1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Instructions.h" 27 #include "llvm/Function.h" 28 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/LiveStackAnalysis.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 #include "llvm/ADT/DenseSet.h" 41 #include "llvm/ADT/SetOperations.h" 42 #include "llvm/ADT/SmallVector.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 using namespace llvm; 47 48 namespace { 49 struct MachineVerifier { 50 51 MachineVerifier(Pass *pass, const char *b) : 52 PASS(pass), 53 Banner(b), 54 OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS")) 55 {} 56 57 bool runOnMachineFunction(MachineFunction &MF); 58 59 Pass *const PASS; 60 const char *Banner; 61 const char *const OutFileName; 62 raw_ostream *OS; 63 const MachineFunction *MF; 64 const TargetMachine *TM; 65 const TargetInstrInfo *TII; 66 const TargetRegisterInfo *TRI; 67 const MachineRegisterInfo *MRI; 68 69 unsigned foundErrors; 70 71 typedef SmallVector<unsigned, 16> RegVector; 72 typedef DenseSet<unsigned> RegSet; 73 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 74 75 BitVector regsReserved; 76 RegSet regsLive; 77 RegVector regsDefined, regsDead, regsKilled; 78 RegSet regsLiveInButUnused; 79 80 SlotIndex lastIndex; 81 82 // Add Reg and any sub-registers to RV 83 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 84 RV.push_back(Reg); 85 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 86 for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++) 87 RV.push_back(*R); 88 } 89 90 struct BBInfo { 91 // Is this MBB reachable from the MF entry point? 92 bool reachable; 93 94 // Vregs that must be live in because they are used without being 95 // defined. Map value is the user. 96 RegMap vregsLiveIn; 97 98 // Regs killed in MBB. They may be defined again, and will then be in both 99 // regsKilled and regsLiveOut. 100 RegSet regsKilled; 101 102 // Regs defined in MBB and live out. Note that vregs passing through may 103 // be live out without being mentioned here. 104 RegSet regsLiveOut; 105 106 // Vregs that pass through MBB untouched. This set is disjoint from 107 // regsKilled and regsLiveOut. 108 RegSet vregsPassed; 109 110 // Vregs that must pass through MBB because they are needed by a successor 111 // block. This set is disjoint from regsLiveOut. 112 RegSet vregsRequired; 113 114 BBInfo() : reachable(false) {} 115 116 // Add register to vregsPassed if it belongs there. Return true if 117 // anything changed. 118 bool addPassed(unsigned Reg) { 119 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 120 return false; 121 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 122 return false; 123 return vregsPassed.insert(Reg).second; 124 } 125 126 // Same for a full set. 127 bool addPassed(const RegSet &RS) { 128 bool changed = false; 129 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 130 if (addPassed(*I)) 131 changed = true; 132 return changed; 133 } 134 135 // Add register to vregsRequired if it belongs there. Return true if 136 // anything changed. 137 bool addRequired(unsigned Reg) { 138 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 139 return false; 140 if (regsLiveOut.count(Reg)) 141 return false; 142 return vregsRequired.insert(Reg).second; 143 } 144 145 // Same for a full set. 146 bool addRequired(const RegSet &RS) { 147 bool changed = false; 148 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 149 if (addRequired(*I)) 150 changed = true; 151 return changed; 152 } 153 154 // Same for a full map. 155 bool addRequired(const RegMap &RM) { 156 bool changed = false; 157 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 158 if (addRequired(I->first)) 159 changed = true; 160 return changed; 161 } 162 163 // Live-out registers are either in regsLiveOut or vregsPassed. 164 bool isLiveOut(unsigned Reg) const { 165 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 166 } 167 }; 168 169 // Extra register info per MBB. 170 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 171 172 bool isReserved(unsigned Reg) { 173 return Reg < regsReserved.size() && regsReserved.test(Reg); 174 } 175 176 // Analysis information if available 177 LiveVariables *LiveVars; 178 LiveIntervals *LiveInts; 179 LiveStacks *LiveStks; 180 SlotIndexes *Indexes; 181 182 void visitMachineFunctionBefore(); 183 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 184 void visitMachineInstrBefore(const MachineInstr *MI); 185 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 186 void visitMachineInstrAfter(const MachineInstr *MI); 187 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 188 void visitMachineFunctionAfter(); 189 190 void report(const char *msg, const MachineFunction *MF); 191 void report(const char *msg, const MachineBasicBlock *MBB); 192 void report(const char *msg, const MachineInstr *MI); 193 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 194 195 void markReachable(const MachineBasicBlock *MBB); 196 void calcRegsPassed(); 197 void checkPHIOps(const MachineBasicBlock *MBB); 198 199 void calcRegsRequired(); 200 void verifyLiveVariables(); 201 void verifyLiveIntervals(); 202 }; 203 204 struct MachineVerifierPass : public MachineFunctionPass { 205 static char ID; // Pass ID, replacement for typeid 206 const char *const Banner; 207 208 MachineVerifierPass(const char *b = 0) 209 : MachineFunctionPass(ID), Banner(b) { 210 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 211 } 212 213 void getAnalysisUsage(AnalysisUsage &AU) const { 214 AU.setPreservesAll(); 215 MachineFunctionPass::getAnalysisUsage(AU); 216 } 217 218 bool runOnMachineFunction(MachineFunction &MF) { 219 MF.verify(this, Banner); 220 return false; 221 } 222 }; 223 224 } 225 226 char MachineVerifierPass::ID = 0; 227 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 228 "Verify generated machine code", false, false) 229 230 FunctionPass *llvm::createMachineVerifierPass(const char *Banner) { 231 return new MachineVerifierPass(Banner); 232 } 233 234 void MachineFunction::verify(Pass *p, const char *Banner) const { 235 MachineVerifier(p, Banner) 236 .runOnMachineFunction(const_cast<MachineFunction&>(*this)); 237 } 238 239 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { 240 raw_ostream *OutFile = 0; 241 if (OutFileName) { 242 std::string ErrorInfo; 243 OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, 244 raw_fd_ostream::F_Append); 245 if (!ErrorInfo.empty()) { 246 errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n'; 247 exit(1); 248 } 249 250 OS = OutFile; 251 } else { 252 OS = &errs(); 253 } 254 255 foundErrors = 0; 256 257 this->MF = &MF; 258 TM = &MF.getTarget(); 259 TII = TM->getInstrInfo(); 260 TRI = TM->getRegisterInfo(); 261 MRI = &MF.getRegInfo(); 262 263 LiveVars = NULL; 264 LiveInts = NULL; 265 LiveStks = NULL; 266 Indexes = NULL; 267 if (PASS) { 268 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 269 // We don't want to verify LiveVariables if LiveIntervals is available. 270 if (!LiveInts) 271 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 272 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 273 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 274 } 275 276 visitMachineFunctionBefore(); 277 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 278 MFI!=MFE; ++MFI) { 279 visitMachineBasicBlockBefore(MFI); 280 for (MachineBasicBlock::const_iterator MBBI = MFI->begin(), 281 MBBE = MFI->end(); MBBI != MBBE; ++MBBI) { 282 if (MBBI->getParent() != MFI) { 283 report("Bad instruction parent pointer", MFI); 284 *OS << "Instruction: " << *MBBI; 285 continue; 286 } 287 visitMachineInstrBefore(MBBI); 288 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) 289 visitMachineOperand(&MBBI->getOperand(I), I); 290 visitMachineInstrAfter(MBBI); 291 } 292 visitMachineBasicBlockAfter(MFI); 293 } 294 visitMachineFunctionAfter(); 295 296 if (OutFile) 297 delete OutFile; 298 else if (foundErrors) 299 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); 300 301 // Clean up. 302 regsLive.clear(); 303 regsDefined.clear(); 304 regsDead.clear(); 305 regsKilled.clear(); 306 regsLiveInButUnused.clear(); 307 MBBInfoMap.clear(); 308 309 return false; // no changes 310 } 311 312 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 313 assert(MF); 314 *OS << '\n'; 315 if (!foundErrors++) { 316 if (Banner) 317 *OS << "# " << Banner << '\n'; 318 MF->print(*OS, Indexes); 319 } 320 *OS << "*** Bad machine code: " << msg << " ***\n" 321 << "- function: " << MF->getFunction()->getNameStr() << "\n"; 322 } 323 324 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 325 assert(MBB); 326 report(msg, MBB->getParent()); 327 *OS << "- basic block: " << MBB->getName() 328 << " " << (void*)MBB 329 << " (BB#" << MBB->getNumber() << ")"; 330 if (Indexes) 331 *OS << " [" << Indexes->getMBBStartIdx(MBB) 332 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 333 *OS << '\n'; 334 } 335 336 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 337 assert(MI); 338 report(msg, MI->getParent()); 339 *OS << "- instruction: "; 340 if (Indexes && Indexes->hasIndex(MI)) 341 *OS << Indexes->getInstructionIndex(MI) << '\t'; 342 MI->print(*OS, TM); 343 } 344 345 void MachineVerifier::report(const char *msg, 346 const MachineOperand *MO, unsigned MONum) { 347 assert(MO); 348 report(msg, MO->getParent()); 349 *OS << "- operand " << MONum << ": "; 350 MO->print(*OS, TM); 351 *OS << "\n"; 352 } 353 354 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 355 BBInfo &MInfo = MBBInfoMap[MBB]; 356 if (!MInfo.reachable) { 357 MInfo.reachable = true; 358 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 359 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 360 markReachable(*SuI); 361 } 362 } 363 364 void MachineVerifier::visitMachineFunctionBefore() { 365 lastIndex = SlotIndex(); 366 regsReserved = TRI->getReservedRegs(*MF); 367 368 // A sub-register of a reserved register is also reserved 369 for (int Reg = regsReserved.find_first(); Reg>=0; 370 Reg = regsReserved.find_next(Reg)) { 371 for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) { 372 // FIXME: This should probably be: 373 // assert(regsReserved.test(*Sub) && "Non-reserved sub-register"); 374 regsReserved.set(*Sub); 375 } 376 } 377 markReachable(&MF->front()); 378 } 379 380 // Does iterator point to a and b as the first two elements? 381 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 382 const MachineBasicBlock *a, const MachineBasicBlock *b) { 383 if (*i == a) 384 return *++i == b; 385 if (*i == b) 386 return *++i == a; 387 return false; 388 } 389 390 void 391 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 392 // Count the number of landing pad successors. 393 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 394 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 395 E = MBB->succ_end(); I != E; ++I) { 396 if ((*I)->isLandingPad()) 397 LandingPadSuccs.insert(*I); 398 } 399 400 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 401 const BasicBlock *BB = MBB->getBasicBlock(); 402 if (LandingPadSuccs.size() > 1 && 403 !(AsmInfo && 404 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 405 BB && isa<SwitchInst>(BB->getTerminator()))) 406 report("MBB has more than one landing pad successor", MBB); 407 408 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 409 MachineBasicBlock *TBB = 0, *FBB = 0; 410 SmallVector<MachineOperand, 4> Cond; 411 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), 412 TBB, FBB, Cond)) { 413 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 414 // check whether its answers match up with reality. 415 if (!TBB && !FBB) { 416 // Block falls through to its successor. 417 MachineFunction::const_iterator MBBI = MBB; 418 ++MBBI; 419 if (MBBI == MF->end()) { 420 // It's possible that the block legitimately ends with a noreturn 421 // call or an unreachable, in which case it won't actually fall 422 // out the bottom of the function. 423 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 424 // It's possible that the block legitimately ends with a noreturn 425 // call or an unreachable, in which case it won't actuall fall 426 // out of the block. 427 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 428 report("MBB exits via unconditional fall-through but doesn't have " 429 "exactly one CFG successor!", MBB); 430 } else if (!MBB->isSuccessor(MBBI)) { 431 report("MBB exits via unconditional fall-through but its successor " 432 "differs from its CFG successor!", MBB); 433 } 434 if (!MBB->empty() && MBB->back().getDesc().isBarrier() && 435 !TII->isPredicated(&MBB->back())) { 436 report("MBB exits via unconditional fall-through but ends with a " 437 "barrier instruction!", MBB); 438 } 439 if (!Cond.empty()) { 440 report("MBB exits via unconditional fall-through but has a condition!", 441 MBB); 442 } 443 } else if (TBB && !FBB && Cond.empty()) { 444 // Block unconditionally branches somewhere. 445 if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 446 report("MBB exits via unconditional branch but doesn't have " 447 "exactly one CFG successor!", MBB); 448 } else if (!MBB->isSuccessor(TBB)) { 449 report("MBB exits via unconditional branch but the CFG " 450 "successor doesn't match the actual successor!", MBB); 451 } 452 if (MBB->empty()) { 453 report("MBB exits via unconditional branch but doesn't contain " 454 "any instructions!", MBB); 455 } else if (!MBB->back().getDesc().isBarrier()) { 456 report("MBB exits via unconditional branch but doesn't end with a " 457 "barrier instruction!", MBB); 458 } else if (!MBB->back().getDesc().isTerminator()) { 459 report("MBB exits via unconditional branch but the branch isn't a " 460 "terminator instruction!", MBB); 461 } 462 } else if (TBB && !FBB && !Cond.empty()) { 463 // Block conditionally branches somewhere, otherwise falls through. 464 MachineFunction::const_iterator MBBI = MBB; 465 ++MBBI; 466 if (MBBI == MF->end()) { 467 report("MBB conditionally falls through out of function!", MBB); 468 } if (MBB->succ_size() != 2) { 469 report("MBB exits via conditional branch/fall-through but doesn't have " 470 "exactly two CFG successors!", MBB); 471 } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { 472 report("MBB exits via conditional branch/fall-through but the CFG " 473 "successors don't match the actual successors!", MBB); 474 } 475 if (MBB->empty()) { 476 report("MBB exits via conditional branch/fall-through but doesn't " 477 "contain any instructions!", MBB); 478 } else if (MBB->back().getDesc().isBarrier()) { 479 report("MBB exits via conditional branch/fall-through but ends with a " 480 "barrier instruction!", MBB); 481 } else if (!MBB->back().getDesc().isTerminator()) { 482 report("MBB exits via conditional branch/fall-through but the branch " 483 "isn't a terminator instruction!", MBB); 484 } 485 } else if (TBB && FBB) { 486 // Block conditionally branches somewhere, otherwise branches 487 // somewhere else. 488 if (MBB->succ_size() != 2) { 489 report("MBB exits via conditional branch/branch but doesn't have " 490 "exactly two CFG successors!", MBB); 491 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 492 report("MBB exits via conditional branch/branch but the CFG " 493 "successors don't match the actual successors!", MBB); 494 } 495 if (MBB->empty()) { 496 report("MBB exits via conditional branch/branch but doesn't " 497 "contain any instructions!", MBB); 498 } else if (!MBB->back().getDesc().isBarrier()) { 499 report("MBB exits via conditional branch/branch but doesn't end with a " 500 "barrier instruction!", MBB); 501 } else if (!MBB->back().getDesc().isTerminator()) { 502 report("MBB exits via conditional branch/branch but the branch " 503 "isn't a terminator instruction!", MBB); 504 } 505 if (Cond.empty()) { 506 report("MBB exits via conditinal branch/branch but there's no " 507 "condition!", MBB); 508 } 509 } else { 510 report("AnalyzeBranch returned invalid data!", MBB); 511 } 512 } 513 514 regsLive.clear(); 515 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 516 E = MBB->livein_end(); I != E; ++I) { 517 if (!TargetRegisterInfo::isPhysicalRegister(*I)) { 518 report("MBB live-in list contains non-physical register", MBB); 519 continue; 520 } 521 regsLive.insert(*I); 522 for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++) 523 regsLive.insert(*R); 524 } 525 regsLiveInButUnused = regsLive; 526 527 const MachineFrameInfo *MFI = MF->getFrameInfo(); 528 assert(MFI && "Function has no frame info"); 529 BitVector PR = MFI->getPristineRegs(MBB); 530 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { 531 regsLive.insert(I); 532 for (const unsigned *R = TRI->getSubRegisters(I); *R; R++) 533 regsLive.insert(*R); 534 } 535 536 regsKilled.clear(); 537 regsDefined.clear(); 538 539 if (Indexes) 540 lastIndex = Indexes->getMBBStartIdx(MBB); 541 } 542 543 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 544 const MCInstrDesc &MCID = MI->getDesc(); 545 if (MI->getNumOperands() < MCID.getNumOperands()) { 546 report("Too few operands", MI); 547 *OS << MCID.getNumOperands() << " operands expected, but " 548 << MI->getNumExplicitOperands() << " given.\n"; 549 } 550 551 // Check the MachineMemOperands for basic consistency. 552 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 553 E = MI->memoperands_end(); I != E; ++I) { 554 if ((*I)->isLoad() && !MCID.mayLoad()) 555 report("Missing mayLoad flag", MI); 556 if ((*I)->isStore() && !MCID.mayStore()) 557 report("Missing mayStore flag", MI); 558 } 559 560 // Debug values must not have a slot index. 561 // Other instructions must have one. 562 if (LiveInts) { 563 bool mapped = !LiveInts->isNotInMIMap(MI); 564 if (MI->isDebugValue()) { 565 if (mapped) 566 report("Debug instruction has a slot index", MI); 567 } else { 568 if (!mapped) 569 report("Missing slot index", MI); 570 } 571 } 572 573 } 574 575 void 576 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 577 const MachineInstr *MI = MO->getParent(); 578 const MCInstrDesc &MCID = MI->getDesc(); 579 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 580 581 // The first MCID.NumDefs operands must be explicit register defines 582 if (MONum < MCID.getNumDefs()) { 583 if (!MO->isReg()) 584 report("Explicit definition must be a register", MO, MONum); 585 else if (!MO->isDef()) 586 report("Explicit definition marked as use", MO, MONum); 587 else if (MO->isImplicit()) 588 report("Explicit definition marked as implicit", MO, MONum); 589 } else if (MONum < MCID.getNumOperands()) { 590 // Don't check if it's the last operand in a variadic instruction. See, 591 // e.g., LDM_RET in the arm back end. 592 if (MO->isReg() && 593 !(MCID.isVariadic() && MONum == MCID.getNumOperands()-1)) { 594 if (MO->isDef() && !MCOI.isOptionalDef()) 595 report("Explicit operand marked as def", MO, MONum); 596 if (MO->isImplicit()) 597 report("Explicit operand marked as implicit", MO, MONum); 598 } 599 } else { 600 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 601 if (MO->isReg() && !MO->isImplicit() && !MCID.isVariadic() && MO->getReg()) 602 report("Extra explicit operand on non-variadic instruction", MO, MONum); 603 } 604 605 switch (MO->getType()) { 606 case MachineOperand::MO_Register: { 607 const unsigned Reg = MO->getReg(); 608 if (!Reg) 609 return; 610 611 // Check Live Variables. 612 if (MI->isDebugValue()) { 613 // Liveness checks are not valid for debug values. 614 } else if (MO->isUse() && !MO->isUndef()) { 615 regsLiveInButUnused.erase(Reg); 616 617 bool isKill = false; 618 unsigned defIdx; 619 if (MI->isRegTiedToDefOperand(MONum, &defIdx)) { 620 // A two-addr use counts as a kill if use and def are the same. 621 unsigned DefReg = MI->getOperand(defIdx).getReg(); 622 if (Reg == DefReg) 623 isKill = true; 624 else if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 625 report("Two-address instruction operands must be identical", 626 MO, MONum); 627 } 628 } else 629 isKill = MO->isKill(); 630 631 if (isKill) 632 addRegWithSubRegs(regsKilled, Reg); 633 634 // Check that LiveVars knows this kill. 635 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 636 MO->isKill()) { 637 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 638 if (std::find(VI.Kills.begin(), 639 VI.Kills.end(), MI) == VI.Kills.end()) 640 report("Kill missing from LiveVariables", MO, MONum); 641 } 642 643 // Check LiveInts liveness and kill. 644 if (TargetRegisterInfo::isVirtualRegister(Reg) && 645 LiveInts && !LiveInts->isNotInMIMap(MI)) { 646 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getUseIndex(); 647 if (LiveInts->hasInterval(Reg)) { 648 const LiveInterval &LI = LiveInts->getInterval(Reg); 649 if (!LI.liveAt(UseIdx)) { 650 report("No live range at use", MO, MONum); 651 *OS << UseIdx << " is not live in " << LI << '\n'; 652 } 653 // Check for extra kill flags. 654 // Note that we allow missing kill flags for now. 655 if (MO->isKill() && !LI.killedAt(UseIdx.getDefIndex())) { 656 report("Live range continues after kill flag", MO, MONum); 657 *OS << "Live range: " << LI << '\n'; 658 } 659 } else { 660 report("Virtual register has no Live interval", MO, MONum); 661 } 662 } 663 664 // Use of a dead register. 665 if (!regsLive.count(Reg)) { 666 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 667 // Reserved registers may be used even when 'dead'. 668 if (!isReserved(Reg)) 669 report("Using an undefined physical register", MO, MONum); 670 } else { 671 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 672 // We don't know which virtual registers are live in, so only complain 673 // if vreg was killed in this MBB. Otherwise keep track of vregs that 674 // must be live in. PHI instructions are handled separately. 675 if (MInfo.regsKilled.count(Reg)) 676 report("Using a killed virtual register", MO, MONum); 677 else if (!MI->isPHI()) 678 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 679 } 680 } 681 } else if (MO->isDef()) { 682 // Register defined. 683 // TODO: verify that earlyclobber ops are not used. 684 if (MO->isDead()) 685 addRegWithSubRegs(regsDead, Reg); 686 else 687 addRegWithSubRegs(regsDefined, Reg); 688 689 // Verify SSA form. 690 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 691 llvm::next(MRI->def_begin(Reg)) != MRI->def_end()) 692 report("Multiple virtual register defs in SSA form", MO, MONum); 693 694 // Check LiveInts for a live range, but only for virtual registers. 695 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && 696 !LiveInts->isNotInMIMap(MI)) { 697 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getDefIndex(); 698 if (LiveInts->hasInterval(Reg)) { 699 const LiveInterval &LI = LiveInts->getInterval(Reg); 700 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { 701 assert(VNI && "NULL valno is not allowed"); 702 if (VNI->def != DefIdx && !MO->isEarlyClobber()) { 703 report("Inconsistent valno->def", MO, MONum); 704 *OS << "Valno " << VNI->id << " is not defined at " 705 << DefIdx << " in " << LI << '\n'; 706 } 707 } else { 708 report("No live range at def", MO, MONum); 709 *OS << DefIdx << " is not live in " << LI << '\n'; 710 } 711 } else { 712 report("Virtual register has no Live interval", MO, MONum); 713 } 714 } 715 } 716 717 // Check register classes. 718 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 719 unsigned SubIdx = MO->getSubReg(); 720 721 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 722 unsigned sr = Reg; 723 if (SubIdx) { 724 unsigned s = TRI->getSubReg(Reg, SubIdx); 725 if (!s) { 726 report("Invalid subregister index for physical register", 727 MO, MONum); 728 return; 729 } 730 sr = s; 731 } 732 if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) { 733 if (!DRC->contains(sr)) { 734 report("Illegal physical register for instruction", MO, MONum); 735 *OS << TRI->getName(sr) << " is not a " 736 << DRC->getName() << " register.\n"; 737 } 738 } 739 } else { 740 // Virtual register. 741 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 742 if (SubIdx) { 743 const TargetRegisterClass *SRC = RC->getSubRegisterRegClass(SubIdx); 744 if (!SRC) { 745 report("Invalid subregister index for virtual register", MO, MONum); 746 *OS << "Register class " << RC->getName() 747 << " does not support subreg index " << SubIdx << "\n"; 748 return; 749 } 750 RC = SRC; 751 } 752 if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) { 753 if (!RC->hasSuperClassEq(DRC)) { 754 report("Illegal virtual register for instruction", MO, MONum); 755 *OS << "Expected a " << DRC->getName() << " register, but got a " 756 << RC->getName() << " register\n"; 757 } 758 } 759 } 760 } 761 break; 762 } 763 764 case MachineOperand::MO_MachineBasicBlock: 765 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 766 report("PHI operand is not in the CFG", MO, MONum); 767 break; 768 769 case MachineOperand::MO_FrameIndex: 770 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 771 LiveInts && !LiveInts->isNotInMIMap(MI)) { 772 LiveInterval &LI = LiveStks->getInterval(MO->getIndex()); 773 SlotIndex Idx = LiveInts->getInstructionIndex(MI); 774 if (MCID.mayLoad() && !LI.liveAt(Idx.getUseIndex())) { 775 report("Instruction loads from dead spill slot", MO, MONum); 776 *OS << "Live stack: " << LI << '\n'; 777 } 778 if (MCID.mayStore() && !LI.liveAt(Idx.getDefIndex())) { 779 report("Instruction stores to dead spill slot", MO, MONum); 780 *OS << "Live stack: " << LI << '\n'; 781 } 782 } 783 break; 784 785 default: 786 break; 787 } 788 } 789 790 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 791 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 792 set_union(MInfo.regsKilled, regsKilled); 793 set_subtract(regsLive, regsKilled); regsKilled.clear(); 794 set_subtract(regsLive, regsDead); regsDead.clear(); 795 set_union(regsLive, regsDefined); regsDefined.clear(); 796 797 if (Indexes && Indexes->hasIndex(MI)) { 798 SlotIndex idx = Indexes->getInstructionIndex(MI); 799 if (!(idx > lastIndex)) { 800 report("Instruction index out of order", MI); 801 *OS << "Last instruction was at " << lastIndex << '\n'; 802 } 803 lastIndex = idx; 804 } 805 } 806 807 void 808 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 809 MBBInfoMap[MBB].regsLiveOut = regsLive; 810 regsLive.clear(); 811 812 if (Indexes) { 813 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 814 if (!(stop > lastIndex)) { 815 report("Block ends before last instruction index", MBB); 816 *OS << "Block ends at " << stop 817 << " last instruction was at " << lastIndex << '\n'; 818 } 819 lastIndex = stop; 820 } 821 } 822 823 // Calculate the largest possible vregsPassed sets. These are the registers that 824 // can pass through an MBB live, but may not be live every time. It is assumed 825 // that all vregsPassed sets are empty before the call. 826 void MachineVerifier::calcRegsPassed() { 827 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 828 // have any vregsPassed. 829 DenseSet<const MachineBasicBlock*> todo; 830 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 831 MFI != MFE; ++MFI) { 832 const MachineBasicBlock &MBB(*MFI); 833 BBInfo &MInfo = MBBInfoMap[&MBB]; 834 if (!MInfo.reachable) 835 continue; 836 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 837 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 838 BBInfo &SInfo = MBBInfoMap[*SuI]; 839 if (SInfo.addPassed(MInfo.regsLiveOut)) 840 todo.insert(*SuI); 841 } 842 } 843 844 // Iteratively push vregsPassed to successors. This will converge to the same 845 // final state regardless of DenseSet iteration order. 846 while (!todo.empty()) { 847 const MachineBasicBlock *MBB = *todo.begin(); 848 todo.erase(MBB); 849 BBInfo &MInfo = MBBInfoMap[MBB]; 850 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 851 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 852 if (*SuI == MBB) 853 continue; 854 BBInfo &SInfo = MBBInfoMap[*SuI]; 855 if (SInfo.addPassed(MInfo.vregsPassed)) 856 todo.insert(*SuI); 857 } 858 } 859 } 860 861 // Calculate the set of virtual registers that must be passed through each basic 862 // block in order to satisfy the requirements of successor blocks. This is very 863 // similar to calcRegsPassed, only backwards. 864 void MachineVerifier::calcRegsRequired() { 865 // First push live-in regs to predecessors' vregsRequired. 866 DenseSet<const MachineBasicBlock*> todo; 867 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 868 MFI != MFE; ++MFI) { 869 const MachineBasicBlock &MBB(*MFI); 870 BBInfo &MInfo = MBBInfoMap[&MBB]; 871 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 872 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 873 BBInfo &PInfo = MBBInfoMap[*PrI]; 874 if (PInfo.addRequired(MInfo.vregsLiveIn)) 875 todo.insert(*PrI); 876 } 877 } 878 879 // Iteratively push vregsRequired to predecessors. This will converge to the 880 // same final state regardless of DenseSet iteration order. 881 while (!todo.empty()) { 882 const MachineBasicBlock *MBB = *todo.begin(); 883 todo.erase(MBB); 884 BBInfo &MInfo = MBBInfoMap[MBB]; 885 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 886 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 887 if (*PrI == MBB) 888 continue; 889 BBInfo &SInfo = MBBInfoMap[*PrI]; 890 if (SInfo.addRequired(MInfo.vregsRequired)) 891 todo.insert(*PrI); 892 } 893 } 894 } 895 896 // Check PHI instructions at the beginning of MBB. It is assumed that 897 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 898 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 899 for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end(); 900 BBI != BBE && BBI->isPHI(); ++BBI) { 901 DenseSet<const MachineBasicBlock*> seen; 902 903 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 904 unsigned Reg = BBI->getOperand(i).getReg(); 905 const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB(); 906 if (!Pre->isSuccessor(MBB)) 907 continue; 908 seen.insert(Pre); 909 BBInfo &PrInfo = MBBInfoMap[Pre]; 910 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 911 report("PHI operand is not live-out from predecessor", 912 &BBI->getOperand(i), i); 913 } 914 915 // Did we see all predecessors? 916 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 917 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 918 if (!seen.count(*PrI)) { 919 report("Missing PHI operand", BBI); 920 *OS << "BB#" << (*PrI)->getNumber() 921 << " is a predecessor according to the CFG.\n"; 922 } 923 } 924 } 925 } 926 927 void MachineVerifier::visitMachineFunctionAfter() { 928 calcRegsPassed(); 929 930 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 931 MFI != MFE; ++MFI) { 932 BBInfo &MInfo = MBBInfoMap[MFI]; 933 934 // Skip unreachable MBBs. 935 if (!MInfo.reachable) 936 continue; 937 938 checkPHIOps(MFI); 939 } 940 941 // Now check liveness info if available 942 if (LiveVars || LiveInts) 943 calcRegsRequired(); 944 if (LiveVars) 945 verifyLiveVariables(); 946 if (LiveInts) 947 verifyLiveIntervals(); 948 } 949 950 void MachineVerifier::verifyLiveVariables() { 951 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 952 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 953 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 954 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 955 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); 956 MFI != MFE; ++MFI) { 957 BBInfo &MInfo = MBBInfoMap[MFI]; 958 959 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 960 if (MInfo.vregsRequired.count(Reg)) { 961 if (!VI.AliveBlocks.test(MFI->getNumber())) { 962 report("LiveVariables: Block missing from AliveBlocks", MFI); 963 *OS << "Virtual register " << PrintReg(Reg) 964 << " must be live through the block.\n"; 965 } 966 } else { 967 if (VI.AliveBlocks.test(MFI->getNumber())) { 968 report("LiveVariables: Block should not be in AliveBlocks", MFI); 969 *OS << "Virtual register " << PrintReg(Reg) 970 << " is not needed live through the block.\n"; 971 } 972 } 973 } 974 } 975 } 976 977 void MachineVerifier::verifyLiveIntervals() { 978 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 979 for (LiveIntervals::const_iterator LVI = LiveInts->begin(), 980 LVE = LiveInts->end(); LVI != LVE; ++LVI) { 981 const LiveInterval &LI = *LVI->second; 982 983 // Spilling and splitting may leave unused registers around. Skip them. 984 if (MRI->use_empty(LI.reg)) 985 continue; 986 987 // Physical registers have much weirdness going on, mostly from coalescing. 988 // We should probably fix it, but for now just ignore them. 989 if (TargetRegisterInfo::isPhysicalRegister(LI.reg)) 990 continue; 991 992 assert(LVI->first == LI.reg && "Invalid reg to interval mapping"); 993 994 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 995 I!=E; ++I) { 996 VNInfo *VNI = *I; 997 const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def); 998 999 if (!DefVNI) { 1000 if (!VNI->isUnused()) { 1001 report("Valno not live at def and not marked unused", MF); 1002 *OS << "Valno #" << VNI->id << " in " << LI << '\n'; 1003 } 1004 continue; 1005 } 1006 1007 if (VNI->isUnused()) 1008 continue; 1009 1010 if (DefVNI != VNI) { 1011 report("Live range at def has different valno", MF); 1012 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1013 << " where valno #" << DefVNI->id << " is live in " << LI << '\n'; 1014 continue; 1015 } 1016 1017 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1018 if (!MBB) { 1019 report("Invalid definition index", MF); 1020 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1021 << " in " << LI << '\n'; 1022 continue; 1023 } 1024 1025 if (VNI->isPHIDef()) { 1026 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1027 report("PHIDef value is not defined at MBB start", MF); 1028 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1029 << ", not at the beginning of BB#" << MBB->getNumber() 1030 << " in " << LI << '\n'; 1031 } 1032 } else { 1033 // Non-PHI def. 1034 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1035 if (!MI) { 1036 report("No instruction at def index", MF); 1037 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1038 << " in " << LI << '\n'; 1039 } else if (!MI->modifiesRegister(LI.reg, TRI)) { 1040 report("Defining instruction does not modify register", MI); 1041 *OS << "Valno #" << VNI->id << " in " << LI << '\n'; 1042 } 1043 1044 bool isEarlyClobber = false; 1045 if (MI) { 1046 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), 1047 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 1048 if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() && 1049 MOI->isEarlyClobber()) { 1050 isEarlyClobber = true; 1051 break; 1052 } 1053 } 1054 } 1055 1056 // Early clobber defs begin at USE slots, but other defs must begin at 1057 // DEF slots. 1058 if (isEarlyClobber) { 1059 if (!VNI->def.isUse()) { 1060 report("Early clobber def must be at a USE slot", MF); 1061 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1062 << " in " << LI << '\n'; 1063 } 1064 } else if (!VNI->def.isDef()) { 1065 report("Non-PHI, non-early clobber def must be at a DEF slot", MF); 1066 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def 1067 << " in " << LI << '\n'; 1068 } 1069 } 1070 } 1071 1072 for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) { 1073 const VNInfo *VNI = I->valno; 1074 assert(VNI && "Live range has no valno"); 1075 1076 if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) { 1077 report("Foreign valno in live range", MF); 1078 I->print(*OS); 1079 *OS << " has a valno not in " << LI << '\n'; 1080 } 1081 1082 if (VNI->isUnused()) { 1083 report("Live range valno is marked unused", MF); 1084 I->print(*OS); 1085 *OS << " in " << LI << '\n'; 1086 } 1087 1088 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start); 1089 if (!MBB) { 1090 report("Bad start of live segment, no basic block", MF); 1091 I->print(*OS); 1092 *OS << " in " << LI << '\n'; 1093 continue; 1094 } 1095 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1096 if (I->start != MBBStartIdx && I->start != VNI->def) { 1097 report("Live segment must begin at MBB entry or valno def", MBB); 1098 I->print(*OS); 1099 *OS << " in " << LI << '\n' << "Basic block starts at " 1100 << MBBStartIdx << '\n'; 1101 } 1102 1103 const MachineBasicBlock *EndMBB = 1104 LiveInts->getMBBFromIndex(I->end.getPrevSlot()); 1105 if (!EndMBB) { 1106 report("Bad end of live segment, no basic block", MF); 1107 I->print(*OS); 1108 *OS << " in " << LI << '\n'; 1109 continue; 1110 } 1111 if (I->end != LiveInts->getMBBEndIdx(EndMBB)) { 1112 // The live segment is ending inside EndMBB 1113 const MachineInstr *MI = 1114 LiveInts->getInstructionFromIndex(I->end.getPrevSlot()); 1115 if (!MI) { 1116 report("Live segment doesn't end at a valid instruction", EndMBB); 1117 I->print(*OS); 1118 *OS << " in " << LI << '\n' << "Basic block starts at " 1119 << MBBStartIdx << '\n'; 1120 } else if (TargetRegisterInfo::isVirtualRegister(LI.reg) && 1121 !MI->readsVirtualRegister(LI.reg)) { 1122 // A live range can end with either a redefinition, a kill flag on a 1123 // use, or a dead flag on a def. 1124 // FIXME: Should we check for each of these? 1125 bool hasDeadDef = false; 1126 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), 1127 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 1128 if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() && MOI->isDead()) { 1129 hasDeadDef = true; 1130 break; 1131 } 1132 } 1133 1134 if (!hasDeadDef) { 1135 report("Instruction killing live segment neither defines nor reads " 1136 "register", MI); 1137 I->print(*OS); 1138 *OS << " in " << LI << '\n'; 1139 } 1140 } 1141 } 1142 1143 // Now check all the basic blocks in this live segment. 1144 MachineFunction::const_iterator MFI = MBB; 1145 // Is this live range the beginning of a non-PHIDef VN? 1146 if (I->start == VNI->def && !VNI->isPHIDef()) { 1147 // Not live-in to any blocks. 1148 if (MBB == EndMBB) 1149 continue; 1150 // Skip this block. 1151 ++MFI; 1152 } 1153 for (;;) { 1154 assert(LiveInts->isLiveInToMBB(LI, MFI)); 1155 // We don't know how to track physregs into a landing pad. 1156 if (TargetRegisterInfo::isPhysicalRegister(LI.reg) && 1157 MFI->isLandingPad()) { 1158 if (&*MFI == EndMBB) 1159 break; 1160 ++MFI; 1161 continue; 1162 } 1163 // Check that VNI is live-out of all predecessors. 1164 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1165 PE = MFI->pred_end(); PI != PE; ++PI) { 1166 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI).getPrevSlot(); 1167 const VNInfo *PVNI = LI.getVNInfoAt(PEnd); 1168 1169 if (VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(MFI)) 1170 continue; 1171 1172 if (!PVNI) { 1173 report("Register not marked live out of predecessor", *PI); 1174 *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() 1175 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live at " 1176 << PEnd << " in " << LI << '\n'; 1177 continue; 1178 } 1179 1180 if (PVNI != VNI) { 1181 report("Different value live out of predecessor", *PI); 1182 *OS << "Valno #" << PVNI->id << " live out of BB#" 1183 << (*PI)->getNumber() << '@' << PEnd 1184 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() 1185 << '@' << LiveInts->getMBBStartIdx(MFI) << " in " << LI << '\n'; 1186 } 1187 } 1188 if (&*MFI == EndMBB) 1189 break; 1190 ++MFI; 1191 } 1192 } 1193 1194 // Check the LI only has one connected component. 1195 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { 1196 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 1197 unsigned NumComp = ConEQ.Classify(&LI); 1198 if (NumComp > 1) { 1199 report("Multiple connected components in live interval", MF); 1200 *OS << NumComp << " components in " << LI << '\n'; 1201 for (unsigned comp = 0; comp != NumComp; ++comp) { 1202 *OS << comp << ": valnos"; 1203 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 1204 E = LI.vni_end(); I!=E; ++I) 1205 if (comp == ConEQ.getEqClass(*I)) 1206 *OS << ' ' << (*I)->id; 1207 *OS << '\n'; 1208 } 1209 } 1210 } 1211 } 1212 } 1213 1214