1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates machine instruction PHI nodes by inserting copy 11 // instructions. This destroys SSA information, but is the desired input for 12 // some register allocators. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "PHIEliminationUtils.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/LiveVariables.h" 22 #include "llvm/CodeGen/MachineDominators.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineLoopInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/Passes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetSubtargetInfo.h" 34 #include <algorithm> 35 using namespace llvm; 36 37 #define DEBUG_TYPE "phielim" 38 39 static cl::opt<bool> 40 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 41 cl::Hidden, cl::desc("Disable critical edge splitting " 42 "during PHI elimination")); 43 44 static cl::opt<bool> 45 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 46 cl::Hidden, cl::desc("Split all critical edges during " 47 "PHI elimination")); 48 49 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 50 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 51 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 52 53 namespace { 54 class PHIElimination : public MachineFunctionPass { 55 MachineRegisterInfo *MRI; // Machine register information 56 LiveVariables *LV; 57 LiveIntervals *LIS; 58 59 public: 60 static char ID; // Pass identification, replacement for typeid 61 PHIElimination() : MachineFunctionPass(ID) { 62 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 63 } 64 65 bool runOnMachineFunction(MachineFunction &Fn) override; 66 void getAnalysisUsage(AnalysisUsage &AU) const override; 67 68 private: 69 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 70 /// in predecessor basic blocks. 71 /// 72 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 73 void LowerPHINode(MachineBasicBlock &MBB, 74 MachineBasicBlock::iterator LastPHIIt); 75 76 /// analyzePHINodes - Gather information about the PHI nodes in 77 /// here. In particular, we want to map the number of uses of a virtual 78 /// register which is used in a PHI node. We map that to the BB the 79 /// vreg is coming from. This is used later to determine when the vreg 80 /// is killed in the BB. 81 /// 82 void analyzePHINodes(const MachineFunction& Fn); 83 84 /// Split critical edges where necessary for good coalescer performance. 85 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 86 MachineLoopInfo *MLI); 87 88 // These functions are temporary abstractions around LiveVariables and 89 // LiveIntervals, so they can go away when LiveVariables does. 90 bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB); 91 bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB); 92 93 typedef std::pair<unsigned, unsigned> BBVRegPair; 94 typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse; 95 96 VRegPHIUse VRegPHIUseCount; 97 98 // Defs of PHI sources which are implicit_def. 99 SmallPtrSet<MachineInstr*, 4> ImpDefs; 100 101 // Map reusable lowered PHI node -> incoming join register. 102 typedef DenseMap<MachineInstr*, unsigned, 103 MachineInstrExpressionTrait> LoweredPHIMap; 104 LoweredPHIMap LoweredPHIs; 105 }; 106 } 107 108 STATISTIC(NumLowered, "Number of phis lowered"); 109 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 110 STATISTIC(NumReused, "Number of reused lowered phis"); 111 112 char PHIElimination::ID = 0; 113 char& llvm::PHIEliminationID = PHIElimination::ID; 114 115 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination", 116 "Eliminate PHI nodes for register allocation", 117 false, false) 118 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 119 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination", 120 "Eliminate PHI nodes for register allocation", false, false) 121 122 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 123 AU.addUsedIfAvailable<LiveVariables>(); 124 AU.addPreserved<LiveVariables>(); 125 AU.addPreserved<SlotIndexes>(); 126 AU.addPreserved<LiveIntervals>(); 127 AU.addPreserved<MachineDominatorTree>(); 128 AU.addPreserved<MachineLoopInfo>(); 129 MachineFunctionPass::getAnalysisUsage(AU); 130 } 131 132 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 133 MRI = &MF.getRegInfo(); 134 LV = getAnalysisIfAvailable<LiveVariables>(); 135 LIS = getAnalysisIfAvailable<LiveIntervals>(); 136 137 bool Changed = false; 138 139 // This pass takes the function out of SSA form. 140 MRI->leaveSSA(); 141 142 // Split critical edges to help the coalescer. This does not yet support 143 // updating LiveIntervals, so we disable it. 144 if (!DisableEdgeSplitting && (LV || LIS)) { 145 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 146 for (auto &MBB : MF) 147 Changed |= SplitPHIEdges(MF, MBB, MLI); 148 } 149 150 // Populate VRegPHIUseCount 151 analyzePHINodes(MF); 152 153 // Eliminate PHI instructions by inserting copies into predecessor blocks. 154 for (auto &MBB : MF) 155 Changed |= EliminatePHINodes(MF, MBB); 156 157 // Remove dead IMPLICIT_DEF instructions. 158 for (MachineInstr *DefMI : ImpDefs) { 159 unsigned DefReg = DefMI->getOperand(0).getReg(); 160 if (MRI->use_nodbg_empty(DefReg)) { 161 if (LIS) 162 LIS->RemoveMachineInstrFromMaps(*DefMI); 163 DefMI->eraseFromParent(); 164 } 165 } 166 167 // Clean up the lowered PHI instructions. 168 for (auto &I : LoweredPHIs) { 169 if (LIS) 170 LIS->RemoveMachineInstrFromMaps(*I.first); 171 MF.DeleteMachineInstr(I.first); 172 } 173 174 LoweredPHIs.clear(); 175 ImpDefs.clear(); 176 VRegPHIUseCount.clear(); 177 178 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 179 180 return Changed; 181 } 182 183 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 184 /// predecessor basic blocks. 185 /// 186 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 187 MachineBasicBlock &MBB) { 188 if (MBB.empty() || !MBB.front().isPHI()) 189 return false; // Quick exit for basic blocks without PHIs. 190 191 // Get an iterator to the first instruction after the last PHI node (this may 192 // also be the end of the basic block). 193 MachineBasicBlock::iterator LastPHIIt = 194 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 195 196 while (MBB.front().isPHI()) 197 LowerPHINode(MBB, LastPHIIt); 198 199 return true; 200 } 201 202 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs. 203 /// This includes registers with no defs. 204 static bool isImplicitlyDefined(unsigned VirtReg, 205 const MachineRegisterInfo *MRI) { 206 for (MachineInstr &DI : MRI->def_instructions(VirtReg)) 207 if (!DI.isImplicitDef()) 208 return false; 209 return true; 210 } 211 212 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node 213 /// are implicit_def's. 214 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, 215 const MachineRegisterInfo *MRI) { 216 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 217 if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI)) 218 return false; 219 return true; 220 } 221 222 223 /// LowerPHINode - Lower the PHI node at the top of the specified block, 224 /// 225 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 226 MachineBasicBlock::iterator LastPHIIt) { 227 ++NumLowered; 228 229 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 230 231 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 232 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 233 234 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 235 unsigned DestReg = MPhi->getOperand(0).getReg(); 236 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 237 bool isDead = MPhi->getOperand(0).isDead(); 238 239 // Create a new register for the incoming PHI arguments. 240 MachineFunction &MF = *MBB.getParent(); 241 unsigned IncomingReg = 0; 242 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 243 244 // Insert a register to register copy at the top of the current block (but 245 // after any remaining phi nodes) which copies the new incoming register 246 // into the phi node destination. 247 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 248 if (isSourceDefinedByImplicitDef(MPhi, MRI)) 249 // If all sources of a PHI node are implicit_def, just emit an 250 // implicit_def instead of a copy. 251 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 252 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 253 else { 254 // Can we reuse an earlier PHI node? This only happens for critical edges, 255 // typically those created by tail duplication. 256 unsigned &entry = LoweredPHIs[MPhi]; 257 if (entry) { 258 // An identical PHI node was already lowered. Reuse the incoming register. 259 IncomingReg = entry; 260 reusedIncoming = true; 261 ++NumReused; 262 DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi); 263 } else { 264 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 265 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 266 } 267 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 268 TII->get(TargetOpcode::COPY), DestReg) 269 .addReg(IncomingReg); 270 } 271 272 // Update live variable information if there is any. 273 if (LV) { 274 MachineInstr &PHICopy = *std::prev(AfterPHIsIt); 275 276 if (IncomingReg) { 277 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 278 279 // Increment use count of the newly created virtual register. 280 LV->setPHIJoin(IncomingReg); 281 282 // When we are reusing the incoming register, it may already have been 283 // killed in this block. The old kill will also have been inserted at 284 // AfterPHIsIt, so it appears before the current PHICopy. 285 if (reusedIncoming) 286 if (MachineInstr *OldKill = VI.findKill(&MBB)) { 287 DEBUG(dbgs() << "Remove old kill from " << *OldKill); 288 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 289 DEBUG(MBB.dump()); 290 } 291 292 // Add information to LiveVariables to know that the incoming value is 293 // killed. Note that because the value is defined in several places (once 294 // each for each incoming block), the "def" block and instruction fields 295 // for the VarInfo is not filled in. 296 LV->addVirtualRegisterKilled(IncomingReg, PHICopy); 297 } 298 299 // Since we are going to be deleting the PHI node, if it is the last use of 300 // any registers, or if the value itself is dead, we need to move this 301 // information over to the new copy we just inserted. 302 LV->removeVirtualRegistersKilled(*MPhi); 303 304 // If the result is dead, update LV. 305 if (isDead) { 306 LV->addVirtualRegisterDead(DestReg, PHICopy); 307 LV->removeVirtualRegisterDead(DestReg, *MPhi); 308 } 309 } 310 311 // Update LiveIntervals for the new copy or implicit def. 312 if (LIS) { 313 SlotIndex DestCopyIndex = 314 LIS->InsertMachineInstrInMaps(*std::prev(AfterPHIsIt)); 315 316 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 317 if (IncomingReg) { 318 // Add the region from the beginning of MBB to the copy instruction to 319 // IncomingReg's live interval. 320 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); 321 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 322 if (!IncomingVNI) 323 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 324 LIS->getVNInfoAllocator()); 325 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 326 DestCopyIndex.getRegSlot(), 327 IncomingVNI)); 328 } 329 330 LiveInterval &DestLI = LIS->getInterval(DestReg); 331 assert(DestLI.begin() != DestLI.end() && 332 "PHIs should have nonempty LiveIntervals."); 333 if (DestLI.endIndex().isDead()) { 334 // A dead PHI's live range begins and ends at the start of the MBB, but 335 // the lowered copy, which will still be dead, needs to begin and end at 336 // the copy instruction. 337 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); 338 assert(OrigDestVNI && "PHI destination should be live at block entry."); 339 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); 340 DestLI.createDeadDef(DestCopyIndex.getRegSlot(), 341 LIS->getVNInfoAllocator()); 342 DestLI.removeValNo(OrigDestVNI); 343 } else { 344 // Otherwise, remove the region from the beginning of MBB to the copy 345 // instruction from DestReg's live interval. 346 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); 347 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); 348 assert(DestVNI && "PHI destination should be live at its definition."); 349 DestVNI->def = DestCopyIndex.getRegSlot(); 350 } 351 } 352 353 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 354 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 355 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), 356 MPhi->getOperand(i).getReg())]; 357 358 // Now loop over all of the incoming arguments, changing them to copy into the 359 // IncomingReg register in the corresponding predecessor basic block. 360 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 361 for (int i = NumSrcs - 1; i >= 0; --i) { 362 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); 363 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 364 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 365 isImplicitlyDefined(SrcReg, MRI); 366 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && 367 "Machine PHI Operands must all be virtual registers!"); 368 369 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 370 // path the PHI. 371 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 372 373 // Check to make sure we haven't already emitted the copy for this block. 374 // This can happen because PHI nodes may have multiple entries for the same 375 // basic block. 376 if (!MBBsInsertedInto.insert(&opBlock).second) 377 continue; // If the copy has already been emitted, we're done. 378 379 // Find a safe location to insert the copy, this may be the first terminator 380 // in the block (or end()). 381 MachineBasicBlock::iterator InsertPos = 382 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 383 384 // Insert the copy. 385 MachineInstr *NewSrcInstr = nullptr; 386 if (!reusedIncoming && IncomingReg) { 387 if (SrcUndef) { 388 // The source register is undefined, so there is no need for a real 389 // COPY, but we still need to ensure joint dominance by defs. 390 // Insert an IMPLICIT_DEF instruction. 391 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 392 TII->get(TargetOpcode::IMPLICIT_DEF), 393 IncomingReg); 394 395 // Clean up the old implicit-def, if there even was one. 396 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 397 if (DefMI->isImplicitDef()) 398 ImpDefs.insert(DefMI); 399 } else { 400 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 401 TII->get(TargetOpcode::COPY), IncomingReg) 402 .addReg(SrcReg, 0, SrcSubReg); 403 } 404 } 405 406 // We only need to update the LiveVariables kill of SrcReg if this was the 407 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 408 // out of the predecessor. We can also ignore undef sources. 409 if (LV && !SrcUndef && 410 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 411 !LV->isLiveOut(SrcReg, opBlock)) { 412 // We want to be able to insert a kill of the register if this PHI (aka, 413 // the copy we just inserted) is the last use of the source value. Live 414 // variable analysis conservatively handles this by saying that the value 415 // is live until the end of the block the PHI entry lives in. If the value 416 // really is dead at the PHI copy, there will be no successor blocks which 417 // have the value live-in. 418 419 // Okay, if we now know that the value is not live out of the block, we 420 // can add a kill marker in this block saying that it kills the incoming 421 // value! 422 423 // In our final twist, we have to decide which instruction kills the 424 // register. In most cases this is the copy, however, terminator 425 // instructions at the end of the block may also use the value. In this 426 // case, we should mark the last such terminator as being the killing 427 // block, not the copy. 428 MachineBasicBlock::iterator KillInst = opBlock.end(); 429 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 430 for (MachineBasicBlock::iterator Term = FirstTerm; 431 Term != opBlock.end(); ++Term) { 432 if (Term->readsRegister(SrcReg)) 433 KillInst = Term; 434 } 435 436 if (KillInst == opBlock.end()) { 437 // No terminator uses the register. 438 439 if (reusedIncoming || !IncomingReg) { 440 // We may have to rewind a bit if we didn't insert a copy this time. 441 KillInst = FirstTerm; 442 while (KillInst != opBlock.begin()) { 443 --KillInst; 444 if (KillInst->isDebugValue()) 445 continue; 446 if (KillInst->readsRegister(SrcReg)) 447 break; 448 } 449 } else { 450 // We just inserted this copy. 451 KillInst = std::prev(InsertPos); 452 } 453 } 454 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 455 456 // Finally, mark it killed. 457 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 458 459 // This vreg no longer lives all of the way through opBlock. 460 unsigned opBlockNum = opBlock.getNumber(); 461 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 462 } 463 464 if (LIS) { 465 if (NewSrcInstr) { 466 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 467 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 468 } 469 470 if (!SrcUndef && 471 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 472 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 473 474 bool isLiveOut = false; 475 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), 476 SE = opBlock.succ_end(); SI != SE; ++SI) { 477 SlotIndex startIdx = LIS->getMBBStartIdx(*SI); 478 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 479 480 // Definitions by other PHIs are not truly live-in for our purposes. 481 if (VNI && VNI->def != startIdx) { 482 isLiveOut = true; 483 break; 484 } 485 } 486 487 if (!isLiveOut) { 488 MachineBasicBlock::iterator KillInst = opBlock.end(); 489 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 490 for (MachineBasicBlock::iterator Term = FirstTerm; 491 Term != opBlock.end(); ++Term) { 492 if (Term->readsRegister(SrcReg)) 493 KillInst = Term; 494 } 495 496 if (KillInst == opBlock.end()) { 497 // No terminator uses the register. 498 499 if (reusedIncoming || !IncomingReg) { 500 // We may have to rewind a bit if we didn't just insert a copy. 501 KillInst = FirstTerm; 502 while (KillInst != opBlock.begin()) { 503 --KillInst; 504 if (KillInst->isDebugValue()) 505 continue; 506 if (KillInst->readsRegister(SrcReg)) 507 break; 508 } 509 } else { 510 // We just inserted this copy. 511 KillInst = std::prev(InsertPos); 512 } 513 } 514 assert(KillInst->readsRegister(SrcReg) && 515 "Cannot find kill instruction"); 516 517 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 518 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 519 LIS->getMBBEndIdx(&opBlock)); 520 } 521 } 522 } 523 } 524 525 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 526 if (reusedIncoming || !IncomingReg) { 527 if (LIS) 528 LIS->RemoveMachineInstrFromMaps(*MPhi); 529 MF.DeleteMachineInstr(MPhi); 530 } 531 } 532 533 /// analyzePHINodes - Gather information about the PHI nodes in here. In 534 /// particular, we want to map the number of uses of a virtual register which is 535 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 536 /// used later to determine when the vreg is killed in the BB. 537 /// 538 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 539 for (const auto &MBB : MF) 540 for (const auto &BBI : MBB) { 541 if (!BBI.isPHI()) 542 break; 543 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) 544 ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(), 545 BBI.getOperand(i).getReg())]; 546 } 547 } 548 549 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 550 MachineBasicBlock &MBB, 551 MachineLoopInfo *MLI) { 552 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 553 return false; // Quick exit for basic blocks without PHIs. 554 555 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 556 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 557 558 bool Changed = false; 559 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 560 BBI != BBE && BBI->isPHI(); ++BBI) { 561 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 562 unsigned Reg = BBI->getOperand(i).getReg(); 563 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 564 // Is there a critical edge from PreMBB to MBB? 565 if (PreMBB->succ_size() == 1) 566 continue; 567 568 // Avoid splitting backedges of loops. It would introduce small 569 // out-of-line blocks into the loop which is very bad for code placement. 570 if (PreMBB == &MBB && !SplitAllCriticalEdges) 571 continue; 572 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 573 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 574 continue; 575 576 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 577 // when the source register is live-out for some other reason than a phi 578 // use. That means the copy we will insert in PreMBB won't be a kill, and 579 // there is a risk it may not be coalesced away. 580 // 581 // If the copy would be a kill, there is no need to split the edge. 582 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 583 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 584 continue; 585 if (ShouldSplit) { 586 DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#" 587 << PreMBB->getNumber() << " -> BB#" << MBB.getNumber() 588 << ": " << *BBI); 589 } 590 591 // If Reg is not live-in to MBB, it means it must be live-in to some 592 // other PreMBB successor, and we can avoid the interference by splitting 593 // the edge. 594 // 595 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 596 // is likely to be left after coalescing. If we are looking at a loop 597 // exiting edge, split it so we won't insert code in the loop, otherwise 598 // don't bother. 599 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 600 601 // Check for a loop exiting edge. 602 if (!ShouldSplit && CurLoop != PreLoop) { 603 DEBUG({ 604 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 605 if (PreLoop) dbgs() << "PreLoop: " << *PreLoop; 606 if (CurLoop) dbgs() << "CurLoop: " << *CurLoop; 607 }); 608 // This edge could be entering a loop, exiting a loop, or it could be 609 // both: Jumping directly form one loop to the header of a sibling 610 // loop. 611 // Split unless this edge is entering CurLoop from an outer loop. 612 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 613 } 614 if (!ShouldSplit && !SplitAllCriticalEdges) 615 continue; 616 if (!PreMBB->SplitCriticalEdge(&MBB, *this)) { 617 DEBUG(dbgs() << "Failed to split critical edge.\n"); 618 continue; 619 } 620 Changed = true; 621 ++NumCriticalEdgesSplit; 622 } 623 } 624 return Changed; 625 } 626 627 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) { 628 assert((LV || LIS) && 629 "isLiveIn() requires either LiveVariables or LiveIntervals"); 630 if (LIS) 631 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 632 else 633 return LV->isLiveIn(Reg, *MBB); 634 } 635 636 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, 637 const MachineBasicBlock *MBB) { 638 assert((LV || LIS) && 639 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 640 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 641 // so that a register used only in a PHI is not live out of the block. In 642 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 643 // in the predecessor basic block, so that a register used only in a PHI is live 644 // out of the block. 645 if (LIS) { 646 const LiveInterval &LI = LIS->getInterval(Reg); 647 for (const MachineBasicBlock *SI : MBB->successors()) 648 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 649 return true; 650 return false; 651 } else { 652 return LV->isLiveOut(Reg, *MBB); 653 } 654 } 655