1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates machine instruction PHI nodes by inserting copy 11 // instructions. This destroys SSA information, but is the desired input for 12 // some register allocators. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "PHIEliminationUtils.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveVariables.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineInstr.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Compiler.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <algorithm> 36 using namespace llvm; 37 38 #define DEBUG_TYPE "phielim" 39 40 static cl::opt<bool> 41 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 42 cl::Hidden, cl::desc("Disable critical edge splitting " 43 "during PHI elimination")); 44 45 static cl::opt<bool> 46 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 47 cl::Hidden, cl::desc("Split all critical edges during " 48 "PHI elimination")); 49 50 namespace { 51 class PHIElimination : public MachineFunctionPass { 52 MachineRegisterInfo *MRI; // Machine register information 53 LiveVariables *LV; 54 LiveIntervals *LIS; 55 56 public: 57 static char ID; // Pass identification, replacement for typeid 58 PHIElimination() : MachineFunctionPass(ID) { 59 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 60 } 61 62 bool runOnMachineFunction(MachineFunction &Fn) override; 63 void getAnalysisUsage(AnalysisUsage &AU) const override; 64 65 private: 66 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 67 /// in predecessor basic blocks. 68 /// 69 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 70 void LowerPHINode(MachineBasicBlock &MBB, 71 MachineBasicBlock::iterator LastPHIIt); 72 73 /// analyzePHINodes - Gather information about the PHI nodes in 74 /// here. In particular, we want to map the number of uses of a virtual 75 /// register which is used in a PHI node. We map that to the BB the 76 /// vreg is coming from. This is used later to determine when the vreg 77 /// is killed in the BB. 78 /// 79 void analyzePHINodes(const MachineFunction& Fn); 80 81 /// Split critical edges where necessary for good coalescer performance. 82 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 83 MachineLoopInfo *MLI); 84 85 // These functions are temporary abstractions around LiveVariables and 86 // LiveIntervals, so they can go away when LiveVariables does. 87 bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB); 88 bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB); 89 90 typedef std::pair<unsigned, unsigned> BBVRegPair; 91 typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse; 92 93 VRegPHIUse VRegPHIUseCount; 94 95 // Defs of PHI sources which are implicit_def. 96 SmallPtrSet<MachineInstr*, 4> ImpDefs; 97 98 // Map reusable lowered PHI node -> incoming join register. 99 typedef DenseMap<MachineInstr*, unsigned, 100 MachineInstrExpressionTrait> LoweredPHIMap; 101 LoweredPHIMap LoweredPHIs; 102 }; 103 } 104 105 STATISTIC(NumLowered, "Number of phis lowered"); 106 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 107 STATISTIC(NumReused, "Number of reused lowered phis"); 108 109 char PHIElimination::ID = 0; 110 char& llvm::PHIEliminationID = PHIElimination::ID; 111 112 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination", 113 "Eliminate PHI nodes for register allocation", 114 false, false) 115 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 116 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination", 117 "Eliminate PHI nodes for register allocation", false, false) 118 119 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 120 AU.addPreserved<LiveVariables>(); 121 AU.addPreserved<SlotIndexes>(); 122 AU.addPreserved<LiveIntervals>(); 123 AU.addPreserved<MachineDominatorTree>(); 124 AU.addPreserved<MachineLoopInfo>(); 125 MachineFunctionPass::getAnalysisUsage(AU); 126 } 127 128 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 129 MRI = &MF.getRegInfo(); 130 LV = getAnalysisIfAvailable<LiveVariables>(); 131 LIS = getAnalysisIfAvailable<LiveIntervals>(); 132 133 bool Changed = false; 134 135 // This pass takes the function out of SSA form. 136 MRI->leaveSSA(); 137 138 // Split critical edges to help the coalescer. This does not yet support 139 // updating LiveIntervals, so we disable it. 140 if (!DisableEdgeSplitting && (LV || LIS)) { 141 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 142 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) 143 Changed |= SplitPHIEdges(MF, *I, MLI); 144 } 145 146 // Populate VRegPHIUseCount 147 analyzePHINodes(MF); 148 149 // Eliminate PHI instructions by inserting copies into predecessor blocks. 150 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) 151 Changed |= EliminatePHINodes(MF, *I); 152 153 // Remove dead IMPLICIT_DEF instructions. 154 for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(), 155 E = ImpDefs.end(); I != E; ++I) { 156 MachineInstr *DefMI = *I; 157 unsigned DefReg = DefMI->getOperand(0).getReg(); 158 if (MRI->use_nodbg_empty(DefReg)) { 159 if (LIS) 160 LIS->RemoveMachineInstrFromMaps(DefMI); 161 DefMI->eraseFromParent(); 162 } 163 } 164 165 // Clean up the lowered PHI instructions. 166 for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end(); 167 I != E; ++I) { 168 if (LIS) 169 LIS->RemoveMachineInstrFromMaps(I->first); 170 MF.DeleteMachineInstr(I->first); 171 } 172 173 LoweredPHIs.clear(); 174 ImpDefs.clear(); 175 VRegPHIUseCount.clear(); 176 177 return Changed; 178 } 179 180 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 181 /// predecessor basic blocks. 182 /// 183 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 184 MachineBasicBlock &MBB) { 185 if (MBB.empty() || !MBB.front().isPHI()) 186 return false; // Quick exit for basic blocks without PHIs. 187 188 // Get an iterator to the first instruction after the last PHI node (this may 189 // also be the end of the basic block). 190 MachineBasicBlock::iterator LastPHIIt = 191 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 192 193 while (MBB.front().isPHI()) 194 LowerPHINode(MBB, LastPHIIt); 195 196 return true; 197 } 198 199 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs. 200 /// This includes registers with no defs. 201 static bool isImplicitlyDefined(unsigned VirtReg, 202 const MachineRegisterInfo *MRI) { 203 for (MachineInstr &DI : MRI->def_instructions(VirtReg)) 204 if (!DI.isImplicitDef()) 205 return false; 206 return true; 207 } 208 209 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node 210 /// are implicit_def's. 211 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, 212 const MachineRegisterInfo *MRI) { 213 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 214 if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI)) 215 return false; 216 return true; 217 } 218 219 220 /// LowerPHINode - Lower the PHI node at the top of the specified block, 221 /// 222 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 223 MachineBasicBlock::iterator LastPHIIt) { 224 ++NumLowered; 225 226 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 227 228 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 229 MachineInstr *MPhi = MBB.remove(MBB.begin()); 230 231 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 232 unsigned DestReg = MPhi->getOperand(0).getReg(); 233 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 234 bool isDead = MPhi->getOperand(0).isDead(); 235 236 // Create a new register for the incoming PHI arguments. 237 MachineFunction &MF = *MBB.getParent(); 238 unsigned IncomingReg = 0; 239 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 240 241 // Insert a register to register copy at the top of the current block (but 242 // after any remaining phi nodes) which copies the new incoming register 243 // into the phi node destination. 244 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 245 if (isSourceDefinedByImplicitDef(MPhi, MRI)) 246 // If all sources of a PHI node are implicit_def, just emit an 247 // implicit_def instead of a copy. 248 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 249 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 250 else { 251 // Can we reuse an earlier PHI node? This only happens for critical edges, 252 // typically those created by tail duplication. 253 unsigned &entry = LoweredPHIs[MPhi]; 254 if (entry) { 255 // An identical PHI node was already lowered. Reuse the incoming register. 256 IncomingReg = entry; 257 reusedIncoming = true; 258 ++NumReused; 259 DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi); 260 } else { 261 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 262 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 263 } 264 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 265 TII->get(TargetOpcode::COPY), DestReg) 266 .addReg(IncomingReg); 267 } 268 269 // Update live variable information if there is any. 270 if (LV) { 271 MachineInstr *PHICopy = std::prev(AfterPHIsIt); 272 273 if (IncomingReg) { 274 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 275 276 // Increment use count of the newly created virtual register. 277 LV->setPHIJoin(IncomingReg); 278 279 // When we are reusing the incoming register, it may already have been 280 // killed in this block. The old kill will also have been inserted at 281 // AfterPHIsIt, so it appears before the current PHICopy. 282 if (reusedIncoming) 283 if (MachineInstr *OldKill = VI.findKill(&MBB)) { 284 DEBUG(dbgs() << "Remove old kill from " << *OldKill); 285 LV->removeVirtualRegisterKilled(IncomingReg, OldKill); 286 DEBUG(MBB.dump()); 287 } 288 289 // Add information to LiveVariables to know that the incoming value is 290 // killed. Note that because the value is defined in several places (once 291 // each for each incoming block), the "def" block and instruction fields 292 // for the VarInfo is not filled in. 293 LV->addVirtualRegisterKilled(IncomingReg, PHICopy); 294 } 295 296 // Since we are going to be deleting the PHI node, if it is the last use of 297 // any registers, or if the value itself is dead, we need to move this 298 // information over to the new copy we just inserted. 299 LV->removeVirtualRegistersKilled(MPhi); 300 301 // If the result is dead, update LV. 302 if (isDead) { 303 LV->addVirtualRegisterDead(DestReg, PHICopy); 304 LV->removeVirtualRegisterDead(DestReg, MPhi); 305 } 306 } 307 308 // Update LiveIntervals for the new copy or implicit def. 309 if (LIS) { 310 MachineInstr *NewInstr = std::prev(AfterPHIsIt); 311 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr); 312 313 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 314 if (IncomingReg) { 315 // Add the region from the beginning of MBB to the copy instruction to 316 // IncomingReg's live interval. 317 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); 318 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 319 if (!IncomingVNI) 320 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 321 LIS->getVNInfoAllocator()); 322 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 323 DestCopyIndex.getRegSlot(), 324 IncomingVNI)); 325 } 326 327 LiveInterval &DestLI = LIS->getInterval(DestReg); 328 assert(DestLI.begin() != DestLI.end() && 329 "PHIs should have nonempty LiveIntervals."); 330 if (DestLI.endIndex().isDead()) { 331 // A dead PHI's live range begins and ends at the start of the MBB, but 332 // the lowered copy, which will still be dead, needs to begin and end at 333 // the copy instruction. 334 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); 335 assert(OrigDestVNI && "PHI destination should be live at block entry."); 336 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); 337 DestLI.createDeadDef(DestCopyIndex.getRegSlot(), 338 LIS->getVNInfoAllocator()); 339 DestLI.removeValNo(OrigDestVNI); 340 } else { 341 // Otherwise, remove the region from the beginning of MBB to the copy 342 // instruction from DestReg's live interval. 343 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); 344 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); 345 assert(DestVNI && "PHI destination should be live at its definition."); 346 DestVNI->def = DestCopyIndex.getRegSlot(); 347 } 348 } 349 350 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 351 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 352 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), 353 MPhi->getOperand(i).getReg())]; 354 355 // Now loop over all of the incoming arguments, changing them to copy into the 356 // IncomingReg register in the corresponding predecessor basic block. 357 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 358 for (int i = NumSrcs - 1; i >= 0; --i) { 359 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); 360 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 361 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 362 isImplicitlyDefined(SrcReg, MRI); 363 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && 364 "Machine PHI Operands must all be virtual registers!"); 365 366 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 367 // path the PHI. 368 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 369 370 // Check to make sure we haven't already emitted the copy for this block. 371 // This can happen because PHI nodes may have multiple entries for the same 372 // basic block. 373 if (!MBBsInsertedInto.insert(&opBlock)) 374 continue; // If the copy has already been emitted, we're done. 375 376 // Find a safe location to insert the copy, this may be the first terminator 377 // in the block (or end()). 378 MachineBasicBlock::iterator InsertPos = 379 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 380 381 // Insert the copy. 382 MachineInstr *NewSrcInstr = nullptr; 383 if (!reusedIncoming && IncomingReg) { 384 if (SrcUndef) { 385 // The source register is undefined, so there is no need for a real 386 // COPY, but we still need to ensure joint dominance by defs. 387 // Insert an IMPLICIT_DEF instruction. 388 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 389 TII->get(TargetOpcode::IMPLICIT_DEF), 390 IncomingReg); 391 392 // Clean up the old implicit-def, if there even was one. 393 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 394 if (DefMI->isImplicitDef()) 395 ImpDefs.insert(DefMI); 396 } else { 397 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 398 TII->get(TargetOpcode::COPY), IncomingReg) 399 .addReg(SrcReg, 0, SrcSubReg); 400 } 401 } 402 403 // We only need to update the LiveVariables kill of SrcReg if this was the 404 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 405 // out of the predecessor. We can also ignore undef sources. 406 if (LV && !SrcUndef && 407 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 408 !LV->isLiveOut(SrcReg, opBlock)) { 409 // We want to be able to insert a kill of the register if this PHI (aka, 410 // the copy we just inserted) is the last use of the source value. Live 411 // variable analysis conservatively handles this by saying that the value 412 // is live until the end of the block the PHI entry lives in. If the value 413 // really is dead at the PHI copy, there will be no successor blocks which 414 // have the value live-in. 415 416 // Okay, if we now know that the value is not live out of the block, we 417 // can add a kill marker in this block saying that it kills the incoming 418 // value! 419 420 // In our final twist, we have to decide which instruction kills the 421 // register. In most cases this is the copy, however, terminator 422 // instructions at the end of the block may also use the value. In this 423 // case, we should mark the last such terminator as being the killing 424 // block, not the copy. 425 MachineBasicBlock::iterator KillInst = opBlock.end(); 426 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 427 for (MachineBasicBlock::iterator Term = FirstTerm; 428 Term != opBlock.end(); ++Term) { 429 if (Term->readsRegister(SrcReg)) 430 KillInst = Term; 431 } 432 433 if (KillInst == opBlock.end()) { 434 // No terminator uses the register. 435 436 if (reusedIncoming || !IncomingReg) { 437 // We may have to rewind a bit if we didn't insert a copy this time. 438 KillInst = FirstTerm; 439 while (KillInst != opBlock.begin()) { 440 --KillInst; 441 if (KillInst->isDebugValue()) 442 continue; 443 if (KillInst->readsRegister(SrcReg)) 444 break; 445 } 446 } else { 447 // We just inserted this copy. 448 KillInst = std::prev(InsertPos); 449 } 450 } 451 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 452 453 // Finally, mark it killed. 454 LV->addVirtualRegisterKilled(SrcReg, KillInst); 455 456 // This vreg no longer lives all of the way through opBlock. 457 unsigned opBlockNum = opBlock.getNumber(); 458 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 459 } 460 461 if (LIS) { 462 if (NewSrcInstr) { 463 LIS->InsertMachineInstrInMaps(NewSrcInstr); 464 LIS->addSegmentToEndOfBlock(IncomingReg, NewSrcInstr); 465 } 466 467 if (!SrcUndef && 468 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 469 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 470 471 bool isLiveOut = false; 472 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), 473 SE = opBlock.succ_end(); SI != SE; ++SI) { 474 SlotIndex startIdx = LIS->getMBBStartIdx(*SI); 475 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 476 477 // Definitions by other PHIs are not truly live-in for our purposes. 478 if (VNI && VNI->def != startIdx) { 479 isLiveOut = true; 480 break; 481 } 482 } 483 484 if (!isLiveOut) { 485 MachineBasicBlock::iterator KillInst = opBlock.end(); 486 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 487 for (MachineBasicBlock::iterator Term = FirstTerm; 488 Term != opBlock.end(); ++Term) { 489 if (Term->readsRegister(SrcReg)) 490 KillInst = Term; 491 } 492 493 if (KillInst == opBlock.end()) { 494 // No terminator uses the register. 495 496 if (reusedIncoming || !IncomingReg) { 497 // We may have to rewind a bit if we didn't just insert a copy. 498 KillInst = FirstTerm; 499 while (KillInst != opBlock.begin()) { 500 --KillInst; 501 if (KillInst->isDebugValue()) 502 continue; 503 if (KillInst->readsRegister(SrcReg)) 504 break; 505 } 506 } else { 507 // We just inserted this copy. 508 KillInst = std::prev(InsertPos); 509 } 510 } 511 assert(KillInst->readsRegister(SrcReg) && 512 "Cannot find kill instruction"); 513 514 SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst); 515 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 516 LIS->getMBBEndIdx(&opBlock)); 517 } 518 } 519 } 520 } 521 522 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 523 if (reusedIncoming || !IncomingReg) { 524 if (LIS) 525 LIS->RemoveMachineInstrFromMaps(MPhi); 526 MF.DeleteMachineInstr(MPhi); 527 } 528 } 529 530 /// analyzePHINodes - Gather information about the PHI nodes in here. In 531 /// particular, we want to map the number of uses of a virtual register which is 532 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 533 /// used later to determine when the vreg is killed in the BB. 534 /// 535 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 536 for (const auto &MBB : MF) 537 for (const auto &BBI : MBB) { 538 if (!BBI.isPHI()) 539 break; 540 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) 541 ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(), 542 BBI.getOperand(i).getReg())]; 543 } 544 } 545 546 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 547 MachineBasicBlock &MBB, 548 MachineLoopInfo *MLI) { 549 if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad()) 550 return false; // Quick exit for basic blocks without PHIs. 551 552 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 553 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 554 555 bool Changed = false; 556 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 557 BBI != BBE && BBI->isPHI(); ++BBI) { 558 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 559 unsigned Reg = BBI->getOperand(i).getReg(); 560 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 561 // Is there a critical edge from PreMBB to MBB? 562 if (PreMBB->succ_size() == 1) 563 continue; 564 565 // Avoid splitting backedges of loops. It would introduce small 566 // out-of-line blocks into the loop which is very bad for code placement. 567 if (PreMBB == &MBB && !SplitAllCriticalEdges) 568 continue; 569 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 570 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 571 continue; 572 573 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 574 // when the source register is live-out for some other reason than a phi 575 // use. That means the copy we will insert in PreMBB won't be a kill, and 576 // there is a risk it may not be coalesced away. 577 // 578 // If the copy would be a kill, there is no need to split the edge. 579 if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges) 580 continue; 581 582 DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#" 583 << PreMBB->getNumber() << " -> BB#" << MBB.getNumber() 584 << ": " << *BBI); 585 586 // If Reg is not live-in to MBB, it means it must be live-in to some 587 // other PreMBB successor, and we can avoid the interference by splitting 588 // the edge. 589 // 590 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 591 // is likely to be left after coalescing. If we are looking at a loop 592 // exiting edge, split it so we won't insert code in the loop, otherwise 593 // don't bother. 594 bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges; 595 596 // Check for a loop exiting edge. 597 if (!ShouldSplit && CurLoop != PreLoop) { 598 DEBUG({ 599 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 600 if (PreLoop) dbgs() << "PreLoop: " << *PreLoop; 601 if (CurLoop) dbgs() << "CurLoop: " << *CurLoop; 602 }); 603 // This edge could be entering a loop, exiting a loop, or it could be 604 // both: Jumping directly form one loop to the header of a sibling 605 // loop. 606 // Split unless this edge is entering CurLoop from an outer loop. 607 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 608 } 609 if (!ShouldSplit) 610 continue; 611 if (!PreMBB->SplitCriticalEdge(&MBB, this)) { 612 DEBUG(dbgs() << "Failed to split critical edge.\n"); 613 continue; 614 } 615 Changed = true; 616 ++NumCriticalEdgesSplit; 617 } 618 } 619 return Changed; 620 } 621 622 bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) { 623 assert((LV || LIS) && 624 "isLiveIn() requires either LiveVariables or LiveIntervals"); 625 if (LIS) 626 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 627 else 628 return LV->isLiveIn(Reg, *MBB); 629 } 630 631 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) { 632 assert((LV || LIS) && 633 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 634 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 635 // so that a register used only in a PHI is not live out of the block. In 636 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 637 // in the predecessor basic block, so that a register used only in a PHI is live 638 // out of the block. 639 if (LIS) { 640 const LiveInterval &LI = LIS->getInterval(Reg); 641 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 642 SE = MBB->succ_end(); SI != SE; ++SI) { 643 if (LI.liveAt(LIS->getMBBStartIdx(*SI))) 644 return true; 645 } 646 return false; 647 } else { 648 return LV->isLiveOut(Reg, *MBB); 649 } 650 } 651