1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates machine instruction PHI nodes by inserting copy 11 // instructions. This destroys SSA information, but is the desired input for 12 // some register allocators. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "phielim" 17 #include "llvm/CodeGen/Passes.h" 18 #include "PHIEliminationUtils.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 23 #include "llvm/CodeGen/LiveVariables.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineLoopInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Compiler.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <algorithm> 36 using namespace llvm; 37 38 static cl::opt<bool> 39 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 40 cl::Hidden, cl::desc("Disable critical edge splitting " 41 "during PHI elimination")); 42 43 static cl::opt<bool> 44 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 45 cl::Hidden, cl::desc("Split all critical edges during " 46 "PHI elimination")); 47 48 namespace { 49 class PHIElimination : public MachineFunctionPass { 50 MachineRegisterInfo *MRI; // Machine register information 51 LiveVariables *LV; 52 LiveIntervals *LIS; 53 54 public: 55 static char ID; // Pass identification, replacement for typeid 56 PHIElimination() : MachineFunctionPass(ID) { 57 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 58 } 59 60 bool runOnMachineFunction(MachineFunction &Fn) override; 61 void getAnalysisUsage(AnalysisUsage &AU) const override; 62 63 private: 64 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 65 /// in predecessor basic blocks. 66 /// 67 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 68 void LowerPHINode(MachineBasicBlock &MBB, 69 MachineBasicBlock::iterator LastPHIIt); 70 71 /// analyzePHINodes - Gather information about the PHI nodes in 72 /// here. In particular, we want to map the number of uses of a virtual 73 /// register which is used in a PHI node. We map that to the BB the 74 /// vreg is coming from. This is used later to determine when the vreg 75 /// is killed in the BB. 76 /// 77 void analyzePHINodes(const MachineFunction& Fn); 78 79 /// Split critical edges where necessary for good coalescer performance. 80 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 81 MachineLoopInfo *MLI); 82 83 // These functions are temporary abstractions around LiveVariables and 84 // LiveIntervals, so they can go away when LiveVariables does. 85 bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB); 86 bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB); 87 88 typedef std::pair<unsigned, unsigned> BBVRegPair; 89 typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse; 90 91 VRegPHIUse VRegPHIUseCount; 92 93 // Defs of PHI sources which are implicit_def. 94 SmallPtrSet<MachineInstr*, 4> ImpDefs; 95 96 // Map reusable lowered PHI node -> incoming join register. 97 typedef DenseMap<MachineInstr*, unsigned, 98 MachineInstrExpressionTrait> LoweredPHIMap; 99 LoweredPHIMap LoweredPHIs; 100 }; 101 } 102 103 STATISTIC(NumLowered, "Number of phis lowered"); 104 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 105 STATISTIC(NumReused, "Number of reused lowered phis"); 106 107 char PHIElimination::ID = 0; 108 char& llvm::PHIEliminationID = PHIElimination::ID; 109 110 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination", 111 "Eliminate PHI nodes for register allocation", 112 false, false) 113 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 114 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination", 115 "Eliminate PHI nodes for register allocation", false, false) 116 117 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 118 AU.addPreserved<LiveVariables>(); 119 AU.addPreserved<SlotIndexes>(); 120 AU.addPreserved<LiveIntervals>(); 121 AU.addPreserved<MachineDominatorTree>(); 122 AU.addPreserved<MachineLoopInfo>(); 123 MachineFunctionPass::getAnalysisUsage(AU); 124 } 125 126 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 127 MRI = &MF.getRegInfo(); 128 LV = getAnalysisIfAvailable<LiveVariables>(); 129 LIS = getAnalysisIfAvailable<LiveIntervals>(); 130 131 bool Changed = false; 132 133 // This pass takes the function out of SSA form. 134 MRI->leaveSSA(); 135 136 // Split critical edges to help the coalescer. This does not yet support 137 // updating LiveIntervals, so we disable it. 138 if (!DisableEdgeSplitting && (LV || LIS)) { 139 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 140 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) 141 Changed |= SplitPHIEdges(MF, *I, MLI); 142 } 143 144 // Populate VRegPHIUseCount 145 analyzePHINodes(MF); 146 147 // Eliminate PHI instructions by inserting copies into predecessor blocks. 148 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) 149 Changed |= EliminatePHINodes(MF, *I); 150 151 // Remove dead IMPLICIT_DEF instructions. 152 for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(), 153 E = ImpDefs.end(); I != E; ++I) { 154 MachineInstr *DefMI = *I; 155 unsigned DefReg = DefMI->getOperand(0).getReg(); 156 if (MRI->use_nodbg_empty(DefReg)) { 157 if (LIS) 158 LIS->RemoveMachineInstrFromMaps(DefMI); 159 DefMI->eraseFromParent(); 160 } 161 } 162 163 // Clean up the lowered PHI instructions. 164 for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end(); 165 I != E; ++I) { 166 if (LIS) 167 LIS->RemoveMachineInstrFromMaps(I->first); 168 MF.DeleteMachineInstr(I->first); 169 } 170 171 LoweredPHIs.clear(); 172 ImpDefs.clear(); 173 VRegPHIUseCount.clear(); 174 175 return Changed; 176 } 177 178 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 179 /// predecessor basic blocks. 180 /// 181 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 182 MachineBasicBlock &MBB) { 183 if (MBB.empty() || !MBB.front().isPHI()) 184 return false; // Quick exit for basic blocks without PHIs. 185 186 // Get an iterator to the first instruction after the last PHI node (this may 187 // also be the end of the basic block). 188 MachineBasicBlock::iterator LastPHIIt = 189 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 190 191 while (MBB.front().isPHI()) 192 LowerPHINode(MBB, LastPHIIt); 193 194 return true; 195 } 196 197 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs. 198 /// This includes registers with no defs. 199 static bool isImplicitlyDefined(unsigned VirtReg, 200 const MachineRegisterInfo *MRI) { 201 for (MachineInstr &DI : MRI->def_instructions(VirtReg)) 202 if (!DI.isImplicitDef()) 203 return false; 204 return true; 205 } 206 207 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node 208 /// are implicit_def's. 209 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, 210 const MachineRegisterInfo *MRI) { 211 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 212 if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI)) 213 return false; 214 return true; 215 } 216 217 218 /// LowerPHINode - Lower the PHI node at the top of the specified block, 219 /// 220 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 221 MachineBasicBlock::iterator LastPHIIt) { 222 ++NumLowered; 223 224 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 225 226 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 227 MachineInstr *MPhi = MBB.remove(MBB.begin()); 228 229 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 230 unsigned DestReg = MPhi->getOperand(0).getReg(); 231 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 232 bool isDead = MPhi->getOperand(0).isDead(); 233 234 // Create a new register for the incoming PHI arguments. 235 MachineFunction &MF = *MBB.getParent(); 236 unsigned IncomingReg = 0; 237 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 238 239 // Insert a register to register copy at the top of the current block (but 240 // after any remaining phi nodes) which copies the new incoming register 241 // into the phi node destination. 242 const TargetInstrInfo *TII = MF.getTarget().getInstrInfo(); 243 if (isSourceDefinedByImplicitDef(MPhi, MRI)) 244 // If all sources of a PHI node are implicit_def, just emit an 245 // implicit_def instead of a copy. 246 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 247 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 248 else { 249 // Can we reuse an earlier PHI node? This only happens for critical edges, 250 // typically those created by tail duplication. 251 unsigned &entry = LoweredPHIs[MPhi]; 252 if (entry) { 253 // An identical PHI node was already lowered. Reuse the incoming register. 254 IncomingReg = entry; 255 reusedIncoming = true; 256 ++NumReused; 257 DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi); 258 } else { 259 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 260 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 261 } 262 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 263 TII->get(TargetOpcode::COPY), DestReg) 264 .addReg(IncomingReg); 265 } 266 267 // Update live variable information if there is any. 268 if (LV) { 269 MachineInstr *PHICopy = std::prev(AfterPHIsIt); 270 271 if (IncomingReg) { 272 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 273 274 // Increment use count of the newly created virtual register. 275 LV->setPHIJoin(IncomingReg); 276 277 // When we are reusing the incoming register, it may already have been 278 // killed in this block. The old kill will also have been inserted at 279 // AfterPHIsIt, so it appears before the current PHICopy. 280 if (reusedIncoming) 281 if (MachineInstr *OldKill = VI.findKill(&MBB)) { 282 DEBUG(dbgs() << "Remove old kill from " << *OldKill); 283 LV->removeVirtualRegisterKilled(IncomingReg, OldKill); 284 DEBUG(MBB.dump()); 285 } 286 287 // Add information to LiveVariables to know that the incoming value is 288 // killed. Note that because the value is defined in several places (once 289 // each for each incoming block), the "def" block and instruction fields 290 // for the VarInfo is not filled in. 291 LV->addVirtualRegisterKilled(IncomingReg, PHICopy); 292 } 293 294 // Since we are going to be deleting the PHI node, if it is the last use of 295 // any registers, or if the value itself is dead, we need to move this 296 // information over to the new copy we just inserted. 297 LV->removeVirtualRegistersKilled(MPhi); 298 299 // If the result is dead, update LV. 300 if (isDead) { 301 LV->addVirtualRegisterDead(DestReg, PHICopy); 302 LV->removeVirtualRegisterDead(DestReg, MPhi); 303 } 304 } 305 306 // Update LiveIntervals for the new copy or implicit def. 307 if (LIS) { 308 MachineInstr *NewInstr = std::prev(AfterPHIsIt); 309 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr); 310 311 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 312 if (IncomingReg) { 313 // Add the region from the beginning of MBB to the copy instruction to 314 // IncomingReg's live interval. 315 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); 316 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 317 if (!IncomingVNI) 318 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 319 LIS->getVNInfoAllocator()); 320 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 321 DestCopyIndex.getRegSlot(), 322 IncomingVNI)); 323 } 324 325 LiveInterval &DestLI = LIS->getInterval(DestReg); 326 assert(DestLI.begin() != DestLI.end() && 327 "PHIs should have nonempty LiveIntervals."); 328 if (DestLI.endIndex().isDead()) { 329 // A dead PHI's live range begins and ends at the start of the MBB, but 330 // the lowered copy, which will still be dead, needs to begin and end at 331 // the copy instruction. 332 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); 333 assert(OrigDestVNI && "PHI destination should be live at block entry."); 334 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); 335 DestLI.createDeadDef(DestCopyIndex.getRegSlot(), 336 LIS->getVNInfoAllocator()); 337 DestLI.removeValNo(OrigDestVNI); 338 } else { 339 // Otherwise, remove the region from the beginning of MBB to the copy 340 // instruction from DestReg's live interval. 341 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); 342 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); 343 assert(DestVNI && "PHI destination should be live at its definition."); 344 DestVNI->def = DestCopyIndex.getRegSlot(); 345 } 346 } 347 348 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 349 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 350 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), 351 MPhi->getOperand(i).getReg())]; 352 353 // Now loop over all of the incoming arguments, changing them to copy into the 354 // IncomingReg register in the corresponding predecessor basic block. 355 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 356 for (int i = NumSrcs - 1; i >= 0; --i) { 357 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); 358 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 359 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 360 isImplicitlyDefined(SrcReg, MRI); 361 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && 362 "Machine PHI Operands must all be virtual registers!"); 363 364 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 365 // path the PHI. 366 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 367 368 // Check to make sure we haven't already emitted the copy for this block. 369 // This can happen because PHI nodes may have multiple entries for the same 370 // basic block. 371 if (!MBBsInsertedInto.insert(&opBlock)) 372 continue; // If the copy has already been emitted, we're done. 373 374 // Find a safe location to insert the copy, this may be the first terminator 375 // in the block (or end()). 376 MachineBasicBlock::iterator InsertPos = 377 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 378 379 // Insert the copy. 380 MachineInstr *NewSrcInstr = 0; 381 if (!reusedIncoming && IncomingReg) { 382 if (SrcUndef) { 383 // The source register is undefined, so there is no need for a real 384 // COPY, but we still need to ensure joint dominance by defs. 385 // Insert an IMPLICIT_DEF instruction. 386 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 387 TII->get(TargetOpcode::IMPLICIT_DEF), 388 IncomingReg); 389 390 // Clean up the old implicit-def, if there even was one. 391 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 392 if (DefMI->isImplicitDef()) 393 ImpDefs.insert(DefMI); 394 } else { 395 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 396 TII->get(TargetOpcode::COPY), IncomingReg) 397 .addReg(SrcReg, 0, SrcSubReg); 398 } 399 } 400 401 // We only need to update the LiveVariables kill of SrcReg if this was the 402 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 403 // out of the predecessor. We can also ignore undef sources. 404 if (LV && !SrcUndef && 405 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 406 !LV->isLiveOut(SrcReg, opBlock)) { 407 // We want to be able to insert a kill of the register if this PHI (aka, 408 // the copy we just inserted) is the last use of the source value. Live 409 // variable analysis conservatively handles this by saying that the value 410 // is live until the end of the block the PHI entry lives in. If the value 411 // really is dead at the PHI copy, there will be no successor blocks which 412 // have the value live-in. 413 414 // Okay, if we now know that the value is not live out of the block, we 415 // can add a kill marker in this block saying that it kills the incoming 416 // value! 417 418 // In our final twist, we have to decide which instruction kills the 419 // register. In most cases this is the copy, however, terminator 420 // instructions at the end of the block may also use the value. In this 421 // case, we should mark the last such terminator as being the killing 422 // block, not the copy. 423 MachineBasicBlock::iterator KillInst = opBlock.end(); 424 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 425 for (MachineBasicBlock::iterator Term = FirstTerm; 426 Term != opBlock.end(); ++Term) { 427 if (Term->readsRegister(SrcReg)) 428 KillInst = Term; 429 } 430 431 if (KillInst == opBlock.end()) { 432 // No terminator uses the register. 433 434 if (reusedIncoming || !IncomingReg) { 435 // We may have to rewind a bit if we didn't insert a copy this time. 436 KillInst = FirstTerm; 437 while (KillInst != opBlock.begin()) { 438 --KillInst; 439 if (KillInst->isDebugValue()) 440 continue; 441 if (KillInst->readsRegister(SrcReg)) 442 break; 443 } 444 } else { 445 // We just inserted this copy. 446 KillInst = std::prev(InsertPos); 447 } 448 } 449 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 450 451 // Finally, mark it killed. 452 LV->addVirtualRegisterKilled(SrcReg, KillInst); 453 454 // This vreg no longer lives all of the way through opBlock. 455 unsigned opBlockNum = opBlock.getNumber(); 456 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 457 } 458 459 if (LIS) { 460 if (NewSrcInstr) { 461 LIS->InsertMachineInstrInMaps(NewSrcInstr); 462 LIS->addSegmentToEndOfBlock(IncomingReg, NewSrcInstr); 463 } 464 465 if (!SrcUndef && 466 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 467 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 468 469 bool isLiveOut = false; 470 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), 471 SE = opBlock.succ_end(); SI != SE; ++SI) { 472 SlotIndex startIdx = LIS->getMBBStartIdx(*SI); 473 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 474 475 // Definitions by other PHIs are not truly live-in for our purposes. 476 if (VNI && VNI->def != startIdx) { 477 isLiveOut = true; 478 break; 479 } 480 } 481 482 if (!isLiveOut) { 483 MachineBasicBlock::iterator KillInst = opBlock.end(); 484 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 485 for (MachineBasicBlock::iterator Term = FirstTerm; 486 Term != opBlock.end(); ++Term) { 487 if (Term->readsRegister(SrcReg)) 488 KillInst = Term; 489 } 490 491 if (KillInst == opBlock.end()) { 492 // No terminator uses the register. 493 494 if (reusedIncoming || !IncomingReg) { 495 // We may have to rewind a bit if we didn't just insert a copy. 496 KillInst = FirstTerm; 497 while (KillInst != opBlock.begin()) { 498 --KillInst; 499 if (KillInst->isDebugValue()) 500 continue; 501 if (KillInst->readsRegister(SrcReg)) 502 break; 503 } 504 } else { 505 // We just inserted this copy. 506 KillInst = std::prev(InsertPos); 507 } 508 } 509 assert(KillInst->readsRegister(SrcReg) && 510 "Cannot find kill instruction"); 511 512 SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst); 513 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 514 LIS->getMBBEndIdx(&opBlock)); 515 } 516 } 517 } 518 } 519 520 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 521 if (reusedIncoming || !IncomingReg) { 522 if (LIS) 523 LIS->RemoveMachineInstrFromMaps(MPhi); 524 MF.DeleteMachineInstr(MPhi); 525 } 526 } 527 528 /// analyzePHINodes - Gather information about the PHI nodes in here. In 529 /// particular, we want to map the number of uses of a virtual register which is 530 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 531 /// used later to determine when the vreg is killed in the BB. 532 /// 533 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 534 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); 535 I != E; ++I) 536 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 537 BBI != BBE && BBI->isPHI(); ++BBI) 538 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 539 ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(), 540 BBI->getOperand(i).getReg())]; 541 } 542 543 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 544 MachineBasicBlock &MBB, 545 MachineLoopInfo *MLI) { 546 if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad()) 547 return false; // Quick exit for basic blocks without PHIs. 548 549 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0; 550 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 551 552 bool Changed = false; 553 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 554 BBI != BBE && BBI->isPHI(); ++BBI) { 555 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 556 unsigned Reg = BBI->getOperand(i).getReg(); 557 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 558 // Is there a critical edge from PreMBB to MBB? 559 if (PreMBB->succ_size() == 1) 560 continue; 561 562 // Avoid splitting backedges of loops. It would introduce small 563 // out-of-line blocks into the loop which is very bad for code placement. 564 if (PreMBB == &MBB && !SplitAllCriticalEdges) 565 continue; 566 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0; 567 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 568 continue; 569 570 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 571 // when the source register is live-out for some other reason than a phi 572 // use. That means the copy we will insert in PreMBB won't be a kill, and 573 // there is a risk it may not be coalesced away. 574 // 575 // If the copy would be a kill, there is no need to split the edge. 576 if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges) 577 continue; 578 579 DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#" 580 << PreMBB->getNumber() << " -> BB#" << MBB.getNumber() 581 << ": " << *BBI); 582 583 // If Reg is not live-in to MBB, it means it must be live-in to some 584 // other PreMBB successor, and we can avoid the interference by splitting 585 // the edge. 586 // 587 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 588 // is likely to be left after coalescing. If we are looking at a loop 589 // exiting edge, split it so we won't insert code in the loop, otherwise 590 // don't bother. 591 bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges; 592 593 // Check for a loop exiting edge. 594 if (!ShouldSplit && CurLoop != PreLoop) { 595 DEBUG({ 596 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 597 if (PreLoop) dbgs() << "PreLoop: " << *PreLoop; 598 if (CurLoop) dbgs() << "CurLoop: " << *CurLoop; 599 }); 600 // This edge could be entering a loop, exiting a loop, or it could be 601 // both: Jumping directly form one loop to the header of a sibling 602 // loop. 603 // Split unless this edge is entering CurLoop from an outer loop. 604 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 605 } 606 if (!ShouldSplit) 607 continue; 608 if (!PreMBB->SplitCriticalEdge(&MBB, this)) { 609 DEBUG(dbgs() << "Failed to split critical edge.\n"); 610 continue; 611 } 612 Changed = true; 613 ++NumCriticalEdgesSplit; 614 } 615 } 616 return Changed; 617 } 618 619 bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) { 620 assert((LV || LIS) && 621 "isLiveIn() requires either LiveVariables or LiveIntervals"); 622 if (LIS) 623 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 624 else 625 return LV->isLiveIn(Reg, *MBB); 626 } 627 628 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) { 629 assert((LV || LIS) && 630 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 631 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 632 // so that a register used only in a PHI is not live out of the block. In 633 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 634 // in the predecessor basic block, so that a register used only in a PHI is live 635 // out of the block. 636 if (LIS) { 637 const LiveInterval &LI = LIS->getInterval(Reg); 638 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 639 SE = MBB->succ_end(); SI != SE; ++SI) { 640 if (LI.liveAt(LIS->getMBBStartIdx(*SI))) 641 return true; 642 } 643 return false; 644 } else { 645 return LV->isLiveOut(Reg, *MBB); 646 } 647 } 648