1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetOperations.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/ADT/Twine.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervals.h" 37 #include "llvm/CodeGen/LiveRangeCalc.h" 38 #include "llvm/CodeGen/LiveStacks.h" 39 #include "llvm/CodeGen/LiveVariables.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineFunctionPass.h" 44 #include "llvm/CodeGen/MachineInstr.h" 45 #include "llvm/CodeGen/MachineInstrBundle.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineOperand.h" 48 #include "llvm/CodeGen/MachineRegisterInfo.h" 49 #include "llvm/CodeGen/PseudoSourceValue.h" 50 #include "llvm/CodeGen/SlotIndexes.h" 51 #include "llvm/CodeGen/StackMaps.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/IR/BasicBlock.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/InlineAsm.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/MC/LaneBitmask.h" 62 #include "llvm/MC/MCAsmInfo.h" 63 #include "llvm/MC/MCInstrDesc.h" 64 #include "llvm/MC/MCRegisterInfo.h" 65 #include "llvm/MC/MCTargetOptions.h" 66 #include "llvm/Pass.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/LowLevelTypeImpl.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetMachine.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <string> 79 #include <utility> 80 81 using namespace llvm; 82 83 namespace { 84 85 struct MachineVerifier { 86 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 87 88 unsigned verify(MachineFunction &MF); 89 90 Pass *const PASS; 91 const char *Banner; 92 const MachineFunction *MF; 93 const TargetMachine *TM; 94 const TargetInstrInfo *TII; 95 const TargetRegisterInfo *TRI; 96 const MachineRegisterInfo *MRI; 97 98 unsigned foundErrors; 99 100 // Avoid querying the MachineFunctionProperties for each operand. 101 bool isFunctionRegBankSelected; 102 bool isFunctionSelected; 103 104 using RegVector = SmallVector<unsigned, 16>; 105 using RegMaskVector = SmallVector<const uint32_t *, 4>; 106 using RegSet = DenseSet<unsigned>; 107 using RegMap = DenseMap<unsigned, const MachineInstr *>; 108 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 109 110 const MachineInstr *FirstNonPHI; 111 const MachineInstr *FirstTerminator; 112 BlockSet FunctionBlocks; 113 114 BitVector regsReserved; 115 RegSet regsLive; 116 RegVector regsDefined, regsDead, regsKilled; 117 RegMaskVector regMasks; 118 119 SlotIndex lastIndex; 120 121 // Add Reg and any sub-registers to RV 122 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 123 RV.push_back(Reg); 124 if (Register::isPhysicalRegister(Reg)) 125 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) 126 RV.push_back(SubReg); 127 } 128 129 struct BBInfo { 130 // Is this MBB reachable from the MF entry point? 131 bool reachable = false; 132 133 // Vregs that must be live in because they are used without being 134 // defined. Map value is the user. 135 RegMap vregsLiveIn; 136 137 // Regs killed in MBB. They may be defined again, and will then be in both 138 // regsKilled and regsLiveOut. 139 RegSet regsKilled; 140 141 // Regs defined in MBB and live out. Note that vregs passing through may 142 // be live out without being mentioned here. 143 RegSet regsLiveOut; 144 145 // Vregs that pass through MBB untouched. This set is disjoint from 146 // regsKilled and regsLiveOut. 147 RegSet vregsPassed; 148 149 // Vregs that must pass through MBB because they are needed by a successor 150 // block. This set is disjoint from regsLiveOut. 151 RegSet vregsRequired; 152 153 // Set versions of block's predecessor and successor lists. 154 BlockSet Preds, Succs; 155 156 BBInfo() = default; 157 158 // Add register to vregsPassed if it belongs there. Return true if 159 // anything changed. 160 bool addPassed(unsigned Reg) { 161 if (!Register::isVirtualRegister(Reg)) 162 return false; 163 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 164 return false; 165 return vregsPassed.insert(Reg).second; 166 } 167 168 // Same for a full set. 169 bool addPassed(const RegSet &RS) { 170 bool changed = false; 171 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 172 if (addPassed(*I)) 173 changed = true; 174 return changed; 175 } 176 177 // Add register to vregsRequired if it belongs there. Return true if 178 // anything changed. 179 bool addRequired(unsigned Reg) { 180 if (!Register::isVirtualRegister(Reg)) 181 return false; 182 if (regsLiveOut.count(Reg)) 183 return false; 184 return vregsRequired.insert(Reg).second; 185 } 186 187 // Same for a full set. 188 bool addRequired(const RegSet &RS) { 189 bool changed = false; 190 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 191 if (addRequired(*I)) 192 changed = true; 193 return changed; 194 } 195 196 // Same for a full map. 197 bool addRequired(const RegMap &RM) { 198 bool changed = false; 199 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 200 if (addRequired(I->first)) 201 changed = true; 202 return changed; 203 } 204 205 // Live-out registers are either in regsLiveOut or vregsPassed. 206 bool isLiveOut(unsigned Reg) const { 207 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 208 } 209 }; 210 211 // Extra register info per MBB. 212 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 213 214 bool isReserved(unsigned Reg) { 215 return Reg < regsReserved.size() && regsReserved.test(Reg); 216 } 217 218 bool isAllocatable(unsigned Reg) const { 219 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 220 !regsReserved.test(Reg); 221 } 222 223 // Analysis information if available 224 LiveVariables *LiveVars; 225 LiveIntervals *LiveInts; 226 LiveStacks *LiveStks; 227 SlotIndexes *Indexes; 228 229 void visitMachineFunctionBefore(); 230 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 231 void visitMachineBundleBefore(const MachineInstr *MI); 232 233 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 234 void verifyPreISelGenericInstruction(const MachineInstr *MI); 235 void visitMachineInstrBefore(const MachineInstr *MI); 236 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 237 void visitMachineInstrAfter(const MachineInstr *MI); 238 void visitMachineBundleAfter(const MachineInstr *MI); 239 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 240 void visitMachineFunctionAfter(); 241 242 void report(const char *msg, const MachineFunction *MF); 243 void report(const char *msg, const MachineBasicBlock *MBB); 244 void report(const char *msg, const MachineInstr *MI); 245 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 246 LLT MOVRegType = LLT{}); 247 248 void report_context(const LiveInterval &LI) const; 249 void report_context(const LiveRange &LR, unsigned VRegUnit, 250 LaneBitmask LaneMask) const; 251 void report_context(const LiveRange::Segment &S) const; 252 void report_context(const VNInfo &VNI) const; 253 void report_context(SlotIndex Pos) const; 254 void report_context(MCPhysReg PhysReg) const; 255 void report_context_liverange(const LiveRange &LR) const; 256 void report_context_lanemask(LaneBitmask LaneMask) const; 257 void report_context_vreg(unsigned VReg) const; 258 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 259 260 void verifyInlineAsm(const MachineInstr *MI); 261 262 void checkLiveness(const MachineOperand *MO, unsigned MONum); 263 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 264 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 265 LaneBitmask LaneMask = LaneBitmask::getNone()); 266 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 267 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 268 bool SubRangeCheck = false, 269 LaneBitmask LaneMask = LaneBitmask::getNone()); 270 271 void markReachable(const MachineBasicBlock *MBB); 272 void calcRegsPassed(); 273 void checkPHIOps(const MachineBasicBlock &MBB); 274 275 void calcRegsRequired(); 276 void verifyLiveVariables(); 277 void verifyLiveIntervals(); 278 void verifyLiveInterval(const LiveInterval&); 279 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 280 LaneBitmask); 281 void verifyLiveRangeSegment(const LiveRange&, 282 const LiveRange::const_iterator I, unsigned, 283 LaneBitmask); 284 void verifyLiveRange(const LiveRange&, unsigned, 285 LaneBitmask LaneMask = LaneBitmask::getNone()); 286 287 void verifyStackFrame(); 288 289 void verifySlotIndexes() const; 290 void verifyProperties(const MachineFunction &MF); 291 }; 292 293 struct MachineVerifierPass : public MachineFunctionPass { 294 static char ID; // Pass ID, replacement for typeid 295 296 const std::string Banner; 297 298 MachineVerifierPass(std::string banner = std::string()) 299 : MachineFunctionPass(ID), Banner(std::move(banner)) { 300 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 301 } 302 303 void getAnalysisUsage(AnalysisUsage &AU) const override { 304 AU.setPreservesAll(); 305 MachineFunctionPass::getAnalysisUsage(AU); 306 } 307 308 bool runOnMachineFunction(MachineFunction &MF) override { 309 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 310 if (FoundErrors) 311 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 312 return false; 313 } 314 }; 315 316 } // end anonymous namespace 317 318 char MachineVerifierPass::ID = 0; 319 320 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 321 "Verify generated machine code", false, false) 322 323 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 324 return new MachineVerifierPass(Banner); 325 } 326 327 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 328 const { 329 MachineFunction &MF = const_cast<MachineFunction&>(*this); 330 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 331 if (AbortOnErrors && FoundErrors) 332 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 333 return FoundErrors == 0; 334 } 335 336 void MachineVerifier::verifySlotIndexes() const { 337 if (Indexes == nullptr) 338 return; 339 340 // Ensure the IdxMBB list is sorted by slot indexes. 341 SlotIndex Last; 342 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 343 E = Indexes->MBBIndexEnd(); I != E; ++I) { 344 assert(!Last.isValid() || I->first > Last); 345 Last = I->first; 346 } 347 } 348 349 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 350 // If a pass has introduced virtual registers without clearing the 351 // NoVRegs property (or set it without allocating the vregs) 352 // then report an error. 353 if (MF.getProperties().hasProperty( 354 MachineFunctionProperties::Property::NoVRegs) && 355 MRI->getNumVirtRegs()) 356 report("Function has NoVRegs property but there are VReg operands", &MF); 357 } 358 359 unsigned MachineVerifier::verify(MachineFunction &MF) { 360 foundErrors = 0; 361 362 this->MF = &MF; 363 TM = &MF.getTarget(); 364 TII = MF.getSubtarget().getInstrInfo(); 365 TRI = MF.getSubtarget().getRegisterInfo(); 366 MRI = &MF.getRegInfo(); 367 368 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 369 MachineFunctionProperties::Property::FailedISel); 370 371 // If we're mid-GlobalISel and we already triggered the fallback path then 372 // it's expected that the MIR is somewhat broken but that's ok since we'll 373 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 374 if (isFunctionFailedISel) 375 return foundErrors; 376 377 isFunctionRegBankSelected = MF.getProperties().hasProperty( 378 MachineFunctionProperties::Property::RegBankSelected); 379 isFunctionSelected = MF.getProperties().hasProperty( 380 MachineFunctionProperties::Property::Selected); 381 382 LiveVars = nullptr; 383 LiveInts = nullptr; 384 LiveStks = nullptr; 385 Indexes = nullptr; 386 if (PASS) { 387 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 388 // We don't want to verify LiveVariables if LiveIntervals is available. 389 if (!LiveInts) 390 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 391 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 392 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 393 } 394 395 verifySlotIndexes(); 396 397 verifyProperties(MF); 398 399 visitMachineFunctionBefore(); 400 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 401 MFI!=MFE; ++MFI) { 402 visitMachineBasicBlockBefore(&*MFI); 403 // Keep track of the current bundle header. 404 const MachineInstr *CurBundle = nullptr; 405 // Do we expect the next instruction to be part of the same bundle? 406 bool InBundle = false; 407 408 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 409 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 410 if (MBBI->getParent() != &*MFI) { 411 report("Bad instruction parent pointer", &*MFI); 412 errs() << "Instruction: " << *MBBI; 413 continue; 414 } 415 416 // Check for consistent bundle flags. 417 if (InBundle && !MBBI->isBundledWithPred()) 418 report("Missing BundledPred flag, " 419 "BundledSucc was set on predecessor", 420 &*MBBI); 421 if (!InBundle && MBBI->isBundledWithPred()) 422 report("BundledPred flag is set, " 423 "but BundledSucc not set on predecessor", 424 &*MBBI); 425 426 // Is this a bundle header? 427 if (!MBBI->isInsideBundle()) { 428 if (CurBundle) 429 visitMachineBundleAfter(CurBundle); 430 CurBundle = &*MBBI; 431 visitMachineBundleBefore(CurBundle); 432 } else if (!CurBundle) 433 report("No bundle header", &*MBBI); 434 visitMachineInstrBefore(&*MBBI); 435 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 436 const MachineInstr &MI = *MBBI; 437 const MachineOperand &Op = MI.getOperand(I); 438 if (Op.getParent() != &MI) { 439 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 440 // functions when replacing operands of a MachineInstr. 441 report("Instruction has operand with wrong parent set", &MI); 442 } 443 444 visitMachineOperand(&Op, I); 445 } 446 447 visitMachineInstrAfter(&*MBBI); 448 449 // Was this the last bundled instruction? 450 InBundle = MBBI->isBundledWithSucc(); 451 } 452 if (CurBundle) 453 visitMachineBundleAfter(CurBundle); 454 if (InBundle) 455 report("BundledSucc flag set on last instruction in block", &MFI->back()); 456 visitMachineBasicBlockAfter(&*MFI); 457 } 458 visitMachineFunctionAfter(); 459 460 // Clean up. 461 regsLive.clear(); 462 regsDefined.clear(); 463 regsDead.clear(); 464 regsKilled.clear(); 465 regMasks.clear(); 466 MBBInfoMap.clear(); 467 468 return foundErrors; 469 } 470 471 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 472 assert(MF); 473 errs() << '\n'; 474 if (!foundErrors++) { 475 if (Banner) 476 errs() << "# " << Banner << '\n'; 477 if (LiveInts != nullptr) 478 LiveInts->print(errs()); 479 else 480 MF->print(errs(), Indexes); 481 } 482 errs() << "*** Bad machine code: " << msg << " ***\n" 483 << "- function: " << MF->getName() << "\n"; 484 } 485 486 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 487 assert(MBB); 488 report(msg, MBB->getParent()); 489 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 490 << MBB->getName() << " (" << (const void *)MBB << ')'; 491 if (Indexes) 492 errs() << " [" << Indexes->getMBBStartIdx(MBB) 493 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 494 errs() << '\n'; 495 } 496 497 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 498 assert(MI); 499 report(msg, MI->getParent()); 500 errs() << "- instruction: "; 501 if (Indexes && Indexes->hasIndex(*MI)) 502 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 503 MI->print(errs(), /*SkipOpers=*/true); 504 } 505 506 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 507 unsigned MONum, LLT MOVRegType) { 508 assert(MO); 509 report(msg, MO->getParent()); 510 errs() << "- operand " << MONum << ": "; 511 MO->print(errs(), MOVRegType, TRI); 512 errs() << "\n"; 513 } 514 515 void MachineVerifier::report_context(SlotIndex Pos) const { 516 errs() << "- at: " << Pos << '\n'; 517 } 518 519 void MachineVerifier::report_context(const LiveInterval &LI) const { 520 errs() << "- interval: " << LI << '\n'; 521 } 522 523 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 524 LaneBitmask LaneMask) const { 525 report_context_liverange(LR); 526 report_context_vreg_regunit(VRegUnit); 527 if (LaneMask.any()) 528 report_context_lanemask(LaneMask); 529 } 530 531 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 532 errs() << "- segment: " << S << '\n'; 533 } 534 535 void MachineVerifier::report_context(const VNInfo &VNI) const { 536 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 537 } 538 539 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 540 errs() << "- liverange: " << LR << '\n'; 541 } 542 543 void MachineVerifier::report_context(MCPhysReg PReg) const { 544 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 545 } 546 547 void MachineVerifier::report_context_vreg(unsigned VReg) const { 548 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 549 } 550 551 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 552 if (Register::isVirtualRegister(VRegOrUnit)) { 553 report_context_vreg(VRegOrUnit); 554 } else { 555 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 556 } 557 } 558 559 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 560 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 561 } 562 563 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 564 BBInfo &MInfo = MBBInfoMap[MBB]; 565 if (!MInfo.reachable) { 566 MInfo.reachable = true; 567 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 568 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 569 markReachable(*SuI); 570 } 571 } 572 573 void MachineVerifier::visitMachineFunctionBefore() { 574 lastIndex = SlotIndex(); 575 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 576 : TRI->getReservedRegs(*MF); 577 578 if (!MF->empty()) 579 markReachable(&MF->front()); 580 581 // Build a set of the basic blocks in the function. 582 FunctionBlocks.clear(); 583 for (const auto &MBB : *MF) { 584 FunctionBlocks.insert(&MBB); 585 BBInfo &MInfo = MBBInfoMap[&MBB]; 586 587 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 588 if (MInfo.Preds.size() != MBB.pred_size()) 589 report("MBB has duplicate entries in its predecessor list.", &MBB); 590 591 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 592 if (MInfo.Succs.size() != MBB.succ_size()) 593 report("MBB has duplicate entries in its successor list.", &MBB); 594 } 595 596 // Check that the register use lists are sane. 597 MRI->verifyUseLists(); 598 599 if (!MF->empty()) 600 verifyStackFrame(); 601 } 602 603 // Does iterator point to a and b as the first two elements? 604 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 605 const MachineBasicBlock *a, const MachineBasicBlock *b) { 606 if (*i == a) 607 return *++i == b; 608 if (*i == b) 609 return *++i == a; 610 return false; 611 } 612 613 void 614 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 615 FirstTerminator = nullptr; 616 FirstNonPHI = nullptr; 617 618 if (!MF->getProperties().hasProperty( 619 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 620 // If this block has allocatable physical registers live-in, check that 621 // it is an entry block or landing pad. 622 for (const auto &LI : MBB->liveins()) { 623 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 624 MBB->getIterator() != MBB->getParent()->begin()) { 625 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 626 report_context(LI.PhysReg); 627 } 628 } 629 } 630 631 // Count the number of landing pad successors. 632 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 633 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 634 E = MBB->succ_end(); I != E; ++I) { 635 if ((*I)->isEHPad()) 636 LandingPadSuccs.insert(*I); 637 if (!FunctionBlocks.count(*I)) 638 report("MBB has successor that isn't part of the function.", MBB); 639 if (!MBBInfoMap[*I].Preds.count(MBB)) { 640 report("Inconsistent CFG", MBB); 641 errs() << "MBB is not in the predecessor list of the successor " 642 << printMBBReference(*(*I)) << ".\n"; 643 } 644 } 645 646 // Check the predecessor list. 647 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 648 E = MBB->pred_end(); I != E; ++I) { 649 if (!FunctionBlocks.count(*I)) 650 report("MBB has predecessor that isn't part of the function.", MBB); 651 if (!MBBInfoMap[*I].Succs.count(MBB)) { 652 report("Inconsistent CFG", MBB); 653 errs() << "MBB is not in the successor list of the predecessor " 654 << printMBBReference(*(*I)) << ".\n"; 655 } 656 } 657 658 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 659 const BasicBlock *BB = MBB->getBasicBlock(); 660 const Function &F = MF->getFunction(); 661 if (LandingPadSuccs.size() > 1 && 662 !(AsmInfo && 663 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 664 BB && isa<SwitchInst>(BB->getTerminator())) && 665 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 666 report("MBB has more than one landing pad successor", MBB); 667 668 // Call analyzeBranch. If it succeeds, there several more conditions to check. 669 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 670 SmallVector<MachineOperand, 4> Cond; 671 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 672 Cond)) { 673 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 674 // check whether its answers match up with reality. 675 if (!TBB && !FBB) { 676 // Block falls through to its successor. 677 MachineFunction::const_iterator MBBI = MBB->getIterator(); 678 ++MBBI; 679 if (MBBI == MF->end()) { 680 // It's possible that the block legitimately ends with a noreturn 681 // call or an unreachable, in which case it won't actually fall 682 // out the bottom of the function. 683 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 684 // It's possible that the block legitimately ends with a noreturn 685 // call or an unreachable, in which case it won't actually fall 686 // out of the block. 687 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 688 report("MBB exits via unconditional fall-through but doesn't have " 689 "exactly one CFG successor!", MBB); 690 } else if (!MBB->isSuccessor(&*MBBI)) { 691 report("MBB exits via unconditional fall-through but its successor " 692 "differs from its CFG successor!", MBB); 693 } 694 if (!MBB->empty() && MBB->back().isBarrier() && 695 !TII->isPredicated(MBB->back())) { 696 report("MBB exits via unconditional fall-through but ends with a " 697 "barrier instruction!", MBB); 698 } 699 if (!Cond.empty()) { 700 report("MBB exits via unconditional fall-through but has a condition!", 701 MBB); 702 } 703 } else if (TBB && !FBB && Cond.empty()) { 704 // Block unconditionally branches somewhere. 705 // If the block has exactly one successor, that happens to be a 706 // landingpad, accept it as valid control flow. 707 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 708 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 709 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 710 report("MBB exits via unconditional branch but doesn't have " 711 "exactly one CFG successor!", MBB); 712 } else if (!MBB->isSuccessor(TBB)) { 713 report("MBB exits via unconditional branch but the CFG " 714 "successor doesn't match the actual successor!", MBB); 715 } 716 if (MBB->empty()) { 717 report("MBB exits via unconditional branch but doesn't contain " 718 "any instructions!", MBB); 719 } else if (!MBB->back().isBarrier()) { 720 report("MBB exits via unconditional branch but doesn't end with a " 721 "barrier instruction!", MBB); 722 } else if (!MBB->back().isTerminator()) { 723 report("MBB exits via unconditional branch but the branch isn't a " 724 "terminator instruction!", MBB); 725 } 726 } else if (TBB && !FBB && !Cond.empty()) { 727 // Block conditionally branches somewhere, otherwise falls through. 728 MachineFunction::const_iterator MBBI = MBB->getIterator(); 729 ++MBBI; 730 if (MBBI == MF->end()) { 731 report("MBB conditionally falls through out of function!", MBB); 732 } else if (MBB->succ_size() == 1) { 733 // A conditional branch with only one successor is weird, but allowed. 734 if (&*MBBI != TBB) 735 report("MBB exits via conditional branch/fall-through but only has " 736 "one CFG successor!", MBB); 737 else if (TBB != *MBB->succ_begin()) 738 report("MBB exits via conditional branch/fall-through but the CFG " 739 "successor don't match the actual successor!", MBB); 740 } else if (MBB->succ_size() != 2) { 741 report("MBB exits via conditional branch/fall-through but doesn't have " 742 "exactly two CFG successors!", MBB); 743 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 744 report("MBB exits via conditional branch/fall-through but the CFG " 745 "successors don't match the actual successors!", MBB); 746 } 747 if (MBB->empty()) { 748 report("MBB exits via conditional branch/fall-through but doesn't " 749 "contain any instructions!", MBB); 750 } else if (MBB->back().isBarrier()) { 751 report("MBB exits via conditional branch/fall-through but ends with a " 752 "barrier instruction!", MBB); 753 } else if (!MBB->back().isTerminator()) { 754 report("MBB exits via conditional branch/fall-through but the branch " 755 "isn't a terminator instruction!", MBB); 756 } 757 } else if (TBB && FBB) { 758 // Block conditionally branches somewhere, otherwise branches 759 // somewhere else. 760 if (MBB->succ_size() == 1) { 761 // A conditional branch with only one successor is weird, but allowed. 762 if (FBB != TBB) 763 report("MBB exits via conditional branch/branch through but only has " 764 "one CFG successor!", MBB); 765 else if (TBB != *MBB->succ_begin()) 766 report("MBB exits via conditional branch/branch through but the CFG " 767 "successor don't match the actual successor!", MBB); 768 } else if (MBB->succ_size() != 2) { 769 report("MBB exits via conditional branch/branch but doesn't have " 770 "exactly two CFG successors!", MBB); 771 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 772 report("MBB exits via conditional branch/branch but the CFG " 773 "successors don't match the actual successors!", MBB); 774 } 775 if (MBB->empty()) { 776 report("MBB exits via conditional branch/branch but doesn't " 777 "contain any instructions!", MBB); 778 } else if (!MBB->back().isBarrier()) { 779 report("MBB exits via conditional branch/branch but doesn't end with a " 780 "barrier instruction!", MBB); 781 } else if (!MBB->back().isTerminator()) { 782 report("MBB exits via conditional branch/branch but the branch " 783 "isn't a terminator instruction!", MBB); 784 } 785 if (Cond.empty()) { 786 report("MBB exits via conditional branch/branch but there's no " 787 "condition!", MBB); 788 } 789 } else { 790 report("analyzeBranch returned invalid data!", MBB); 791 } 792 } 793 794 regsLive.clear(); 795 if (MRI->tracksLiveness()) { 796 for (const auto &LI : MBB->liveins()) { 797 if (!Register::isPhysicalRegister(LI.PhysReg)) { 798 report("MBB live-in list contains non-physical register", MBB); 799 continue; 800 } 801 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 802 regsLive.insert(SubReg); 803 } 804 } 805 806 const MachineFrameInfo &MFI = MF->getFrameInfo(); 807 BitVector PR = MFI.getPristineRegs(*MF); 808 for (unsigned I : PR.set_bits()) { 809 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 810 regsLive.insert(SubReg); 811 } 812 813 regsKilled.clear(); 814 regsDefined.clear(); 815 816 if (Indexes) 817 lastIndex = Indexes->getMBBStartIdx(MBB); 818 } 819 820 // This function gets called for all bundle headers, including normal 821 // stand-alone unbundled instructions. 822 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 823 if (Indexes && Indexes->hasIndex(*MI)) { 824 SlotIndex idx = Indexes->getInstructionIndex(*MI); 825 if (!(idx > lastIndex)) { 826 report("Instruction index out of order", MI); 827 errs() << "Last instruction was at " << lastIndex << '\n'; 828 } 829 lastIndex = idx; 830 } 831 832 // Ensure non-terminators don't follow terminators. 833 // Ignore predicated terminators formed by if conversion. 834 // FIXME: If conversion shouldn't need to violate this rule. 835 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 836 if (!FirstTerminator) 837 FirstTerminator = MI; 838 } else if (FirstTerminator && !MI->isDebugEntryValue()) { 839 report("Non-terminator instruction after the first terminator", MI); 840 errs() << "First terminator was:\t" << *FirstTerminator; 841 } 842 } 843 844 // The operands on an INLINEASM instruction must follow a template. 845 // Verify that the flag operands make sense. 846 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 847 // The first two operands on INLINEASM are the asm string and global flags. 848 if (MI->getNumOperands() < 2) { 849 report("Too few operands on inline asm", MI); 850 return; 851 } 852 if (!MI->getOperand(0).isSymbol()) 853 report("Asm string must be an external symbol", MI); 854 if (!MI->getOperand(1).isImm()) 855 report("Asm flags must be an immediate", MI); 856 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 857 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 858 // and Extra_IsConvergent = 32. 859 if (!isUInt<6>(MI->getOperand(1).getImm())) 860 report("Unknown asm flags", &MI->getOperand(1), 1); 861 862 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 863 864 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 865 unsigned NumOps; 866 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 867 const MachineOperand &MO = MI->getOperand(OpNo); 868 // There may be implicit ops after the fixed operands. 869 if (!MO.isImm()) 870 break; 871 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 872 } 873 874 if (OpNo > MI->getNumOperands()) 875 report("Missing operands in last group", MI); 876 877 // An optional MDNode follows the groups. 878 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 879 ++OpNo; 880 881 // All trailing operands must be implicit registers. 882 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 883 const MachineOperand &MO = MI->getOperand(OpNo); 884 if (!MO.isReg() || !MO.isImplicit()) 885 report("Expected implicit register after groups", &MO, OpNo); 886 } 887 } 888 889 /// Check that types are consistent when two operands need to have the same 890 /// number of vector elements. 891 /// \return true if the types are valid. 892 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 893 const MachineInstr *MI) { 894 if (Ty0.isVector() != Ty1.isVector()) { 895 report("operand types must be all-vector or all-scalar", MI); 896 // Generally we try to report as many issues as possible at once, but in 897 // this case it's not clear what should we be comparing the size of the 898 // scalar with: the size of the whole vector or its lane. Instead of 899 // making an arbitrary choice and emitting not so helpful message, let's 900 // avoid the extra noise and stop here. 901 return false; 902 } 903 904 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 905 report("operand types must preserve number of vector elements", MI); 906 return false; 907 } 908 909 return true; 910 } 911 912 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 913 if (isFunctionSelected) 914 report("Unexpected generic instruction in a Selected function", MI); 915 916 const MCInstrDesc &MCID = MI->getDesc(); 917 unsigned NumOps = MI->getNumOperands(); 918 919 // Check types. 920 SmallVector<LLT, 4> Types; 921 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 922 I != E; ++I) { 923 if (!MCID.OpInfo[I].isGenericType()) 924 continue; 925 // Generic instructions specify type equality constraints between some of 926 // their operands. Make sure these are consistent. 927 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 928 Types.resize(std::max(TypeIdx + 1, Types.size())); 929 930 const MachineOperand *MO = &MI->getOperand(I); 931 if (!MO->isReg()) { 932 report("generic instruction must use register operands", MI); 933 continue; 934 } 935 936 LLT OpTy = MRI->getType(MO->getReg()); 937 // Don't report a type mismatch if there is no actual mismatch, only a 938 // type missing, to reduce noise: 939 if (OpTy.isValid()) { 940 // Only the first valid type for a type index will be printed: don't 941 // overwrite it later so it's always clear which type was expected: 942 if (!Types[TypeIdx].isValid()) 943 Types[TypeIdx] = OpTy; 944 else if (Types[TypeIdx] != OpTy) 945 report("Type mismatch in generic instruction", MO, I, OpTy); 946 } else { 947 // Generic instructions must have types attached to their operands. 948 report("Generic instruction is missing a virtual register type", MO, I); 949 } 950 } 951 952 // Generic opcodes must not have physical register operands. 953 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 954 const MachineOperand *MO = &MI->getOperand(I); 955 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) 956 report("Generic instruction cannot have physical register", MO, I); 957 } 958 959 // Avoid out of bounds in checks below. This was already reported earlier. 960 if (MI->getNumOperands() < MCID.getNumOperands()) 961 return; 962 963 StringRef ErrorInfo; 964 if (!TII->verifyInstruction(*MI, ErrorInfo)) 965 report(ErrorInfo.data(), MI); 966 967 // Verify properties of various specific instruction types 968 switch (MI->getOpcode()) { 969 case TargetOpcode::G_CONSTANT: 970 case TargetOpcode::G_FCONSTANT: { 971 if (MI->getNumOperands() < MCID.getNumOperands()) 972 break; 973 974 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 975 if (DstTy.isVector()) 976 report("Instruction cannot use a vector result type", MI); 977 978 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 979 if (!MI->getOperand(1).isCImm()) { 980 report("G_CONSTANT operand must be cimm", MI); 981 break; 982 } 983 984 const ConstantInt *CI = MI->getOperand(1).getCImm(); 985 if (CI->getBitWidth() != DstTy.getSizeInBits()) 986 report("inconsistent constant size", MI); 987 } else { 988 if (!MI->getOperand(1).isFPImm()) { 989 report("G_FCONSTANT operand must be fpimm", MI); 990 break; 991 } 992 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 993 994 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 995 DstTy.getSizeInBits()) { 996 report("inconsistent constant size", MI); 997 } 998 } 999 1000 break; 1001 } 1002 case TargetOpcode::G_LOAD: 1003 case TargetOpcode::G_STORE: 1004 case TargetOpcode::G_ZEXTLOAD: 1005 case TargetOpcode::G_SEXTLOAD: { 1006 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1007 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1008 if (!PtrTy.isPointer()) 1009 report("Generic memory instruction must access a pointer", MI); 1010 1011 // Generic loads and stores must have a single MachineMemOperand 1012 // describing that access. 1013 if (!MI->hasOneMemOperand()) { 1014 report("Generic instruction accessing memory must have one mem operand", 1015 MI); 1016 } else { 1017 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1018 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1019 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1020 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 1021 report("Generic extload must have a narrower memory type", MI); 1022 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1023 if (MMO.getSize() > ValTy.getSizeInBytes()) 1024 report("load memory size cannot exceed result size", MI); 1025 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1026 if (ValTy.getSizeInBytes() < MMO.getSize()) 1027 report("store memory size cannot exceed value size", MI); 1028 } 1029 } 1030 1031 break; 1032 } 1033 case TargetOpcode::G_PHI: { 1034 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1035 if (!DstTy.isValid() || 1036 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 1037 [this, &DstTy](const MachineOperand &MO) { 1038 if (!MO.isReg()) 1039 return true; 1040 LLT Ty = MRI->getType(MO.getReg()); 1041 if (!Ty.isValid() || (Ty != DstTy)) 1042 return false; 1043 return true; 1044 })) 1045 report("Generic Instruction G_PHI has operands with incompatible/missing " 1046 "types", 1047 MI); 1048 break; 1049 } 1050 case TargetOpcode::G_BITCAST: { 1051 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1052 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1053 if (!DstTy.isValid() || !SrcTy.isValid()) 1054 break; 1055 1056 if (SrcTy.isPointer() != DstTy.isPointer()) 1057 report("bitcast cannot convert between pointers and other types", MI); 1058 1059 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1060 report("bitcast sizes must match", MI); 1061 break; 1062 } 1063 case TargetOpcode::G_INTTOPTR: 1064 case TargetOpcode::G_PTRTOINT: 1065 case TargetOpcode::G_ADDRSPACE_CAST: { 1066 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1067 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1068 if (!DstTy.isValid() || !SrcTy.isValid()) 1069 break; 1070 1071 verifyVectorElementMatch(DstTy, SrcTy, MI); 1072 1073 DstTy = DstTy.getScalarType(); 1074 SrcTy = SrcTy.getScalarType(); 1075 1076 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1077 if (!DstTy.isPointer()) 1078 report("inttoptr result type must be a pointer", MI); 1079 if (SrcTy.isPointer()) 1080 report("inttoptr source type must not be a pointer", MI); 1081 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1082 if (!SrcTy.isPointer()) 1083 report("ptrtoint source type must be a pointer", MI); 1084 if (DstTy.isPointer()) 1085 report("ptrtoint result type must not be a pointer", MI); 1086 } else { 1087 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1088 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1089 report("addrspacecast types must be pointers", MI); 1090 else { 1091 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1092 report("addrspacecast must convert different address spaces", MI); 1093 } 1094 } 1095 1096 break; 1097 } 1098 case TargetOpcode::G_PTR_ADD: { 1099 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1100 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1101 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1102 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1103 break; 1104 1105 if (!PtrTy.getScalarType().isPointer()) 1106 report("gep first operand must be a pointer", MI); 1107 1108 if (OffsetTy.getScalarType().isPointer()) 1109 report("gep offset operand must not be a pointer", MI); 1110 1111 // TODO: Is the offset allowed to be a scalar with a vector? 1112 break; 1113 } 1114 case TargetOpcode::G_SEXT: 1115 case TargetOpcode::G_ZEXT: 1116 case TargetOpcode::G_ANYEXT: 1117 case TargetOpcode::G_TRUNC: 1118 case TargetOpcode::G_FPEXT: 1119 case TargetOpcode::G_FPTRUNC: { 1120 // Number of operands and presense of types is already checked (and 1121 // reported in case of any issues), so no need to report them again. As 1122 // we're trying to report as many issues as possible at once, however, the 1123 // instructions aren't guaranteed to have the right number of operands or 1124 // types attached to them at this point 1125 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1126 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1127 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1128 if (!DstTy.isValid() || !SrcTy.isValid()) 1129 break; 1130 1131 LLT DstElTy = DstTy.getScalarType(); 1132 LLT SrcElTy = SrcTy.getScalarType(); 1133 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1134 report("Generic extend/truncate can not operate on pointers", MI); 1135 1136 verifyVectorElementMatch(DstTy, SrcTy, MI); 1137 1138 unsigned DstSize = DstElTy.getSizeInBits(); 1139 unsigned SrcSize = SrcElTy.getSizeInBits(); 1140 switch (MI->getOpcode()) { 1141 default: 1142 if (DstSize <= SrcSize) 1143 report("Generic extend has destination type no larger than source", MI); 1144 break; 1145 case TargetOpcode::G_TRUNC: 1146 case TargetOpcode::G_FPTRUNC: 1147 if (DstSize >= SrcSize) 1148 report("Generic truncate has destination type no smaller than source", 1149 MI); 1150 break; 1151 } 1152 break; 1153 } 1154 case TargetOpcode::G_SELECT: { 1155 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1156 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1157 if (!SelTy.isValid() || !CondTy.isValid()) 1158 break; 1159 1160 // Scalar condition select on a vector is valid. 1161 if (CondTy.isVector()) 1162 verifyVectorElementMatch(SelTy, CondTy, MI); 1163 break; 1164 } 1165 case TargetOpcode::G_MERGE_VALUES: { 1166 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1167 // e.g. s2N = MERGE sN, sN 1168 // Merging multiple scalars into a vector is not allowed, should use 1169 // G_BUILD_VECTOR for that. 1170 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1171 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1172 if (DstTy.isVector() || SrcTy.isVector()) 1173 report("G_MERGE_VALUES cannot operate on vectors", MI); 1174 1175 const unsigned NumOps = MI->getNumOperands(); 1176 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1177 report("G_MERGE_VALUES result size is inconsistent", MI); 1178 1179 for (unsigned I = 2; I != NumOps; ++I) { 1180 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1181 report("G_MERGE_VALUES source types do not match", MI); 1182 } 1183 1184 break; 1185 } 1186 case TargetOpcode::G_UNMERGE_VALUES: { 1187 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1188 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1189 // For now G_UNMERGE can split vectors. 1190 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1191 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1192 report("G_UNMERGE_VALUES destination types do not match", MI); 1193 } 1194 if (SrcTy.getSizeInBits() != 1195 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1196 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1197 MI); 1198 } 1199 break; 1200 } 1201 case TargetOpcode::G_BUILD_VECTOR: { 1202 // Source types must be scalars, dest type a vector. Total size of scalars 1203 // must match the dest vector size. 1204 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1205 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1206 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1207 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1208 break; 1209 } 1210 1211 if (DstTy.getElementType() != SrcEltTy) 1212 report("G_BUILD_VECTOR result element type must match source type", MI); 1213 1214 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1215 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1216 1217 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1218 if (MRI->getType(MI->getOperand(1).getReg()) != 1219 MRI->getType(MI->getOperand(i).getReg())) 1220 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1221 } 1222 1223 break; 1224 } 1225 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1226 // Source types must be scalars, dest type a vector. Scalar types must be 1227 // larger than the dest vector elt type, as this is a truncating operation. 1228 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1229 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1230 if (!DstTy.isVector() || SrcEltTy.isVector()) 1231 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1232 MI); 1233 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1234 if (MRI->getType(MI->getOperand(1).getReg()) != 1235 MRI->getType(MI->getOperand(i).getReg())) 1236 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1237 MI); 1238 } 1239 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1240 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1241 "dest elt type", 1242 MI); 1243 break; 1244 } 1245 case TargetOpcode::G_CONCAT_VECTORS: { 1246 // Source types should be vectors, and total size should match the dest 1247 // vector size. 1248 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1249 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1250 if (!DstTy.isVector() || !SrcTy.isVector()) 1251 report("G_CONCAT_VECTOR requires vector source and destination operands", 1252 MI); 1253 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1254 if (MRI->getType(MI->getOperand(1).getReg()) != 1255 MRI->getType(MI->getOperand(i).getReg())) 1256 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1257 } 1258 if (DstTy.getNumElements() != 1259 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1260 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1261 break; 1262 } 1263 case TargetOpcode::G_ICMP: 1264 case TargetOpcode::G_FCMP: { 1265 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1266 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1267 1268 if ((DstTy.isVector() != SrcTy.isVector()) || 1269 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1270 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1271 1272 break; 1273 } 1274 case TargetOpcode::G_EXTRACT: { 1275 const MachineOperand &SrcOp = MI->getOperand(1); 1276 if (!SrcOp.isReg()) { 1277 report("extract source must be a register", MI); 1278 break; 1279 } 1280 1281 const MachineOperand &OffsetOp = MI->getOperand(2); 1282 if (!OffsetOp.isImm()) { 1283 report("extract offset must be a constant", MI); 1284 break; 1285 } 1286 1287 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1288 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1289 if (SrcSize == DstSize) 1290 report("extract source must be larger than result", MI); 1291 1292 if (DstSize + OffsetOp.getImm() > SrcSize) 1293 report("extract reads past end of register", MI); 1294 break; 1295 } 1296 case TargetOpcode::G_INSERT: { 1297 const MachineOperand &SrcOp = MI->getOperand(2); 1298 if (!SrcOp.isReg()) { 1299 report("insert source must be a register", MI); 1300 break; 1301 } 1302 1303 const MachineOperand &OffsetOp = MI->getOperand(3); 1304 if (!OffsetOp.isImm()) { 1305 report("insert offset must be a constant", MI); 1306 break; 1307 } 1308 1309 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1310 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1311 1312 if (DstSize <= SrcSize) 1313 report("inserted size must be smaller than total register", MI); 1314 1315 if (SrcSize + OffsetOp.getImm() > DstSize) 1316 report("insert writes past end of register", MI); 1317 1318 break; 1319 } 1320 case TargetOpcode::G_JUMP_TABLE: { 1321 if (!MI->getOperand(1).isJTI()) 1322 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1323 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1324 if (!DstTy.isPointer()) 1325 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1326 break; 1327 } 1328 case TargetOpcode::G_BRJT: { 1329 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1330 report("G_BRJT src operand 0 must be a pointer type", MI); 1331 1332 if (!MI->getOperand(1).isJTI()) 1333 report("G_BRJT src operand 1 must be a jump table index", MI); 1334 1335 const auto &IdxOp = MI->getOperand(2); 1336 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1337 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1338 break; 1339 } 1340 case TargetOpcode::G_INTRINSIC: 1341 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1342 // TODO: Should verify number of def and use operands, but the current 1343 // interface requires passing in IR types for mangling. 1344 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1345 if (!IntrIDOp.isIntrinsicID()) { 1346 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1347 break; 1348 } 1349 1350 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1351 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1352 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1353 AttributeList Attrs 1354 = Intrinsic::getAttributes(MF->getFunction().getContext(), 1355 static_cast<Intrinsic::ID>(IntrID)); 1356 bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone); 1357 if (NoSideEffects && DeclHasSideEffects) { 1358 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1359 break; 1360 } 1361 if (!NoSideEffects && !DeclHasSideEffects) { 1362 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1363 break; 1364 } 1365 } 1366 switch (IntrID) { 1367 case Intrinsic::memcpy: 1368 if (MI->getNumOperands() != 5) 1369 report("Expected memcpy intrinsic to have 5 operands", MI); 1370 break; 1371 case Intrinsic::memmove: 1372 if (MI->getNumOperands() != 5) 1373 report("Expected memmove intrinsic to have 5 operands", MI); 1374 break; 1375 case Intrinsic::memset: 1376 if (MI->getNumOperands() != 5) 1377 report("Expected memset intrinsic to have 5 operands", MI); 1378 break; 1379 } 1380 break; 1381 } 1382 case TargetOpcode::G_SEXT_INREG: { 1383 if (!MI->getOperand(2).isImm()) { 1384 report("G_SEXT_INREG expects an immediate operand #2", MI); 1385 break; 1386 } 1387 1388 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1389 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1390 verifyVectorElementMatch(DstTy, SrcTy, MI); 1391 1392 int64_t Imm = MI->getOperand(2).getImm(); 1393 if (Imm <= 0) 1394 report("G_SEXT_INREG size must be >= 1", MI); 1395 if (Imm >= SrcTy.getScalarSizeInBits()) 1396 report("G_SEXT_INREG size must be less than source bit width", MI); 1397 break; 1398 } 1399 case TargetOpcode::G_SHUFFLE_VECTOR: { 1400 const MachineOperand &MaskOp = MI->getOperand(3); 1401 if (!MaskOp.isShuffleMask()) { 1402 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1403 break; 1404 } 1405 1406 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1407 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1408 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1409 1410 if (Src0Ty != Src1Ty) 1411 report("Source operands must be the same type", MI); 1412 1413 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1414 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1415 1416 // Don't check that all operands are vector because scalars are used in 1417 // place of 1 element vectors. 1418 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1419 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1420 1421 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1422 1423 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1424 report("Wrong result type for shufflemask", MI); 1425 1426 for (int Idx : MaskIdxes) { 1427 if (Idx < 0) 1428 continue; 1429 1430 if (Idx >= 2 * SrcNumElts) 1431 report("Out of bounds shuffle index", MI); 1432 } 1433 1434 break; 1435 } 1436 case TargetOpcode::G_DYN_STACKALLOC: { 1437 const MachineOperand &DstOp = MI->getOperand(0); 1438 const MachineOperand &AllocOp = MI->getOperand(1); 1439 const MachineOperand &AlignOp = MI->getOperand(2); 1440 1441 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1442 report("dst operand 0 must be a pointer type", MI); 1443 break; 1444 } 1445 1446 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1447 report("src operand 1 must be a scalar reg type", MI); 1448 break; 1449 } 1450 1451 if (!AlignOp.isImm()) { 1452 report("src operand 2 must be an immediate type", MI); 1453 break; 1454 } 1455 break; 1456 } 1457 default: 1458 break; 1459 } 1460 } 1461 1462 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1463 const MCInstrDesc &MCID = MI->getDesc(); 1464 if (MI->getNumOperands() < MCID.getNumOperands()) { 1465 report("Too few operands", MI); 1466 errs() << MCID.getNumOperands() << " operands expected, but " 1467 << MI->getNumOperands() << " given.\n"; 1468 } 1469 1470 if (MI->isPHI()) { 1471 if (MF->getProperties().hasProperty( 1472 MachineFunctionProperties::Property::NoPHIs)) 1473 report("Found PHI instruction with NoPHIs property set", MI); 1474 1475 if (FirstNonPHI) 1476 report("Found PHI instruction after non-PHI", MI); 1477 } else if (FirstNonPHI == nullptr) 1478 FirstNonPHI = MI; 1479 1480 // Check the tied operands. 1481 if (MI->isInlineAsm()) 1482 verifyInlineAsm(MI); 1483 1484 // Check the MachineMemOperands for basic consistency. 1485 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 1486 E = MI->memoperands_end(); 1487 I != E; ++I) { 1488 if ((*I)->isLoad() && !MI->mayLoad()) 1489 report("Missing mayLoad flag", MI); 1490 if ((*I)->isStore() && !MI->mayStore()) 1491 report("Missing mayStore flag", MI); 1492 } 1493 1494 // Debug values must not have a slot index. 1495 // Other instructions must have one, unless they are inside a bundle. 1496 if (LiveInts) { 1497 bool mapped = !LiveInts->isNotInMIMap(*MI); 1498 if (MI->isDebugInstr()) { 1499 if (mapped) 1500 report("Debug instruction has a slot index", MI); 1501 } else if (MI->isInsideBundle()) { 1502 if (mapped) 1503 report("Instruction inside bundle has a slot index", MI); 1504 } else { 1505 if (!mapped) 1506 report("Missing slot index", MI); 1507 } 1508 } 1509 1510 if (isPreISelGenericOpcode(MCID.getOpcode())) { 1511 verifyPreISelGenericInstruction(MI); 1512 return; 1513 } 1514 1515 StringRef ErrorInfo; 1516 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1517 report(ErrorInfo.data(), MI); 1518 1519 // Verify properties of various specific instruction types 1520 switch (MI->getOpcode()) { 1521 case TargetOpcode::COPY: { 1522 if (foundErrors) 1523 break; 1524 const MachineOperand &DstOp = MI->getOperand(0); 1525 const MachineOperand &SrcOp = MI->getOperand(1); 1526 LLT DstTy = MRI->getType(DstOp.getReg()); 1527 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1528 if (SrcTy.isValid() && DstTy.isValid()) { 1529 // If both types are valid, check that the types are the same. 1530 if (SrcTy != DstTy) { 1531 report("Copy Instruction is illegal with mismatching types", MI); 1532 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1533 } 1534 } 1535 if (SrcTy.isValid() || DstTy.isValid()) { 1536 // If one of them have valid types, let's just check they have the same 1537 // size. 1538 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1539 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1540 assert(SrcSize && "Expecting size here"); 1541 assert(DstSize && "Expecting size here"); 1542 if (SrcSize != DstSize) 1543 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1544 report("Copy Instruction is illegal with mismatching sizes", MI); 1545 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1546 << "\n"; 1547 } 1548 } 1549 break; 1550 } 1551 case TargetOpcode::STATEPOINT: 1552 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 1553 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 1554 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 1555 report("meta operands to STATEPOINT not constant!", MI); 1556 break; 1557 1558 auto VerifyStackMapConstant = [&](unsigned Offset) { 1559 if (!MI->getOperand(Offset).isImm() || 1560 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 1561 !MI->getOperand(Offset + 1).isImm()) 1562 report("stack map constant to STATEPOINT not well formed!", MI); 1563 }; 1564 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 1565 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 1566 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 1567 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 1568 1569 // TODO: verify we have properly encoded deopt arguments 1570 break; 1571 } 1572 } 1573 1574 void 1575 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1576 const MachineInstr *MI = MO->getParent(); 1577 const MCInstrDesc &MCID = MI->getDesc(); 1578 unsigned NumDefs = MCID.getNumDefs(); 1579 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1580 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1581 1582 // The first MCID.NumDefs operands must be explicit register defines 1583 if (MONum < NumDefs) { 1584 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1585 if (!MO->isReg()) 1586 report("Explicit definition must be a register", MO, MONum); 1587 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1588 report("Explicit definition marked as use", MO, MONum); 1589 else if (MO->isImplicit()) 1590 report("Explicit definition marked as implicit", MO, MONum); 1591 } else if (MONum < MCID.getNumOperands()) { 1592 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1593 // Don't check if it's the last operand in a variadic instruction. See, 1594 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 1595 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 1596 if (!IsOptional) { 1597 if (MO->isReg()) { 1598 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 1599 report("Explicit operand marked as def", MO, MONum); 1600 if (MO->isImplicit()) 1601 report("Explicit operand marked as implicit", MO, MONum); 1602 } 1603 1604 // Check that an instruction has register operands only as expected. 1605 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 1606 !MO->isReg() && !MO->isFI()) 1607 report("Expected a register operand.", MO, MONum); 1608 if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 1609 MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg()) 1610 report("Expected a non-register operand.", MO, MONum); 1611 } 1612 1613 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1614 if (TiedTo != -1) { 1615 if (!MO->isReg()) 1616 report("Tied use must be a register", MO, MONum); 1617 else if (!MO->isTied()) 1618 report("Operand should be tied", MO, MONum); 1619 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1620 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1621 else if (Register::isPhysicalRegister(MO->getReg())) { 1622 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1623 if (!MOTied.isReg()) 1624 report("Tied counterpart must be a register", &MOTied, TiedTo); 1625 else if (Register::isPhysicalRegister(MOTied.getReg()) && 1626 MO->getReg() != MOTied.getReg()) 1627 report("Tied physical registers must match.", &MOTied, TiedTo); 1628 } 1629 } else if (MO->isReg() && MO->isTied()) 1630 report("Explicit operand should not be tied", MO, MONum); 1631 } else { 1632 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1633 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1634 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1635 } 1636 1637 switch (MO->getType()) { 1638 case MachineOperand::MO_Register: { 1639 const Register Reg = MO->getReg(); 1640 if (!Reg) 1641 return; 1642 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1643 checkLiveness(MO, MONum); 1644 1645 // Verify the consistency of tied operands. 1646 if (MO->isTied()) { 1647 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1648 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1649 if (!OtherMO.isReg()) 1650 report("Must be tied to a register", MO, MONum); 1651 if (!OtherMO.isTied()) 1652 report("Missing tie flags on tied operand", MO, MONum); 1653 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1654 report("Inconsistent tie links", MO, MONum); 1655 if (MONum < MCID.getNumDefs()) { 1656 if (OtherIdx < MCID.getNumOperands()) { 1657 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1658 report("Explicit def tied to explicit use without tie constraint", 1659 MO, MONum); 1660 } else { 1661 if (!OtherMO.isImplicit()) 1662 report("Explicit def should be tied to implicit use", MO, MONum); 1663 } 1664 } 1665 } 1666 1667 // Verify two-address constraints after leaving SSA form. 1668 unsigned DefIdx; 1669 if (!MRI->isSSA() && MO->isUse() && 1670 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1671 Reg != MI->getOperand(DefIdx).getReg()) 1672 report("Two-address instruction operands must be identical", MO, MONum); 1673 1674 // Check register classes. 1675 unsigned SubIdx = MO->getSubReg(); 1676 1677 if (Register::isPhysicalRegister(Reg)) { 1678 if (SubIdx) { 1679 report("Illegal subregister index for physical register", MO, MONum); 1680 return; 1681 } 1682 if (MONum < MCID.getNumOperands()) { 1683 if (const TargetRegisterClass *DRC = 1684 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1685 if (!DRC->contains(Reg)) { 1686 report("Illegal physical register for instruction", MO, MONum); 1687 errs() << printReg(Reg, TRI) << " is not a " 1688 << TRI->getRegClassName(DRC) << " register.\n"; 1689 } 1690 } 1691 } 1692 if (MO->isRenamable()) { 1693 if (MRI->isReserved(Reg)) { 1694 report("isRenamable set on reserved register", MO, MONum); 1695 return; 1696 } 1697 } 1698 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1699 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1700 return; 1701 } 1702 } else { 1703 // Virtual register. 1704 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1705 if (!RC) { 1706 // This is a generic virtual register. 1707 1708 // If we're post-Select, we can't have gvregs anymore. 1709 if (isFunctionSelected) { 1710 report("Generic virtual register invalid in a Selected function", 1711 MO, MONum); 1712 return; 1713 } 1714 1715 // The gvreg must have a type and it must not have a SubIdx. 1716 LLT Ty = MRI->getType(Reg); 1717 if (!Ty.isValid()) { 1718 report("Generic virtual register must have a valid type", MO, 1719 MONum); 1720 return; 1721 } 1722 1723 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1724 1725 // If we're post-RegBankSelect, the gvreg must have a bank. 1726 if (!RegBank && isFunctionRegBankSelected) { 1727 report("Generic virtual register must have a bank in a " 1728 "RegBankSelected function", 1729 MO, MONum); 1730 return; 1731 } 1732 1733 // Make sure the register fits into its register bank if any. 1734 if (RegBank && Ty.isValid() && 1735 RegBank->getSize() < Ty.getSizeInBits()) { 1736 report("Register bank is too small for virtual register", MO, 1737 MONum); 1738 errs() << "Register bank " << RegBank->getName() << " too small(" 1739 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1740 << "-bits\n"; 1741 return; 1742 } 1743 if (SubIdx) { 1744 report("Generic virtual register does not allow subregister index", MO, 1745 MONum); 1746 return; 1747 } 1748 1749 // If this is a target specific instruction and this operand 1750 // has register class constraint, the virtual register must 1751 // comply to it. 1752 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1753 MONum < MCID.getNumOperands() && 1754 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1755 report("Virtual register does not match instruction constraint", MO, 1756 MONum); 1757 errs() << "Expect register class " 1758 << TRI->getRegClassName( 1759 TII->getRegClass(MCID, MONum, TRI, *MF)) 1760 << " but got nothing\n"; 1761 return; 1762 } 1763 1764 break; 1765 } 1766 if (SubIdx) { 1767 const TargetRegisterClass *SRC = 1768 TRI->getSubClassWithSubReg(RC, SubIdx); 1769 if (!SRC) { 1770 report("Invalid subregister index for virtual register", MO, MONum); 1771 errs() << "Register class " << TRI->getRegClassName(RC) 1772 << " does not support subreg index " << SubIdx << "\n"; 1773 return; 1774 } 1775 if (RC != SRC) { 1776 report("Invalid register class for subregister index", MO, MONum); 1777 errs() << "Register class " << TRI->getRegClassName(RC) 1778 << " does not fully support subreg index " << SubIdx << "\n"; 1779 return; 1780 } 1781 } 1782 if (MONum < MCID.getNumOperands()) { 1783 if (const TargetRegisterClass *DRC = 1784 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1785 if (SubIdx) { 1786 const TargetRegisterClass *SuperRC = 1787 TRI->getLargestLegalSuperClass(RC, *MF); 1788 if (!SuperRC) { 1789 report("No largest legal super class exists.", MO, MONum); 1790 return; 1791 } 1792 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1793 if (!DRC) { 1794 report("No matching super-reg register class.", MO, MONum); 1795 return; 1796 } 1797 } 1798 if (!RC->hasSuperClassEq(DRC)) { 1799 report("Illegal virtual register for instruction", MO, MONum); 1800 errs() << "Expected a " << TRI->getRegClassName(DRC) 1801 << " register, but got a " << TRI->getRegClassName(RC) 1802 << " register\n"; 1803 } 1804 } 1805 } 1806 } 1807 break; 1808 } 1809 1810 case MachineOperand::MO_RegisterMask: 1811 regMasks.push_back(MO->getRegMask()); 1812 break; 1813 1814 case MachineOperand::MO_MachineBasicBlock: 1815 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1816 report("PHI operand is not in the CFG", MO, MONum); 1817 break; 1818 1819 case MachineOperand::MO_FrameIndex: 1820 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1821 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1822 int FI = MO->getIndex(); 1823 LiveInterval &LI = LiveStks->getInterval(FI); 1824 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1825 1826 bool stores = MI->mayStore(); 1827 bool loads = MI->mayLoad(); 1828 // For a memory-to-memory move, we need to check if the frame 1829 // index is used for storing or loading, by inspecting the 1830 // memory operands. 1831 if (stores && loads) { 1832 for (auto *MMO : MI->memoperands()) { 1833 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1834 if (PSV == nullptr) continue; 1835 const FixedStackPseudoSourceValue *Value = 1836 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1837 if (Value == nullptr) continue; 1838 if (Value->getFrameIndex() != FI) continue; 1839 1840 if (MMO->isStore()) 1841 loads = false; 1842 else 1843 stores = false; 1844 break; 1845 } 1846 if (loads == stores) 1847 report("Missing fixed stack memoperand.", MI); 1848 } 1849 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1850 report("Instruction loads from dead spill slot", MO, MONum); 1851 errs() << "Live stack: " << LI << '\n'; 1852 } 1853 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1854 report("Instruction stores to dead spill slot", MO, MONum); 1855 errs() << "Live stack: " << LI << '\n'; 1856 } 1857 } 1858 break; 1859 1860 default: 1861 break; 1862 } 1863 } 1864 1865 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1866 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1867 LaneBitmask LaneMask) { 1868 LiveQueryResult LRQ = LR.Query(UseIdx); 1869 // Check if we have a segment at the use, note however that we only need one 1870 // live subregister range, the others may be dead. 1871 if (!LRQ.valueIn() && LaneMask.none()) { 1872 report("No live segment at use", MO, MONum); 1873 report_context_liverange(LR); 1874 report_context_vreg_regunit(VRegOrUnit); 1875 report_context(UseIdx); 1876 } 1877 if (MO->isKill() && !LRQ.isKill()) { 1878 report("Live range continues after kill flag", MO, MONum); 1879 report_context_liverange(LR); 1880 report_context_vreg_regunit(VRegOrUnit); 1881 if (LaneMask.any()) 1882 report_context_lanemask(LaneMask); 1883 report_context(UseIdx); 1884 } 1885 } 1886 1887 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1888 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1889 bool SubRangeCheck, LaneBitmask LaneMask) { 1890 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1891 assert(VNI && "NULL valno is not allowed"); 1892 if (VNI->def != DefIdx) { 1893 report("Inconsistent valno->def", MO, MONum); 1894 report_context_liverange(LR); 1895 report_context_vreg_regunit(VRegOrUnit); 1896 if (LaneMask.any()) 1897 report_context_lanemask(LaneMask); 1898 report_context(*VNI); 1899 report_context(DefIdx); 1900 } 1901 } else { 1902 report("No live segment at def", MO, MONum); 1903 report_context_liverange(LR); 1904 report_context_vreg_regunit(VRegOrUnit); 1905 if (LaneMask.any()) 1906 report_context_lanemask(LaneMask); 1907 report_context(DefIdx); 1908 } 1909 // Check that, if the dead def flag is present, LiveInts agree. 1910 if (MO->isDead()) { 1911 LiveQueryResult LRQ = LR.Query(DefIdx); 1912 if (!LRQ.isDeadDef()) { 1913 assert(Register::isVirtualRegister(VRegOrUnit) && 1914 "Expecting a virtual register."); 1915 // A dead subreg def only tells us that the specific subreg is dead. There 1916 // could be other non-dead defs of other subregs, or we could have other 1917 // parts of the register being live through the instruction. So unless we 1918 // are checking liveness for a subrange it is ok for the live range to 1919 // continue, given that we have a dead def of a subregister. 1920 if (SubRangeCheck || MO->getSubReg() == 0) { 1921 report("Live range continues after dead def flag", MO, MONum); 1922 report_context_liverange(LR); 1923 report_context_vreg_regunit(VRegOrUnit); 1924 if (LaneMask.any()) 1925 report_context_lanemask(LaneMask); 1926 } 1927 } 1928 } 1929 } 1930 1931 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1932 const MachineInstr *MI = MO->getParent(); 1933 const unsigned Reg = MO->getReg(); 1934 1935 // Both use and def operands can read a register. 1936 if (MO->readsReg()) { 1937 if (MO->isKill()) 1938 addRegWithSubRegs(regsKilled, Reg); 1939 1940 // Check that LiveVars knows this kill. 1941 if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) { 1942 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1943 if (!is_contained(VI.Kills, MI)) 1944 report("Kill missing from LiveVariables", MO, MONum); 1945 } 1946 1947 // Check LiveInts liveness and kill. 1948 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1949 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1950 // Check the cached regunit intervals. 1951 if (Register::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1952 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1953 if (MRI->isReservedRegUnit(*Units)) 1954 continue; 1955 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1956 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1957 } 1958 } 1959 1960 if (Register::isVirtualRegister(Reg)) { 1961 if (LiveInts->hasInterval(Reg)) { 1962 // This is a virtual register interval. 1963 const LiveInterval &LI = LiveInts->getInterval(Reg); 1964 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1965 1966 if (LI.hasSubRanges() && !MO->isDef()) { 1967 unsigned SubRegIdx = MO->getSubReg(); 1968 LaneBitmask MOMask = SubRegIdx != 0 1969 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1970 : MRI->getMaxLaneMaskForVReg(Reg); 1971 LaneBitmask LiveInMask; 1972 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1973 if ((MOMask & SR.LaneMask).none()) 1974 continue; 1975 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1976 LiveQueryResult LRQ = SR.Query(UseIdx); 1977 if (LRQ.valueIn()) 1978 LiveInMask |= SR.LaneMask; 1979 } 1980 // At least parts of the register has to be live at the use. 1981 if ((LiveInMask & MOMask).none()) { 1982 report("No live subrange at use", MO, MONum); 1983 report_context(LI); 1984 report_context(UseIdx); 1985 } 1986 } 1987 } else { 1988 report("Virtual register has no live interval", MO, MONum); 1989 } 1990 } 1991 } 1992 1993 // Use of a dead register. 1994 if (!regsLive.count(Reg)) { 1995 if (Register::isPhysicalRegister(Reg)) { 1996 // Reserved registers may be used even when 'dead'. 1997 bool Bad = !isReserved(Reg); 1998 // We are fine if just any subregister has a defined value. 1999 if (Bad) { 2000 2001 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2002 if (regsLive.count(SubReg)) { 2003 Bad = false; 2004 break; 2005 } 2006 } 2007 } 2008 // If there is an additional implicit-use of a super register we stop 2009 // here. By definition we are fine if the super register is not 2010 // (completely) dead, if the complete super register is dead we will 2011 // get a report for its operand. 2012 if (Bad) { 2013 for (const MachineOperand &MOP : MI->uses()) { 2014 if (!MOP.isReg() || !MOP.isImplicit()) 2015 continue; 2016 2017 if (!Register::isPhysicalRegister(MOP.getReg())) 2018 continue; 2019 2020 for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) { 2021 if (SubReg == Reg) { 2022 Bad = false; 2023 break; 2024 } 2025 } 2026 } 2027 } 2028 if (Bad) 2029 report("Using an undefined physical register", MO, MONum); 2030 } else if (MRI->def_empty(Reg)) { 2031 report("Reading virtual register without a def", MO, MONum); 2032 } else { 2033 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2034 // We don't know which virtual registers are live in, so only complain 2035 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2036 // must be live in. PHI instructions are handled separately. 2037 if (MInfo.regsKilled.count(Reg)) 2038 report("Using a killed virtual register", MO, MONum); 2039 else if (!MI->isPHI()) 2040 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2041 } 2042 } 2043 } 2044 2045 if (MO->isDef()) { 2046 // Register defined. 2047 // TODO: verify that earlyclobber ops are not used. 2048 if (MO->isDead()) 2049 addRegWithSubRegs(regsDead, Reg); 2050 else 2051 addRegWithSubRegs(regsDefined, Reg); 2052 2053 // Verify SSA form. 2054 if (MRI->isSSA() && Register::isVirtualRegister(Reg) && 2055 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2056 report("Multiple virtual register defs in SSA form", MO, MONum); 2057 2058 // Check LiveInts for a live segment, but only for virtual registers. 2059 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2060 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2061 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2062 2063 if (Register::isVirtualRegister(Reg)) { 2064 if (LiveInts->hasInterval(Reg)) { 2065 const LiveInterval &LI = LiveInts->getInterval(Reg); 2066 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 2067 2068 if (LI.hasSubRanges()) { 2069 unsigned SubRegIdx = MO->getSubReg(); 2070 LaneBitmask MOMask = SubRegIdx != 0 2071 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2072 : MRI->getMaxLaneMaskForVReg(Reg); 2073 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2074 if ((SR.LaneMask & MOMask).none()) 2075 continue; 2076 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2077 } 2078 } 2079 } else { 2080 report("Virtual register has no Live interval", MO, MONum); 2081 } 2082 } 2083 } 2084 } 2085 } 2086 2087 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 2088 2089 // This function gets called after visiting all instructions in a bundle. The 2090 // argument points to the bundle header. 2091 // Normal stand-alone instructions are also considered 'bundles', and this 2092 // function is called for all of them. 2093 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2094 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2095 set_union(MInfo.regsKilled, regsKilled); 2096 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2097 // Kill any masked registers. 2098 while (!regMasks.empty()) { 2099 const uint32_t *Mask = regMasks.pop_back_val(); 2100 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 2101 if (Register::isPhysicalRegister(*I) && 2102 MachineOperand::clobbersPhysReg(Mask, *I)) 2103 regsDead.push_back(*I); 2104 } 2105 set_subtract(regsLive, regsDead); regsDead.clear(); 2106 set_union(regsLive, regsDefined); regsDefined.clear(); 2107 } 2108 2109 void 2110 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2111 MBBInfoMap[MBB].regsLiveOut = regsLive; 2112 regsLive.clear(); 2113 2114 if (Indexes) { 2115 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2116 if (!(stop > lastIndex)) { 2117 report("Block ends before last instruction index", MBB); 2118 errs() << "Block ends at " << stop 2119 << " last instruction was at " << lastIndex << '\n'; 2120 } 2121 lastIndex = stop; 2122 } 2123 } 2124 2125 // Calculate the largest possible vregsPassed sets. These are the registers that 2126 // can pass through an MBB live, but may not be live every time. It is assumed 2127 // that all vregsPassed sets are empty before the call. 2128 void MachineVerifier::calcRegsPassed() { 2129 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 2130 // have any vregsPassed. 2131 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2132 for (const auto &MBB : *MF) { 2133 BBInfo &MInfo = MBBInfoMap[&MBB]; 2134 if (!MInfo.reachable) 2135 continue; 2136 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 2137 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 2138 BBInfo &SInfo = MBBInfoMap[*SuI]; 2139 if (SInfo.addPassed(MInfo.regsLiveOut)) 2140 todo.insert(*SuI); 2141 } 2142 } 2143 2144 // Iteratively push vregsPassed to successors. This will converge to the same 2145 // final state regardless of DenseSet iteration order. 2146 while (!todo.empty()) { 2147 const MachineBasicBlock *MBB = *todo.begin(); 2148 todo.erase(MBB); 2149 BBInfo &MInfo = MBBInfoMap[MBB]; 2150 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 2151 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 2152 if (*SuI == MBB) 2153 continue; 2154 BBInfo &SInfo = MBBInfoMap[*SuI]; 2155 if (SInfo.addPassed(MInfo.vregsPassed)) 2156 todo.insert(*SuI); 2157 } 2158 } 2159 } 2160 2161 // Calculate the set of virtual registers that must be passed through each basic 2162 // block in order to satisfy the requirements of successor blocks. This is very 2163 // similar to calcRegsPassed, only backwards. 2164 void MachineVerifier::calcRegsRequired() { 2165 // First push live-in regs to predecessors' vregsRequired. 2166 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2167 for (const auto &MBB : *MF) { 2168 BBInfo &MInfo = MBBInfoMap[&MBB]; 2169 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 2170 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 2171 BBInfo &PInfo = MBBInfoMap[*PrI]; 2172 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2173 todo.insert(*PrI); 2174 } 2175 } 2176 2177 // Iteratively push vregsRequired to predecessors. This will converge to the 2178 // same final state regardless of DenseSet iteration order. 2179 while (!todo.empty()) { 2180 const MachineBasicBlock *MBB = *todo.begin(); 2181 todo.erase(MBB); 2182 BBInfo &MInfo = MBBInfoMap[MBB]; 2183 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 2184 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 2185 if (*PrI == MBB) 2186 continue; 2187 BBInfo &SInfo = MBBInfoMap[*PrI]; 2188 if (SInfo.addRequired(MInfo.vregsRequired)) 2189 todo.insert(*PrI); 2190 } 2191 } 2192 } 2193 2194 // Check PHI instructions at the beginning of MBB. It is assumed that 2195 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2196 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2197 BBInfo &MInfo = MBBInfoMap[&MBB]; 2198 2199 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2200 for (const MachineInstr &Phi : MBB) { 2201 if (!Phi.isPHI()) 2202 break; 2203 seen.clear(); 2204 2205 const MachineOperand &MODef = Phi.getOperand(0); 2206 if (!MODef.isReg() || !MODef.isDef()) { 2207 report("Expected first PHI operand to be a register def", &MODef, 0); 2208 continue; 2209 } 2210 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2211 MODef.isEarlyClobber() || MODef.isDebug()) 2212 report("Unexpected flag on PHI operand", &MODef, 0); 2213 Register DefReg = MODef.getReg(); 2214 if (!Register::isVirtualRegister(DefReg)) 2215 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2216 2217 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2218 const MachineOperand &MO0 = Phi.getOperand(I); 2219 if (!MO0.isReg()) { 2220 report("Expected PHI operand to be a register", &MO0, I); 2221 continue; 2222 } 2223 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2224 MO0.isDebug() || MO0.isTied()) 2225 report("Unexpected flag on PHI operand", &MO0, I); 2226 2227 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2228 if (!MO1.isMBB()) { 2229 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2230 continue; 2231 } 2232 2233 const MachineBasicBlock &Pre = *MO1.getMBB(); 2234 if (!Pre.isSuccessor(&MBB)) { 2235 report("PHI input is not a predecessor block", &MO1, I + 1); 2236 continue; 2237 } 2238 2239 if (MInfo.reachable) { 2240 seen.insert(&Pre); 2241 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2242 if (!MO0.isUndef() && PrInfo.reachable && 2243 !PrInfo.isLiveOut(MO0.getReg())) 2244 report("PHI operand is not live-out from predecessor", &MO0, I); 2245 } 2246 } 2247 2248 // Did we see all predecessors? 2249 if (MInfo.reachable) { 2250 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2251 if (!seen.count(Pred)) { 2252 report("Missing PHI operand", &Phi); 2253 errs() << printMBBReference(*Pred) 2254 << " is a predecessor according to the CFG.\n"; 2255 } 2256 } 2257 } 2258 } 2259 } 2260 2261 void MachineVerifier::visitMachineFunctionAfter() { 2262 calcRegsPassed(); 2263 2264 for (const MachineBasicBlock &MBB : *MF) 2265 checkPHIOps(MBB); 2266 2267 // Now check liveness info if available 2268 calcRegsRequired(); 2269 2270 // Check for killed virtual registers that should be live out. 2271 for (const auto &MBB : *MF) { 2272 BBInfo &MInfo = MBBInfoMap[&MBB]; 2273 for (RegSet::iterator 2274 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 2275 ++I) 2276 if (MInfo.regsKilled.count(*I)) { 2277 report("Virtual register killed in block, but needed live out.", &MBB); 2278 errs() << "Virtual register " << printReg(*I) 2279 << " is used after the block.\n"; 2280 } 2281 } 2282 2283 if (!MF->empty()) { 2284 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2285 for (RegSet::iterator 2286 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 2287 ++I) { 2288 report("Virtual register defs don't dominate all uses.", MF); 2289 report_context_vreg(*I); 2290 } 2291 } 2292 2293 if (LiveVars) 2294 verifyLiveVariables(); 2295 if (LiveInts) 2296 verifyLiveIntervals(); 2297 2298 // Check live-in list of each MBB. If a register is live into MBB, check 2299 // that the register is in regsLiveOut of each predecessor block. Since 2300 // this must come from a definition in the predecesssor or its live-in 2301 // list, this will catch a live-through case where the predecessor does not 2302 // have the register in its live-in list. This currently only checks 2303 // registers that have no aliases, are not allocatable and are not 2304 // reserved, which could mean a condition code register for instance. 2305 if (MRI->tracksLiveness()) 2306 for (const auto &MBB : *MF) 2307 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2308 MCPhysReg LiveInReg = P.PhysReg; 2309 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2310 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2311 continue; 2312 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2313 BBInfo &PInfo = MBBInfoMap[Pred]; 2314 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2315 report("Live in register not found to be live out from predecessor.", 2316 &MBB); 2317 errs() << TRI->getName(LiveInReg) 2318 << " not found to be live out from " 2319 << printMBBReference(*Pred) << "\n"; 2320 } 2321 } 2322 } 2323 2324 for (auto CSInfo : MF->getCallSitesInfo()) 2325 if (!CSInfo.first->isCall()) 2326 report("Call site info referencing instruction that is not call", MF); 2327 } 2328 2329 void MachineVerifier::verifyLiveVariables() { 2330 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2331 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2332 unsigned Reg = Register::index2VirtReg(i); 2333 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2334 for (const auto &MBB : *MF) { 2335 BBInfo &MInfo = MBBInfoMap[&MBB]; 2336 2337 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2338 if (MInfo.vregsRequired.count(Reg)) { 2339 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2340 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2341 errs() << "Virtual register " << printReg(Reg) 2342 << " must be live through the block.\n"; 2343 } 2344 } else { 2345 if (VI.AliveBlocks.test(MBB.getNumber())) { 2346 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2347 errs() << "Virtual register " << printReg(Reg) 2348 << " is not needed live through the block.\n"; 2349 } 2350 } 2351 } 2352 } 2353 } 2354 2355 void MachineVerifier::verifyLiveIntervals() { 2356 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2357 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2358 unsigned Reg = Register::index2VirtReg(i); 2359 2360 // Spilling and splitting may leave unused registers around. Skip them. 2361 if (MRI->reg_nodbg_empty(Reg)) 2362 continue; 2363 2364 if (!LiveInts->hasInterval(Reg)) { 2365 report("Missing live interval for virtual register", MF); 2366 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2367 continue; 2368 } 2369 2370 const LiveInterval &LI = LiveInts->getInterval(Reg); 2371 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 2372 verifyLiveInterval(LI); 2373 } 2374 2375 // Verify all the cached regunit intervals. 2376 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2377 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2378 verifyLiveRange(*LR, i); 2379 } 2380 2381 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2382 const VNInfo *VNI, unsigned Reg, 2383 LaneBitmask LaneMask) { 2384 if (VNI->isUnused()) 2385 return; 2386 2387 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2388 2389 if (!DefVNI) { 2390 report("Value not live at VNInfo def and not marked unused", MF); 2391 report_context(LR, Reg, LaneMask); 2392 report_context(*VNI); 2393 return; 2394 } 2395 2396 if (DefVNI != VNI) { 2397 report("Live segment at def has different VNInfo", MF); 2398 report_context(LR, Reg, LaneMask); 2399 report_context(*VNI); 2400 return; 2401 } 2402 2403 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2404 if (!MBB) { 2405 report("Invalid VNInfo definition index", MF); 2406 report_context(LR, Reg, LaneMask); 2407 report_context(*VNI); 2408 return; 2409 } 2410 2411 if (VNI->isPHIDef()) { 2412 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2413 report("PHIDef VNInfo is not defined at MBB start", MBB); 2414 report_context(LR, Reg, LaneMask); 2415 report_context(*VNI); 2416 } 2417 return; 2418 } 2419 2420 // Non-PHI def. 2421 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2422 if (!MI) { 2423 report("No instruction at VNInfo def index", MBB); 2424 report_context(LR, Reg, LaneMask); 2425 report_context(*VNI); 2426 return; 2427 } 2428 2429 if (Reg != 0) { 2430 bool hasDef = false; 2431 bool isEarlyClobber = false; 2432 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2433 if (!MOI->isReg() || !MOI->isDef()) 2434 continue; 2435 if (Register::isVirtualRegister(Reg)) { 2436 if (MOI->getReg() != Reg) 2437 continue; 2438 } else { 2439 if (!Register::isPhysicalRegister(MOI->getReg()) || 2440 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2441 continue; 2442 } 2443 if (LaneMask.any() && 2444 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2445 continue; 2446 hasDef = true; 2447 if (MOI->isEarlyClobber()) 2448 isEarlyClobber = true; 2449 } 2450 2451 if (!hasDef) { 2452 report("Defining instruction does not modify register", MI); 2453 report_context(LR, Reg, LaneMask); 2454 report_context(*VNI); 2455 } 2456 2457 // Early clobber defs begin at USE slots, but other defs must begin at 2458 // DEF slots. 2459 if (isEarlyClobber) { 2460 if (!VNI->def.isEarlyClobber()) { 2461 report("Early clobber def must be at an early-clobber slot", MBB); 2462 report_context(LR, Reg, LaneMask); 2463 report_context(*VNI); 2464 } 2465 } else if (!VNI->def.isRegister()) { 2466 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2467 report_context(LR, Reg, LaneMask); 2468 report_context(*VNI); 2469 } 2470 } 2471 } 2472 2473 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2474 const LiveRange::const_iterator I, 2475 unsigned Reg, LaneBitmask LaneMask) 2476 { 2477 const LiveRange::Segment &S = *I; 2478 const VNInfo *VNI = S.valno; 2479 assert(VNI && "Live segment has no valno"); 2480 2481 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2482 report("Foreign valno in live segment", MF); 2483 report_context(LR, Reg, LaneMask); 2484 report_context(S); 2485 report_context(*VNI); 2486 } 2487 2488 if (VNI->isUnused()) { 2489 report("Live segment valno is marked unused", MF); 2490 report_context(LR, Reg, LaneMask); 2491 report_context(S); 2492 } 2493 2494 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2495 if (!MBB) { 2496 report("Bad start of live segment, no basic block", MF); 2497 report_context(LR, Reg, LaneMask); 2498 report_context(S); 2499 return; 2500 } 2501 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2502 if (S.start != MBBStartIdx && S.start != VNI->def) { 2503 report("Live segment must begin at MBB entry or valno def", MBB); 2504 report_context(LR, Reg, LaneMask); 2505 report_context(S); 2506 } 2507 2508 const MachineBasicBlock *EndMBB = 2509 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2510 if (!EndMBB) { 2511 report("Bad end of live segment, no basic block", MF); 2512 report_context(LR, Reg, LaneMask); 2513 report_context(S); 2514 return; 2515 } 2516 2517 // No more checks for live-out segments. 2518 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2519 return; 2520 2521 // RegUnit intervals are allowed dead phis. 2522 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && 2523 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2524 return; 2525 2526 // The live segment is ending inside EndMBB 2527 const MachineInstr *MI = 2528 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2529 if (!MI) { 2530 report("Live segment doesn't end at a valid instruction", EndMBB); 2531 report_context(LR, Reg, LaneMask); 2532 report_context(S); 2533 return; 2534 } 2535 2536 // The block slot must refer to a basic block boundary. 2537 if (S.end.isBlock()) { 2538 report("Live segment ends at B slot of an instruction", EndMBB); 2539 report_context(LR, Reg, LaneMask); 2540 report_context(S); 2541 } 2542 2543 if (S.end.isDead()) { 2544 // Segment ends on the dead slot. 2545 // That means there must be a dead def. 2546 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2547 report("Live segment ending at dead slot spans instructions", EndMBB); 2548 report_context(LR, Reg, LaneMask); 2549 report_context(S); 2550 } 2551 } 2552 2553 // A live segment can only end at an early-clobber slot if it is being 2554 // redefined by an early-clobber def. 2555 if (S.end.isEarlyClobber()) { 2556 if (I+1 == LR.end() || (I+1)->start != S.end) { 2557 report("Live segment ending at early clobber slot must be " 2558 "redefined by an EC def in the same instruction", EndMBB); 2559 report_context(LR, Reg, LaneMask); 2560 report_context(S); 2561 } 2562 } 2563 2564 // The following checks only apply to virtual registers. Physreg liveness 2565 // is too weird to check. 2566 if (Register::isVirtualRegister(Reg)) { 2567 // A live segment can end with either a redefinition, a kill flag on a 2568 // use, or a dead flag on a def. 2569 bool hasRead = false; 2570 bool hasSubRegDef = false; 2571 bool hasDeadDef = false; 2572 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2573 if (!MOI->isReg() || MOI->getReg() != Reg) 2574 continue; 2575 unsigned Sub = MOI->getSubReg(); 2576 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2577 : LaneBitmask::getAll(); 2578 if (MOI->isDef()) { 2579 if (Sub != 0) { 2580 hasSubRegDef = true; 2581 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2582 // mask for subregister defs. Read-undef defs will be handled by 2583 // readsReg below. 2584 SLM = ~SLM; 2585 } 2586 if (MOI->isDead()) 2587 hasDeadDef = true; 2588 } 2589 if (LaneMask.any() && (LaneMask & SLM).none()) 2590 continue; 2591 if (MOI->readsReg()) 2592 hasRead = true; 2593 } 2594 if (S.end.isDead()) { 2595 // Make sure that the corresponding machine operand for a "dead" live 2596 // range has the dead flag. We cannot perform this check for subregister 2597 // liveranges as partially dead values are allowed. 2598 if (LaneMask.none() && !hasDeadDef) { 2599 report("Instruction ending live segment on dead slot has no dead flag", 2600 MI); 2601 report_context(LR, Reg, LaneMask); 2602 report_context(S); 2603 } 2604 } else { 2605 if (!hasRead) { 2606 // When tracking subregister liveness, the main range must start new 2607 // values on partial register writes, even if there is no read. 2608 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2609 !hasSubRegDef) { 2610 report("Instruction ending live segment doesn't read the register", 2611 MI); 2612 report_context(LR, Reg, LaneMask); 2613 report_context(S); 2614 } 2615 } 2616 } 2617 } 2618 2619 // Now check all the basic blocks in this live segment. 2620 MachineFunction::const_iterator MFI = MBB->getIterator(); 2621 // Is this live segment the beginning of a non-PHIDef VN? 2622 if (S.start == VNI->def && !VNI->isPHIDef()) { 2623 // Not live-in to any blocks. 2624 if (MBB == EndMBB) 2625 return; 2626 // Skip this block. 2627 ++MFI; 2628 } 2629 2630 SmallVector<SlotIndex, 4> Undefs; 2631 if (LaneMask.any()) { 2632 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2633 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2634 } 2635 2636 while (true) { 2637 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2638 // We don't know how to track physregs into a landing pad. 2639 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { 2640 if (&*MFI == EndMBB) 2641 break; 2642 ++MFI; 2643 continue; 2644 } 2645 2646 // Is VNI a PHI-def in the current block? 2647 bool IsPHI = VNI->isPHIDef() && 2648 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2649 2650 // Check that VNI is live-out of all predecessors. 2651 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2652 PE = MFI->pred_end(); PI != PE; ++PI) { 2653 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2654 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2655 2656 // All predecessors must have a live-out value. However for a phi 2657 // instruction with subregister intervals 2658 // only one of the subregisters (not necessarily the current one) needs to 2659 // be defined. 2660 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2661 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes)) 2662 continue; 2663 report("Register not marked live out of predecessor", *PI); 2664 report_context(LR, Reg, LaneMask); 2665 report_context(*VNI); 2666 errs() << " live into " << printMBBReference(*MFI) << '@' 2667 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2668 << PEnd << '\n'; 2669 continue; 2670 } 2671 2672 // Only PHI-defs can take different predecessor values. 2673 if (!IsPHI && PVNI != VNI) { 2674 report("Different value live out of predecessor", *PI); 2675 report_context(LR, Reg, LaneMask); 2676 errs() << "Valno #" << PVNI->id << " live out of " 2677 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2678 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2679 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2680 } 2681 } 2682 if (&*MFI == EndMBB) 2683 break; 2684 ++MFI; 2685 } 2686 } 2687 2688 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2689 LaneBitmask LaneMask) { 2690 for (const VNInfo *VNI : LR.valnos) 2691 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2692 2693 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2694 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2695 } 2696 2697 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2698 unsigned Reg = LI.reg; 2699 assert(Register::isVirtualRegister(Reg)); 2700 verifyLiveRange(LI, Reg); 2701 2702 LaneBitmask Mask; 2703 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2704 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2705 if ((Mask & SR.LaneMask).any()) { 2706 report("Lane masks of sub ranges overlap in live interval", MF); 2707 report_context(LI); 2708 } 2709 if ((SR.LaneMask & ~MaxMask).any()) { 2710 report("Subrange lanemask is invalid", MF); 2711 report_context(LI); 2712 } 2713 if (SR.empty()) { 2714 report("Subrange must not be empty", MF); 2715 report_context(SR, LI.reg, SR.LaneMask); 2716 } 2717 Mask |= SR.LaneMask; 2718 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2719 if (!LI.covers(SR)) { 2720 report("A Subrange is not covered by the main range", MF); 2721 report_context(LI); 2722 } 2723 } 2724 2725 // Check the LI only has one connected component. 2726 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2727 unsigned NumComp = ConEQ.Classify(LI); 2728 if (NumComp > 1) { 2729 report("Multiple connected components in live interval", MF); 2730 report_context(LI); 2731 for (unsigned comp = 0; comp != NumComp; ++comp) { 2732 errs() << comp << ": valnos"; 2733 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2734 E = LI.vni_end(); I!=E; ++I) 2735 if (comp == ConEQ.getEqClass(*I)) 2736 errs() << ' ' << (*I)->id; 2737 errs() << '\n'; 2738 } 2739 } 2740 } 2741 2742 namespace { 2743 2744 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2745 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2746 // value is zero. 2747 // We use a bool plus an integer to capture the stack state. 2748 struct StackStateOfBB { 2749 StackStateOfBB() = default; 2750 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2751 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2752 ExitIsSetup(ExitSetup) {} 2753 2754 // Can be negative, which means we are setting up a frame. 2755 int EntryValue = 0; 2756 int ExitValue = 0; 2757 bool EntryIsSetup = false; 2758 bool ExitIsSetup = false; 2759 }; 2760 2761 } // end anonymous namespace 2762 2763 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2764 /// by a FrameDestroy <n>, stack adjustments are identical on all 2765 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2766 void MachineVerifier::verifyStackFrame() { 2767 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2768 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2769 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2770 return; 2771 2772 SmallVector<StackStateOfBB, 8> SPState; 2773 SPState.resize(MF->getNumBlockIDs()); 2774 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2775 2776 // Visit the MBBs in DFS order. 2777 for (df_ext_iterator<const MachineFunction *, 2778 df_iterator_default_set<const MachineBasicBlock *>> 2779 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2780 DFI != DFE; ++DFI) { 2781 const MachineBasicBlock *MBB = *DFI; 2782 2783 StackStateOfBB BBState; 2784 // Check the exit state of the DFS stack predecessor. 2785 if (DFI.getPathLength() >= 2) { 2786 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2787 assert(Reachable.count(StackPred) && 2788 "DFS stack predecessor is already visited.\n"); 2789 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2790 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2791 BBState.ExitValue = BBState.EntryValue; 2792 BBState.ExitIsSetup = BBState.EntryIsSetup; 2793 } 2794 2795 // Update stack state by checking contents of MBB. 2796 for (const auto &I : *MBB) { 2797 if (I.getOpcode() == FrameSetupOpcode) { 2798 if (BBState.ExitIsSetup) 2799 report("FrameSetup is after another FrameSetup", &I); 2800 BBState.ExitValue -= TII->getFrameTotalSize(I); 2801 BBState.ExitIsSetup = true; 2802 } 2803 2804 if (I.getOpcode() == FrameDestroyOpcode) { 2805 int Size = TII->getFrameTotalSize(I); 2806 if (!BBState.ExitIsSetup) 2807 report("FrameDestroy is not after a FrameSetup", &I); 2808 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2809 BBState.ExitValue; 2810 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2811 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2812 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2813 << AbsSPAdj << ">.\n"; 2814 } 2815 BBState.ExitValue += Size; 2816 BBState.ExitIsSetup = false; 2817 } 2818 } 2819 SPState[MBB->getNumber()] = BBState; 2820 2821 // Make sure the exit state of any predecessor is consistent with the entry 2822 // state. 2823 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2824 E = MBB->pred_end(); I != E; ++I) { 2825 if (Reachable.count(*I) && 2826 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2827 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2828 report("The exit stack state of a predecessor is inconsistent.", MBB); 2829 errs() << "Predecessor " << printMBBReference(*(*I)) 2830 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2831 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2832 << printMBBReference(*MBB) << " has entry state (" 2833 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2834 } 2835 } 2836 2837 // Make sure the entry state of any successor is consistent with the exit 2838 // state. 2839 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2840 E = MBB->succ_end(); I != E; ++I) { 2841 if (Reachable.count(*I) && 2842 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2843 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2844 report("The entry stack state of a successor is inconsistent.", MBB); 2845 errs() << "Successor " << printMBBReference(*(*I)) 2846 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2847 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2848 << printMBBReference(*MBB) << " has exit state (" 2849 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2850 } 2851 } 2852 2853 // Make sure a basic block with return ends with zero stack adjustment. 2854 if (!MBB->empty() && MBB->back().isReturn()) { 2855 if (BBState.ExitIsSetup) 2856 report("A return block ends with a FrameSetup.", MBB); 2857 if (BBState.ExitValue) 2858 report("A return block ends with a nonzero stack adjustment.", MBB); 2859 } 2860 } 2861 } 2862