471 
472     // We only need to update the LiveVariables kill of SrcReg if this was the
473     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
474     // out of the predecessor. We can also ignore undef sources.
475     if (LV && !SrcUndef &&
476         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
477         !LV->isLiveOut(SrcReg, opBlock)) {
478       // We want to be able to insert a kill of the register if this PHI (aka,
479       // the copy we just inserted) is the last use of the source value. Live
480       // variable analysis conservatively handles this by saying that the value
481       // is live until the end of the block the PHI entry lives in. If the value
482       // really is dead at the PHI copy, there will be no successor blocks which
483       // have the value live-in.
484 
485       // Okay, if we now know that the value is not live out of the block, we
486       // can add a kill marker in this block saying that it kills the incoming
487       // value!
488 
489       // In our final twist, we have to decide which instruction kills the
490       // register.  In most cases this is the copy, however, terminator
491       // instructions at the end of the block may also use the value. In this
492       // case, we should mark the last such terminator as being the killing
493       // block, not the copy.
494       MachineBasicBlock::iterator KillInst = opBlock.end();
495       MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
496       for (MachineBasicBlock::iterator Term = FirstTerm;
497           Term != opBlock.end(); ++Term) {
498         if (Term->readsRegister(SrcReg))
499           KillInst = Term;
500       }
501 
502       if (KillInst == opBlock.end()) {
503         // No terminator uses the register.
504 
505         if (reusedIncoming || !IncomingReg) {
506           // We may have to rewind a bit if we didn't insert a copy this time.
507           KillInst = FirstTerm;
508           while (KillInst != opBlock.begin()) {
509             --KillInst;
510             if (KillInst->isDebugInstr())
511               continue;
512             if (KillInst->readsRegister(SrcReg))
513               break;
514           }
515         } else {
516           // We just inserted this copy.
517           KillInst = NewSrcInstr;
518         }
519       }
520       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
521 
522       // Finally, mark it killed.
523       LV->addVirtualRegisterKilled(SrcReg, *KillInst);
524 
525       // This vreg no longer lives all of the way through opBlock.
526       unsigned opBlockNum = opBlock.getNumber();
527       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
528     }
529 
530     if (LIS) {
531       if (NewSrcInstr) {
532         LIS->InsertMachineInstrInMaps(*NewSrcInstr);
533         LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
534       }
535 
536       if (!SrcUndef &&
537           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
538         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
539 
540         bool isLiveOut = false;
541         for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
542              SE = opBlock.succ_end(); SI != SE; ++SI) {
543           SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
544           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
545 
546           // Definitions by other PHIs are not truly live-in for our purposes.
547           if (VNI && VNI->def != startIdx) {
548             isLiveOut = true;
549             break;
550           }
551         }
552 
553         if (!isLiveOut) {
554           MachineBasicBlock::iterator KillInst = opBlock.end();
555           MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
556           for (MachineBasicBlock::iterator Term = FirstTerm;
557               Term != opBlock.end(); ++Term) {
558             if (Term->readsRegister(SrcReg))
559               KillInst = Term;
560           }
561 
562           if (KillInst == opBlock.end()) {
563             // No terminator uses the register.
564 
565             if (reusedIncoming || !IncomingReg) {
566               // We may have to rewind a bit if we didn't just insert a copy.
567               KillInst = FirstTerm;
568               while (KillInst != opBlock.begin()) {
569                 --KillInst;
570                 if (KillInst->isDebugInstr())
571                   continue;
572                 if (KillInst->readsRegister(SrcReg))
573                   break;
574               }
575             } else {
576               // We just inserted this copy.
577               KillInst = std::prev(InsertPos);
578             }
579           }
580           assert(KillInst->readsRegister(SrcReg) &&
581                  "Cannot find kill instruction");
582 
583           SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
584           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
585                               LIS->getMBBEndIdx(&opBlock));
586         }
587       }
588     }
589   }
590 
591   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
592   if (reusedIncoming || !IncomingReg) {
593     if (LIS)
594       LIS->RemoveMachineInstrFromMaps(*MPhi);
595     MF.DeleteMachineInstr(MPhi);
596   }
597 }
598 
599 /// analyzePHINodes - Gather information about the PHI nodes in here. In
600 /// particular, we want to map the number of uses of a virtual register which is
601 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
602 /// used later to determine when the vreg is killed in the BB.
603 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
604   for (const auto &MBB : MF)
605     for (const auto &BBI : MBB) {
606       if (!BBI.isPHI())
607         break;
608       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
609         ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
610                                      BBI.getOperand(i).getReg())];
611     }
612 }
613 
614 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
615                                    MachineBasicBlock &MBB,
616                                    MachineLoopInfo *MLI,
617                                    std::vector<SparseBitVector<>> *LiveInSets) {
618   if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
619     return false;   // Quick exit for basic blocks without PHIs.
620 
621   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
622   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
623 
624   bool Changed = false;
625   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
626        BBI != BBE && BBI->isPHI(); ++BBI) {
627     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
628       Register Reg = BBI->getOperand(i).getReg();
629       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
630       // Is there a critical edge from PreMBB to MBB?
631       if (PreMBB->succ_size() == 1)
632         continue;
633 
634       // Avoid splitting backedges of loops. It would introduce small
635       // out-of-line blocks into the loop which is very bad for code placement.
636       if (PreMBB == &MBB && !SplitAllCriticalEdges)
637         continue;
638       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
639       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
640         continue;
641 
642       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
643       // when the source register is live-out for some other reason than a phi
644       // use. That means the copy we will insert in PreMBB won't be a kill, and
645       // there is a risk it may not be coalesced away.
646       //
647       // If the copy would be a kill, there is no need to split the edge.
648       bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
649       if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
650         continue;
651       if (ShouldSplit) {
652         LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
653                           << printMBBReference(*PreMBB) << " -> "
654                           << printMBBReference(MBB) << ": " << *BBI);
655       }
656 
657       // If Reg is not live-in to MBB, it means it must be live-in to some
658       // other PreMBB successor, and we can avoid the interference by splitting
659       // the edge.
660       //
661       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
662       // is likely to be left after coalescing. If we are looking at a loop
663       // exiting edge, split it so we won't insert code in the loop, otherwise
664       // don't bother.
665       ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
666 
667       // Check for a loop exiting edge.
668       if (!ShouldSplit && CurLoop != PreLoop) {
669         LLVM_DEBUG({
670           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
671           if (PreLoop)
672             dbgs() << "PreLoop: " << *PreLoop;
673           if (CurLoop)
674             dbgs() << "CurLoop: " << *CurLoop;
675         });
676         // This edge could be entering a loop, exiting a loop, or it could be
677         // both: Jumping directly form one loop to the header of a sibling
678         // loop.
679         // Split unless this edge is entering CurLoop from an outer loop.
680         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
681       }
682       if (!ShouldSplit && !SplitAllCriticalEdges)
683         continue;
684       if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
685         LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
686         continue;
687       }
688       Changed = true;
689       ++NumCriticalEdgesSplit;
690     }
691   }
692   return Changed;
693 }
694 
695 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) {
696   assert((LV || LIS) &&
697          "isLiveIn() requires either LiveVariables or LiveIntervals");
698   if (LIS)
699     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
700   else
701     return LV->isLiveIn(Reg, *MBB);
702 }
703 
704 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg,
705                                        const MachineBasicBlock *MBB) {
706   assert((LV || LIS) &&
707          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
708   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
709   // so that a register used only in a PHI is not live out of the block. In
710   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
711   // in the predecessor basic block, so that a register used only in a PHI is live
712   // out of the block.
713   if (LIS) {
714     const LiveInterval &LI = LIS->getInterval(Reg);
715     for (const MachineBasicBlock *SI : MBB->successors())
716       if (LI.liveAt(LIS->getMBBStartIdx(SI)))
717         return true;
718     return false;
719   } else {
720     return LV->isLiveOut(Reg, *MBB);
721   }
722 }
723